
UC Irvine
ICS Technical Reports

Title
A view of dataflow

Permalink
https://escholarship.org/uc/item/2sj5h3sj

Authors
Gostelow, Kim P.
Thomas, Robert E.

Publication Date
1979
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2sj5h3sj
https://escholarship.org
http://www.cdlib.org/


I

I

I

I

I

I

I

I

I

I

I

r-\Y'> >

A VIEW OF DATAFLOW*

by

Kim P. Gostelow

Robert E. Thomas

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717

June 1979

Technical Report 128

This work was supported by NSF Grant MCS76-12460: The UCI
Dataflow Architecture Project. To appear in 1979 AFIPS
Conference Proceedings.



A view of dataflow*

by KIM P. GOSTELOW and ROBERT E. THOMAS
University of California

Irvine, California

INTRODUCTION

In 1946 John von Neumann outlined an organization for
computers' that has dominated the languages and architec
ture of machines to this day—the familiar sequential, one-
word-at-a-time instruction stream which modifies the con

tents of a memory. Although the von Neumann model has
proved to be a viable and powerful approach to computation,
we have chosen to explore other models of computation to
determine if they offer advantages in ease of programming,
exploitation of concurrency and performance. A primary
motivation is new technology such as large scale integration
(LSI) which has greatly expanded the range of choice in
computer design.

Dataflow is an alternative model of computation which is
particularly promising. The basic principles of dataflow are
asynchrony and functionality, and thus are in distinct con
trast to the von Neumann model. Readers familiar with look-

ahead processors^ such as the IBM 360/91 and the CDC
6600/7600 will find that the principles of dataflow are not
new. However, our goals in exploiting the principles of
dataflow are of a more fundamental nature than the goals of
the above systems. Rather than using dataflow simply to
improve the performance of von Neumann processors, we
have adopted the semantics of dataflow as the base seman
tics of our system. A primary reason for this direction is a
desire to explore the full generality of dataflow. Another
reason, perhaps of greater importance, is our impression
that the functional nature of dataflow simplifies the seman
tics of programming languages and thus may reduce the cost
of software (especially in the case of multiprocessor sys
tems). Our approach is first to design a fully-integrated sys
tem before attempting to construct hardware. This includes
the design of a base machine language, a preliminary high-
level language,® a user protection facility,^ and a high-level
exception handling facility,® aU of which are based on the
semantics of dataflow.

The following sections discuss details of the principles of
dataflow with emphasis on a method of interpretation de
veloped at Irvine. The general version of this interpreter is
known as the unfolding interpreter and is described in the
following section. (Details oh a specific unfolding interpreter

* This work was supported by NSF Grant MCS76-12460: The UCI Dataflow
Architecture Project.

are available elsewhere.®) The third section presents imple
mentation techniques for dataflow systems while the fourth
section discusses some principles of multiprocessor design
currently being developed.

BASIC PRINCIPLES OF DATAFLOW AND THE

UNFOLDING INTERPRETER

The present section concentrates on the logical implica
tions of dataflow semantics without regard to physical im
plementations, efficiency, etc. These latter topics are dis
cussed in later sections.

Asynchrony and Functionality

The following introduces dataflow by showing the corre
spondence between constructs in the high-level dataflow
la.nguage Id (for /rvine dataflow) with schemata in a graph
ical dataflow machine language. The goal is twofold—^first
to show by example that programs need not be written in
dataflow machine language, and second, to provide some
intuition for understanding the execution of dataflow pro
grams. We wish to emphasize that our purpose is to present
the basis of dataflow and not to discuss the syntax of a
particular dataflow language (Id), or the details of a partic
ular machine language.®

Consider the following Id constructs:

s^initial sum<-0
for i from \ to n do

new sum<—sum-t-f(i)
return sum)-, (2.1)

procedure sum (i, k)
{return {ifi>k then 0

else f(i)-l-sum(H-l, k)));
s^um(l, n); (2.2)

both of which can be expressed in mathematical terms as

s= 2f(i)
i=l

Statement (2.1) is an assignment statement whose right-hand
side is an Id loop expression. The statements in (2.2) are a

629



630 National Computer Conference, 1979

procedure definition followed by an application of that pro
cedure. Each of these constructs has a number of inputs—
a value for n, a definition for the function procedure f, and
in the case of the sum procedure definition, the value of i.
In addition, both (2.1) and (2.2) produce the same result.
We abstract these two definitions of "sum" by considering
each to be a "black box" as shown in Figure la. Each dark
spot in the figure represents the presence of a data item
referred to as a token. For now, we can consider a data item
to be an instance of an integer, real, or boolean value.

The mechanics of computation within a black box can be
ignored as long as three conditions are met: 1) a complete
set of input values (i.e. tokens) is consumed, 2) the com
putation within the box has no effect on other computations
except perhaps to compete for resources (i.e. there are no
semantic side-effects), and 3) a complete set of result tokens
is always produced if the computation terminates. A black
box meeting these requirements is 3.function. The basis of
dataflow is the definition and operation of interconnected
functions. One way, for example, to interconnect fiinctions
is by composition (Figure lb). Other dataflow interconnec
tion schemes including cycles have been devised^-®-'' but are
not discussed here.

As opposed to the sequential, one-instruction-at-a-time
memory cell semantics of the von Neumann computer, the
basic principles of dataflow are:

1. Operations execute when and only when the required
operands are available (asynchrony).

2. Operations are functions (there are no side-effects).

These principles imply that the order of execution of two
functions, such as e and g in Figure lb, is irrelevant since
the computations internal to e and g cannot interact. Thus
e and g can be computed concurrently. Such concurrency,
present in the interconnection graph itself, is called static
parallelism. A more interesting example of the asynchrony
achievable in dataflow occurs when a function is executed

more than once, either by iteration or by recursion (for
example, function f in (2.1) and (2.2) previously). As shown
in Figure Ic, suppose that a dataflow machine replicates the
function f and its input and output lines for as many times
as f is executed. Since f has no side-effects, each copy of f
can be computed in any order or concurrently. This con
currency is called dynamic parallelism since the concur
rency potential depends on the number of repetitions (de
termined at execution time) of the function f. Dynamic

t1
sum

Figure la—Abstraction of the Id construct sum

Figure lb—Composition of functions

'parallelism is of particular interest because it can affect the
time complexity of an algorithm. For example, suppose the
time complexity of function f in (2.1) and (2.2) is 0(m) (i.e.
assume that f has an additional parameter m). Then on a
sequential machine the time complexity of either (2.1) or
(2.2) would be 0(nm). However, on a dataflow machine
capable of dynamic parallelism, the processing time com
plexity would be 0(n+m) because the time required is 0(n)
to generate the n instances of f, plus 0(m) to simultaneously
compute all instances of f (assuming 0(n) processors are
available), plus 0(n) again to sum the resulting values. The
total is 0(n-l-m-l-n)=0(n-l-m), where for simplicity we have
ignored some important considerations such as communi
cation conflicts.

It is important to note that the input and output lines of
a function are replicated for as many times as the function
is executed. This implies that at most one token will ever
travel on any given line instance, thus preserving function
ality. In addition, the situation shown in Figure 2 is pre
cluded by the "single-assignment rule" present in the high
level language.

The replication of f and its input and output lines does not
alone ensure dynamic parallelism since data dependencies
in the program may inhibit it. For example, if the previous
definition of sum is changed to

s<—(mifia/ sum<—0; x<—5
for {from I to n do

new x<—f(x);
new sum<—sum+nevf x

return sum)

that is

s= Exi
i=J

where Xi=f(Xi_i) for Xo=5 and 1<i<n

1

1 f(ij)

Figure Ic—Instances of function f

i:

T



I

Figure 2^An illegal connection

then the input to f depends on the value computed by the
previous instance of f. That is, the instances of f must be
computed sequentially.

The Unfolding Interpreter

Using the simple notions of asynchrony and functionality
discussed above, we present an interpreter which manages
a context for each value produced and consumed in the
system. The purpose of context management is to logically
separate and direct the values to the proper instance of each
function.

At this point we note that other dataflow interpreters have
been defined®-' which rely on either fixed-size buffers and
request/acknowledge communication between functions, or
the assumption of an unbounded FIFO queue between each
interconnected function. The unfolding interpreter is capable
of far more asynchronous operation than these other inter
preters because of the function copying it performs.

Each execution instance of a function is called an activity
and is uniquely identified by an activity name. An activity
name comprises two parts denoted u./ where u is the context
part and / is a unique label referencing the description of the
function to be computed by that activity. In addition, the
referenced function description specifies the destination la
bels to be used for transmission of result tokens. A data

flow object program is a set of labeled function descriptions.
The actions of the interpreter can now be stated:

1. Tokens generated by the execution of activities are
grouped by activity name.

2. When the input tokens to an activity become available,
the activity is executed according to its description.

3. Output tokens are produced by tagging the values re
sulting from the execution of an activity with the des
tination's activity name. The u part of the destination
activity name is derived from the u part of the activity
name of the producing activity according to a set of
rules (some examples are given below). The I part is
derived from the output destination information which
is part of the description of the function executed by
that activity. Note that the act of computing a desti
nation activity name is equivalent to creating a "logical
line instance" extending from the producing activity to
the destination activity.

To illustrate, consider the dataflow object program in Figure

A View of Dataflow
/

631

3a. Let the activity name of an instance of e be u./. The rule
for function composition says that the context of the output
is identical to the context of the input, and the label of the
output is specified by the description of the function being
executed, i.e. the program code. This results in activity u./
producing an output token with destination activity name
u.t. Now consider the case when an activity itself comprises
(smaller) activities, for example a procedure call, which is
provided for by the base machine language primitives A,
BEGIN, END, and A~' as shown in Figure 3b. This figure
shows the creation of a new set of activities resulting from
the application (call) of procedure f. Note that the descrip
tion of procedure f is one of the input values to the procedure
application box. (We will not be concerned here with the
representation of procedure values.) Activity name genera
tion for procedure call is as follows:

• The A (activate) primitive—Assume that the activity
name of an instance of A is u./. Since the procedure
call represents a change in context, the A primitive
"stacks" the context part u within the new activity
name, thereby creating a unique context for the activ
ities within f. The activity name produced is u'.beginf
where u'=u./. Also by convention, the A primitive
groups into one vector value all of the input arguments
so that exactly one input argument token is always
delivered to the newly created instance of f.

• The BEGIN primitive—^The purpose of BEGIN is to
distribute the input arguments to the activities within
f with no further change in the context u'.

• The END primitive—The END primitive "unstacks"
the context u' to reveal the outer context and the label

/. It then constructs the activity name u.t (the activity
to which the result of the procedure is to be returned)
which can be accomplished in a number of ways. For
example, t could be computed from I according to an
agreed-upon rule. Also, by convention, the END pri
mitive combines all output values onto one token for
transmission to the A"' activity.

• The (terminate) primitive—The purpose of the A"'
primitive is to distribute the results of f to activities in
the outer context with no further change in the context
u.

Though not presented here, other schemata for the un-

l:

t:

J
Figure 3a—a Composition of functions



632 National Computer Conference, 1979

definition
of procedure

f

APPLY I=>

beginf;

. •->I:

t:

I

I -

Figure 3b—Application of procedure f

endf:

folding interpreter have been devised.^ In particular there is
a loop schema which "unfolds" the loop body (including
nested loops) to expose dynamic parallelism. (The unfolding
interpreter gets its name from this capability.) The loop
schema depends on adding a new field, i, to the context part
of an activity name to yield (u.i)./. Like recursion, each
iteration of a loop exists in a distinct context generated
simply by incrementing the i field in the activity name.

IMPLEMENTATION SCHEMES

In this section we discuss techniques for efficient imple

mentation of dataflow. Although von Neumann computers
may be used to implement these techniques within a data
flow system, we rigidly maintain that the semantics of data
flow are the only semantics visible external to the system—
a principle we consider vital to the success of dataflow.

Dataflow Structures and Memory

Oi)eration of the unfolding interpreter requires many cop
ies of program code. Logical copies are sufficient and can
be created simply by copying the pointer to a physical copy
since all code (and data) is read-only. (Note that the label I
in an activity name is equivalent to a pointer.) Of course in
a multiprocessor environment, having just one physical copy
may imply a bottleneck. In this case, we consider it the
responsibility of a particular implementation to selectively
make physical copies (in distinct memories) to reduce the
bottleneck.

Similiar remarks hold for the transmission and replication
of values larger than simple integers, reals, booleans, etc.
The need for logical copies is especially evident when a

value, such as an entire matrix, is transmitted between two
functions and the receiving function utilizes only a small
part and discards the rest. Also, a common programming
task is the production of a data object which differs in only
small ways from another (perhaps large) input data object.
Because dataflovV values can never be modified, an entire
new object must be created, making the straightforward
copy-all approach quite expensive.

Dennis has shown® that the amount of copying can be
reduced by properly defining a SELECT and APPEND op
eration on "structured" data residing in a conventional
memory. A dataflow structure is a set of (selector:value)
pairs where a selector is an integer or string and a value is
any dataflow value (including another structure). A dataflow
structure is always a tree (e.g. Figure 4a). The SELECT
function (subscripting) has two arguments, a structure value
and a selector, and it yields the value at the specified selec
tor. The APPEND function has three arguments: a structure
value, a selector, and a value to be appended to the given
structure at the specified selector. APPEND does not mod
ify the given structure but instead makes a logical copy of
it with the new selector and value appropriately placed. This

r

Si S2, ... S

^ s/ ... s '
1 n
I I

V, ' V '
1 n

Figure 4a—A dataflow structure



I

I

I
. "1

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

A View of Dataflow 633

Figure 4b—APPEND (a, s, y)^/3

can be implemented (with pointers) such that a physical
copy need be made only of the "top level" of the original
structure value. Thus sub-structures can be shared between

any number of structure values without violating dataflow
semantics. A simple example is given in Figure 4b where
both structures (logical trees) physically share the sub-struc
ture at selector r.

Since the definition of dataflow structures precludes the
construction of internal cycles, a simple reference count
scheme can be used to reclaim structures no longer needed.
The reference count method is also helpful in detecting the
special case of an APPEND to a structure when there is
only one logical copy of that structure (i.e. reference count
equals one). In this case APPEND can quickly produce its
output by simply updating the old structure in place.

In the following we consider several explicit representa
tions for dataflow structures. When a dataflow structure has

contiguous integer selectors, a vector of contiguous memory
words may be used where one value (or a pointer to a value)
is stored per memory word. This is terriied array represen
tation. It is easy to see that in array representation a (one
level) SELECT can be done in constant time while APPEND
requires 0(n) tinie (for copying), where n is the number of
words in the result memory vector.

A second representation, termed selector vector, is a fairly
compact representation when string or sparse integer selec
tors appear in the dataflow structure. Again a contiguous
memory vector is used but the (ordered) selectors are ex
plicitly stored with the values. SELECT can then be done
in 0(log n) time using a binary search while APPEND re
quires 0(n) time where n is the number of selectors.

A third representation of a dataflow structure is a modi
fication to a "balanced" tree scheme such as an AVL tree,

B-tree, or B*-tree.® In the following we have selected a

CX

nr
7 11 49 101 213 I=>

^1 ^2 "3 ''4 •"S
7:v.

specific B-tree, the 2-3 tree, to illustrate the concept. A 2-3
tree is a tree in which every vertex that is not a leaf has
either two or three sons, and every path from the root to a
leaf is of the same length.® A dataflow structure and its 2-3
tree representation is given in Figure 4c. Each internal ver
tex of a 2-3 tree contains the value of the largest selector
appearing in its sub-tree. These values are used in the SE
LECT (and APPEND) operation to guide a modified binary
search requiring 0(log n) time, where n is the number of
leaves in the tree. APPEND can also be done in 0(log n)
time,'" where none of the vertices of the original tree are
disturbed (except perhaps for reference counts) and most of
the original 2-3 tree is shared between the argument and
result structures without affecting functionality. The 2-3 tree
representation also promotes efficient concatenation of da
taflow structures (an operation quite useful in programs such
as quicksort, fast Fourier transform, etc.) with constant time
required in the best case and 0(log n) time required in the
worst case, given certain restrictions are met in the input
structures.'® However, a significant disadvantage with 2-3
tree representation is the extra memory required for the
internal vertices of the tree; and while asymptotic behavior
is good, 0(log n), the constant factor in the equation also
could be significant.

The reader may note that the design of an efficient dataf
low memory system involves problems (i.e. memory man
agement, garbage collection, choice of representations, etc.)
which also occur on conventional systems. Currently these
tasks are reprogrammed to some extent by each application
program that is written. Our feeling is that by embedding
these tasks within the system as close to hardware as is
practical, a significant burden is removed from the applica
tion programmer, and if a good design is obtained, average
performance will improve.

213

213

11;v, 49 ;v. 101:v 213 ;v,

Figure 4c—Dataflow structure represented as a 2-3 tree



634 National Computer Conference, 1979

Implementation of the Unfolding Interpreter

One problem with the theoretical unfolding interpreter is
the unbounded length of activity names, the primary purpose
of which is to logically separate the tokens so that the inputs
to each copy of each function are uniquely determined. For
this purpose a unique number, N, for each context combined
with the label / is sufficient. For example, starting with
activity name N./ for the A activity in Figure 3b, the context
is changed by obtaining a new unique number N' to form
activity name N'.beginf. In addition, an association is made
in memory between N' and the activity name N.t; alterna
tively a token carrying N.t can be sent from the A to the
END activity.-In either case, the return from the inner
context is accomplished by the END activity which fetches
the information N.t associated with the number N' and uses

it as a logical "return address" to the outer context.
The major question in this approach is the method of

generating and managing the unique numbers. If enough bits
(say, 60) are used to store N, uniqueness of N can be guar
anteed to extend over the life of the system. However, if
the system guarantees that none of the activities (and their
associated tokens) exist from the previous use of N, a value
N can be reused and significant savings achieved. This is
generally not a problem in context management on sequen
tial machines; however, due to the asynchrony of dataflow
it is possible, for example, that an END activity finishes
execution before all of the activities in the procedure have
finished, even when the system guarantees that all such
activities wiU eventually finish. One workable solution is to
prevent END from finishing execution before all other ac
tivities and tokens of that procedure application have been
consumed. With this restriction, a simple scheme such as a
tree of stacks (cactus) can be used to implement unique
number management with reusable names.

A second problem with the unfolding interpreter is the
requirement for system-wide unique labels for object code.
As is common in conventional systems, a tree-structured
directory system with path specifications may be used to
implement dataflow labels. If desired, path specifications
can be included within activity names. For example, / can
be split into two fields p.s where p is a pointer to a procedure
and s is a function (statement) number in that procedure.

MULTIPROCESSOR DESIGN PRINCIPLES

Although dataflow principles can be advantageously ap
plied to conventional systems, we believe that new concepts
in computer architecture must be developed to take full
advantage of the concurrency and functionality of the da
taflow model. This final section is largely speculative be
cause of the difficulty of accurately predicting the perform
ance of proposed architectures. However, we have
simulated variations of a specific dataflow architecture and
the results are reported in detail elsewhere.'^ Moreover,
since the design of this architecture contains much detail
and changes rapidly, we summarize our experience with it
in the form of tentative principles for the design of one

possible form of dataflow machine. These principles are not
new and have been applied to many systems. However,
such a statement serves as a point of comparison with other
views. f

Our goal is to design a general purpose computing system '
which j

1. Can effectively distribute small pieces of a computation
over many processors in the machine;

2. Is modular enough so that additional blocks of proces
sors can be easily added to increase the capacity of the
machine;

3. Has a measure of fault tolerance so that hardware

failures may decrease performance but will not nec
essarily halt the machine (i.e. fail-soft);

4. Does not require knowledge of the number and config
uration of processors to write programs which effec
tively utilize these resources;

5. Does not depend on expensive interconnection
schemes (e.g. crossbar switch) or extremely fast circuit
speed for good performance;

6. Can support a number of simultaneous users.

The first principle of multiprocessor design (evidenced by
simulation results) is the program-dependent tradeoff be
tween distribution and localization of computation. Distri
bution may allow concurrent execution of a program, but it
also tends to increase communication costs. Thus for any
particular architecture and computation, there exists some
optimal degree of,distribution (perhaps as little as one pro
cessor) for which execution time is minimized. Locality (e.g.
"the working set" in paging systems) is an established prin
ciple of conventional systems. Moreover, we believe that
locality will be present to an even greater extent in dataflow
due to the absence of side-effects and due to the high degree
of structure imposed by our high level dataflow language.
To take advantage of locality, we must consider two features
of a dataflow system: 1) how the topology of the architecture
allows reduced communication costs when physical locality
is' present and 2) how program locality is preserved in the
mapping to physical hardware.

One topology which supports locality is a hierarchy of
modules. For example, a primitive module could be a pro
cessor with memory which can execute any dataflow ma
chine language instruction or group of instructions, including
an entire dataflow program (the extreme case of locality).
Primitive modules are, connected to form larger modules
which are then connected, etc., such that any module can
be considered to consist of some processing power and some
associated memory. This structure supports locality to the
extent that communication within any given module can be
made less costly than communication off the module.

A second aspect of locality is the mapping of program
locality to physical locality in the machine. Assume each
processor in the machine to have a distinct physical address.
We have found that the activity names themselves con
structed by the unfolding interpreter contain much of the
locality information present in the source program. For ex
ample, activity names with the same context part belong to



I

I

I
T

I

I

I

the same instance of a procedure (or loop). In addition, the
labels / in the object program can be assigned by the com
piler such that numerically-close labels suggest close con
nection of functions. These pieces of information can be
used by an activity assignment function which maps from
logical activity names to physical processor addresses. The
resulting physical address is placed on each output token to
guide its transmission in the communication network. The
selection of an appropriate assignment function is similiar to
the problem of selecting an appropriate hash function for a
scatter table but with the additional consideration of pre
serving locality where appropriate. Note that the assignment
function and the communication network perform a partial
sorting of activity names by physically directing tokens to
their destinations. The final sorting is done by each proces
sor on only those activity names which map to its physical
address.

As a practical matter, designing a fairly good assignment
function which distributes computation while preserving lo
cality is not too difficult to do (at least for the small selection
of programs we have executed on our simulator). However,
the selection of an optimal assignment function is a difficult
problem requiring further investigation. We also note that
it is possible for the machine to tune its assignment func-
tion(s) at execution time for improved performance.

The second principle of multiprocessor design we have
adopted is that the communication delay (ignoring conflicts)
between any two processors should be no more than 0(log
n) where n is the total number of processors. If we rule out
complete interconnection schemes, this principle also sug
gests a hierarchical interconnection of modules. However,
a tree is not the only structure with the 0(log n) property.
Two other examples are the boolean n-cube^^ and the inter
connection network of Wittie.'® Both of these networks can
be viewed as trees in which sufficient additional connections

have been made such that the root node has become indis

tinguishable. (In other words, pick any node in the network;
then appropriate connections can be deleted so that a tree
remains.) Although much investigation remains to be done
before selecting a particular interconnection network, we
feel that a more highly connected structure than a tree is
appropriate for two reasons: 1) the extra connections pro
vide some measure of fault tolerance and 2) more flexibility
is allowed to map the logical tree structure of many programs
into the many physical trees present in the network. Cur
rently we are favoring a modification of the Wittie network
due to its lower implementation cost.

The last principle of multiprocessor design is recognition
of the potential benefits of redundant copies of data and
program code. Conventional systems have already devel
oped this concept to some extent, primarily in the area of
virtual memories and high speed caches. However, dataflow
can take further advantage of redundant copies because
values are never modified. We have three goals in pursuing
the concept of redundancy: 1) to improve performance
through concurrent access of data in distinct memories, 2)
to improve performance through a caching scheme which
localizes data to where it is most used, and 3) to identify
each data copy so that if one copy is damaged, a search can

A View of Dataflow 635

be instituted to obtain another valid copy. For those readers
interested in possible mechanisms to achieve some of these
goals. Reference 11 should be of some help.

CONCLUSIONS

The decision to incorporate the full generality of dataflow
is not without its costs. We have seen that the principles of
dataflow sometimes suggest implementations which make
"inefficient" use of memory. Of course better implemen
tations may yet be found but we suggest that problems with
memory be viewed in the context of the following points: 1)
the full generality of dataflow is not always required—for
example a program like matrix multiplication can be exe
cuted within the semantics of dataflow and still require little
more memory than does a conventional machine, 2) dupli
cation of data and code can have various benefits such as

concurrent memory access and the possibility of recovering
from hardware faults, and 3) the cost of hardware and mem
ory is decreasing while the cost of software and system
failures will probably continue to increase. Thus in a few
years the "efficient" use of memory in many situations
might be viewed quite differently.

An introduction to dataflow is not complete without men
tioning other issues and capabilites. Dataflow streams and
managers are available to program history-sensitive appli
cations such as airline reservation systems, resource man
agement, etc. directly in a high-level language;" in addition,
abstract data types are available.

REFERENCES

1. Taub, A. H. (Ed.), Collected Works ofJohn von Neumann, Vol. 5, The
Macmillan Company, New York, 1963, pp. 34-79.

2. Keller, R. M., "Look-ahead processors," ACM Computing Surveys,
Vol. 7, No. 4, December 1975, pp. 177-195.

3. Arvind., K. P. Gostelow and W. Plouffe, "An asynchronous program
ming language and computing machine," Dept. ofInformation and Com
puter Science Technicai Report IMA, University of California, Irvine,
CA, 1978.

4. Bic, L., "Protection and security in a dataflow system," Dept. of Infor
mation and Computer Science Technical Report 126, (Ph.D. Dissertation)
University of California, Irvine, CA, 1978.

5. Plouffe, W., "Exception handling and recovery in a dataflow system,"
Ph.D. Dissertation, Dept. of Information and Computer Science, Uni
versity of California, Irvine, CA, (in preparation).

6. Dennis, J. B., "First version of a data flow procedure language," Sym
posium on Programming, Institut de Programmation, University of Paris,
Paris, France, April 1974, pp. 241-271 (also MAC Technical Memoran
dum 61, LCS/MIT, Cambridge, MA, May 1975).

7. Davis, A. L., "The architecture and system method of DDMl: a recur

sively structured data driven machine," ACMIIEEE Fifth Annual Sym
posium on Computer Architecture, Vol. 6, No. 7, April 1978, pp. 210-
215.

8. Knuth, D. E., The Art of Computer Programming, Vol. 3, Sorting and
Searching, Addison-Wesley, Reading, 1973, pp. 451-480.

9. Aho, A. v., J. E. Hopcroft and J. D. Ullman, The Design and Analysis
of Computer Algorithms, Addison-Wesley, Reading, 1974, pp. 145-155.

10. Thomas, R. E., "A comparison of methods for implementing dataflow
structures," Dataflow Architecture Project Note 35, Dept. of Information
and Computer Science, University of California, Irvine, CA, May 1978.



636 National Computer Conference, 1979

11. Gostelow, K. P. and R. E. Thomas, "Performance of a dataflow com- 13. Wittie, L. D., "Efficient message routing in mega-micro-computer net-
puter," Dept. of Information and Computer Science Technical Report works," ACMIIEEE Third Annual Symposium on Computer Architec-
127f University of California, Irvine, CA, 1979. ture, Vol. 4, No. 4, January 1976, pp. 136-140.

12. Sullivan, H. and T. R. Bashkow, "A large scale, homogeneous, fully 14. Arvind., K. P. Gostelow, and W. E. Plouffe, "Indeterminacy, monitors,
distributed parallel machine, I," ACMIIEEE Fourth Annual Symposium and dataflow," Proc. Sixth ACM Symp. on Operating Systems Principles,
on Computer Architecture, Vol. 5, No. 7, March 1977, pp. 105-117. November 1977, pp. 159-169.

I

I

I
r

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I




