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SUMMARY

Social interactions involve complex decision-making tasks that are shaped by dynamic, mutual 

feedback between participants. An open question is whether and how emergent properties may 

arise across brains of socially interacting individuals to influence social decisions. By 

simultaneously performing microendoscopic calcium imaging in pairs of socially interacting mice, 

we find that animals exhibit interbrain correlations of neural activity in the prefrontal cortex that 

are dependent on ongoing social interaction. Activity synchrony arises from two neuronal 

populations that separately encode one’s own behaviors and those of the social partner. Strikingly, 

interbrain correlations predict future social interactions as well as dominance relationships in a 

competitive context. Together, our study provides conclusive evidence for interbrain synchrony in 

rodents, uncovers how synchronization arises from activity at the singlecell level, and presents a 

role for interbrain neural activity coupling as a property of multi-animal systems in coordinating 

and sustaining social interactions between individuals.

IN BRIEF

When two animals interact, neural activity across their brains synchronizes in a way that predicts 

how they will behave and how they form social dominance relationships.
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INTRODUCTION

Social interactions involve some of the most complex decision-making tasks that animals 

must navigate to secure their survival and reproductive success (Chen and Hong, 2018), as 

individuals must integrate internal state with real time decisions of their social partners in a 

context-dependent manner. In interacting dyads, individuals thus become entrained as they 

attend to, predict, and react to each other’s decisions (Figure S1A) (Rilling and Sanfey, 

2011; Sanfey, 2007). To date, social neuroscience has mostly focused on behavior in 

individual animals to interrogate the neural computations underlying social decision-making. 

But a full understanding of the social brain requires a broader picture that reflects the 

dynamic nature of social interactions, as well as the emergent neural properties that arise 

from multiple individuals as a single integrated system (Adolphs, 2010; Chen and Hong, 

2018; Ochsner and Lieberman, 2001; Schilbach et al., 2013).

In recent years, much effort has been made to explore how neural systems coordinate across 

individuals engaged in social interaction. Simultaneous recordings from multiple human 

subjects using non-invasive techniques (e.g. functional magnetic resonance imaging [fMRI] 

and electroencephalography [EEG]), have revealed striking patterns of interbrain neural 

activity coupling during social engagement (Babiloni et al., 2006; King-Casas et al., 2005; 

Liu and Pelowski, 2014; Montague et al., 2002). Despite these remarkable findings, little is 

concretely known about how interbrain synchrony arises from social interactions. Moreover, 

it remains unclear how synchrony emerges from individual neurons and neuronal 
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populations, in part due to the limited spatial resolution of recording techniques in humans 

which cannot resolve single cell activity. It is also unclear whether brain synchrony is unique 

to primates, or whether it is a general phenomenon present in other social species.

Competitive interactions are common among social species, and play an important role in 

shaping social status hierarchies (Williamson et al., 2016) which influence the long-term 

health of individuals (Cooper et al., 2015; Sapolsky, 2004, 2005). Navigation of social 

interactions depends on circuitry in the medial prefrontal cortex (mPFC), which is 

implicated in the representation of social status (Utevsky and Platt, 2014; Wang et al., 2011; 

Zhou et al., 2017) and shapes social and motivational states (Franklin et al., 2017; Warden et 

al., 2012). However, while previous work has shown that mPFC neurons are active during 

social interaction (Liang et al., 2018; Murugan et al., 2017), it has not been clear how 

prefrontal ensembles encode behavioral decisions during real-time social engagements, such 

as social competition. Moreover, it is, to our knowledge, entirely unknown whether 

functional brain coupling arises during social interaction in rodents.

Here, we used microendoscopic calcium imaging to record from thousands of neurons in the 

dorsomedial prefrontal cortex (dmPFC) of pairs of mice engaged in social interactions. Our 

study provides conclusive evidence for interbrain activity correlations in interacting mice as 

well as a cellular level neural basis underlying this phenomenon, and identifies a critical role 

for interbrain synchrony in coordinating and facilitating social interaction.

RESULTS

Correlated neural activity across animals during free social interaction

During natural social encounters, animals exhibit a wide range of behavior that engage them 

in complex, often reciprocal interactions. To study neural dynamics across brains of socially 

interacting mice, we first examined naturally occurring behaviors during social interactions 

in an open arena, where two novel animals were permitted to freely interact (Figure 1A). We 

recorded the interaction using a video camera, and annotated behaviors of both animals 

frame-by-frame (Figure 1B). Across all sessions, we identified 15 types of behaviors that 

included both social and non-social behavior. While animals spent about 43% of the time 

engaged in observable behavior (Figure 1C), the majority of this (~66%) was social behavior 

directed toward the interacting partner (Figures 1D, S2A). Thus, the open arena provides an 

unconstrained context where animals freely engage in highly diverse and naturalistic social 

interactions.

To investigate neural dynamics during the social interaction, we employed microendoscopic 

calcium imaging to simultaneously monitor activity from hundreds of dmPFC neurons in 

both individuals. To gain optical access to neurons below the cortical surface, we implanted 

a gradient refractive index (GRIN) lens above the dmPFC following injection of an AAV 

expressing the fluorescent calcium indicator GCaMP6f (Figure 1E). Lens placement and 

GCaMP6f expression were confirmed histologically (Figures 1F-G). Calcium fluorescence 

videos were processed using independent component analysis to identify putative cell 

bodies, which were used to extract calcium traces from single cells, expressed throughout as 

relative change in fluorescence (ΔF/F) (Figures 1H-I, Movie S1, STAR Methods). We 
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analyzed a total of 7535 dmPFC neurons in 19 pairs of animals engaged in open arena social 

interaction. Overall neural activity varied across different types of behaviors (Figure S2B), 

suggesting that activity in the dmPFC is differentially modulated by social behavior.

To explore how dmPFC neural dynamics were related across individuals, we computed the 

mean activity of neurons in each animal as aggregate signals that reflect the overall activity 

of the population (Figure 1J), and quantified correlations of activity (Pearson’s correlation 

coefficient, PCC) across dyads in each session. Strikingly, dmPFC populations displayed 

highly correlated activity across animals, which far exceeded chance levels (Figures 1K-L, 

S2C). To examine the timescale of interbrain correlations, we measured the cross-correlation 

of dmPFC activity across animals (Figure 1M); these showed a clear peak at 0.0 s, indicating 

precise synchrony of interbrain activity. This interbrain correlation was not due to 

autocorrelations in each signal, as the cross-correlation structure was abolished when traces 

were phase-randomized (Figure 1N). Together, these results establish that animals engaged 

in free social interaction exhibit highly correlated dmPFC activity.

Interbrain activity correlations depend on ongoing social interaction

Animals in a social environment are naturally inclined to engage with one another, but they 

occasionally exhibit periods of coordinated rest in which they are both quiescent (Figure 

S2D). To address whether interbrain correlations could be simply explained by coordinated 

behavior/rest periods, we removed epochs in which both animals did not exhibit observable 

behavior and compared interbrain correlations during these epochs with those of full 

sessions. Activity after discounting periods of coordinated rest was as correlated as activity 

during full sessions (Figure 2A), suggesting that bouts of concurrent rest cannot account for 

activity correlations.

Although animals do not tend to exhibit the same behaviors at the same time (Figure S2D), 

interacting animals do sometimes behave concurrently. To determine whether overall 

concurrent behavior could explain interbrain synchrony, we compared interbrain correlations 

during epochs with low vs. high levels of concurrent behavior (measured by correlation of 

overall behavior, Figure 2B). Again, interbrain correlations during these epochs were not 

different and were equally disrupted upon phase-randomization of activity traces.

To explore the relationship between interbrain synchrony and social interaction, we next 

compared the degree of interbrain correlation during social vs. non-social behavior. 

Correlations were significantly higher during social behavior (Figure 2C), suggesting 

dependence on social interaction. However, because animals are in the same environment, 

there is a possibility that correlated activity reflects shared sensory inputs such as ambient 

noise or lighting rather than social engagement. To rule this out, we separated the animals 

within the same physical environment using a barrier (Figure 2D). Abolishing social 

interaction significantly reduced interbrain correlations among dmPFC neurons (Figures 2E-

F, S2E), suggesting that correlated activity is not due to shared sensory input, but actually 

depends on ongoing interaction between the pair. Indeed, when we recorded from pairs of 

animals that naturally displayed low levels of social interaction, a lower degree of 

correlation was observed (Figure S2F).

Kingsbury et al. Page 4

Cell. Author manuscript; available in PMC 2020 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Given this observation, another hypothesis is that interbrain correlations reflect generic 

activity associated with social interaction, such as motivational state, regardless of whether 

animals are directly engaged. To rule this out, we examined neural activity across pairs of 

animals that each engaged in social interactions, but with separate animals and not with each 

other (Figure 2G). Activity correlations across animals from different sessions were 

significantly lower than those across interacting pairs (Figure 2H), confirming that directed 

engagement between two animals is necessary for interbrain coupling.

Moreover, it is possible that interbrain correlations could be purely explained by activity 

associated with individual coordinated behavior bouts at finer timescales. To address this, we 

computed correlations during epochs with coordinated behavior bouts, and compared them 

with correlations during behavior-matched epochs in non-interacting animals (Figure 2I). 

Activity from behavior-matched epochs across non-interacting pairs did not exhibit 

correlations; only those in socially interacting animals showed interbrain coupling (Figures 

2I). This suggests that interbrain synchrony cannot be simply explained by overall 

concurrent behavior or individual coordinated behavior bouts, but depends upon the context 

of a direct, ongoing social interaction. For example, the same type of behavior may be 

associated with different patterns of activity depending on social context (e.g. interactions 

over a longer timescale or specific social relationships).

Lastly, to further understand the relationship between dmPFC activity and behavior, we 

modeled activity in each animal as a function of behavior and activity recorded from the 

interacting partner. We constructed generalized linear models (GLM) to model dmPFC 

activity from behaviors exhibited by both animals (Figure 2J; Model 1; STAR Methods) and 

compared it to a second model fit using the overall activity from the interacting partner as an 

additional variable (Model 2). We reasoned that, if neural activity in one animal did not 

contain information relevant to activity in the interacting partner beyond what is explained 

by individual behaviors, models that included partner activity (Model 2) would not perform 

better than “behavior-only” models (Model 1). In fact, Model 2 performed significantly 

better than Model 1 (Figure 2K), suggesting that activity in one animal contains additional 

information about activity in the other that cannot be fully explained by moment-to-moment 

behavior. This is consistent with the notion that interbrain coupling depends on the larger 

context of an ongoing interaction.

Behavioral dynamics during a competitive social encounter

To explore whether interbrain coupling was present in other contexts, such as competitive 

interaction, we adopted a social dominance assay (the tube test) that allowed us to examine 

competitive behavior and dominance relationships across dyads (Drews, 1993; Wang et al., 

2014) (Figure 3A). In the tube test, mice are placed facing each other in a one-dimensional 

tube and allowed to push each other or retreat from conflict. Winning in the tube test (by 

pushing the other animal out of the tube) has previously been used to operationalize 

dominance behavior, as it correlates with other social status behavior in mice (Wang et al., 

2011). Compared to the open arena, the tube test also offers an advantage of narrowing the 

animals’ decisions to a set of well-defined behaviors, enabling a precise interrogation of the 

relationship between interbrain synchrony and single cell encoding of behavioral decisions.
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To analyze behavioral dynamics during the tube test, we recorded the interaction using a 

video camera, and developed an automated tracking algorithm using a convolutional neural 

network (Redmon and Farhadi, 2016) to track the positions of both animals (Figures 3B-C), 

which we validated by unbiased visual assessment (>99% accuracy; Figure S3A). We also 

manually annotated videos frame-by-frame to identify the onset and duration of behaviors in 

both animals. We observed that animals displayed three distinct types of behavior in the tube 

test: approach, a forward approach toward the opponent; push, a forceful push against the 

opponent sometimes resulting in forward movement; and retreat, a backward retreat away 

from the opponent. This parcellation, together with the position tracking, allowed us to 

examine how competitive interactions lead to gains or losses in territory for each animal.

On average, animals spent 23% of the time engaged in observable social interactions (Figure 

3D), the majority of which (71%) was push behavior (Figure 3E). Although not all 

behavioral decisions lead to positional changes between the pair, position changes represent 

gains or losses of territory that result from competitive interaction. That is, each animal’s 

position can be considered as a function of its individual decisions to approach, push, or 

retreat from conflict, thus characterizing its overall level of relative dominance. Within each 

pair, we identified the more dominant animal as the one who gained more territory on 

average (STAR Methods), and confirmed that dominant and subordinate animals exhibited 

large differences in tube position (Figure 3F).

In any complex social engagement, reciprocal interaction is a common feature. Indeed, 

dyads behaved reciprocally in a fraction of the total time (Figure 3G), indicating that their 

behavioral decisions depended on one another. To examine how animals reacted to each 

other, we analyzed how the probability of each behavior in one animal changed following 

opponent behavior (Figures 3H-J). Overall, push behavior was followed by a probabilistic 

increase in retreat behavior in opponents, indicating that, while not all pushes result in 

opponent reactions, push and retreat behavior are sometimes linked (Figure 3H). There was 

also an increase in approach behavior following opponent retreats (Figure 3I), suggesting 

that animals were generally motivated to engage with their opponent.

Because dominants and subordinates exhibit similar levels of behavior overall (Figure S3B), 

we reasoned that differences in tube position likely reflect differences in the distributions of 

displayed behavior. Indeed, dominants pushed more, retreated less, and approached more 

than subordinates (Figures 3K-M). We found no differences between the per-bout durations 

of behaviors displayed by dominants and subordinates (Figures S3C-E), suggesting that 

differences in dominance (i.e. territory gained) depend mostly on the frequency of different 

social decisions.

Differences in overall dominance may also depend on how animals react to behavior from 

their opponent. To explore this, we constructed time-courses of animals’ change in retreat 

probability following opponent push behavior. While both dominants and subordinates 

showed a probabilistic increase in retreats following opponent pushes, subordinates were 

more likely to retreat reactively (Figures 3N-O). Collectively, this analysis shows that 

outcomes of dominance encounters between mice depend not only on different behavioral 

choices in each animal, but also on how each animal responds to its opponent.
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Animals display interbrain correlations during a competitive social encounter

To determine whether mice engaged in social competition also display interbrain coupling, 

we simultaneously imaged dmPFC activity using microendoscopes in animal dyads during 

the tube test (Figure 4A, Movie S2). As in the open arena, overall dmPFC activity was 

highly correlated across interacting animals in the tube test, far exceeding chance levels 

(Figures 4B-C, S4A-C).

We first ruled out the possibility that correlated activity in this context is due simply to 

concurrent behavior or rest: neural activity correlations were consistently higher than 

correlations of overall behavior (Figure 4D), removing coordinated rest epochs did not 

reduce neural correlations (Figure 4E), correlations remained high when only one animal 

was behaving (Figure 4F), and activity correlations were higher than chance even during 

epochs with a lower level of concurrent behavior (Figure 4G). These suggest that interbrain 

coupling is not simply due to concurrent behavior or rest.

To confirm, as in the open arena, that interbrain coupling is not due to similar sensory inputs 

from a shared environment, we separated animals inside the tube so that both could freely 

move but could not interact (Figure 4H). Activity correlations were significantly reduced 

after separation (Figures 4I-J, S4D-E), indicating that brain coupling in a competitive 

context also depends on ongoing interaction. In addition, comparisons of activity 

correlations in interacting vs. non-interacting pairs (Figure 4K) revealed that social 

engagement in the same encounter is necessary for correlated activity (Figure 4L). In 

support of this, while behavior epochs in interacting pairs had correlated activity, behavior-

matched epochs in non-interacting pairs did not (Figures 4M, S4F).

As in the open arena, dmPFC activity from interacting animals also exhibited peak 

crosscorrelation at 0.0 s (Figure 4N), indicating that interbrain activity is precisely 

synchronized. However, the cross-correlation was disrupted upon phase randomization, and 

not significantly higher at zero time lag than at a lag of 30 s (Figure 4O), indicating a strong 

reduction in interbrain correlation.

Collectively, these results demonstrate that mice engaged in a competitive social encounter 

reliably display correlated activity across dmPFC neurons that depends on ongoing 

interactions in a larger social context and cannot be simply explained by overall concurrent 

behavior or individual coordinated behavior.

dmPFC neurons encode distinct social behaviors during competitive interaction

Overall activity patterns of a brain region arise from individual cells, but a cellular-level 

basis for interbrain synchrony remains elusive. To explore how activities in single cells 

contribute to synchronous activity across animals, we first examined whether dmPFC 

neurons encode distinct social behaviors. dmPFC neurons as a whole exhibited time-locked 

excitation during push, retreat, and approach behavior (Figure 5A). However, this raises the 

question of whether behavioral decisions are associated with uniform activation of the 

dmPFC, or are encoded uniquely by distinct subsets of dmPFC neurons.
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To address this, we examined whether single cells responded during specific behaviors. 

Using a receiver operating characteristic (ROC) analysis (Figures 5B, S5A), we identified 

subsets of neurons that were excited or suppressed during push, approach, or retreat 

behavior (Figures 5C-F, S5B). Of all recorded neurons, 29% encoded social behaviors 

(Figure 5D), and among these, ~76% showed selective tuning to specific behaviors. Cells 

that were not identified as behavior-encoding (hereafter referred to as “neutral cells”) were 

just as active, overall, as behavior cells (Figure S5C), indicating that behavior encoding was 

due to specific time-locked responses. Interestingly, while behavior cells included both 

excited and suppressed ones, the majority were excited (Figure 5E). Overall, we found no 

differences in the spatial distributions of behavior cells compared with neutral cells (Figures 

5G-H), indicating that behavior cells are spatially intermixed. These results demonstrate that 

a substantial fraction of dmPFC neurons selectively encode social behaviors in the tube test.

Information can be more robustly encoded at the population level than among single, highly 

tuned cells (Pouget et al., 2000). We next investigated whether neurons in the dmPFC 

formed stable activation patterns encoding social behaviors that could be read out at the 

population level. We examined how population response dynamics differed between types of 

behaviors using the Mahalanobis distance between behavior-evoked responses and baseline 

activity (Figures 5I, S6A). Again, we found that all behaviors elicited time-locked responses. 

Interestingly, push and approach elicited stronger response patterns than retreat (Figure 5J), 

consistent with the idea that distinct behaviors are encoded differentially rather than as an 

aggregate of ensemble activity. To analyze the separability of population dynamics during 

behavior, we visualized population responses using principal component analysis (PCA); 

this revealed a clear separation of activity clusters based on behavior type (Figures 5K, S6B-

D). Further, the distance between different behaviors was significantly larger than within-

behavior distances (Figure 5L), indicating that the separation of responses is not due to trial 

variability, but reflects unique patterns of activation that distinguish social behaviors.

Finally, to explore the robustness of behavior representations, we constructed decoders using 

Fisher’s discriminant to predict the occurrence of behavior events based on population 

activity. Each behavior could be predicted by decoders (Figures 5M, S6E-G), which 

significantly outperformed models constructed using randomized training data (Figure 5N). 

Moreover, multiclass decoders trained to predict specific behaviors among push, retreat, and 

approach achieved significantly higher performance than chance (Figure 5O), again 

indicating that neural representations are distinct and stable. Taken together, these results 

show that dmPFC neurons encode social behaviors at both the single-cell and population 

levels.

Interbrain activity correlations depend on cells encoding social behavior

To determine how interbrain coupling depends on activity in individual cells, we next 

examined whether interbrain correlations arise from uniform dmPFC activation or specific 

subsets of cells (e.g. behavior cells). Removal of behavior cells resulted in a marked 

reduction in the activity correlation across animals (Figure S7A), and this was driven 

specifically by behavior-excited cells, as removal of behavior-suppressed cells did not affect 

interbrain correlations (Figures 6A, S7B). Moreover, interbrain correlations were equally 
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disrupted upon removal of behavior cells in only one animal, indicating that brain coupling 

requires encoding of social information in both animals simultaneously. In contrast, 

removing neutral cells did not reduce activity correlations. This was not due to neutral cells 

being unresponsive, as their overall activity was as high as that of behavior cells (Figure 

S5C). Instead, this suggests that correlated brain activity depends on subsets of cells 

encoding social information, rather than uniformly distributed neural dynamics.

Following this, we next examined correlations between specific subpopulations of behavior-

encoding cells. Indeed, certain categories of behavior cells exhibited elevated interbrain 

correlations (Figures 6B-D). In particular, push-vs-retreat subpopulations were more highly 

correlated across animals than were neutral cells, consistent with our observation that these 

behaviors are sometimes coupled (Figure 3H). Interestingly, the synchronization of push and 

retreat cells was unidirectional across dyads, such that only push cells in dominants, but not 

in subordinates, were more correlated with retreat cells in the opponent. This suggests that 

interbrain correlations not only depend on specific subsets of cells, but that neurons 

encoding specific behavior interactions contribute preferentially to brain coupling.

Interbrain activity correlations arise from single cell dynamics

To gain more insight into how interbrain correlations emerge from single dmPFC neurons, 

we constructed GLMs to express the overall dmPFC activity in one animal as a function of 

single cells in the interacting opponent (Figure 6E). These GLMs performed significantly 

better than chance (Figure 6F), suggesting that a weighted combination of individual cell 

activities in one animal could provide a good model of overall activity in the opponent. 

Moreover, behavior cells had significantly higher weight contributions in the models than 

neutral cells (Figure 6G), consistent with our results that interbrain correlations depend on 

behavior cells.

We next constructed GLMs using single cells from one animal to model subsets of behavior 

cells in the other (Figure S7C), and found that these models performed significantly better 

than models of neutral cells (Figures 6H-J, S7D). Examination of subpopulation models in 

dominants and subordinates revealed further asymmetries that mirrored unidirectional 

behavior interactions displayed by the dyads (Figures 6k-M): while the push-encoding 

population in dominants was best explained by subordinate retreat cells, the retreat-encoding 

population in subordinates was better modeled by dominant push cells. This further suggests 

that interbrain correlations in dmPFC arise from unique subpopulations in each animal that 

preserve individual differences in behavior.

Lastly, we investigated whether interbrain correlations were related to correlations between 

single pairs of cells across animals. Interacting animals contained more highly correlated 

cell pairs than expected by chance (Figures S7E-F), and the fraction of highly correlated cell 

pairs in each dyad was itself correlated with the degree of overall brain coupling between 

them (Figure 6N), supporting the notion that correlated activity at the population level arises 

from subsets of single cells. Moreover, behavior cells were enriched among more highly 

correlated cell pairs (Figure 6O). In particular, in dominants, a larger fraction of push and 

approach cells were highly correlated with cells in subordinates, possibly reflecting a greater 

influence of behaviors of dominants on opponent responses (Figure 6P).
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Taken as a whole, these results show that interbrain correlations in the dmPFC arise from 

specific subsets of cells encoding distinct behaviors in both animals, and reflect ensemble 

correlations that extend to the single-cell level.

Interbrain correlations depend on cells encoding behaviors of the social partner

The observation that interbrain coupling depends on subsets of behavior-encoding neurons 

raises the possibility that correlated activity could be completely explained by activity in 

these cells. However, our findings that (1) the degree of activity correlation consistently 

exceeds behavior correlations (Figure 4D), (2) activity correlations cannot be explained 

simply by concurrent or coordinated behavior bouts (Figure 4M), and (3) activity 

correlations persist when only one animal is behaving (Figure 4F), raise the alternative 

possibility that other information in the circuit also contributes to interbrain coupling. In 

particular, one hypothesis is that some correlated activity arises from subsets of dmPFC 

neurons that encode the behavior of the interacting partner.

To examine this hypothesis, we first asked whether any dmPFC neurons contained 

information about opponent behavior. Using ROC analysis, we identified a fraction of 

dmPFC neurons that responded specifically during opponent behavior, but not during subject 

behavior (Figures 7A-B), which constituted 8% of all recorded cells. On the other hand, 

21% responded only during subject, but not opponent, behavior. We hereafter referred to 

neurons that only encoded opponent behavior as “opponent cells” and neurons that only 

encoded subject behavior as “subject cells.” Of the cells that were only responsive to 

opponent behavior (Figure S8A), the majority (93%) responded selectively to single 

categories of behavior (Figure 7C), with response characteristics that were comparable to 

those of subject cells (Figures S8B-C). Subject and opponent cells were spatially intermixed 

within the population (Figures 7D-E). Interestingly, we also identified a comparable fraction 

of cells that encoded behavior of the interacting partner during free social interaction in the 

open area (Figures S8D-E), suggesting that behavior of social partners is encoded across 

multiple social contexts.

Opponent cells showed responses to specific opponent behaviors, but did not appear to 

respond during the subject’s own behavior (Figures 7F-G). To confirm that these cells were 

selectively active during opponent behavior, we compared their mean activity during 

opponent push, retreat, or approach with activity during subject behaviors (Figures 7H-J). 

Opponent cell activity during opponent behaviors (when the subject is not behaving or 

moving; Figures S3F-G) was significantly higher than baseline, while activity during subject 

behavior was not, confirming that opponent cells selectively encode opponent behavior.

To further explore the population encoding of opponent behavior, we constructed decoders 

to classify the identities of subject vs. opponent behaviors (Figure 7K, STAR Methods) and 

found that discrimination was significantly higher than chance levels (Figure 7L), indicating 

that neural responses during subject and opponent behavior form distinct population-level 

representations.

To test whether opponent cells also contribute to brain coupling, we next examined the effect 

of removing subsets of opponent cells on interbrain correlations. As with removal of subject 
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cells (Figure 6A), removal of opponent cells, even in only one animal, markedly decreased 

correlated activity (Figure S8F), an effect that was driven specifically by opponent-excited 

cells (Figures 7M, S8G). Conversely, examining interbrain correlations only among subject 

and opponent cells, we found that they displayed even higher correlations than the whole 

population, and that replacing these with neutral cells in either animal abolished interbrain 

correlations (Figure 7N). Interestingly, we also observed that removing opponent cells had a 

stronger effect (~63% more) on reducing interbrain correlations than subject cells, 

suggesting that they contribute relatively more, cell for cell, to synchronized activity 

(Figures 7O-P).

Taken together, these results indicate that correlated brain activity depends not only on 

subject cells encoding one’s own behavior, but also on a separate subset of neurons in each 

animal that encode the behavior of the interacting partner (Figure 7Q). As each brain 

represents a common behavior repertoire consisting of both animals’ behavior, overall neural 

activity becomes synchronized across dyads. This offers an explanation for why interbrain 

synchrony cannot be fully explained by coordinated rest or concurrent behavior, and why it 

can be observed even when only one animal behaves.

Dominant animals exert a greater influence on interbrain correlations than subordinates

Next, to explore whether cells in dominants and subordinates encode subject and opponent 

information differently, we constructed GLMs to model the activity of each neuron as a 

function of the behaviors of both animals and their positions in the tube (Figure 8A, S8I). 

Overall, ~30% of all cells in both dominants and subordinates were well-modeled (Figure 

S8J), and the majority of these were significantly fit by only subject behavior, opponent 

behavior, or a combination of both (Figure 8B). Moreover, a subset of dmPFC neurons were 

only explained by opponent – but not subject – behavior, and a substantial fraction were fit 

with significant coefficients to specific opponent behaviors (Figures 8C, S8K), again 

indicating that activity in some dmPFC neurons is selectively modulated by opponent 

behavior.

Intriguingly, models of cells in dominants placed higher weight on the subject’s own 

behavior, whereas opponent behaviors had a stronger weight contribution to cells in 

subordinates (Figures 8D, S8L). This indicates that while cells in dominants respond more to 

subject behaviors compared to cells in subordinates, cells in subordinates respond more to 

opponent behaviors compared to cells in dominants. This possibly reflects stronger 

engagement of attention in subordinates toward dominant animal behavior.

These observations led us to hypothesize that dmPFC neurons might exhibit stronger 

interbrain correlations when dominants behave compared to subordinates. To test this, we 

examined interbrain correlations during epochs when one animal, but not the interacting 

partner, was behaving. Strikingly, activity correlations were higher during dominant than 

during subordinate behavior (Figure 8E), suggesting that interbrain correlations are driven 

more strongly by dominant animals (Figure 8F).
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Interbrain correlations predict social interactions and dominance relationships across 
dyads

The observation that dominant animals more strongly drive brain coupling suggests a more 

direct relationship between interbrain correlations and social interaction. To explore this 

more deeply, we first asked whether interbrain correlations could predict behavior 

interactions. We constructed time-courses of the probability of behavioral response in one 

animal as a function of time following partner behavior (Figure 8G). Decisions in one 

animal preceded by highly correlated activity were more likely followed by a behavioral 

reaction from the opponent. Moreover, the probability of behavioral response following 

partner behavior was positively correlated with the degree of synchrony preceding the 

interaction (Figure 8H), suggesting that correlated activity not only arises during social 

interaction but actually predicts future interactions. As expected, correlations among subsets 

of subject and opponent cells in each animal also predict future interactions (Figure 8I). 

However, this relationship was abolished when considering correlations with neutral cells 

(Figure 8I), again highlighting the dependency of activity synchrony on neurons encoding 

social information.

Given that the overall dominance relationship between animals is a consequence of 

individual social interactions, we hypothesized that the degree of activity correlation across a 

dyad, which predict their interactions, may reflect their difference in overall dominance 

levels. Using average tube positions of animals as a dominance metric (i.e., territory gained), 

we compared interbrain correlations across dyads with their difference in relative 

dominance. Strikingly, we observed a significant positive correlation across all pairs (Figure 

8J). In particular, subsets of neurons encoding social behaviors of self and others 

significantly predicted differences in dominance behavior, while replacement with neutral 

cells in either animal abolished this relationship (Figure 8K).

Since brain coupling predicted future social interactions, we also asked whether correlations 

during only the initial phase of the encounter could predict dominance outcomes. 

Interestingly, the degree of interbrain correlation in just the first two minutes of each session 

predicted differences in dominance across the whole session (Figure 8L). Again, this 

relationship depended critically on behavior cells in both animals (Figures 8M-O). Despite 

this, the degree of overall behavior correlation in the first 2 minutes was unrelated to 

differences in dominance (Figure S8M), suggesting that activity correlations may be a better 

predictor of dominance outcomes than behavior itself. Taken as a whole, these results 

demonstrate that activity correlations predict social interaction on timescales ranging from 

seconds to minutes, suggesting a functional role for brain coupling as an emergent property 

of a multi-animal system in coordinating social interactions and facilitating the development 

of social relationships (Figures S1B, 8P).

DISCUSSION

Interbrain correlated neural activity during social interaction

Previous research on interbrain synchrony has illuminated the capacity for neural circuits to 

coordinate across individuals during social engagement (Liu and Pelowski, 2014; Montague 
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et al., 2002). However, it has been largely unclear how region-wide interbrain correlations 

arise from activity patterns at the circuit or single-cell levels. Using simultaneous large-scale 

recordings in interacting animal dyads, we provide conclusive evidence that mice exhibit 

interbrain correlations of neural activity in the dmPFC that arise from ongoing social 

interaction. We observed correlated activity in an unconstrained environment, as well as 

during dominance competitions in the tube test, suggesting that social brain coupling is a 

general phenomenon present in multiple contexts. Importantly, interbrain correlations could 

not be simply explained by activity associated with concurrent or coordinated behavior. 

Rather, the coupling of brain activity likely reflects specific types of meaningful 

engagement, as well as attentional entrainment across pairs of animals embedded in a larger 

social context. As interbrain coupling has only previously been observed in humans and 

non-human primates, this finding strongly suggests generality and conservation of the 

phenomenon across a wide range of animal species.

Importantly, rather than reflecting uniform changes in the firing patterns of cell populations, 

we find that activity synchrony depends specifically on subsets of neurons that separately 

encode behaviors of the subject animal and those of the interacting partner. These cells allow 

each brain to represent a common repertoire of behavior (i.e. behavior of both interacting 

animals), such that activity across separate brains becomes synchronized. The existence of 

opponent-encoding cells in part explains why interbrain synchrony is not simply accounted 

for by coordinated rest and concurrent behavior, and highlights the complexity of 

mechanisms underlying synchrony that invite deeper investigation at the circuit level.

Encoding of one’s own and the social partner’s behavior in dmPFC neurons

In many social species, including humans, social interactions between individuals are shaped 

by status relationships and dominance competitions (Williamson et al., 2016). Recent work 

has begun to investigate the neural mechanisms underlying the expression of dominance 

behavior (Stagkourakis et al., 2018; Zhou et al., 2018). In our study, we identified a 

substantial fraction of neurons in the dmPFC that encode distinct social dominance 

behaviors during a competitive encounter. These single-cell responses collectively formed 

stable representations of push, retreat, and approach behavior, suggesting a role for dmPFC 

neurons in regulating multiple, sometimes opposing, behavioral strategies.

In addition to coordinating one’s own behavior, social interactions also require animals to 

anticipate and react to the decisions of their social partners. However, it is not well 

understood how neural systems represent observed behavior. Studies in humans and non-

human primates report that prefrontal, motor, and parietal regions can respond to actions 

displayed by other individuals (Hardwick et al., 2018; Ogawa and Inui, 2011; Rozzi and 

Fogassi, 2017; Tseng et al., 2018). Yet many of these studies were done in the context of 

passive and unidirectional behavioral observation. It is largely unclear how representations 

of self and others’ behavior arise during dynamic interactions where animals must 

simultaneously observe and respond within seconds. We find that a fraction of dmPFC 

neurons in mice encode specific behaviors of the interacting partner, and collectively form a 

neural response pattern that distinguishes opponent and subject behavior. The presence of 
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these neurons in the rodent dmPFC suggests conservation of function across diverse species 

and sets the groundwork for deeper investigation using a genetically tractable animal model.

We also explored whether encoding of observed behavior is shaped by dominance status. 

Interestingly, while subject behavior was more strongly encoded in dominants than in 

subordinates, opponent behavior was more robustly encoded in subordinates than in 

dominants, suggesting an asymmetry in the computational structure of the dmPFC circuit 

based on social status. Moreover, synchrony was consistently higher during dominant 

animals’ behavior than during subordinate animals’ behavior. These suggest that during 

competitive interactions, subordinates may be more attentive to dominants. Indeed, in 

primates, subordinates pay more attention to the actions and gazes of dominant individuals 

(Deaner et al., 2005; Klein et al., 2009). Our results suggest that, in rodents, this feature of 

directed social attention could be instantiated in the activity of dmPFC neurons.

Animals also have the capacity to encode other information about conspecifics, such as their 

physical location or emotional state (Allsop and Wichmann, 2018; Danjo et al., 2018; 

Panksepp and Panksepp, 2013). How these processes are related to the encoding of 

volitional behavior of others is unclear and remains an exciting topic for future study.

Interbrain correlations predict social interactions and dominance relationships

Beyond providing a neural basis for how interbrain synchrony arises from individual cells, 

our study also functionally links it to the coordination of social interactions—stronger 

interbrain correlations across dyads predict future social interaction. While interbrain 

coupling originates from activities in individual brains, it represents a state of multi-

individual systems that operates at the level of the system itself and is not accessible to each 

brain to directly influence one’s own decisions. Instead, this state reflects one or several 

underlying neural processes within each brain that operate to shape animal behavior. Given 

the role of opponent-encoding neurons in interbrain synchrony, correlated activity may in 

part reflect attentional engagement between animals, effectively coupling their decisions and 

increasing their behavioral reciprocity. As interbrain coupling both arises from and predicts 

dyadic behavior, the behavioral interaction and its interbrain neural correlate may form a 

bidirectional feedback loop that serves to facilitate and sustain ongoing interaction (Figure 

S1B).

In addition to our observation that dominants drive stronger responses from subordinates, we 

also found that the degree of interbrain correlation across each pair predicted dominance 

relationships, whereas correlations between their behavior could not. This echoes previous 

reports in humans that brain coupling can predict leader-follower relationships, even before 

leadership roles are manifested (Jiang et al., 2015; Konvalinka et al., 2014; Sanger et al., 

2013). Our results suggest that synchrony across individuals with unequal status 

relationships depends on circuitry that encodes actions of social partners, and in such 

contexts, may reflect the directed engagement of “followers” toward more dominant 

individuals leading an interaction.

Collectively, our results shed new light on the neural basis and functional role of interbrain 

synchrony in coordinating social interactions. More importantly, they set the groundwork for 
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a more incisive investigation of the emergent neural properties of multi-individual systems, 

which may yet reveal a richer and deeper understanding of the social brain as it is embedded 

in a truly social world.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Weizhe Hong (whong@ucla.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experiments were carried out in accordance with the NIH guidelines and approved by the 

UCLA institutional animal care and use committee (IACUC). All subject mice were male 

C57BL6/J mice ordered from Jackson Laboratories at 8-10 weeks of age and 25-30 g of 

weight. Mice were maintained in a 12 h:12h light/dark cycle (lighted hours: 10:00 pm – 

10:00 am) with food and water ad libitum. All mice were individually housed for three 

weeks prior to imaging and behavior experiments. All experiments were performed during 

the dark cycle of the animals.

METHOD DETAILS

Viral injections and GRIN lens implantations—For all surgical procedures, mice 

were anaesthetized with 1.0 to 2.0% isoflurane. We bilaterally injected 300 nl (on each side) 

of AAV1.Syn.GCaMP6f.WPRE.SV40 virus (titer: 4.65 × 1013 GC per ml, Penn Vector 

Core) at 30 nl min−1 into the dorsomedial prefrontal cortex (dmPFC; also prelimbic cortex, 

PL) using the stereotactic coordinates (AP: +2.0 mm, ML: ± 0.3mm, DV: −1.8mm to bregma 

skull surface). 30 minutes after injection, a 1.9mm diameter circular craniotomy was 

centered at the coordinates (AP: +2.0 mm, ML: 0.0 mm), and the GRIN lens (Edmund 

Optics; 1.8mm) was implanted above the injection site at a depth of −1.6mm ventral to the 

bregma skull surface and secured to the skull using super glue and dental cement. Mice were 

given one subcutaneous injection of Ketoprofen (4mg/kg) on the same day of surgery and 

Ibuprofen in drinking water (30mg/kg) starting on surgery day for 4 days. Mice were 

individually housed after surgery for two weeks. Then, the microscope together with a 

plastic baseplate were placed on top of the lens. We adjusted the position of the microscope 

until the cells and blood vessels appeared sharp in the focal plane and secured this position 

using dental cement. Left and right dmPFC were counterbalanced when choosing the field of 

view. The subjects included two mice that received a unilateral viral injection and were 

implanted with a 1 mm GRIN lens (Edmund Optics) above the right dmPFC. All mice were 

handled and habituated for at least 4 days before experiments. We did not observe any 

alterations in self-directed or social behavior in implanted animals.

Histology—Three weeks after imaging experiments, mice were transcardially perfused 

with 4% paraformaldehyde (PFA), followed by 24 h post-fixation in the same solution. 

60μm coronal sections were obtained using a cryostat. Finally, sections were stained with 

DAPI (1:5,000 dilution) and mounted on slides. Images were acquired using a Nikon A1 

confocal microscope to confirm the position of lens implantation and GCaMP6f expression.
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Behavior Assays

Free social interaction in the open arena: Two novel male mice were simultaneously 

placed in an open arena (32 × 20 cm) which allows for free social interaction. During each 

imaging session (10-15 minutes), calcium fluorescence videos from both animals and their 

behavior were simultaneously recorded using microendoscopes and a video camera, 

respectively. The microendoscopes were connected to a digital acquisition device (DAQ) 

through a flexible, ultra-light coaxial cable. The long cable length prevented cables from 

becoming tangled during interaction between animals, ensuring that the social interaction 

was not affected by the presence of cables. For each pair, the social interaction assay was 

followed by a 10-minute separation assay (without removing the microscopes) where a 

solid, opaque board was inserted at the midline of the arena to prevent subjects from 

engaging in social interaction. All animals were habituated to being exposed to the open 

arena individually and to wearing the miniature microscope for at least 4 days before 

experimentation. We imaged from 10 pairs of animals that naturally displayed a high level of 

mutual social interaction (>15% of total time) and 9 pairs of animals that displayed a low 

level of mutual social interaction (<15% of total time). Here, mutual social interaction is 

defined as moments when both animals engaged in social behavior. A total of 8 implanted 

animals were used. Pairs that naturally displayed high levels of social interaction were used 

in further analyses of neural dynamics in Figures 1-2 and S2, except in Figure S2F. When 

we recorded from pairs of animals that naturally displayed lower levels of social 

interactions, relatively lower interbrain correlation was observed (Figure S2F), consistent 

with the notion that interbrain synchrony depends on ongoing social interaction.

Competitive social interaction in the tube test: Animals were placed in a closed acrylic 

tube (length 60 cm; circumference 2.5 cm) with a 1.1 cm channel cut lengthwise down the 

center to allow movement of the head-mounted microscope. The microendoscopes were 

connected to a DAQ through a flexible, ultra-light coaxial cable. During each imaging 

session (12-15 minutes), subjects faced a novel male conspecific and were permitted to 

freely engage the opponent mouse by approaching, pushing, or retreating. Tube tests have 

previously been implemented using shorter tubes with individual trials lasting only seconds 

(Zhou et al., 2017). Here, the longer tube (60 cm) allowed us to perform longer sessions in 

order to permit each animal ample time to exhibit its full range of volitional behavior, and to 

respond dynamically to its opponent over the course of the encounter. Each session was 

broken into 2-5 trials, and the same pair of animals were manually reset to their respective 

end of the tube prior to each trial. All animals were habituated to engagement with a 

(different) novel male conspecific while wearing the miniature microscope for at least 4 days 

before behavior experiments. 18 pairs of mice were imaged using a total of 13 animals, and 

all pairs were used in further analyses of neural dynamics.

For simultaneous recording with and without social contact, 10-minute imaging sessions 

were performed in 13 pairs of mice using 6 animals (from the same cohort that were used in 

the other tube test experiments), immediately followed (without removing the microscope) 

by another 10-minute session after introduction of a translucent plastic separator in the 

center of the tube. Animals were free to move at will but were not in physical contact with 

one another.
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Analysis of animal behavior—For both the open arena and the tube test experiments, 

behavior videos were recorded with a video camera at 20 frames per second (fps) and 

manually annotated frame by frame to identify onset and offset times for behavior of both 

animals. Behavior annotations were converted into a binary vector for each type of behavior 

that denotes precisely when animals are engaged in behavior (“1” indicates presence of a 

given behavior, and “0” indicates absence of that behavior). Epochs when animals engaged 

in no observable behavior or movement were considered to be “rest” epochs. During the 

“rest” epochs, the animal could observe the interacting partner, but was not actively 

behaving.

For the open arena experiments, a total of 15 social and non-social behaviors were 

annotated. Social behaviors included attacking, approaching, chasing, escaping, sniffing, 

socialgrooming, defending, and mounting. Non-social behaviors included running, self-

grooming, digging, exploration, rearing, climbing, and nesting. The level of social 

interaction for each pair was measured using the percentage of total time that both animals 

were engaged in social behaviors. 19 pairs of animals were used for basic behavior analyses 

shown in Figures 1B-D.

For the tube test experiments, the positions of both animals were tracked automatically using 

a supervised learning algorithm. For position tracking, we employed YOLOv2 (You Only 

Look Once), a convolutional neural network (CNN) framework optimized for high accuracy 

object detection (Redmon and Farhadi, 2016). We trained the CNN to detect and report 

bounding boxes around mice in each frame based on hundreds of example images. Accuracy 

for the automated tracking algorithm was confirmed by comparing the detected mouse 

positions with ground truth assessments in random samples of movie frames (>99% 

accuracy, Figure S3A). For this analysis, individual scorers were blind to the identities of 

pairs and mice. Position vectors denoting the coordinates of each mouse were extracted and 

normalized to the length of the tube to obtain the relative tube position of each animal on a 

range from 0 (the starting end) to 1 (the opponent’s end).

In order to quantitatively assess the relative dominance levels of each animal within each 

pair, we calculated their average position in the tube over the entire session. Previous reports 

have associated push and retreat behavior, as well as winning in the tube test, with overall 

social dominance status among male mice (Wang et al., 2011). Because positional changes 

in the tube test correspond to gains or losses of territory that result from approach, push, or 

retreat behavior, each animal’s average tube position can be considered as a measure of its 

overall dominance level within the pair. We confirmed that animals defined in this way (one 

dominant and subordinate in each pair) had significantly different average tube positions 

(Figure 3F). To assess whether dominant and subordinate animals exhibited different levels 

of push, retreat, and approach behavior, we compared dominant and subordinate animals in 

pairs that displayed large differences in dominance (having a tube position difference greater 

than 20% of the length of the tube) (Figures 3K-M). Indeed, pairs with large differences in 

tube position exhibited significantly different levels of push, retreat, and approach behavior, 

suggesting that the tube position metric corresponds to meaningful differences in behavioral 

repertoire that are consistent with previous studies.
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Extraction of Calcium Signals

Motion-correction and preprocessing: During behavior experiments, calcium fluorescence 

videos from both animals were simultaneously recorded using customized miniature 

microscopes (UCLA miniscope) at 30Hz through custom-written data acquisition software. 

Raw videos from each imaging session were first processed using a MATLAB 

implementation of the NoRMCorre algorithm to correct for motion-induced artifacts across 

frames (Pnevmatikakis and Giovannucci, 2017). In order to normalize image frames prior to 

cell sorting, (F-F0)/F0 (ΔF/F) was applied to each frame, where F0 was the de-trended mean 

image from the entire movie. ΔF/F normalized videos were de-noised using an FFT spatial 

band-pass filter through a custom-written script in ImageJ (U.S. National Institutes of 

Health), and spatially down-sampled by a factor of 2 prior to ROI identification and cell 

sorting.

Segmentation and ROI Identification: In order to identify putative cell bodies for 

extraction of neural signals, we employed an automated ROI detection algorithm that uses 

principal (PCA) and independent component analysis (ICA) to extract spatial filters based 

on spatiotemporal correlations among pixels (Mukamel et al., 2009). Independent 

components were manually inspected to remove components that did not represent cell 

bodies, and binary thresholding was applied to remove contributions from pixels outside the 

bounds of putative neurons. Spatial filters were then applied to the ΔF/F movie to extract the 

calcium traces. All traces from recorded cells were manually inspected to ensure quality 

signals. Specifically, putative neurons that had abnormally shaped cell bodies (abnormally 

large or small), or that had calcium transients with low signal-to-noise ratio (< 2 standard 

deviations above the mean) were excluded from further analysis. Less than 5% of all 

putative neurons were removed based on these criteria. This approach ensured that the cells 

we included in our analyses had signal that reflected real neural activity and was robust 

enough for downstream analyses.

For open arena experiments, a total of 7535 (mean ± SEM = 198 ± 5) single neurons were 

analyzed. For tube test experiments, a total of 6728 (mean ± SEM = 187 ± 10) single 

neurons were analyzed. Here, a single neuron refers to one calcium trace extracted from an 

ROI, identified as described above, from one recording session.

Analysis of Single Cell Responses During Behavior—Prior to downstream 

analysis, all ΔF/F calcium traces were z-scored and are presented throughout in units of 

standard deviation (s.d.) unless otherwise specified. Responses of single neurons during 

behavior events (push, retreat, and approach) were quantified using an ROC (receiver 

operating characteristic) analysis, a commonly used approach that has previously been 

applied to calcium imaging data to characterize neural responses during social investigation 

(e.g. Li et al., 2017). Upon application of a binary threshold to the ΔF/F signal and 

comparison with a binary event vector denoting behavior bouts, behavior event detection 

based on neural activity can be measured using the true positive rate (TPR) and the false 

positive rate (FPR) over all time-points. Plotting the TPR against the FPR over a range of 

binary thresholds, spanning the minimum and maximum values of the neural signal, yields 

an ROC curve that describes how well the neural signal detects behavior events at each 
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threshold. We used the area under the ROC curve (auROC) as a metric for how strongly 

neurons are modulated by each behavior. For each neuron/behavior category (for both 

subject and opponent behaviors), the observed auROC was compared to a null distribution of 

1,000 auROC values generated from constructing ROC curves over randomly permuted 

calcium signals (that is, traces that were circularly permuted using a random time shift). A 

neuron was considered significantly responsive (α = 0.05) if its auROC value exceeded the 

95th percentile of the random distribution (auROC < 2.5th percentile for suppressed 

responses, auROC > 97.5th percentile for excited responses). Throughout, “neutral cells” 

refer to neurons that were not identified as responsive during subject or opponent behaviors.

While the significance of the auROC values for single cells can be analytically determined 

by performing a Mann-Whitney U test, the test statistic from the U test carries a caveat of 

being highly influenced by group sample sizes. Because of the kinetics of the calcium 

fluorescence signals, treating individual frames (sampled here at 30Hz) as independent 

samples for a U test would inappropriately inflate the power of the statistical test. Instead, 

we chose to use the permutation-based resampling method described above in order to test 

for statistical significance, as this approach is not sensitive to this particular sampling issue.

For comparison of response characteristics across subject and opponent cells (Figures S8B-

C), the response strength for each neuron and each behavior was calculated as the average z-

scored ΔF/F activity during all behavior epochs of a given type. Response probability for 

each neuron and each behavior was calculated as the percentage of behavior events with 

average neural activity that exceeded 110% of the local baseline (increased by more than 

10% above baseline), taken over the 10 seconds preceding behavior onset.

In order to ensure that opponent cell responses to opponent behaviors were not contaminated 

by activity associated with overlapping subject behavior, we analyzed the mean activity of 

opponent cells during isolated subject and opponent behavior bouts (Figures 7H-J). For this 

analysis, all events that overlapped across subject and opponent (within 2 seconds) were 

removed. We confirmed that subject animals did not display observable behavior, and did 

not exhibit changes in movement along the tube, during opponent behaviors used for this 

analysis (Figure 3F-G).

For analysis of cells responding during opponent behavior in the open arena assay (Figures 

S8D-E), ROC analysis was performed using binary behavior vectors denoting all pooled 

social behaviors from the opponent that do not overlap with subject behavior and rest. 

Observed auROC values were compared with null distributions based on randomly permuted 

calcium traces (as described above, α = 0.05). The mean activity of open arena opponent 

cells was computed over non-overlapping subject and opponent behavior, or baseline 

epochs.

Mean activity of opponent cells in the tube test was found to be significantly higher during 

social contact than after introduction of a separator to abolish contact (Figure S8H), 

suggesting dependence on social context and interaction with another individual for 

opponent cell firing.
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Analysis of population dynamics during behavior

Principal Component Analysis: To visualize population responses during social behavior, 

we applied principal component analysis (PCA) to obtain components that capture the 

covariance of the neural population during behavior events (Cunningham and Yu, 2014). 

After binning neural traces into 1-second bins, trial-averaged responses were computed over 

a time window of 40 seconds (20 seconds prior to 20 second after event onset) for each 

neuron/behavior event, and concatenated across event types (e.g., approach, push, and 

retreat). Responses for each neuron were formed into a matrix which was used to perform 

PCA. Population vectors were then averaged over individual behavior bouts and projected 

onto the first 2 principal components for visualization (Figure 5K). For comparison of 

population responses to different behavior types (Figure 5L), we calculated the pairwise 

Euclidean distances between PC-projected population vectors (using the first 3 principal 

components) within or across different behaviors.

Mahalanobis Distance: In order to visualize population response dynamics during 

behavior, we used the Mahalanobis distance, which provides a measurement of the 

separation between two population vectors while accounting for the covariance structure of 

the underlying distribution. This provides a way to quantify the strength of specific 

population response patterns, as opposed to simply measuring the average response of all 

neurons (Figure S6A; see Li et al., 2017; Remedios et al., 2017). Average population vectors 

were constructed over frames from different behavior categories or over all baseline frames. 

The Mahalanobis distance between two vectors is computed as:

DMAH(x1, x2) = (x1 − x2)TS−1(x1 − x2)

where xk is the mean population vector over all frames for event type k, and S is the 

covariance matrix computed over all baseline frames. For population response time-courses 

(Figure 5I), the Mahalanobis distance was measured between individual frame population 

vectors from a given class k and the average population vector over all baseline frames.

Behavior decoding based on population activity—In order to measure population-

level encoding of social behaviors among dmPFC neurons, we constructed statistical models 

to predict behavior events based on population activity. For classification of individual 

behaviors, we used binary Fisher’s linear discriminant (FLD) classifiers, and to distinguish 

between behavior types, we used a multi-class (3-way) Fisher’s discriminant.

For all classifiers, training sets were constructed using population vectors during behavior 

bouts and negative training data was sampled from baseline (rest) frames. In order to 

measure the performance of FLD models, we split the data into training and tests sets and 

performed cross-validation. For each cross-validation fold, the test set represented 10% of 

the data drawn from 10 uniformly distributed 1% segments, and the remaining 90% training 

set was used to construct the model. For each fold, model performance was measured using 

the area under the ROC curve (auROC) for test data projected onto the Fisher discriminant. 

Overall model performance for each animal/session was calculated as the average over 50 

folds where the training and test sets were randomly redrawn. Models were compared with 
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null models constructed using training data with randomly shuffled class labels. Sessions 

with fewer than 5 bouts of the modeled behavior were not considered for this analysis. For 

frame-by-frame classification and visualization of the FLD projection (Figure 5M), frames 

were sampled uniformly every second over the entire session and used to construct training 

data to fit models. Population activity over the session was then projected onto the 

discriminant, and class predictions for each frame were evaluated.

For multi-class decoding of push, retreat, and approach behavior (Figure 5O), 3-way FLD 

models were constructed from population data using behavior vectors to define class labels, 

and cross-validation was performed as described above. Predictions were determined by 

taking the minimum Euclidean distance between test points and the mean of each class’ 

training set after projection onto the first 2 FLD components. Performance for each fold was 

measured using the average accuracy for each class (weighted by the number of examples in 

the test set), and overall model performance was taken as the average over 50 folds (as 

described above). Models were compared with null models constructed using training data 

with randomly shuffled class labels.

For discrimination of subject vs. opponent behaviors (Figures 7K-L), behavior bouts within 

each animal were pooled together. Behavior frames that overlapped (concurrent subject and 

opponent behaviors) were removed from the analysis, and the remainder were used to 

construct training and test sets using the same cross-validation method as described above. 

Dimension reduction was first performed on the training data using partial least squares 

regression (PLS), and FLD components were computed from the training data after 

projection onto the first 10 PLS dimensions. For visualization (Figure 7K), population 

vectors from the test set from one example session/fold were projected onto the first two 

FLD components. For each model, ROC analysis was performed to quantify discriminability 

of subject and opponent population responses, and auROC values were averaged over the 

holdout partitions for each session. Overall model performance was quantified using the 

average of auROC values over all sessions (Figure 7L), and was compared with null models 

constructed using training data with randomly shuffled class labels.

Generalized linear models of single-neuron and population activity

Modeling neural activity across brains of interacting animals: In order to gain deeper 

insight into correlations of dmPFC neurons across animals in the tube test (Figure 6), we 

constructed Gaussian-residual generalized linear models (GLM) to express the mean activity 

of all neurons in one animal as a function of individual activities of neurons in the opponent. 

After binning calcium data from both animals into 1-second bins, GLMs were fit as:

μ = Xβ + φ

where μ is the predicted mean activity in animal A, X is the matrix containing all normalized 

(to maximum) calcium traces from animal B, β is a vector of coefficients fit to each neuron 

in X, and φ is an error term. In order to validate the predictive power of GLMs, we 

performed 10-fold cross validation by withholding 10% of the data, sampled uniformly in 

1% segments, from model fitting. Full predicted activity traces were constructed by 

Kingsbury et al. Page 21

Cell. Author manuscript; available in PMC 2020 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



concatenating test predictions from each fold, and the overall performance of the model was 

evaluated using the Pearson’s correlation coefficient (PCC) between the predicted activity μ 
and ground truth. Model performance was compared to the performance of null models 

constructed using randomly permuted calcium data—97.2% of the mean activity models 

individually exceeded chance levels (the 95th percentile of the null distribution). Cross-

validated R2 was also used as an alternative performance metric to confirm model 

significance and validated 97% of the mean activity models. Coefficients β from full models 

were z-scored before being pooled with those from other models (Figure 6G). For models of 

subpopulation activity (Figures 6H-M), the response variable μ was the mean activity of the 

top 15 behavior-excited neurons based on their rank-ordered auROC values for a given 

behavior type, and z-scored coefficients were averaged within each session according to cell 

identity before comparison across sessions/groups.

Modeling neuron activity using behavioral variables: To analyze the contributions of 

subject and opponent behaviors to the activity of individual neurons, we constructed GLMs 

using the behaviors and positions of both animals. Singleneuron GLMs were fit using a 

Poisson model with a log link function:

ln(μ) = Xβ + φ

where μ is calcium activity from one cell and Χ is a matrix of behavior and position vectors. 

The use of a log link function for single neuron models was based on the assumption that a 

Poisson distribution best characterizes the calcium data used to fit the model, as has been 

made in previous studies (Driscoll et al., 2017). Binary behavior vectors were smoothed with 

an exponential decay function (τ = 3 seconds). Position vectors for each animal were 

projected onto four Gaussian functions centered at four positions (P1, P2, P3, P4) that 

uniformly tiled the length of the tube. In total, 14 variables were used to model activity: 6 

behavior vectors (corresponding to push, approach, and retreat for both animals) and 8 

position vectors (corresponding to the four tube positions for both animals). Model 

performance was quantified following 10-fold cross validation using the Pearson’s 

correlation coefficient (PCC) of predicted and observed activity, and was compared to a 

distribution of null models fit using randomly permuted calcium data. Models were only 

considered significant and used for downstream analysis if their performance exceeded the 

95th percentile of the null distribution. Significance testing for individual coefficients 

(Figures 8B-C) was based on a likelihood ratio test (α = 0.05) which compares model 

performance with the associated variable against a null model without it. For comparisons of 

coefficients between dominant and subordinate animals, coefficients were z-scored and 

averaged within each animal/session. Results of coefficient analyses shown in Figures 8C-D 

were also consistent with analyses performed with models identified using R2 as a 

performance metric (Figures S8K-L).

Modeling neural activity using both neural activity and behavioral variables across 
animals: In order to examine whether interbrain correlations observed in the open arena and 

tube test experiments exceeded modulations that could be only explained by observable 

behavior variables, we compared the performance of mean activity GLMs fit using both 
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animal’s behavior (“behavior-only” Model 1) with the performance of models that also 

included mean activity from the opponent animal as an additional explanatory variable 

(“interbrain” Model 2) (Figure 2J; Runyan et al., 2017). For these analyses, GLMs were 

Gaussian residual models, behavior vectors were exponentially smoothed (τ = 3 seconds), 

and behavior vectors and calcium activity were binned into 1 second bins prior to model 

fitting. Model performance was measured using cross-validated PCC with 10-fold cross-

validation, as described above. We measured the change in model performance upon 

inclusion of opponent activity as (Model 2 – Model 1)/Model 1 (“GLM performance 

difference” in Figures 2K and S4G). Performance indexes were compared with those of 

models constructed using randomly-permuted opponent activity (behavior variables were not 

permuted).

Analysis of interbrain neural activity correlations

Correlation of neural activity across brains: Because previous hyperscanning studies have 

investigated correlations of aggregate, region-level activity patterns, we used the mean 

activity of all z-scored ΔF/F traces in each dmPFC population (mean ΔF/F, effectively their 

summed activity normalized by the number of recorded neurons) as a measure of overall 

neural activity. For both open arena and tube test experiments, interbrain correlations across 

mouse dyads were calculated using the Pearson’s correlation coefficient (PCC) of the overall 

neural activity across the entire session. To fairly compare interbrain correlations across 

sessions with different durations (Figures 2F and 4J), we cropped traces to the duration of 

the shortest session (10 min and 0 sec for the open arena; 11 min and 16 sec for the tube 

test). Interbrain correlations for each pair were compared to the 95th percentile of random 

permutation null distributions (Figures S4A-B). In order to confirm that changes in 

interbrain correlation when animals were separated were not due to changes in the 

autocorrelation of each signal, we also compared phase-randomized signals before and after 

separation in both the open arena (Figure S2E) and tube test experiments (Figure S4E). 

Phase-randomized surrogate signals (Figure S4D) were computed by independently 

randomizing the phase of each Fourier component, which disrupts the temporal structure of 

the signal but preserves its mean, variance, and autocorrelation. For comparison of overall 

correlations with dominance relationships (Figure 8J), interbrain correlations were measured 

over the first 5 minutes of each session to ensure a high degree of social interaction during 

each epoch.

Cross-correlations of neural activity across brains: In order to gain more insight into the 

timescale at which interbrain correlations occur, we performed a cross-correlation analysis 

using the neural activity from interacting animals in both the open arena and the tube test. 

We calculated the correlation between ΔF/F activity traces with different time shifts, ranging 

from −2 minutes to +2 minutes, and plotted the correlation as a function of time lag (Figures 

1M and 4N). For interacting animals in both experiments, the peak of the average cross-

correlation occurred precisely at 0.0 seconds lag. For both experiments, we also compared 

the correlation at the peak with the correlation at baseline, assessed using ±60 or ±30 

seconds lag (based on the cross-correlation functions shown in Figures 1M and 4N). Cross-

correlations were compared with those of phase-randomized signals (described above) to 
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confirm that structure in the cross-correlation is not due to autocorrelations in each calcium 

trace (Figures 1N and 4O).

Interbrain correlations among subsets of neurons: To determine the contributions of 

subject-encoding and opponent-encoding neurons to interbrain correlations, we calculated 

correlations across animals after removing different types of cells from each neural 

population based on functional identity (e.g., behavior-excited or behavior-suppressed). 

While removal of behavior-excited cells resulted in a decrease in interbrain correlations, 

removal of behavior-suppressed cells did not (Figures 6A, S7A-B, and 7M, S8F-G). Neutral 

cells were neurons that were not identified as either subject-encoding or opponent-encoding 

by the ROC analysis. For subpopulation analyses in Figure 7N and Figures 8I, 8K, and 8O, 

subsets of 25 cells from each animal were used to calculate interbrain activity correlations in 

order to control for differences in correlation that could result from unequal population sizes. 

Subsets of the top behavior-encoding were selected (with the largest auROC values) for 

modulation by subject or opponent behavior. Neutral cells were defined as described above, 

and were sorted (in ascending order) and selected by ∣auROCsub − 0.5∣ + ∣auROCopp − 0.5∣, 
where auROCsub and auROCopp are the auROC values calculated from neural responses to 

pooled subject and opponent behavior, respectively. To assess the relative contributions of 

subject and opponent cells to interbrain correlations, we also removed fixed numbers (to 

ensure a fair comparison between subject and opponent cells) of subject, opponent, or 

neutral cells (ranging from 1 to 25) from each animal and computed interbrain correlations 

over the downsampled populations (Figures 7O-P).

Relationship between interbrain correlations and behavior interaction: In order to 

examine whether interbrain correlations could predict behavior interactions, we compared 

the degree of correlation prior to behavior in one animal to the probability of behavior 

response from the interacting partner (Figures 8G-I). For each behavior event (pooled across 

behavior categories) in each tube test session, the PCC of interbrain activity across the two 

animals was taken over the 30 seconds prior to behavior onset. All behavior events with any 

behavior from the interacting partner starting in the 15 seconds prior to behavior onset were 

removed from the analysis to ensure that preceding correlations were not contaminated by 

preceding behavior bouts. For each range of PCC (e.g., 0.1 – 0.2), the probability of 

behavior response in the reacting animal was calculated by summing all behavior events 

from the reacting animal over 3 seconds following the onset of its opponent’s behavior for 

all epochs associated with that PCC range, and then dividing by total the number of epochs.

Interbrain correlations during matched behavior epochs across animal pairs: In order 

to address whether interbrain correlations could be accounted for simply by concurrent 

behaviors, we compared correlations of mean activity across animals during single epochs 

(30 seconds) of concurrent behavior (e.g. interacting animals A vs. B), with behavior-

matched epochs across pairs that did not interact (e.g. non-interacting animals A vs. C) 

(Figures 2G and 4K). Specifically, we identified all epochs in which two interacting animals 

displayed behavior that have concurrent onset times (within 3 seconds), and computed 

interbrain activity correlations over these epochs (A vs. B). Behavior epochs in one animal 

were then matched with behavior epochs in another non-interacting animal from a separate 
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session (A vs. C), such that the behavior types and onsets were identical to those in the 

epoch from the interacting pair (A vs. B). Other types of behaviors immediately before and 

after the temporally aligned behavior were also matched, such that overall behavior 

transitions, as well as the onsets of the aligned behaviors, were the same. The associated 

interbrain correlations were then compared. For the analysis shown in Figure S4F, a single 

behavior bout in one animal was matched and aligned with an equivalent behavior bout from 

a separate non-interacting animal, and if multiple behavior bouts of the same type occurred 

within short intervals (1 s), they were considered as one bout. No other behavior bouts 

occurred during the epoch. For these analyses, lower PCC values are expected as interbrain 

correlation is lower in shorter temporal windows (Figure S2C and S4C).

QUANTIFICATION AND STATISTICAL ANALYSIS

All analyses for this study were conducted using custom routines in MATLAB (Mathworks), 

and are described in the respective Method Details, Results, and Figure Legends. All bar 

plots with error bars represent mean ± SEM; all box and whisker plots represent the median, 

interquartile range (box), and 5th to 95th percentile (whiskers) of the underlying distribution, 

unless otherwise specified. For all statistical tests throughout, normality of the data and 

equal variance of groups were not assumed, and non-parametric (Wilcoxon rank-sum and 

signed-rank) tests were used for unpaired and paired group comparisons, respectively. 

Statistical significance was defined with α < 0.05 using two-tailed tests. For comparisons of 

proportions of binary-valued variables, Fisher’s exact test was used. For comparisons of 

behavior bout length and cell pairwise distance distributions, two-sample Kolmogorov-

Smirnov tests were used. Resampling methods based on temporally-permuted calcium traces 

were used to assess significance of auROC values for behavioral modulation of neural 

signals and performance of GLM models. Statistical significance of FLD classifiers was 

assessed by comparison with null models constructed using training data with shuffled class 

labels. The sizes of mouse groups were not pre-specified and approximated those of 

previous work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Simultaneous imaging of interacting mice reveals interbrain synchrony of 

activity

• Interbrain synchrony arises from ongoing social interaction between animals

• Synchrony emerges from neurons encoding behavior of oneself and the social 

partner

• Interbrain synchrony predicts future social decisions and dominance 

relationships
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Figure 1. Correlated neural activity across brains of interacting animals during free social 
interaction.
(A) Illustration of social interactions in the open arena.

(B) Behavior raster plot of two animals interacting in the open arena.

(C) Percentage of time animals engage in behavior in the open arena. Each dot represents 

one animal from one session.

(D) Distribution of behaviors mice display in the open arena interaction.

(E) Schematic of head-mounted microscope and GRIN lens implantation above dmPFC.

(F) Example image of injection site showing expression of GCaMP6f in dmPFC.

(G) Example image showing viral expression in dmPFC cell bodies. Green = GCaMP6f, 

Blue = DAPI.

(H) Example imaging field of view with individual cell bodies.

(I) Example calcium traces recorded from one session.

(J) Example trace showing overall dmPFC activity (mean activity of all cells) in one animal 

during social interaction overlaid with behavior annotations.

(K) Example calcium traces showing overall dmPFC activity from two animals engaged in 

social interaction.

(L) Interbrain correlations of overall dmPFC activity in animals, compared with those of 

temporally permuted traces.

(M) Cross-correlation of dmPFC activity traces from interacting animals compared with that 

of phase-randomized traces.

(N) Quantification of cross-correlations shown in (M) at 0 s or ±60 s.
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p*** < 0.001, p > 0.05, n.s. (C, L, M) mean ± sEm. In L-N and Figure 2, pairs with a 

relatively high degree of social interaction were analyzed (STAR Methods).

See also Figures S1 and S2, and Movie S1
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Figure 2. Interbrain correlations depend on ongoing social interaction.
(A) Interbrain correlations of dyads during full open arena sessions or correlations after 

removing epochs of concurrent rest, defined as when both animals display no observable 

behavior.

(B) Interbrain activity correlations during single epochs (1 min) with low or high behavior 

correlation (the PCC of binary vectors measuring the presence of any behavior), compared 

with correlations of phase-randomized signals.

(C) Interbrain correlations of epochs when one or both animals engaged in social vs. non-

social behavior.
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(D) Schematic of the open arena interaction with social contact or with separation of animals 

with a barrier. Head-mounted microscopes were connected via an ultra-light cable that is 

long and flexible enough to prevent tangling during the course of social interactions.

(E) Example calcium traces of overall dmPFC activity (mean activity) in a dyad with or 

without social contact.

(F) Interbrain correlations in pairs with or without social contact.

(G) Schematic showing comparisons of correlations across pairs engaged in social 

interaction (within pair) and across animals that each interacted with a different animal 

(between pair).

(H) Comparison between interbrain correlations across interacting or non-interacting pairs.

(I) Interbrain correlations during single epochs (30 s) with concurrent behavior bouts in 

interacting pairs or those over behavior-matched epochs in non-interacting animals.

(J) Schematic showing GLMs used to model dmPFC activity in one animal as a function of 

behaviors exhibited by both animals (Model 1) or as a function of behaviors as well as 

activity in the other animal (Model 2). An example of modeled dmPFC activity is shown in 

the pink trace.

(K) Relative difference in GLM model performance when activity from the interacting 

partner is included as additional explanatory variable (J), compared with that using phase 

randomized controls. (STAR Methods; also see Figure S4G for the equivalent analysis in the 

tube test).

p*** < 0.001; p** < 0.01; p > 0.05, n.s. (H-I) mean ± SEM.

See also Figure S2.
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Figure 3. Dynamics of social behaviors during competitive interaction.
(A) Cartoon of mice engaged in the tube test.

(B) Illustration of the neural network used for automated tracking of mice.

(C) Behavior annotations and position trajectories of a pair of mice in the tube test.

(D) Total percentage of time animal pairs (either animal) engaged in social interaction.

(E) Distribution of time animals displayed different behaviors.

(F) Average tube positions in dominant or subordinate animals (STAR Methods).

(G) Fraction of interaction time when only one or both animals are behaving.

(H-J) Change in probability of opponent animal behavior with respect to subject animal push 

(H), retreat (I), or approach (J).
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(K-M) Percentage of time spent pushing (K), retreating (L), and approaching (M) in 

dominants or subordinates in pairs that displayed a large difference in dominance (STAR 

Methods).

(N) Change in relative probability of dominant or subordinate retreat behavior following 

opponent push.

(O) Probability of retreat in dominants or subordinates 1 second following opponent push.

p*** < 0.001; p** < 0.01; p > 0.05, n.s. (D, F, N) mean ± SEM.

See also Figure S3.
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Figure 4. Correlated neural activity across animals during competitive social interaction.
(A) Cartoon showing simultaneous imaging of two mice during the tube test.

(B) Example traces of overall dmPFC activity (mean of all neurons) from two animals 

during the tube test.

(C) Interbrain correlations in interacting pairs or correlations of randomly permuted traces.

(D) Comparison of correlations of behavior (PCC of binary event vectors) across animals vs. 

correlations of dmPFC activity.

(E) Interbrain correlations during the tube test or after removing concurrent rest epochs 

when both animals display no observable behavior.
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(F) Interbrain correlations during tube test sessions or during epochs (≥ 1 min) when one 

animal is behaving while the other is resting (displaying no observable behavior), compared 

with phase randomized controls.

(G) Interbrain correlations during single epochs (1 min) of low or high overall behavior 

correlation (PCC of binary vectors measuring the presence of any behavior), compared with 

those of phase-randomized traces.

(H) Schematic showing introduction of a separator in the tube test to abolish social contact.

(I) Example traces showing dmPFC activity across two animals with or without social 

contact.

(J) Interbrain correlations with or without social contact.

(K) Schematic showing pairs engaged in social interaction (within pair) or pairs that each 

interact with a different animal (between pair).

(L) Interbrain correlations across interacting or non-interacting animals.

(M) Interbrain correlations during single epochs (30 s) with concurrent behavior bouts in 

interacting pairs or during behavior-matched epochs in non-interacting animals.

(N) Cross-correlation of dmPFC activity from pairs of mice in the tube test and that of 

phase-randomized controls.

(O) Quantification of cross-correlations shown in (N) at 0 s vs. ±30 s.

p*** < 0.001; p** < 0.01; p > 0.05, n.s. (C, L-N) mean ± SEM.

See also Figure S4 and Movie S2.
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Figure 5. dmPFC neurons encode social behaviors during competitive interaction.
(A) Mean trial-averaged response of dmPFC neurons (normalized to the 15 s preceding 

behavior) centered at onset of social behaviors.

(B) ROC curves from example neurons for push behavior.

(C) Examples of single cells that selectively encode different behaviors.

(D) Distribution of behavior-encoding neurons.

(E) Distribution of excited and suppressed cells within each behavior category.

(F) Trial-averaged responses of example behavior cells.
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(G) Example field of view showing spatial distribution of behavior cells.

(H) Cumulative fraction of pairwise distances among different subsets of behavior cells, 

compared with neutral cells (Kolmogorov-Smirnov test).

(I) Population responses during behavior events (Mahalanobis distance between trial 

population vectors and baseline activity), averaged across sessions (STAR Methods).

(J) Population responses (as in I) during different behaviors over 3 seconds following 

behavior onset.

(K) Principal component (PC) separation of behavior-evoked population responses from one 

session; each dot is the mean response from one behavior bout.

(L) Euclidean distance between PC-projected population vectors within or between behavior 

types, averaged within each session.

(M) FLD decoders trained to predict different behaviors from rest using population activity. 

Plots: projections of population activity onto the linear discriminant; dark patches: annotated 

behavior; light patches: frame-by-frame predictions of example classifiers.

(N) Performance of FLD decoders exemplified in (M), compared with models constructed 

using shuffled class labels.

(O) Performance of 3-way multi-class FLD decoders trained to distinguish between push, 

approach, and retreat behavior. Red line: expected chance level in the three-way decoder.

p*** < 0.001; p** < 0.01; p > 0.05, n.s. (A, I) mean ± SEM. (A, C, F) ΔF/F calcium traces 

are presented in units of standard deviation (s.d.).

See also Figures S5 and S6.
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Figure 6. Interbrain correlations depend on neurons encoding one’s own social behavior.
(A) Interbrain activity correlations after removal of behavior-excited (Bv) or neutral (Neu) 

cells from both animals.

(B-D) Interbrain correlations between the mean activity of subsets of push- (B), approach- 

(C), and retreat- (D) excited cells (the top 15 cells based on auROC values).

(E) Schematic of models of interbrain activity across animals. The mean activity of all 

neurons in one animal (top) is modeled as a function of single cell activities in the 

interacting partner (bottom) using a GLM.

(F) Performance (cross-validated PCC) of GLMs to predict activity in one animal using 

single cell activities from the other, compared with that of models using randomly permuted 

controls.
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(G) Weight contributions of behavior (Bv) and neutral (Neu) cells in GLMs of overall 

activity in (F), computed as the average of z-scored coefficients fit to Bv or Neu cells in each 

model.

(H-J) Performance of GLMs modeling the mean activity of subsets of behavior cells, as in 

(B-D), compared with that of GLMs modeling the mean of neutral cells.

(K-M) Weight contributions of behavior (push-, approach-, or retreat-excited) cells fit to 

models of behavior-encoding subpopulations in (H-J), computed as the average of z-scored 

coefficients for each cell type.

(N) Correlation between the percentage of highly correlated single cell pairs (> 99th 

percentile of random distribution, see Figures S7E-F) and the interbrain activity correlation 

across pairs.

(O) Fraction of behavior cells that belong to an interbrain cell pair with low (bottom 20% of 

random distribution) or high (top 20% of random distribution) correlations.

(P) Fraction of behavior cells in highly correlated (>99th percentile of random distribution) 

cell pairs in dominants and subordinates.

p*** < 0.001; p** < 0.01; p > 0.05, n.s. (A, F, P) mean ± SEM.

See also Figure S7.
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Figure 7. Neurons encoding behavior of the social partner contribute to interbrain correlations.
(A) Example traces from dmPFC neurons that respond during opponent behavior.

(B) Fraction of neurons that are significantly responsive during subject, opponent, or both 

types of behavior based on ROC analysis.

(C) Distribution of opponent-encoding neurons that selectively respond during specific 

behaviors.

(D) Example field of view showing the spatial distribution of subject and opponent cells.

(E) Cumulative fraction of pairwise distances among different subsets of cells, compared 

with neutral cells (Kolmogorov-Smirnov test).

(F) Trial-averaged responses of behavior-selective opponent cells.

(G) Trial-averaged responses of example opponent push-, approach-, and retreat-excited 

neurons during opponent or subject behavior.

(H-J) Mean activity of opponent push- (H), approach- (I), and retreat-excited (J) cells during 

each type of subject or opponent behavior. Behavior bouts that overlapped across subject 
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and opponent were excluded to ensure that activity during opponent behavior was not 

contaminated by subject behavior. During opponent behaviors used for this analysis, the 

subject animal did not exhibit any behavior or positional change (see Figures S3F-G).

(K) Population responses during subject and opponent behavior (from a cross-validation test 

set) projected onto the first two Fisher’s linear discriminant (FLD) dimensions.

(L) Performance of FLD decoders to distinguish between subject and opponent behavior 

based on population activity.

(M) Interbrain activity correlations after removal of opponent-excited (Opp) or neutral (Neu) 

cells from both animals.

(N) Interbrain activity correlations between subsets of subject and opponent (S/O) or neutral 

(Neu) cells (the top 25 cells based on rank-ordered auROC values; STAR Methods).

(O) Interbrain correlation upon removal of different numbers of subject, opponent, or neutral 

cells from each animal.

(P) Reduction in interbrain correlation after removing 25 subject, opponent, or neutral cells 

from each animal, as in (O).

(Q) Schematic showing that interbrain correlations arise from the collective contributions of 

neurons encoding subject and opponent behavior in both animals. As these neurons in each 

brain represent a common behavior repertoire (i.e. behavior of both animals), overall neural 

activity becomes synchronized across dyads.

p*** < 0.001; p** < 0.01; p > 0.05, n.s. (F, L-O) mean ± SEM. (A, F, G) ΔF/F calcium 

traces are presented in units of standard deviation (s.d.).

See also Figure S8.
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Figure 8. Interbrain correlations predict future social interactions and dominance relationships.
(A) Examples of neurons with activity modeled by GLMs using positions and behavior of 

both animals.

(B) Distribution of single neuron GLMs with statistically significant (p < 0.05) coefficients 

fit to only subject behavior, only opponent behavior, or subject and opponent behavior.

(C) Distribution of cells with significant coefficients for specific subject and opponent 

behaviors.

(D) Weight contributions (the average of z-scored coefficients) in single neuron GLMs for 

subject and opponent behavior in dominants and subordinates.

(E) Interbrain correlations during behaviors of dominants vs. subordinates.
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(F) Schematic showing greater influence on interbrain synchrony by dominant animals.

(G) Time-courses showing the probability of behavior in one animal as a function of time 

following behavior onset in the interacting partner, color coded based on the interbrain 

correlation over the preceding 30 s.

(H) Correlation between the interbrain activity PCC preceding behavior in one animal and 

the response probability of the interacting partner.

(I) Regression coefficients (R2) for the linear relationship shown in (H) using subsets of 

neurons (S/O: subject and opponent cells; Neu: neutral cells).

(J) Correlation between the interbrain activity PCC across pairs and the differences in their 

mean tube position.

(K) Regression coefficients (R2) for the linear relationship shown in (J) using subsets of 

neurons. (L-N) Correlation between interbrain activity PCC during the first 2 min of 

interaction and overall difference in tube position over the session using all cells (L), only 

subject- and opponent-encoding cells (M), or only neutral cells (N).

(O) Regression coefficients (R2) for the linear relationships between interbrain activity 

correlations during the first 2 minutes of interaction and dominance difference using subsets 

of neurons.

(P) Schematic showing that interbrain coupling is higher when one animal is significantly 

more dominant than its opponent, and lower when two animals have similar levels of 

dominance.

p*** < 0.001; p** < 0.01; p > 0.05, n.s. (D) mean ± SEM.

See also Figure S8.

Kingsbury et al. Page 44

Cell. Author manuscript; available in PMC 2020 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	SUMMARY
	IN BRIEF
	Graphical Abstract
	INTRODUCTION
	RESULTS
	Correlated neural activity across animals during free social interaction
	Interbrain activity correlations depend on ongoing social interaction
	Behavioral dynamics during a competitive social encounter
	Animals display interbrain correlations during a competitive social encounter
	dmPFC neurons encode distinct social behaviors during competitive interaction
	Interbrain activity correlations depend on cells encoding social behavior
	Interbrain activity correlations arise from single cell dynamics
	Interbrain correlations depend on cells encoding behaviors of the social partner
	Dominant animals exert a greater influence on interbrain correlations than subordinates
	Interbrain correlations predict social interactions and dominance relationships across dyads

	DISCUSSION
	Interbrain correlated neural activity during social interaction
	Encoding of one’s own and the social partner’s behavior in dmPFC neurons
	Interbrain correlations predict social interactions and dominance relationships

	STAR METHODS
	CONTACT FOR REAGENT AND RESOURCE SHARING
	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	METHOD DETAILS
	Viral injections and GRIN lens implantations
	Histology
	Behavior Assays
	Free social interaction in the open arena
	Competitive social interaction in the tube test

	Analysis of animal behavior
	Extraction of Calcium Signals
	Motion-correction and preprocessing
	Segmentation and ROI Identification

	Analysis of Single Cell Responses During Behavior
	Analysis of population dynamics during behavior
	Principal Component Analysis
	Mahalanobis Distance

	Behavior decoding based on population activity
	Generalized linear models of single-neuron and population activity
	Modeling neural activity across brains of interacting animals
	Modeling neuron activity using behavioral variables
	Modeling neural activity using both neural activity and behavioral variables across animals

	Analysis of interbrain neural activity correlations
	Correlation of neural activity across brains
	Cross-correlations of neural activity across brains
	Interbrain correlations among subsets of neurons
	Relationship between interbrain correlations and behavior interaction
	Interbrain correlations during matched behavior epochs across animal pairs


	QUANTIFICATION AND STATISTICAL ANALYSIS

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.



