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ABSTRACT

Thermal Effects and Activation in Josephson Junctions

The Josephson effect is one of the macroscopic quantum phenomena and it was predicted by

B.D Josephson in 1962. For a typical S-I-S Josephson junction, there exists a continuous su-

percurrent across the junction without any external voltage applied due to the Cooper pair tun-

nelling. The Cooper pair is a bound state of a pair of electrons caused by a small attraction

due to the electron-phonon interaction in a metal at low temperatures. When the temperature

is increased or external bias voltage is imposed, the Cooper pairs could be broken due to the

thermal motion or the voltage overcoming the binding energy of the paired electrons. The term

“activation” or “switching” of Josephson junction from superconducting state to normal or re-

sistive state refers to such a process, that the normal electrons formed from the broken Cooper

pairs result in a normal current, which is higher than a threshold, namely, critical current, so

that a voltage drop across the junction can be measured and the current-voltage relation satisfies

the Ohm’s law.

According to the Josephson relations, the current flowing through the junction is character-

izes by the phase difference between the two superconductors of the junction, and the resistively

and capacitively shunted junction (RCSJ) model was proposed in 1968 for the description of

phase dynamics. The governing equation of the phase difference is a Langevin equation anal-

ogously describing a Brownian particle moving in a periodic potential well. Accordingly, the

escape of Brownian particles from the well was used to study the switching of the junction. The

RCSJ model in the past five decades has been accepted as a good model for successfully pro-

viding a switching mechanism called “thermal activation (TA)” at high temperatures relative to

the “crossover temperature”. As a series of Josephson experiments were reported during 1980s,

the RCSJ model was considered failing to explain some phenomena, such as the saturation of

the switching current distribution (SCD) as the temperature is down to zero. Meanwhile, the

theory of macroscopic quantum tunnelling (MQT) was built; the phase was quantized and the

saturation of SCD was attributed to the tunnelling of the phase particle through the potential

barrier. As a test for the secondary quantum effect, MQT has been accepted as a main theory
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for the interpretation of saturation of SCD in Josephson switching experiments.

In this dissertation, we try to explore a classical switching mechanism as an alternative

and simpler description for the phase difference of the Josephson junction at low temperatures

besides MQT. The content of this thesis is structured as follows: in Chapter 1, we review the

background of Josephson effect and present some of the key concepts that will be used in the

following chapters. In Chapter 2, by solving the Langevin equation of the RCSJ model using

the GJ thermostat method, we will investigate the effects of the parameters in the equation, such

as damping, temperature, sweep rate and initial conditions. Non-equilibrium phenomena are

observed and discussed. In Chapter 3, the effects of initial conditions, especially the saturation

phenomena in non-equilibrium state will be discussed. In Chapter 4, with the understandings

on the classical switching mechanism of the junction, we will compare the results generated

by our model to the published experimental data. Up to Chapter 4, our discussion is based on

a single Josephson junction, while in Chapter 5, the simulation will be generalized to a one-

dimension long Josephson junction, which will be a more complex system in which additional

phenomena, such as kink-soliton, can be studied. In Chapter 6, we summarize the discussion in

this dissertation.
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Chapter 1

Introduction

1.1 Historical background
During 1950s-1960s, the modern physics was still in its “silver age”. The story of the Josephosn

junction at least can be traced back to the birth of the concept of “Cooper pair”, which was pro-

posed by Leon Cooper in 1956 [1]. Later in 1957, the basic theory of superconductivity, BCS

theory, has been built up by Bardeen, Cooper, and Schrieffer [2]. In 1962, Brian David Joseph-

son in 1962 predicted theoretically that besides the single particle tunneling, there exists Cooper

pairs tunneling currents between two superconductors separated by an thin insulated film [3].

This prediction in three pages of paper paved the way to the study of a series of new physics

and important applications of electric devices up to nowadays. Shortly, in January of 1963,

Philip Anderson and John Rowell [4] reported that the DC Josephson effect was observed - the

current-voltage characteristics for the tin-tin oxide-lead junction at 1.5 K indicated there was a

0.3 mA of direct tunneling current survived under the very weak interior magnetic field without

external voltage applied. Later in June, S.Shapiro confirmed the direct-current Josephson effect

and represented an indirect proof for Josephson’s alternating-current [5]. Besides in coupled

superconductors, the Josephson-type effects can also be found in neutral matter, such as 4He

and 3He-B that can be described by a macroscopic wave function of the form Ψ =
√

ρseiϕ ,

where ρs is the superfluid density and ϕ is an actual phase. Anderson’s consideration on the

flow of superfluid 4He [6] provided a groundwork for the search of these kind of phenomena,

e.g., Superfluid Hydrodynamics [7] in 1965.
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Plasma resonance is an oscillatory mode of the junction in the zero-voltage state due to the

exchange of energy between equivalent inductor and capacitor in the Josephson junction [8].

This phenomenon was pointed out by Anderson [9] in 1964 and later discussed by Josephson

[10] in 1965. The experimental confirmation was performed by Dahm et al. in 1968 for small

amplitude limit [11], and in 1975 for large amplitude [12].

In 1968, to study the current-voltage relation of weak-link junctions, the relaxation oscil-

lations in Josephson junctions was proposed by Stewart [13, 14]. This model gives an equiva-

lent circuit for the weakly coupled superconductors and the corresponding system equation for

the phase with a fluctuation terms will turn to a Langevin equation, which, together with the

well-known escape theories from from Kramers in 1940 [15] and Buttiker et al. in 1983 [16],

successfully describes the switching process of the junction, namely, “thermal activation (TA)”

at high temperatures1 in the Brownian particle analogy (phase particle).

Besides the escape rate of the particle of the junction, the switching current distribution

(SCD) is another characteristic of the junction, where the information of the switching or ac-

tivation process is encoded. In 1972, Kurkijärvi theoretically considered the transition distri-

bution for the intrinsic fluctuations in a superconducting ring closed with a Josephson junction

in a magnetic flux and found that the width of distribution is proportional to the power of 2/3

of temperature [17]. This was experimentally confirmed by L D. Jackel et, al in 1973 for the

same system [18]. The first SCD experiment of an extremely underdamped Josephson junction

are presented by Paolo Silvestrini et al. [19] in 1988, and it showed that the junction resistance

depended on the superconductor energy gap and temperature in an exponential form.

In 1980s, a series of experiments [20–24] show that the escape rate of the phase particles and

switching current distribution was measured to be temperature-independent at low temperatures.

This kind of saturation phenomenon was considered a proof of the failure of the classical escape

theories and RCSJ model at low temperatures. Hence, on the theory side, macroscopic quantum

tunneling (MQT), the second switching mechanism for the Josephson junction was proposed

[25–28] almost simultaneously. This is a “secondary quantum macroscopic effect” based on

1In this thesis, the term “high temperature” refers to a temperature relatively higher than the “crossover temper-
ature” but lower than the critical temperature (Tc) of the junction, or roughly speaking, h̄ω j0 < kBT < kBTc; a “low
temperature” for e.g., MQT, refers to a temperature lower than the “crossover temperature” and down to zero, or
0 < kBT < h̄ω j0. Here, kB is the Boltzmann constant and ω j0 is the zero-bias plasma frequency of the junctions.
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quantum postulates, which may not be necessary [29]. Nevertheless, MQT is considered a

main theory for interpreting the phase behaviours in the Josephson junction at low temperatures

nowadays.

On the other hand, the Kramers and BHL escape rates theory based on the assumption of

equilibrium state under small damping condition, fail to give a consistent result as the Langevin

simulation does. This phenomenon attributes to the non-equilibrium effects, including the “fi-

nite barrier effect” [30, 31]. The efforts for improving the Kramers or BHL model, or find-

ing an expression for the escape rate of Brownian particle has been made in the past four

decades [30, 32, 33] and is still going on even today.

1.2 Physical background - Josephson relations
The basic Josephson relations can be derived by many approaches, such as the Ginsburg-Landau

equations, the gauge invariance, etc. Following is a simple derivation given by Feynman [34]

and can be found in many of the textbooks on solid state physics or superconductivity [8]. Since

we only focus on the fundamental physics of Josephson junction, let’s confine the topic to the

case that a S-I-S tunnel junction (Figure 1.1) with two pieces of superconductors is separated by

a thin insulated barrier, through which, the Cooper pairs tunnel from one side to the other [1].

Figure 1.1. Upper: two superconductors separated by a thin insulating barrier; Lower: the
superconducting order parameters Ψ for each side.

The macroscopic states of the junction of the left and right are described respectively by a

single state function ψL and ψR. Let the total state function be

Ψ =
√

nseiϕ (1.1)
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where ns = |Ψ|2 is the concentration of the electrons that form the Cooper pairs, and the constant

ϕ indicates all of the Cooper pairs have the same phase due to the condensation of bosonic

Cooper pairs. Ψ satisfies the Schrödinger equation

ih̄∂t |Ψ⟩= H|Ψ⟩ (1.2)

with

|Ψ⟩= ψL|L⟩+ψR|R⟩ (1.3)

H = HL +HR +HT

= EL|L⟩⟨L|+ER|R⟩⟨R|+K(|L⟩⟨R|+ |R⟩⟨L|) (1.4)

where h̄ = h
2π

is the reduced Planck constant; L, the state of the left piece of the superconductor

and R for the right one; K, a constant related to the interaction between the two superconductors.

Substituting the above state function and Hamiltonian in (1.2), and using orthogonality of the

base, we get two equations of the right and left superconductors respectively:

ih̄∂tψR = ERψR +KψL

ih̄∂tψL = ELψL +KψR (1.5)

By (1.1), letting ψL =
√

nLeiϕL and ψR =
√

nReiϕR , substituting them into (1.5), and separating

the real and image parts, we get:

∂tnL =−∂tnR =
2K

√
nLnR

h̄
sin(ϕR −ϕL) (1.6)

∂t(ϕR −ϕL) =−ER −EL

h̄
(1.7)

We assume nR = nL = n due to the symmetry of the junction, noting that the supercurrent

density is the rate of the density of the tunneling Cooper pairs: j ≡ (2e)∂tn, with e being the

charge of an electron, so the supercurrent is I = jA with A being the cross-section area of the

junction. If the voltage applied to the junction is V , the potential change across the barrier will

be ER −EL =−2eV . Hence, we obtain the two Josephson relations respectively from (1.6) and

(1.7):

I = Ic sinϕ (1.8a)

∂tϕ =
2eV

h̄
(1.8b)
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where Ic = jcA is the maximum Josephson supercurrent (aka “critical current”), and jc =

4eK
√

nLnR/h̄ is the current density. Therefore, it can be seen that (1) if V = 0, then the phase is

constant ϕ0, so is the supercurrent, I = Ic sinϕ0 (DC Josephson effect). (2) if V is constant, then

I = Ic sin(2eVt/h̄+ϕ0), meaning the supercurrent is oscillating with a frequency ω = 2eV/h̄

(AC Josephson effect). These two phenomena have been respectively observed in Anderson

and Shapiro’s experiments mentioned above.

1.2.1 The S and R states, critical current Ic

The critical current Ic of Josephson junction is defined to be the maximum Josephson super-

current, determined by the structure of the junction and sensitive to temperature and magnetic

field [4, 35–37]. When the DC current I through the junction within the interval of [−Ic, Ic],

according to relation (1.8b), the voltage drop will be zero, and the junction is said to be in “S

state” (superconducting or stationary state). The situation beyond Ic could be attributed to the

normal current (IN) formed by conductive quasi-particles from the breaking of Cooper pairs due

to thermal motion or bias voltage over the gap. Since the normal current satisfies Ohm’s law

(see Figure 1.5) [38], the junction is said to switch to the “R state” (Resistive state).

Although in this thesis, the critical current Ic is assumed to be constant, it is worth noting

here that in general it is temperature and magnetic-field dependent. Only considering the case

without magnetic field that reduces Ic, for symmetrical junctions, a well-known analytic expres-

sion for temperature dependent Ic was given by Ambegaokar and Baratoff in 1963 [39] based

on the BCS theroy:

Ic =
π∆(T )
2eRN

tanh
[

∆(T )
2kBT

]
(1.9)

in which, ∆(T ) is the gap energy; RN , the normal state resistance of the junction, and kB, the

Boltzmann constant. At temperature T , the gap energy is approximated by

∆(T )
∆(0)

= tanh
[

T
Tc

∆(T )
∆(0)

]
(1.10)

where Tc is the critical temperature of the superconductor and ∆(0)≈ πkBT/1.78. The quantity

IcRN is another characteristic parameter of Josephson junction dependent on the parameters of

the junction at certain T .
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1.2.2 Josephson inductance, energy, and plasma oscillation

Combining the Josephson relations (1.8a) and (1.8b) yields a relation between voltage and the

rate of current:

V = L(ϕ)
dI
dt

(1.11)

where L j(ϕ) =
h̄

2eIc cosϕ
, and L j0 ≡ L(0) = h̄

2eIc
is called Josephson inductance [40]. Thus, one

can calculate the energy stored in this non-linear “inductor”:

E j =
∫ t

0
IV dt = E j0[1− cosϕ(t)] (1.12)

where E j0 =
Ich̄
2e is the zero-bias Josephson energy that relates to coupling energy between the

phases of the gap functions on the two sides [4].

Due to the similar structure as a capacitor, there exists a charge difference and displacement

current (ID) between the two electrodes of the junction so one can treat the junction as a LC

circuit. Letting C be the capacitance of the junction, the plasma frequency of Josephson junction

can be defined as

ω j ≡
1√
L jC

= ω j0

[
1−
(

I
Ic

)2
]1/4

(1.13)

where ω j0 =
(

2eIc
h̄C

) 1
2 is called zero-bias plasma frequency of the Josephson junction, and this

kind of mode exists in the zero-voltage state (or S state) of the junction; once I > Ic, the junction

switches to R state and a voltage drop V can be measured; by relation (1.8b), the frequency will

be determined by ω = 2eV/h̄. The voltage at I = Ic is called characteristic voltage: Vc = IcRN ,

where RN is the normal resistance of the junction. Correspondingly, one can define another

“characteristic frequency” of Josephson junction, as: ωc = 2eVc/h̄.

On the other hand, the electrical energy stored in the junction, similar to a capacitor, can be

written as

Ec =
CV 2

2
=

1
2

C
(

h̄
∂tϕ

2e

)2

=
1
2

ϕ ′2

ω2
j0

E j0 =
1
2

ϕ̇
2E j0 (1.14)

or : Ec =
Q2

2C
=

1
2

(
Nh̄ω j0

E j0

)2

E j0 (1.15)
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where Q = 2eN with N being the total number of Cooper pairs in the junction deviating from

the electrical equilibrium; ϕ ′ ≡ ∂tϕ , whose dimensionless form is ϕ̇ ≡ ∂τϕ = ϕ ′ω j0 with the

time variable t normalized by ω j0 as τ = ω j0t. If an external current source (I) is applied to the

junction, one must consider the energy it induced. By the first Anderson equation [7, 9, 41]:

∂ϕEext = h̄
dN
dt

=− h̄I
2e

(1.16)

we have Eext =−h̄Iϕ/2e=−E j0(I/Ic)ϕ . Summing up these energies considered above, finally,

we obtain an expression for the total Hamiltonian of the junction:

H = K(ϕ ′)+U(ϕ) = E j0

[
1
2

ϕ̇
2 +(1− cosϕ −ηϕ)

]
(1.17)

or
= E j0

[
1
2

(
Nh̄ω j0

E j0

)2

+(1− cosϕ −ηϕ)

]
(1.18)

where K and U respectively corresponding to the “kinetic” and “potantial” energies. The kinetic

terms in these two expressions should be equal, so that

ϕ̇ = Nh̄ω j0/E j0 (1.19)

This makes sense because according to the relation (1.8b), the phase derivative is proportional to

the voltage crossing the junction, which is dependent on the number of charges (N) distributed

on the two electrodes of the junction. For the normalized phase derivative, when only one

Cooper pair is tunnelling, i.e., N = 1, there exists a minimum ϕ̇min = h̄ω j0/E j0.

It is worth noting here that the plasma oscillation existing in the zero-voltage state is due to

the pulsating energy exchange between the K and U terms in expression [8], or say, it is the os-

cillation in the equivalent LC circuit of the junction, as seen from discussion around expression

(1.13). The plasma oscillation was theoretically discussed by Anderson and Josephson [9, 10],

and experimentally confirmed by Dahm et al. [12]. Based on the Anderson equation, the zero-

voltage plasma oscillation will result in a chemical potential [7,9], which will play an important

role in the Kramers and Langevin simulations (see Chapter 4).

1.2.3 The uncertainty relation

Up to now the discussion is still classical. The quantization of the phase difference is based on

the postulation that the phase ϕ and number of Cooper pairs N satisfy −i∂ϕΨ = NΨ, which
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gives the operator N ≡ −i∂ϕ , where Ψ is the wave function [7, 9]. Thus, the commutator is

[ϕ,N] = i. Following from the Robertson uncertainty relation, one gets [38]

σϕσN ≥ 1
2

(1.20)

where σϕ and σN denote the corresponding standard deviations. By (1.19), the commutator of

the phase and its normalized time derivative will be [ϕ, ϕ̇] = ih̄ω j0/E j0, and the uncertainty

relation reads

σϕσϕ̇ ≥
h̄ω j0

2E j0
(1.21)

where σϕ and σϕ̇ are the standard deviations of ϕ and its normalized times derivative ϕ̇ . In this

thesis, however, this postulation is not involved, and the relation between the phase and its time

derivative will be just simply ϕ̇ = dϕ/dτ .

Besides, since for the S state, |I|= |dQ
dt | ≤ Ic, where Q = 2eN, we have

dN
dτ

≤
(

h̄ω j0

E j0

)−1

(1.22)

where τ ≡ t/t0 is the dimensionless time normalized to t0 = 1/ω j0. When I = Ic, the equal

sign is taken. It can be seen one of the physical meaning of the quantity h̄ω j0/E j0, the inverse

of which, gives an upper boundary for the rate of change of the tunneling Cooper pairs in the S

state of Josephson junction.

1.3 RCSJ Model - phase dynamics
The Josephson relations (1.8a) and (1.8b) characterize the supercurrent IS formed by the Cooper

pair tunneling. For a real Josephson junction, as we have mentioned in the last section, there also

exists a normal current IN for quasi-particle tunneling and displacement current ID for junction

capacitance due to its S-I-S structure. On the other hand, according to the Josephson relations,

the current and voltage are controlled by the phase difference ϕ , which is a macroscopic vari-

able describing the collective behavior of the electrons in superconductor. Hence, one might

wonder if there is an time-evolution equation for the phase variable. In 1968, W. J. Johnson, D.

E. McCumber [13], and W.C.Stewart [14] proposed an model that captures the essential char-

acteristics of a real Josephson device. Assuming the size of the junction is small and there is
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Figure 1.2. Left: The equivalent circuit of RCSJ model; Right: A simple pendulum analog to
the RCSJ model

no magnetic field applied, besides the Cooper-pair tunneling current given by equation (1.8a),

the normal current is given by IN = V/R = h̄
2eRϕ ′, in which, R is the junction resistance, and

the displacement current is ID =C∂tV = h̄C
2e ϕ ′′, with C being the capacitance of the junction. In

addition, fluctuation current IF due to thermal noise should also be taken into account (neglect-

ing the other kinds of noise, such as shot noise, “’1/f” noise, etc.). Letting the overall current

be I and summing up these four branches of currents above by Kirchhoff’s law (Figure 1.2) as

I = ID + IN + IS + IF , one can obtain a stochastic differential equation (Langevin equation) for

the phase difference across the junction:

h̄C
2e

ϕ
′′+

h̄
2eR

ϕ
′+ Ic sinϕ + IF = I (1.23)

where ϕ ′ ≡ ∂tϕ and the thermal fluctuation current IF is assumed to be characterized by the

white noise that satisfies

⟨IF(t)⟩= 0 (1.24a)〈
IF(t)IF(t ′)

〉
=

2kBT
R

δ (t − t ′) (1.24b)

where kB is the Boltzmann constant and T is temperature. This model is called “resistively and

capacitively shunted Josephson Junction (RCSJ)” model, providing a rule for the evolution of

the phase difference across the junction.
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1.3.1 Mechanical analogy and washboard potential

Equation (1.23) can be analogous to the motion equation of the torque driven pendulum in

a uniform gravitational field (Figure 1.2) or a Brownian particle moving in a tilted periodic

potential. For the pendulum, the equation reads

θ
′′+

b
m

θ
′+

g
L

sinθ =
T

mL2 (1.25)

where θ is the angle between the pendulum and the direction of the gravity g; m, the mass

of the pendulum; b, the damping coefficient; g the gravitational acceleration; L the length of

the string, and T is the external torque that biases the pendulum. The characteristic angular

frequency and potential energy extracted from (1.25) are respectively ω0 =
√

g/L and U =

mgL(1− cosθ)+ τθ . Thus, rewriting equation (1.23) as(
h̄
2e

)2

Cϕ
′′+

(
h̄
2e

)2 1
R

ϕ
′′ =−∂ϕ

[
E j0

(
1− cosϕ − I − IF

Ic
ϕ

)]
(1.26)

or

ϕ
′′+

1
RC

ϕ
′+

2eIc

h̄C
sinϕ =

2e
h̄C

(I − IF). (1.27)

we have the potential of the phase particle as

U(ϕ) = E j0

[
(1− cosϕ)− I − IF

Ic
ϕ

]
(1.28)

where E j0 =
h̄Ic
2e . This periodic function is called “washboard potential” in the analogy of Brow-

nian or phase particle. Thus, the frequency of the phase particle oscillating in the washboard

potential can be obtained as ω2
j = ∂ 2

t U/m = 2eIc
h̄C

√
1−η2, where m = h̄2C/4e2 is the “mass

term” in equation (1.26). This expression is consistent with (1.13) from the equivalent LC

circuit.

1.3.2 The normalized forms

For convenience in numerically solving the Langevin equation (1.23), we prefer to normalize it

using the characteristic time t0 = 1/ω j0, hence, equation (1.23) becomes

ϕ̈ +αϕ̇ + sinϕ = η +β (1.29)
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Figure 1.3. Normalized tiled washboard potential without noise term. The left plot presents
three screenshot of the well under three values of η and in the inset is the height of the well as
a function of η ; the right one is the potential surface if the potential is treated as a two-variable
function of η and ϕ .

where the normalized time τ = t/t0, phase derivative ϕ̇ ≡ dϕ

dτ
, damping coefficient α = h̄ωJ0

2eIcR =

1
ω j0RC and external bias current η = I/Ic. The thermal fluctuation β =−IF/Ic having the prop-

erties given by (1.24a) and (1.24b) can be normalized as

⟨β (τ)⟩= 0 (1.30a)〈
β (τ)β (τ ′)

〉
= 2αθδ (τ − τ

′) (1.30b)

where θ ≡ kBT/E j0 is the normalized temperature. In this thesis, we tend to use the Brownian

particle or phase particle analogy, saying that the phase particle is moving in a washboard

potential with a normalized form

u(ϕ) =U/E j0 = (1− cosϕ)−ηϕ −βϕ (1.31)

as shown in Figure 1.3. The dimensionless Hamiltonian of the phase particle then can be written

as

H̃ =
1
2

ϕ̇ +(1− cosϕ)−ηϕ −βϕ (1.32)

which is identical to expression (1.17) with the energy consideration in the absence of the noise

term. Meanwhile, the bias plasma frequency normalized to ω j0 now reads ω j =
(
1−η2)1/4.

Since this potential is periodic, here we just assume the phase particle is localized in a certain
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interval, let say, ϕ ∈ [0,2π], within which, the local minimum is ϕmin = sin−1
η , while the local

maximum is ϕmax = π − sin−1
η . The height of the potential well ∆u is then defined by the

potential difference between these two points, i.e.,

∆u = u(ϕmax)−u(ϕmin)

= 2
[√

1−η2 −η cos−1
η

]
≈ 4

√
2

3
(1−η)3/2, η → 1 (1.33)

in which, the second expression of ∆u is obtained by taking Taylor expansion for the first ex-

pression near η = 1. It can be seen that as the increasing bias current I approaches the critical

current Ic (or η → 1), ϕmin and ϕmax will merge at ϕ = π

2 , and the potential well gets flat, so

that the phase particle in the well will certainly escape of the well and roll down along the po-

tential surface (Figure 1.3). Thus, after crossing this maximum point, the phase and the phase

derivative will increase dramatically, thus correspondingly, we say, the junction switches from

the S state (aka zero-voltage state) to R state (finite-voltage state, “running state”, “normal

state”, “rotation state”), for which, the current and voltage satisfies the Ohm’s law, V = IR, or

in normalized form, ϕ̇ = η/α (Figure 1.5), as we have mentioned in the last section.

In (1.29), the damping coefficient α that relates to the resistance not only stands for the

dissipation of energy of the particle, but also plays a role of the media or coupling between the

phase particle and “environment” or “heat bath”, through which, the noise β feeds energy to the

system so that thermal equilibrium can be established, while the variation of the bias current η

characterizing the motion of the washboard potential well tends to break the equilibrium. The

inverse of α has another name, called ”quality factor”, Q ≡ ω j0RC, which is the ratio of stored

energy to dissipated energy in one cycle of oscillation. It is worth noting here, however, that

the damping term α is just a parameter for the analogous phase particle or pendulum, instead

of the junctions in reality; the value of α and its origin is always a chicken and egg problem in

junctions. The Langevin equation (1.29) and the white noise properties (1.30a) and (1.30b) will

be the basis of our discussion and calculation in the following chapters.
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1.3.3 Average potential energy at η = 0

To solve the classical second-order differential equation (1.29) numerically, it is natural to ask

what the initial conditions (ϕ0, ϕ̇0) should be. In the following chapters, we will see if the

bias current changes linearly with a constant rate η̇ in time, that is, η = η̇τ , the system can be

maintained in (or near) equilibrium state under high damping, α > η̇ , and high temperature,

kBT/E j0 > h̄ω j0 as η → 1, and the information of the initial state of the phase particle will be

wiped out; otherwise, it can be preserved (energy conserves).

That means, to consider the evaluation of the initial conditions, we just need to consider the

case when the system is in non-equilibrium state. As we have seen, to have the phase particle

escaped from the potential well, one could feed energy to the system by ramping up the bias

current η , or by increasing the temperature with finite damping. Now let’s take an extreme

situation, in the absence of thermal fluctuation (T = 0) and extreme low damping (α ≪ η̇), the

thermal effect from the environment is gone, but the energy from the initial state is preserved

since the RCSJ model described by (1.29) now becomes pure mechanical without dissipation,

guaranteeing the switching takes place prior to the moment when the bias current reaches unity.

Figure 1.4. The relation between initial phase and escape current from different expressions,
comparing with simulations. The red curve is from the average potential given in [42]; the
green and yellow dots are from expressions (1.37) and (1.36), and the purple and blue dots
stand for the simulation with η̇ = 1.8×10−6, T = 0, and α = {0, 1.8×10−7}.

Initially, when η = 0 and assuming the oscillation is small near the bottom of the well, by
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(1.31), the potential energy of the phase particle is

ep = 1− cosϕ ≈ ϕ
2/2 (1.34)

Based on the Virial theorem, the kinetic energy ⟨ek⟩ = 1
2

〈
ϕ∂ϕep

〉
=
〈
ep
〉
. For a certain initial

phase ϕ0, the total energy stored in the junction given by (1.12) will be〈
E j
〉
/E j0 = 1− cosϕ0 = ⟨ek⟩+

〈
ep
〉

(1.35)

which gives the average potential energy〈
ep
〉
=

1
2
(1− cosϕ) (1.36)

On the other hand, for small-amplitude approximation, assuming ϕ(t) = ϕ0 cosωt, another

expression for the average potential energy can be obtained as〈
ep
〉
=

1
T

∫ T

0
[1− cosϕ(t)]dt = 1− J0(ϕ0) (1.37)

where J0 is the zero’s order Bessel function of the first kind. This is equivalent to (1.36) under

small ϕ0. As a by-product, the average kinetic energy can be calculated by the Virial theorem:

⟨ek⟩=
1
2
〈
ϕ∂ϕ(1− cosϕ)

〉
=

ϕ0

2
J1(ϕ0) (1.38)

where J1 is the first’s order Bessel function of the first kind. To verify (1.36) or (1.37), we

can relate them to the height of the well (1.33), obtaining a relation between the initial phase

angle ϕ0 and escape current ηE . In Figure (1.4), we see that when ϕ0 is small enough (< 0.5

rad), (1.36) is a good approximation comparing to the results from simulation, providing us a

hint about how to determine the value of the initial phase for the Langevin simulation in the

following chapters, i.e., if a value for the
〈
ep
〉

is provided, then ϕ0 is known.

1.3.4 The Current-Voltage Characteristics

The Current-Voltage (I-V) characteristics contains the information of the physical processes

occurring in junctions. The influences from the bias current I and its changing rate İ, the resis-

tance R(∼ 1/α), the magnetic field B, temperature T , energy gap ∆g, capacitance C, etc., can

be reflected on the I–V characteristics. This was how Anderson [4] and Shapiro [5] respectively

observed the DC and AC Josephson effects.
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Figure 1.5. I-V curves for various damping coefficients (overdamped) with sweep rate
η̇ = 10−5. The curves are generated by solving the Langevin equation (1.29). After η = 1
the junction switches to normal state (running state), whose slope is exactly the normalized
damping coefficient α .

If slowly increasing the bias current η from zero with a constant rate η̇ , one may see the

voltage drop being zero initially but after the bias current gets to a critical value, η = 1 or I = Ic,

the voltage then increases dramatically, indicating that the phase particle escaped from the well,

or the junction has switched from S state to R state. Figure1.5 shows the normalized I-V curves

(η ∼ ϕ̇) and the corresponding phase space (ϕ ∼ ϕ̇) under T = 0 and η̇ = 10−5. Before the bias

current η reaches one, the phase particle is trapped in the well with small oscillation; once the

switching occurs around η = 1, the finite voltage can be seen and the slope, η/ϕ̇ = α , implies

that the current and voltage satisfies the Ohm’s law, since based on the Josephson relations and

the definition of the damping coefficient, α = h̄ωJ0
2eIcR , one has

V
I
=

h̄ωJ0
2eIc

dϕ

dτ

I/Ic
= Rα

(
ϕ̇

η

)
= R (1.39)

in which, ϕ̇ = dϕ

dτ
. It is worth noting here that, in general, the junction resistance R is not

constant. It has different names corresponding to different states where the junction is. For

example, the junction resistance in R state is “normal resistance”, RN ; the resistance in S state

is “effective resistance”, Reff. Some other also includes “subgap resistance” Rsg, “quasiparticle

resistance” Rqp, etc. For instance, for some low-damping cases, the junction resistance was

found to follow [19, 43, 44]:
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R = R0e∆/kBT (1.40)

in which, ∆ is energy gap, R0 is a constant fitting parameter and T is temperature. This means

the corresponding damping coefficient becomes α = α0e−∆/kBT , where α = 1
ω j0R0C . In [45],

however, the temperature-independent normal resistance RN is considered to be the best to fit

the MQT theory at low temperatures.

1.4 Escape rate theory of Brownian particle
Since the phase of the junction can be analogous to a Brownian particle moving in a washboard

potential, the escape theory of Brownian particle may provide an angle of view for understand-

ing the switching mechanism of Josephson junction. We will use the terminology for these two

situations equivalently, e.g., the junction switches from superconducting (S) state to resistive

(R)/normal state, corresponds to that the Brownian/phase particle escapes from the trap state to

running state.

The Brownian particle in the well can escape ultimately due to thermal noise or random

force exerting to the particle through the media characterized by the damping or dissipation

term. In 1940, H.A. Kramers [15] derived the well-known simple expression of the escape rate,

Γ(t), of the Brownian particles escaping over a potential well for calculating a chemical reaction

rate. The base of Kramers’ escape theory is actually the Langevin equation (1.29), that yields

an equivalent form as

v̇ =−αv− sinϕ +β (1.41)

ϕ̇ = v (1.42)

where v ≡ dϕ

dτ
. Since the property of the white noise β implies the motion of the Brownian

particle is a Markov-Gauss stochastic process, hence, one can obtain a corresponding Fokker-

Planck equation [15, 46] as

∂τρ =−∂ϕ(vρ)+∂v[(αv+ sinϕ −η)ρ]+αkBT ∂
2
v ρ (1.43)

in which, ρ ≡ ρ(ϕ,v) is the phase-space density at energy E. Sometimes equation (1.43) can

be expressed as an equivalent form in terms of position (ϕ) and momentum (p = mϕ̇), called
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Klein-Kramers equation:

∂τρ =
du
dϕ

∂pρ − p∂ϕρ +α∂p(ρ p+ kBT ∂pρ) (1.44)

where u = 1−cosϕ −ηϕ is the washboard potential (1.31) in the absence of noise term. Equa-

tion (1.44) was obtained by Kramers and then was used in many literature when studying the sta-

tistical properties and escape mechanism of a Brownian particles over a potential well [16, 30].

From the Klein-Kramers equation to the expression of escape rate Γ, the detailed derivation can

be found in [47]. The idea is using the canonical transformation in Hamiltonian mechanics to

transform the variable from (ϕ, p) to (E,w), where w is the angular variable. Then erasing w

due to its fast variation results in the “energy control diffusion equation”:

∂τρ = ∂I(αρI + kBT αI∂Eρ) (1.45)

in which, I ≡
∮

pdϕ is the action [48]. By the continuous equation ∂τρ =−∂IJ, the phase flux

J reads

J =−αρI − kBT αI∂Eρ (1.46)

where the first term on the right-hand side is the dissipation pulling the particle down to the

local minimum of the well and the second term is due to thermal fluctuation that leads to a

diffusion process driving the particle away from the minimum. If ρ is constant along constant

E in the phase space and J = 0, then a thermal equilibrium or Boltzmann distribution will be

set up: ρ(E) = ρ0e−E/kBT , where ρ0 is a constant of integration.

1.4.1 Kramers and BHL escape rates

Equation (1.45) was obtained by Kramers and in his work [15], he gave the most well-known

and simplest close form for the escape rate in weak-damping limit:

ΓK =
ω j

2πωb

[√
α2

4
+ω2

b −
α

2

]
e−

∆U
kBT (1.47)

≈


(

αIb
kBT

)
ω j
2π

e−
∆U
kBT , “heavy damping”

ω j
2π

· e−
∆U
kBT , “weak damping”

(1.48)

in which ω j is the bias dependent resonant frequency given in (1.13); ωb ≡ |U ′′(ϕb)|2, the

frequency near the maximum of the potential U(ϕ); ∆U , the height of the potential barrier
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(1.33); kBT , the Boltzmann energy of the phase particle. Kramers’s escape rate was built up on

several assumptions, including (1) the system is in equilibrium state and Maxwell-Boltzmann

distribution holds, (2) the phase particle starts moving from the bottom and the height of the

barrier is sufficiently large: ∆U ≫ kBT ; (3) the particle is not retrapped after escaping. Equation

(1.48) is also a starting point for deriving an expression for the escape rate with flux theory

[16, 49, 50]. In 1983, Büttiker, et al. [16] gave a damping-dependent form (BHL) as

ΓBHL =

√
1+ 4ξ kBT

αIb
−1√

1+ 4ξ kBT
αIb

+1

(
αIb

kBT

)(
ω j

2π

)
e−

∆U
kBT (1.49)

where α is the normalized damping coefficient in equation (1.42); ξ is an adjustable pa-

rameter approximately equals to unity2; Ib is the action near the barrier peak, given by Ib =

4.8E j0 [2(1−η)]5/4. The form of Ib is not unique; for example, for cubic potential approxi-

mation [52], Ib =
7.2∆U

ω j
, and for a harmonic oscillator having an almost periodic motion at the

saddle point of the potential [15, 47], Ib =
2π∆U

ω j
. The Kramers escape rate is an approximation

of the BHL escape rate under a large damping. In the following chapters they will be used as a

reference of equilibrium state, comparing to the results from the reported experiments and those

from our own simulations that numerically solve the Langevin equation (1.29).

1.4.2 The limitations of Kramers and BHL escape theories

Both of the Kramers and BHL escape rates successfully give an interpretation for the thermal

activation of the Brownian particle escaping from a metastable potential well, providing a nice

reference for the switching mechanism of Josephson junction in the past four decades. Two

limitations should be reminded.

(1) Fails to interpret the switching behaviours of the junction at low temperatures compared

to the experimental data. As the temperature-independence (saturation) phenomenon of the

switching current distribution at low temperature (kBT ≪ h̄ω j0) was first observed [20, 21] in

1981, the Kramers/BHL theory is considered no longer valid for the low-temperature regions.

This is quite obvious since both of expressions (1.48) and (1.49) are carrying a Boltzmann factor

kBT , implying the distribution functions generated by these escape rates are also temperature
2In [51] it was suggested that for metastable potential (Fig.1.3), ξ = 1.474, and for symmetric double well,

ξ = 4.293; the escape time should be doubled due to the halved probability to bounce back. Here, we just use ξ =1.
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dependant. On the theory side, Caldeira and Leggett [25,26] proposed a model for the quantum

Brownian particle motion, predicting at T = 0 K, the escape rate follows

ΓMQT = aq

(
ω j

2π

)
e
−7.2 ∆U

h̄ω j
(1+ 0.87

Q )
(1.50)

where aq = 864π∆U/
√

h̄ω j; Q ≡ 1
ω jRC is the quality factor. For more details on the saturation

of SCD and experimental results, please see Chapters 3 and 4.

(2) Fails to give a correct SCD compared to the results of numerical methods (Langevin

simulation) under a relatively low damping. This has been emphasized by Kramers in his own

work and a number of literature have tried give an improvement for the escape rate in the past

eight decades, e.g., [16,32,49–51,53]. Since in this thesis we will use the Kramers/BHL escape

rate as a reference, a comparison among the Kramers (1.48), BHL (1.49), and Langevin (1.29)

simulations are plotted in Figure (1.6). The escape rate for Langevin simulation here is defined

to be the inverse of the average lifetime of the particle in S state: ΓLan = 1/⟨τs⟩; the potential

well is static, that is, for each dot on the plots, the bias current η is constant for each escape

event. It can be seen that as the potential well gets shallower (η → 1), at the given temperature

θ = kBT/E j0 and damping α as shown in (a), the Kramers/BHL follows the Langevin curve up

to η > 0.996. However, as the temperature and damping increase for one order of magnitude

as shown respectively in Figure 1.6 (b) and (c), the Kramers and BHL curves deviate from the

Langevin curve. This makes sense since based on the definition of the escape rate in terms of

lifetime, as η → 1, τs → 0 so that Γ → ∞, however, the Kramers and BHL escape rate approach

a finite value instead.

On the other hand, in a typical Josephson junction switching experiments, the bias current

is a function of time, continuously increasing in a sweep rate, i.e., η = η̇τ . The dynamically

titling of the well will disturb the equilibrium built up by the dissipation and fluctuation. This

raises a question that whether the Kramers/BHL theory can still hold under this condition, and

if so, what the requirement should be. In Chapter 2, this can be answered by observing the

switching current distribution. It is reasonable to expect that a requirement is that the speed

of the motion of the well must be slow enough, so that when the thermal equilibrium can be

re-built before the phase particle escape, i.e., α/η̇ < 1 [52, 54].

This phenomenon is attributed to the failure of the Kramers/BHL theory in the description
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Figure 1.6. Comparison among the escape rates of Kramers, BHL and Langevin simulations.
The horizontal axis is the normalized bias current, and the normalized temperature and damp-
ing coefficient are shown on the top of each plot.

of the non-equilibrium effect of the system; as the external bias current approaches unity, the

potential well gets shallower so during this process, some non-equilibrium effects take place,

such as the so-called “finite-barrier effect”. [31, 50, 52, 55]. We also have a discussion on this

issue [56], however, in the present thesis, the Kramers/BHL theoty is merely for providing

a reference for the equilibrium state, and the point of the note above is for emphasizing the

importance of the damping-sweep ratio α/η̇ in the following chapters.

1.5 Conclusion
In this chapter we present some historical and physical backgrounds of Josephson junction. In

terms of RCSJ model, the phase variable of the junction is governed by the Langevin equation

(1.29), which allows the switching problem of Josephson junction to be analogous to a Brown-

ian particle escaping from a washboard potential. This means that besides numerically solving

the Langevin equation, one can also discuss the switching problem with the existing escape

theory of Brownian particle, e.g., the Kramers and BHL escape rates theories. On the other

hand, some other properties of the Langevin equation, including the washboard potential well,

average potential energy, current-voltage relation, etc. are presented. At the end of this chapter,

the limitations of the Kramers and BHL escape rates are also mentioned.
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Chapter 2

Non-equilibrium Transient Phenomena

This chapter will dedicate to discuss some non-equilibrium transient phenomena reflected from

the switching current distribution (SCD) where the switching mechanism of the junctions is

encoded. On the theory side, the thermal activation (TA), together with macroscopic quantum

tunneling (MQT), currently provide a complete interpretation for the switching mechanism for

the Josephson junctions. In this chapter, we will focus on the former - the analogous phase

particle driven by the thermal noise as the bias current ramps up gets close to the critical current

Ic (η = 1) crosses over the potential barrier, resulting in the escape (switching of junctions)

from trap state (zero-voltage state, S state) to running state (finite-voltage state, R state). In the

absence of noise, the phase particle will escape at η = 1 where the potential well becomes flat,

while the existence of the thermal noise will lead to early escape, forming a switching/escape

distribution (SCD) at η ≲ 1.

In this chapter, the non-equilibrium transient phenomena will be presented and the effects of

the parameters that appear in the Langevin equation (1.42), including the damping, temperature,

initial conditions, sweep rate, will be investigated. The discussion in this chapter has been

published in [54]. Based on the understanding on the escape mechanism under non-equilibrium

state, in the following chapters, we will be able to perform further discussion on the “saturation”

phenomenon observed in experiments.
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2.1 Method: Construction of SCD Peaks
The dynamics of the phase particle moving in the tilting potential well, especially near the

barrier when the well is very shallow, is very complex, due to the highly nonlinearity of the

governing equation, the tilting motion of the potential well, the existence of noise, etc. For

instance, conventional methods, such as perturbation approach [57], which gives an escape

rate obtained from the corresponding one-dimensional Fokker-Planck equation versus nearly

conserving energy rather than spatial coordinate, are always approximate, and will lead to de-

viation from experiments under low temperature and low damping limit; in some situations, the

interaction between chaos and noise may increase the spectral linewidth by almost an order of

magnitude [58]. Fortunately, however, the switching current distribution that reflects the statis-

tics of the escape event has some nice and stable properties that could be easily visualized or

measured, so the SCD has become one of the most important tools for the investigation. In ex-

periments and numerical simulation, SCD is a histogram constructed by many switching events;

the horizontal axis is the bias current and the vertical axis is the count or probability density of

how many switching events dropping in the intervals of bias current. Measuring the position

and width, or other characteristics of the shape of the distribution can provide us information

on the switching mechanism.

In experiments, starting from the zero-voltage state (S state) of the junction, the bias current

as an input or force term, is ramped up slowly and linearly at a constant rate of dI
dt (or η̇ = dη

dτ
)

until the junction switches to the finite-voltage state (R state), where the output voltage signal

is detected proportional to the input external bias current. The current at the moment when the

switching occurs is recorded as Isw and the junction is then reset. Usually the input bias current

is a periodic saw-tooth wave with a certain repetition frequency, and between two neighboring

ramps, there is a waiting time. The rate of ramping up η̇ is therefore called the sweep rate of the

bias current. To reduce the statistical uncertainty, this process is usually repeated M = 104 ∼ 105

times so a histogram or switching distribution of the ensemble of junctions is acquired from the

set of {Isw}. Measuring the mean and standard deviation of all Isw provide us the information of

the peak position and peak width under a certain temperature; a position curve (⟨Isw⟩ ∼ T ) and

a width curve (σsw ∼ T ) then can be plotted.
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In numerical simulation, the Langevin equation (1.29) given in Chapter 1:

ϕ̈ +αϕ̇ + sinϕ = η̇τ +β (τ)

is discretized and solved using the GJF algorithm provided in Ref. [59]. It has been shown

that the improved GJ algorithm is able to produce accurate configurational and kinetic statistics

in Langevin simulations even for large time step size within the stability limit of the Verlet

algorithm [60,61], and this good property enables us to simulate those experiments with extreme

low sweep rate. Letting the normalized time be τ , the discrete-time variables are introduced as

rn = ϕ(τn) and vn = ϕ̇(τn), the GJF scheme reads

rn+1 = rn +b∆τn

(
vn +

∆τ

2
fn +

βn+1

2

)
(2.1a)

vn+1 = avn +
∆τ

2
(a fn + fn+1)+bβn+1 (2.1b)

un+ 1
2
=

rn+1 − rn√
b∆τ

(2.1c)

in which, ∆τ = τn+1−τn, a= 1−α∆τ/2
1+α∆τ/2 , b= 1

1+α∆τ/2 , fn =−sinrn; un+ 1
2

is the half-step velocity

at τn+ 1
2
, which guarantees correct kinetic statistics; the integrated thermal fluctuation βn+1 =∫

τn+1
τn

β (τ ′)dτ ′ relates to the damping α and temperature θ = kBT/E j0 as βn =
√

2θα∆τ ·σn,

where σn is a Gaussian random number generated by the “ran2()” random number generator

given in [62], satisfying

⟨σn⟩= 0 (2.2a)

⟨σmσn⟩= δmn (2.2b)

in which, δmn is the Kronecker delta with integers m, n. At τ0 = 0, the phase particle starts mov-

ing near the bottom of the well ϕ = 0 with an initial condition {ϕ0, ϕ̇0} and simultaneously, the

bias current is increased with the rate of η̇ until the phase particle escapes out of the potential

well at ηE . The signature for a single escape event taking place is ϕ > ϕm = π − sin−1
η , where

ϕm is the local maximum of the potential. From Fig.1.5 we can see that after the phase particle

crosses over the barrier, it starts rolling down and enters the running state, so the derivative of

phase (voltage), ϕ̇ , starts shooting up, having a proportional relationship with η . Hence, besides

monitoring whether the phase ϕ gets larger than ϕ , another criterion applied in the simulation
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for an escape event is that ϕ̇ reaches a finite value, and here we take ϕ̇ > 1. Similar to exper-

iment, computing the mean and standard deviation of {ηE} allows to plot the position curve

(⟨ηE⟩ ∼ θ ) and a width curve (σE ∼ θ ), where θ = kBT/E j0 is the normalized temperature. To

reduce the uncertainty, the number of escape event is taken M = 104 and the time step size is

∆τ = 0.02, if not specified.

The third approach to construct a SCD peak is based on the theoretical knowledge on the

escape mechanism of the phase particles, namely, escape rate, Γ, which is defined as the inverse

of the life-time (τ) of the zeros-voltage state, i.e., Γ ≡ 1/τ . Once the escape rate Γ is known,

the switching current distribution function P(I) can be obtained as [37]

P(I) = Γ(I)
(

dI
dt

)−1[
1−

∫ I

0
P(I′)dI′

]
(2.3)

where I is the current and the distribution function P(I) is normalized to unity. To perform the

calculation numerically, expression (2.3) needs to be discretized [63]. Assume the bias current

is swept from 0 to Ic and this range is divided into N interval uniformly; in the nth interval, ei

out of the total number of M junctions switch (or phase particles escape). From (2.3) it can be

seen that the number of particles dropping in an interval is proportional to the escape rate Γ(I),

the duration time ∆t in that interval, and the number of remaining phase particles that haven’t

escaped, thus, the number of escaped phase particle in each interval is as follows:

e1 = Γ(I1)∆tM

e2 = Γ(I2)∆t (M− e1)

...

en = Γ(In)∆t

(
M−

n−1

∑
i=1

ei

)
(2.4)

Assuming the bias current increases with a constant rate İ = dI
dt , the duration time in each

interval is ∆t = T/N =
∫ Ic

0 dI
İN = Ic

İN , where T is the total time required for a phase particle to

escape starting from t = 0. It is worth noting that {ei} is a histogram that satisfies ∑
N
i=1 ei = M

or ∑
N
i=1
( ei

M∆I

)
∆I = 1, which, as ∆I → 0, becomes

∫ Ic
0 P(I)dI = 1. This implies the distribution

given in (2.4) under ∆I → 0 can go back to the original one in (2.3).
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In this chapter, the damping-dependent BHL escape rate given by expression (1.49), i.e.,

ΓBHL =

√
1+ 4ξ kBT

αIb
−1√

1+ 4ξ kBT
αIb

+1

(
αIb

kBT

)(
ω j

2π

)
e−

∆U
kBT

will be used as a reference for the equilibrium state of the ensemble. Here we take ξ = 1 and

Ib = 4.8E j0 [2(1−η)]5/4.

2.2 Results: Observation of non-equilibrium effects
In this section, the non-equilibrium transient phenomena occurring in the washboard potential

will be presented. Transient state is a state of a system approaching steady state under effect of

fluctuation and dissipation. A Brownian particle moving in a heat bath mimicked by damping

and thermal noise, will reach thermal equilibrium within a certain transient time. For the phase

particle discussed in Josephson terms, however, it also subjects to an external force or bias

current due to the titled potential well. Since the position of the minimum of the well is ϕmin =

sin−1
η , taking derivative yields the velocity of the phase ϕ̇min =

η̇√
1−η2

. This implies even for

a constant sweep rate, the minimum of the well moves toward ϕ = π/2 with an acceleration,

which tends to delay the time of reaching equilibrium, having the transient time extended. To

get to the equilibrium within the same transient time, a higher damping will be required; if the

phase particle failed to reach the equilibrium state prior to the escape of the potential well, this

information would be encoded by the switching/escape current.

2.2.1 Effect of sweep rate

The sweep rate η̇ reflects the speed of the motion of the potential well. Figure 2.1 shows

the simulated probability density ρ for the escape events with ϕ̇0 = 0 and α = 10−4; the bias

current η ramps up with sweep rate η̇ linearly from zero according to η = η̇τ . Figure 2.1(a)

shows a standard switching distribution obtained for η̇ = 5× 10−4 and ϕ0 = 0. Figure 2.1(b)

is under the same sweep rate with Figure 2.1(a), but an non-zero initial phase, ϕ̇0 = ±0.2, is

imposed; for this case, peaked distributions are observed. From (a) to (b), it is reasonable to

say that this resonant feature is triggered by the initial condition that induces the oscillation at

the beginning of the tile of the well, and the distributions with positive and negative values of
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Figure 2.1. Simulated probability density distributions of escape from the potential well as the
tilt is increased from η(0) = 0. Parameters are ϕ̇ = 0, α = 10−4, and normalized temperature
θ = kBT/E j0 = 10−3. The specific parameters for the subplots are (a) η̇ = 5 × 10−4 and
ϕ0 = 0; (b) η̇ = 5× 10−4 and ϕ0 = ±0.2; (c) η̇ = 2× 10−4 and ϕ0 = 0.2; (d) η̇ = 10−4 and
ϕ0 = 0.2; (e) η̇ = 10−5 and ϕ = 0.2, and (f) η̇ = 10−8 and ϕ = 0.2. κ is the ratio of damping
to sweep rate, α/η̇ . The number of escape events is N = 104. The red curve is generated by
the BHL escape rate theory with the same parameters

the initial phase would be complementary to each other, i.e., peaks becomes valley, vice versa.

From Figure 2.1 (d) to (f), the sweep rate is lowered from η̇ = 2× 10−4 to 10−8, while the

initial phase is ϕ0 = 0.2 and the other parameters are unchanged. The peaked features gradually

become insignificant as the ratio of damping to sweep rate κ = α/η̇ approaches unity. When

κ gets to 104, the switching distribution agrees well with the BHL curve, which indicates the

ensemble has been in equilibrium state. To demonstrate the relation between the peaked feature

and oscillation of the particle, we plot the ϕ ∼ η(t) curves in Figure 2.2, which corresponds

to Figure 2.1 (a) (b) and (e) but the temperature is set to zero in order to exclude the effect of

fluctuation. The parameters for each case is as shown in the plots. The black dash curve stands

for the position of the local minimum; when it crosses the trace of the oscillation (blue and red),

the phase particle escapes out of the well and enters the running state. It can be seen that when

the initial phase is zero so that the oscillation is not induced, or when the damping is larger than

sweep rate so the particle is over-damped - as long as the oscillation dies out at the moment

when the particle escapes, the peaked distribution won’t show up. In fact, when κ = 1, the
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multi-peaks have been invisible. On the other hand, in Figure 2.2(a), one might have noticed

that the the escape distribution of the phase particle is located outside of η = 1, where the well

has disappeared. This can be explained by Figure 2.2 (a), in which, the red line goes beyond

η = 1 as well. Due to the inertia of the non-oscillating phase particle and the fast-moving

minimum of the potential (ϕ̇min = η̇/
√

1−η2) near η = 1, the instant when the particle starts

rolling down could be later than the moment when potential well gets flat at η = 1.

Figure 2.2. The bias current (time) dependent oscillation of the phase corresponding to Figure
2.1 (a) (b) and (e), but the normalized temperature θ = kBT/E j0 is set to 0. In (a) the blue and
red curves have the same sweep rate (η̇ = 5×10−4) and damping (α = 10−4), while the initial
phase are respectively ϕ0 = 0.2 and 0. In (b), the red and blue curves share the same damping
and initial phase, but the sweep rate of the red one is 10−5, 10 times lower that the blue. The
dash curve stands for the position of the maximum of the potential, ϕmax = π − sin−1

η , and
the inset is the zoomed-in plot showing the oscillation near η = 1.

Thus, up to here, we have a first impression for the multi-peak feature, that is, non-zero

initial phase (oscillation for inducing resonant) and small value of κ (under-damped and fast-

moving potential well, so κ = α/η̇ ≤ 1) might be the sufficient conditions for the appearance

of the peaked distribution, which implies the ensemble of escape particles is in non-equilibrium

state since it doesn’t match the BHL one. However, the absence of multi-peaks doesn’t mean it

is not in non-equilibrium state, because the invisibility of the multi-peaks might be due to the

low resolution or small spacing between the peaks (caused by slow sweep). In experiments,

multi-peak feature was reported in late 1990s [64,65] as an evidence of the existence of energy

levels quantization in underdamped Josephson junctions under high sweep rate. However, here

we can see the multi-peaks can be a result of classical resonant induced by the oscillation and
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fast sweep in under-damped condition.

2.2.2 Effect of damping

The linear damping term, αϕ , on the left-hand side of the Langevin equation (1.29) mimics the

media of the heat bath, and the thermal noise β exerts its influence to the particle through it.

In reality, α could be more complex. For example, it can be the function of temperature as we

have seen in Chapter 1. On the other hand, it is dissipation of energy. For a particle oscillating

in a potential well with a friction force f =−α ẋ (x is a Cartesian coordinate), the energy varies

as I(t) = I(0)e−αt/m, where m is the mass of the particle, α is damping, I is the action defined

as I ≡
∮

pdq/2π with position q and momentum p [48]. Above we have seen that the ratio α/η̇

may play a key role in determining the state of the escape phase particle. Here we analyze the

effect of the damping α on the switching/escape current distributions. With the same numerical

method, in Figure 2.3 the parameters are η̇ = 10−5, ϕ0 = 0.2, ϕ̇0 = 0, and θ = kBT/E j0 = 10−3.

It is clear that when the damping α is near 10−9, i.e., 10000 times lower than the sweep rate,

the peaked distribution is observed; as α increases, the spacing of the peaks is unchanged, but

the widening of each peak diminishes the resolution. This is because the noise term β ∝
√

α ,

the increase of the magnitude of the noise can higher the standard deviation of the peaks, filling

up the spacing in between. When α = 10−8, the multi-peak feature has been invisible. Again,

in (e), we can see at α/η̇ = 1, the distribution is still on the way to the agreement with the BHL

curve, and until this ratio gets sufficiently high by 104 in plot (f), the escape distribution agrees

perfectly with the BHL curve.

Similar to Figure 2.3, Figure 2.4 represents the escape distributions but under a slightly

lower sweep rate, η̇ = 10−6. For this case, although α is down to 105 times smaller than the

sweep rate, the multi-peaks are still insignificant due to low resolution (low sweep rate). At

α = 0.1 or α/η̇ = 105, the distribution matches the BHL curve. On the other hand, from Figure

2.3 and 2.4, one might have noticed that when the ratio α/η̇ ≪ 1, the positions of the center of

distribution look approximately at ⟨ηE⟩ ∼ 0.973. A guess about this number is, it might relates

to the initial phase and/or temperature that these two figures share, and for an extremely low

temperature case, the escape distribution should depend on the former only. It is also found that

relating expressions (1.33) and (1.36), i.e., 2(
√

1−η2−η cos−1 η) = 0.5(1−cosϕ0), resulting
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Figure 2.3. Escape distribution for various values of damping. For all subplots, η̇ = 10−5,
ϕ0 = 0.2, ϕ̇0 = 0, and θ = kBT/E j0 = 10−3; the damping parameter α is varied from 10−9

to 10−1 as shown together with the corresponding ratio κ = α/η̇ . The number of escape
events is N = 104. The red curve is the theoretical prediction by the BHL theory with the same
parameters.

in a solution, which is ϕ0 = 0.970, having percentage error of 0.34%. This indicates that when

the damping and temperature are absent, ηE is purely initial-phase dependent as we guess. In

the following discussion we can see that this phenomenon is one of the characteristics of non-

equilibrium state due to α/η̇ < 1, for which, the memory on the initial perturbation is encoded

by the escape current ηE . Once the oscillation induced by the initial perturbation is gradually

wiped out by the noise due to the increasing temperature and/or damping, the escape distribution

will approach the BHL curve, matching which is a sufficient condition of equilibrium state [see

Figure 2.4 (e) and (f)].

Figure 2.5 represents damping dependence of the peak positions and widths of the escape

distributions extracted from Figure 2.4 but with more damping parameters that vary from 10−10

to 10−1. Since under the sweep rate η̇ = 10−6, even if the ensemble is in non-equilibrium, no

multi-peaks can be observed, so it is meaningful to measure the position and width of a single

peak in the SCD as the experiments did. It shows that α = 10−6, i.e., α/η̇ = 1 is a watershed

for these two curves. For the peak position curve (blue), as α is down to 10−8, a flattening

is observed and keeping lowing the α won’t change the peak position, while the width gets
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Figure 2.4. Escape distribution for various values of damping. The parameters are η̇ = 10−6,
ϕ0 = 0.2, ϕ̇0 = 0, and θ = kBT/E j0 = 10−3; α is varied from 10−7 to 10−1 and κ = α/η̇ is
the corresponding ratio. The number of escape events is N = 104. The red curve generated by
the BHL escape theory.

narrower and no flattering is seen. In this regime, the phase particle is extremely under-damped

and the noise term is so weak that the oscillation induced by the initial condition still survives

even dominant over the fluctuation, and finally determines the SCD. This is why the width of

SCD approaches zero since at this point, it depends only on the initial phase, ϕ = 0.2, whose

width or standard deviation, however, is zero. Around α = 10−6 (α/η̇ = 1) with increasing α ,

the peak positions keep moving toward η = 1 until reaching a maximum, where the width curve

gets to a valley. In Figure 2.4 (d) it can be seen that the peak moves to the right, but can not

cross η = 1, since the phase particles have escaped out of the well and its escape current has

been record as one; thus, the distributions are squeezed until the damping gets sufficiently large

so that the distribution starts moving back toward the left (the direction of decreasing η) due

to the increasing noise term that provides energy for the early escape. After the maximum of

the position curve and the valley of the width curve around α = 10−5 (α/η̇ = 10) are reached,

the peak keeps moving away from η = 1, while the width recovers to normal (not squeezed)

and decreases again due to the increasing damping that results in increasing energy loss. We

see again as the damping α gets larger than the sweep rate, the influence from initial condition

is gradually wiped out; after a short period of the transient state around α = 10−5, the thermal

30



Figure 2.5. Peak position and width of the escape distributions extracted from Figure 2.4 but
with more damping parameters. The left vertical axis stands for the peak position ⟨ηE⟩ with
blue color, and the right vertical axis is for the peak width σE with red color; the horizontal
axis stands for the various damping parameters α . The temperature is θ = 10−3 and the initial
condition is ϕ0 = 0.2 and ϕ̇0 = 0.

noise becomes dominant, becoming the main factor that triggers the escape of the particle.

2.2.3 Effect of temperature

Temperature shows up in the noise term on the right-hand side of the Langevin equation (1.29),

determining the strength of the noise together with the damping: β ∝
√

αkBT . Besides tilting

the potential well or increasing the bias current to higher the potential energy of the phase

particle, increasing temperature is another way to pump energy into the system through exerting

the random impact to the phase particle from the noise. This enables the particle to overcome

the potential barrier at a certain instant when the well is still deep. This escape mechanism is

called “thermal activation (TA)”. Hence, it is naturally expected that given constant damping

coefficient α , a higher temperature can make the particle escape from the potential well earlier,

and as a result, the escape distribution moves toward the direction of decreasing η .

This idea is shown in the left plot of Figure 2.6, in which, the parameters are η̇ = 10−6,

α = 0.05, ϕ0 = 0.2 and ϕ̇0 = 0. We can see in the left plot that when the normalized temperature

is θ = 10−4, the phase particle escapes slightly lower than η = 1, where the potential well nearly
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gets flat, while as the temperature is increased, the peak position moves to the left, meaning

that the particle escapes from the well earlier than the bias current reaching the critical current

as expected. Meanwhile, the peak width gets wider as the temperature gets higher, and this

makes sense because the distribution is spanned due to the strength of the noise, and increasing

temperature means increasing the strength, resulting in a larger width of SCD. The ratio of

damping to sweep for this case is α/η̇ = 50000 ≫ 1, implying the ensemble based on the

specific parameters above is in equilibrium state; this is why the result from simulation agrees

well with the BHL theory. We extract the data from the left plot of Figure 2.6 (but adding more

cases) and show the position and width curves in Figure 2.7, which gives us a big picture for

the temperature dependence of the SCD peak position and width. This plot is a standard form

for showing the escape (switching) mechanism of the phase particle (Josephson junction). The

only escape mechanism here is thermal activation, thus, as the temperature approaches zero,

the width gets narrower, approaching zero as well, and the particle can only escape until the

well gradually gets flat at η = 1. However, this is not consistent with what we will see in the

experiments and we will discuss it in the following chapters.

Figure 2.6. Escape distribution for equilibrium (left) and non-equilibrium (right) states. For
the distributions on the left plot, the parameters are η̇ = 10−6, α = 0.05, ϕ0 = 0.2 and ϕ̇0 = 0;
the normalized temperature θ = kBT/E j0 is varied from 10−4 to 4× 10−3; the dots stand for
the data from Langevin simulation, and the solid curves are generated by the escape rate of the
BHL theory. For the plots (a)∼(d) on the right-hand side, the parameters are η̇ = 4× 10−4,
α = 2×10−4, ϕ0 = 0.2 and ϕ̇ = 0; the temperature is varied from θ = 5×10−4 to 6×10−3.

Above we discussed the temperature dependence of the peak properties in equilibrium state.

Now let’s see what if the ensemble is in non-equilibrium state. In the right plot of Figure 2.6,
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Figure 2.7. Peak position and width curves for the left plot in Figure 2.6 (includes more cases).
The blue color stand for the peak position scaled with the left vertical axis (blue); the red color
stand for the peak width scaled with the right vertical axis (red). The horizontal axis is the
normalized temperature. The dots corresponds the data from Langevin simulation while the
solid curves are generated by the BHL theory.

the fast sweep rate is applied (η̇ = 10−4) and the damping α is set to 2× 10−4, so that the

ratio is α/η̇ = 0.5 < 1, which guarantees the ensemble is in non-equilibrium state. The initial

condition is ϕ0 = 0.2 and ϕ̇0 = 0 and four distributions under various normalized temperatures

θ = {5,10,30,60}×10−4 are presented. Again, peaked distribution is observed, and it is found

that under this setting, increasing temperature won’t change the main body of the multi-peak

structure and the position of the entire distribution, but will fill up the space between the multi-

peaks and enlarge the width of the entire distribution. When the temperature gets sufficiently

high, the multi-peak structure vanishes, as shown in (d) of the right plot, in which, the red

curve corresponds to the distribution generated by the BHL theory. The deviation between

Langevin simulation and BHL curve indicates the failure of the BHL for describing a non-

equilibrium state. That is, under a damping lower than the sweep rate, the initial energy given

by ϕ0 = 0.2 is dominant over the thermal energy from the noise; the medium characterized by

the damping is not dense enough to establish the thermal equilibrium, regardless of the change

of the temperature in the present range. In consequence, as what we see, the position of the

33



main body of the distribution is determined by the initial phase only.

2.2.4 Effect of initial conditions

Solving the Langevin equation (1.29) requires initial conditions, which in the previous sections,

were set to ϕ̇0 = 0 and ϕ0 = constant. In the case of very under-damping, this initial energy

determines the magnitude of the oscillation of the particle. However, it can be wiped out by

sufficiently large dissipation and/or noise. Anyways, besides bias current and temperature,

initial condition is the third way to provide energy for the particle in the potential well. On

the other hand, we have seen that the ratio of damping to sweep rate, α/η̇ , is a characteristic

quantity for determining whether the initial conditions are still having influence on the escape

statistics.

Figure 2.8. Escape distributions under various initial conditions. The initial phase ϕ0 is set
to {0, 0.1π, 0.2π, 0.3π}. The other parameters are ϕ̇0 = 0, η̇ = 10−6, α = 10−9 and θ =
kBT/E j0 = 10−3.

Figure 2.8 shows the case for α/η̇ = 10−3 ≪ 1. The ensemble is in non-equilibrium state,

although the sweep rate is low (η̇ = 10−6) so the multi-peaks are insignificant under this res-

olution. The point is, however, as the value of the initial phase ϕ0 increases from 0 to 0.3π ,

the escape distribution moves to the direction of decreasing η . This is consistent with the ob-

servation of Figure 2.6 (left), which shows a higher temperature can shift the distribution to
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the downstream of η , that is, more (initial or thermal) energy the particle has, earlier can the

particle escape out of the potential well.

Figure 2.9 shows the case for α/η̇ = 104 ≫ 1 with high damping α = 0.01. The excellent

agreement between Langevin simulation and BHL theory indicates thermal equilibrium has

been established. As anticipated, the large dissipation wipes out the information from the initial

disturbance, or say, the thermal energy from the noise dominates over the initial energy; thus,

as long as the temperature remains constant, the peak position and width remain unchanged.

Figure 2.9. Escape distributions under various initial conditions. The initial phase is ϕ0 =
{0, 0.1π, 0.2π, 0.3π}. The other parameters are ϕ̇0 = 0, η̇ = 10−6, α = 10−2 and θ =
kBT/E j0 = 10−3. The red curves are the escape distribution functions generated by the BHL
theory.

Figure 2.10 provides another angle of view for the relations among the initial conditions,

temperature and damping-sweep-ratio. Since the input η is actually a periodic saw-tooth wave

- in each period, η linearly ramps up and then is reset after a particle escapes, we can draw a

Poincare map1 and observe the “competition” between initial energy (from initial conditions)

and thermal energy (from noise) by checking ϕ and ϕ̇ at the same point η . In Figure 2.10

section, the section is taken at η = 0.5 and then the trajectory of the particle is reset following

1In Figure 2.10 are actually “pseudo-Poincare maps”, since the trajectory is reset when each particle escapes in
a period.
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the reset of the bias current. The initial conditions are ϕ0 = 0.2 and ϕ̇0 = 0. In (a), the ratio is

α/η̇ = 10−4, so the system is very under-damped. For a pure mechanical system with α = θ =

0, one can expect that the motion of the particle is periodic and on the map it would be a single

point. Here, with low but non-zero dissipation, when the temperature is θ = 10−5, the trajectory

spreads (red) and forms an circular arc, while θ = 10−3 (blue), it has been a close path. Both

of these two trajectories are located on a circle with radius of 0.2, implying that oscillations

are quasi-periodic and the energy of the phase particle given from ϕ0 is almost conserved.

In (b), the damping equals to the sweep rate (α/η̇ = 1). For θ = 10−5 (red), the circular

trajectory shrinks, meaning a portion of initial energy has been dissipated. For θ = 10−3 (blue),

a significant dispersion of the trajectory on the map can be observed, although the oscillation

still looks regular. In (c), the oscillations become totally chaotic, and the trajectories on the map

is dependent only on the Gaussian noise. Higher temperature will produce larger the area of

dispersion or amplitude of the oscillation.

Figure 2.10. Pseudo-Poincare maps and oscillations (time domain) under various temperatures
and α/η̇ . The sweep rate for (a), (b), and (c) are 10−6 and initial conditions are ϕ0 = 0.2
and ϕ̇0 = 0; the damping α = 10−10, 10−6 and 10−2 respectively. The blue color represents
normalized temperature θ = 10−3 and the red color is for θ = 10−5. In the three subplots at
the top, the Poincare section is taken at η = 0.5, and the three subplots at the bottom are the
corresponding oscillations of the phase particle in time domain.

It is worth noting that the initial phase could be a distribution, instead of a single value

ϕ0. For instance, due to the existence of thermal noise, both of ϕ0 and ϕ̇0 follow a Gaussian
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distribution, namely, thermal distribution, which centered at zero but has a standard deviation of√
kBT/E j0. Or it is possible that ϕ0 follows a certain distribution, such as thermal distribution or

uniform distribution, but ϕ̇0 is determined by the constrain E =ϕ2
0/2+ϕ̇2

0/2, where the constant

E is the total initial energy of the phase particle. Figure 2.11 (a)∼(d) show the comparison of

the escape distributions with distributed/non-distributed initial conditions. The damping-sweep

ratio is set to be α/η̇ = 0.25, so that the peaked feature is visible. In (a), the initial phase is

a single value ϕ0 = 0.2, while (b) and (c) respectively use uniform and Gaussian distributions

centered at 0.2 as shown on the top of each subplots. The temperature for (d) is zero, while

for others θ = 10−3. Comparing (a) to (b), (c) and (d), it seems that distributed initial phase

may generate more peaks so reducing the spacing. For all cases, the positions of the entire

distributions looks the same; the reason is, since α/η̇ < 1, as we have seen in the previous

sections, the ensembles are in non-equilibrium state, so the position of distribution only depends

on the value of initial phase ϕ0; here, similarly, it depends on the center of initial phase ⟨ϕ0⟩.

Comparing (c) to (d), which is for T = 0, we see temperature only fills up the space between

the peaks but doesn’t change its basic structure.

Figure 2.11. Comparison of the escape distributions with distributed/non-distributed initial
conditions. For all subplots, the parameters are η̇ = 4× 10−4, α = 10−4 and ϕ̇0 = 0; the
temperature is θ = 10−3, except for (d), where T = 0. Specifically, for (a), ϕ0 = 0.2; for (b),
the initial phase is chosen uniformly in the interval [0.16, 0.24] that also centered at 0.2; for
(c), ϕ0 follows Gaussian distribution centered at 0.2 with standard deviation being 0.04; (d)
has the same setting as (c), but setting T = 0. (e) demonstrates the factors that determine the
spacing between the multi-peaks. The red/blue color respectively stands for the distributed
and non-distributed initial phases. The parameters are shown on the plot.
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We measure the peak spacing of distributions similar to those in (a)∼(d), but consider more

cases and show the results in Figure 2.11 (e). The parameters can be found in the legend of

the plot. The red and blue color respectively stands for distributed and non-distributed initial

phases. We can see the peak spacing ∆η between each small peaks in a single distribution

is proportional to the sweep rate (affecting the resolution of the peaked distribution, as seen

above), and the same type (distributed or non-distributed) of initial phase will produce a straight

line with the same slope, that is, only the sweep rate and the type of initial condition can affect

the spacing, while damping and temperature are not effective factors.

Figure 2.12. Comparison of the results of Langevin and Kramer/BHL simulations. Plots (a)
and (b) respectively present the temperature (θ = kBT/E j0) dependence of the peak position
and width. The sweep rate is η̇ = 10−5 and the initial conditions for Langevin simulatin are
ϕ0 = ϕ̇0 = 0. The dots stands for the results from Langevin simulation and the curves are
generated by the Kramers/BHL escape rate. The various values of damping coefficient are
shown in the legend.

2.3 Limitations of Kramers and BHL escape theory (contin-
ued)

In the previous chapter, we have seen the ratio α/η̇ is a criterion for distinguishing the state of

the system in performing Langevin simulation, and we will see here that this ratio also plays

the important role in the Kramers/BHL simulation, which is built up on the assumption of

equilibrium state. Hence, if the value of α/η̇ is down to less than one, that means, as we

observed in this chapter, the system would be away from equilibrium and one should be able

to see the failure of the Kramers/BHL theory. In Figure 2.12, we compare the curves of peak
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Figure 2.13. Comparison of the results of Langevin and Kramer/BHL simulations. (a) and
(b) respectively present the temperature dependence of the peak position and width for η̇ =
1.8×10−9. The initial conditions for the Langevin simulation are ϕ0 = ϕ̇0 = 0.

position and width from the Langevin and Kramers/BHL simulations for sweep rate η̇ = 10−5,

and specifically, for the Langevin one, the initial conditions are ϕ0 = ϕ̇0 = 0. It can be seen that

all of the results agree well to each other at low temperatures; for the case of large damping,

the results of Kramers, BHL and Langevin simulations are basically identical. However, as the

damping gets smaller, obviously, the Kramers fails first since it doesn’t contain any damping

term in its expression of the escape rate and only works for large damping as mentioned in

Chapter 1, while the BHL follows the Langevin (α = 10−4) until the ratio α/η̇ gets closer

to one; after that, e.g., for α = 10−5, the BHL curves have been significantly deviated from

the Langevin ones. In Figure 2.13, the settings are the same as Figure 2.12 except for the

sweep rate, which is lowered to η̇ = 1.8×10−9. We can see that for this time, the BHL works

well even when the damping is very low, α = 10−8, and gets worse after crossing α/η̇ =

1 as expected. Figure 2.13 shows that this deviation of the BHL/Kramers escape rate from

the accurate Langevin simulation doesn’t depend on the damping α solely, but on the ratio of

damping to the sweep rate, α/η̇ . Therefore, a necessary condition for safely performing the

BHL/Kramers simulation is α ≫ η̇ . Fortunately, in the typical swithing experiments, the values

of damping are sufficiently large (see Table 4.1).
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2.4 Conclusion
In this chapter, we investigated the effects of the parameters, including sweep rate, damping,

temperature and initial conditions, in the Langevin equation (1.29) on the escape/switching

distribution, where the escape information of the phase particle is encoded. It was found that

the escape statistics has two distinct properties, corresponding to, namely non-equilibrium and

equilibrium states. The damping-sweep ratio α/η̇ , which characterizes the competition be-

tween the damping and bias current, or, thermal effect and initial perturbation, plays a key role

as a boundary between these two states. When α/η̇ ≫ 1, the ensemble of phase particles is

in equilibrium state, and a sign is the good agreement of the results of the Langevin simula-

tion and the BHL/Kramers escape theory, which is based on equilibrium-state assumption. In

this case, the thermal energy dominates over the energy given from the initial perturbation,

thus the peak position and width of the escape distribution is temperature dependent. On the

other hand, when α/ϕ̇ < 1, the ensemble is in non-equilibrium state, the sufficient condition

of which is the peaked escape distribution. It should be emphasized, however, that the peak

feature is observable only under fast sweep, but it doesn’t mean it doesn’t exist for lower sweep

(η̇ < 10−5), since the spacing between depends on sweep rate η̇ - when it is low, the peak

feature will become invisible due to the issue of resolution, but we would say the ensemble is

still in non-equilibrium state, as long as α/ϕ̇ < 1. For this case, the position and width of the

escape distribution is almost temperature independent, since the initial energy dominates over

thermal energy due to the too low damping, i.e, the position and width of the escape distribution

are determined by the initial condition.

This observation on non-equilibrium state of the escape statistics provides us a new angle

of view to understand the escape/switching mechanism of the phase particle/Josephson junction

in low damping and low temperature. In the next chapter, we will further analyze the effect of

initial condition on the escape statistics, and see if it is possible to reproduce some phenomena

observed in experiments.
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Chapter 3

Saturation Phenomenon in Switching
Current Distribution

In experiments, saturation or “flattening” phenomenon is one of a characteristics of the es-

cape/switching current distribution (SCD) in low temperature regime, where the peak position

and width of SCD become temperature independence. Any theory only based on “thermal

activation” (TA) seems to fail to describe this property of Josephson junctions; to resolve this

problem, the theory of “macroscopic quantum tunneling” (MQT) was proposed [25,26]. Nowa-

days, when reading literature on switching experiments on Josephson junction, one may see the

theoretical curves of peak position and width of SCD consist of two parts - for high temperature

regime, the curve is generated by thermal activation, and at low temperatures, it is produced by

MQT (e.g., Fig.2 in Ref. [66] and Fig.1 in Ref. [67]). The temperature corresponding to inter-

section of the TA and MQT curves is called “crossover temperture”, Tcr, which distinguishes

two different kinds of switching mechanisms, characterized by two quantities - h̄ω j0 and kBT ;

roughly speaking, lower than Tcr, the former will be dominant.

We noticed this is similar to the competition between the initial energy and thermal en-

ergy that we saw in the last chapter - when the damping-sweep ratio α/η̇ is lower than 1, the

ensemble of the phase particles is in non-equilibrium state, and the position and width of the

distribution depends on the initial condition. In this chapter, our objective is to reproduce a “sat-

uration” phenomenon similar to those observed in experiments, according to the understanding

on non-equilibrium state of the ensemble of phase particles. This is a prepared chapter for the
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next one, where we will propose a classical model to produce switching current distribution

that agrees well with the published experimental data. The contents of this chapter has been

published in [42].

3.1 Methods
The same as in Chapter 2, the tool for the analysis is numerically solving the normalized

Langevin equation using the GJ algorithm. Here we just briefly mention the basic ideas and

more details can be found in the first section of Chapter 2. The normalized Langevin equation

is given by (1.29)

ϕ̈ +αϕ̇ + sinϕ = η +β

where ϕ is the phase difference between the two superconductors of a Josephson junction; α is

the damping coefficient; η is the normalized external bias current, and β is the thermal noise

term, whose discrete form is given as βn =
√

2kBT α∆τ/E j0 ·σn, where σn is a Gaussian random

number generated by the “ran2()” algorithm from [62] and satisfies

⟨σn⟩= 0 (3.1a)

⟨σmσn⟩= δmn (3.1b)

where δmn is the Kronecker delta with integers m, n. On the other hand, the Kramers or BHL

will be also used as a reference for equilibrium state, for which, the escape rates are respec-

tively given by expressions (1.48) and (1.49). Perticulary, the Kramers escape rate reads ΓKr =

f j · e
− ∆U

kBT , where f j =
ω j
2π

is the plasma frequency of the junction and ∆U = 2E j0(
√

1−η2 −

η cos−1 η) is the depth of the potential well. The algorithm for generating the escape current

distribution based on escape rate has been given by (2.4).

3.2 Further investigation for initial condition
In Chapter 2, the effect of initial condition has been analyzed. Here we focus on the the low-

temperature regime, where the “saturation” phenomenon may appear.
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3.2.1 Dependence of escape current upon initial phase for zero tempera-
ture and zero damping

Let’s first consider a simplest case in the limit of α, T → 0. Given the temperature-independent

peak position and width of the escape distribution under α/η̇ < 1, we assume there exist a limit

for each of the position and width as α, T → 0. This means the dissipation and noise terms

in the Langevin equation (1.29) are dropped and the problem now becomes purely mechanical.

Since the non-zero initial phase ϕ0 (ϕ̇0 = 0) is equivalent to an initial energy, which is assumed

to be given by the average potential energy
〈
ep
〉

present in Chapter 1 and shallows the depth of

the well. Hence, the expression for ∆U in (1.33) has to modified as

∆ue = 2
(√

1−η2 −η cos−1
η

)
−
〈
ep
〉

(3.2)

≈ 4
√

2
3

(1−η)3/2 −
〈
ep
〉
, η → 1 (3.3)

where
〈
ep
〉

is given by Equation (4) of Ref. [42] or equation (1.36) as an approximation for

small ϕ0 (Figure 1.4):

〈
ep
〉
=

η2
0

4
√

1−η2
0

(3.4)

or :
〈
ep
〉
≈ 1

2
(1− cosϕ0), ϕ0 → 0 (3.5)

where η0 = sinϕ0 and ϕ0 is the initial phase. Now we can see, due to the existence of this

portion of initial energy, when the effective potential well gets flat so the phase particle can

escape, the bias current has not reached η = 1, thus, letting ∆ue = 0 gives a solution ηE , which

can be treated as the approximate escape current ηE for α, T → 0. Figure 3.1 (a) shows the

dependence of the escape current on initial phase with sweep rate η̇ = 10−7 under variation

of damping α at T = 0. The same as we have seen in Chapter 2, a larger initial phase may

make the particle escape earlier. Here, the red curve is the estimated ηE by solving for ηE

from ∆ue(η) = 0. As we can see that the curve of estimated ηE agrees well with the simulation

data for α ≪ η̇ and ϕ0 < 1, which is much larger than the calculated ϕ0 from the literature on

experiments. This oversimplified model gives us a good approximation for the escape current

in the limit of α, T → 0 if the initial energy is known.
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On the other hand, if the relation between the two variables, ηE and ϕ0, is known by taking

the approximate closed forms in expressions (3.3) and (3.5), as

ϕ0 = cos−1

[
1− 8

√
2

3
(1−η)3/2

]
(3.6)

and if the initial phase is some distribution, then the distribution for the escape current, Pη(η),

can be derived. Assuming the initial phase is a Gaussian distribution satisfying

Pϕ(ϕ) =
1√

2πσϕ0

e−(ϕ−ϕ0)
2/2σ2

(3.7)

where ϕ0 and σϕ0 are respectively the mean (center) and standard deviation (width) of the

distribution of the initial phase, and according to the relation between two random numbers,

Pη(η) =−Pϕ [ϕ(η)] ·ϕ ′(η), we have

Pη(η) =
3

√
πσϕ0 ·

√
3
√

2(1−η)−8(1−η)2
e
−

cos−1
[

1− 8
√

2
3 (1−η)3/2

]
−ϕ0

2σ2
ϕ0 (3.8)

That is, if the initial distribution of the phase Pϕ is given, then the escape distribution (SCD) is

known as well, under the limit of α, T → 0.

Figure 3.1. (a) Initial phase dependent escape current ηE under T = 0, η̇ = 10−7, ϕ̇0 = 0.
(b) Effect of the width of initial (Gaussian) distribution to the escape current, under T = 0,
η̇ = 10−7, ϕ̇0 = 0, and the distribution of the initial phase centered at ϕ0 = 0.25. Different sets
of data corresponds to various α’s as shown in the legend. The dots represent the data from
Langevin simulation, while the red curve is the estimated ηE obtained by solving for ηE from
letting ∆ue in expression (3.2) be zero.
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3.2.2 Dependence of escape current on initial phase for zero temperature
but non-zero damping

If the damping α is increased from very low to a value equal to the sweep rate η̇ , again, in

Figure 3.1 (a) the role of the criterion α/η̇ can be observed. For α < η̇ , the system is in non-

equilibrium state and the escape current depends on the initial condition ϕ0. Once this ratio

gets larger than one, the response becomes less sensitive to ϕ0 and the curve ultimately gets

flat for α = 10−6, which is ten time of the value of sweep rate. This is completely consistent

with the observation of Figures 2.8 and 2.9. On the other hand, since the initial phase can be a

distribution, in Figure 3.1 (b) we double check the effect of the width of the (Gaussian) initial

phase distribution to ηE , using the same parameters in (a) but fixed ϕ0 = 0.25. It shows that

the effect of the width of initial distribution upon the escape current is almost negligible, i.e.,

in Langevin simulation, the peak position of the escape current distribution depends only on

the center of initial distribution of phase under a certain damping coefficient. The previous

simulations with single value of ϕ0 can be treated as a special case with σϕ0 = 0.

Figure 3.2. Dependence of escape current ηE upon damping α and initial phase ϕ0. The plots
are obtained for η̇ = 10−6, ϕ̇0 = 0 and T = 0. The horizontal axis is the damping coefficient
in logarithmic scale; each curve corresponds to a single ϕ0.

Figure 3.2 shows the damping dependent escape current ηE under various initial phase ϕ0

with η̇ = 10−6. It can be seen that for α ≪ η̇ , the escape current ηE only depends on ϕ0 - a
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Figure 3.3. Phase oscillations with various damping and initial phases for T = 0 and η̇ =
10−6; each subplot contains three values of damping: 10−10, 2× 10−6 and 10−2, which are
represented with blue, red and green colors; from (a) to (c), the initial phases ϕ0 respectively
equal to 0, 0.25 and 0.5. The black dash line denotes the position of the local maximum of
the potential, and once it touches the trace of oscillation, the phase particle escapes. For α =
10−10, in (a), (b) and (c), the intersections (blue and black) are measured to be at ηE = 0.9998,
0.9624 and 0.8859.

larger ϕ0 results in lower ηE as seen previously, and as α → η̇ , the system undergoes an abrupt

transition around α/η̇ = 1, larger than which, the effect of the initial condition on the over-

damped phase particle will be rapidly diminished; due to zero temperature, the escape takes

place only at ηE ∼ 1. Figure 3.3, shows how the oscillation induced by the initial phase lowers

the escape current ηE under the same sweep rate. In (a), the initial phase is ϕ0 = 0. The absence

of initial perturbation means the particle can only stay at the bottom of the well, moving with

the minimum of the potential as the bias current ramps up, no matter how the damping changes

within six orders of magnitude. Thus, the escape event won’t take place until the well disappears

at η = 0.9998≈ 1, the cross of the curves of the local maximum and minimum. Between (b) and

(c), the only difference is the nonzero initial phase ϕ0 - respectively 0.25 and 0.5. For the case

of α = 10−10 ≪ η̇ , these two values yield corresponding escape currents of 0.9624 and 0.8859.

This is consistent with the reading from Figure 3.2. As the damping increases, the oscillation

is damped out, resulting in the delay of escape or the increase of ηE . When α = 10−4 = 100η̇ ,

the curves (green) in (b) and (c) look the same as the case of zero initial phase in (a), that is, the

particle can only escape when the well gets flat at η = 1.

To summarize the response of the escape current ηE to the damping α and initial phase ϕ0

under zero temperature, we make a 3D plot in Figure 3.4, which synthesizes Figures 3.1(a) and

3.2. It is clear that for α < η̇ = 10−6, the surface is a bell shape as seen in 3.1(a); the escape
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Figure 3.4. 3D plot showing the dependence of escape current η on damping α and initial
phase ϕ0. The plot is obtained for sweep rate η̇ = 10−6 and T = 0.

Figure 3.5. Dependence of the escape current ηE on the damping α and sweep rate η̇ at T = 0,
with initial phase ϕ0 = 0.5. The plot in the inset is based on the same data but α is scaled by
η̇ . The blue star stands for the estimated ηE obtained from ue = 0.

current depends on the absolute value of the initial phase. For α/η̇ > 1, it becomes a plateau,

indicating the response is insensitive to the initial phase so the particle escape at η = 1. Figure

3.5, we show a more direct evidence for the dependence of the escape current upon the ratio

47



α/η̇ . The plot is obtained for ϕ0 = 0.5 and T = 0. A transition similar to Figure 3.2 is observed

but here each curve denotes a sweep rate. As we can see that the position of the transition seems

to move with the value of damping. However, if the horizontal axis is scaled by “normalizing”

the damping by sweep rate, it is found that all of the curves collapse to a single one, as shown

in the inset, that is, given a specific initial phase ϕ0 at T = 0, the escape current ηE depends on

the ratio of damping to sweep rate, α/η̇ , instead of either of them solely.

3.2.3 Effect of the width of the initial phase distribution

Figure 3.6. Effect of the center/mean (⟨ϕ0⟩) and width/standard-deviation (σϕ0) of the distri-
bution of initial phase to the escape statistics, ⟨ηE⟩ and σE . The other parameters used for the
simulation are ϕ̇0 = 0, η̇ = 10−6, α = 10−10 and T = 0.

Generally speaking, if the the initial phase is a distribution, when running a Langevin simu-

lation, one must provide the information about its center (mean) and width (standard deviation),

namely, ⟨ϕ0⟩ and σϕ0 . In Figure 3.1(b) we have shown that the position of escape current dis-

tribution, ⟨ηE⟩, is independent of σϕ0 and merely relies on ⟨ϕ0⟩. This property is summarized

in Figure 3.6 (a), where we can see that each cross-section (the bell shape seen above) of any

values of σϕ0 is identical.

On the other hand, however, the response of the width of the escape current distribution

σE on the initial condition looks more complicated. In Figure 3.6 (b) we can see σE is simul-

taneously determined by the ⟨ϕ0⟩ and σϕ0 . There is a valley at ⟨ϕ0⟩ = 0, where the width of

the escape current distribution is a small number, regardless of the change of the σϕ0 . The σE

increases as ⟨ϕ0⟩ and σϕ0 go up, and reaches a maximum around ⟨ϕ0⟩= 1.5. Figure 3.7 shows
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Figure 3.7. The response of the width of the escape current distribution σE to the position
(⟨ϕ0⟩) and width (σϕ0) of the initial phase distribution, for η̇ = 10−7, T = 0 and ϕ̇0 = 0. In
(a), the width of initial phase distribution is fixed to σϕ0 = 0.04, while in (b), the position of
the initial phase distribution is ⟨ϕ0⟩= 0.25. Each curve corresponds a single value of α .

Figure 3.8. (a): Linear relation between the width of escape current, σE , and the width of initial
phase distribution, σϕ0 , under a fixed position of initial phase distribution, σϕ0 , as shown in the
legend. The parameters are η̇ = 10−7, α = 10−20 and T = 0. (b) The slopes extracted from
(a), but more data points are contained.

the projections of the similar surface in Figure 3.6 (b), but containing more cases for various

damping α . From (a), it can be seen that for α/η̇ ≪ 1, the curves overlap, meaning σE only

depends on ϕ0. Besides, by fixing ⟨ϕ0⟩ = 0.25, we observe a linear relation between ηE and

σϕ0 in Figure 3.7 (b). For all values of damping, once the width of the initial phase distribution

is zero, the width of the escape current distribution is also zero, due to the absence of noise.

For α/η̇ ≪ 1, the curves tend to the same slope, which, however, as we know, is actually σϕ0-

dependent. In Figure 3.8 (a), we just focus on the limit case with the extreme low damping,
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by taking α = 10−20, and change the value of the position of the initial phase distribution ϕ0.

Again we can see the linear relation between σE and σϕ0 , but the slope, m, is dependent on

⟨ϕ0⟩. The slope m in Figure 3.8 (a) is measured and plotted in (b). In a word, unlike ηE that

solely depends on ⟨ϕ0⟩, the dependence of σE upon the both of the ⟨ϕ0⟩ and σϕ0 seems more

complicated - it seems there is an expression: σE = m(⟨ϕ0⟩) ·σϕ0 - even for the limit case with

α/η̇ ≪ 1.

3.3 Saturation phenomenon of escape current distribution
In the last section we discussed the dependence of the escape statistics on the initial condition at

zero temperature. When α/η̇ < 1, the position and width of the escape distribution largely rely

on the initial position and width of the initial phase distribution. In this section, we will consider

the case of non-zero temperature. In the presence of temperature or noise and a damping satis-

fying α > η̇ , the thermal energy becomes dominant over the initial energy. The competition of

these two kinds of energy together shapes the position and width curves of the escape current

distribution.

Figure 3.9. The dependence of the position (a) and width (b) of the escape distribution upon
temperature (θ = kBT/E j0) for non-distributed initial phase. The initial conditions are ϕ0 =
0.2 and ϕ̇0 = 0; the sweep rate is η̇ = 10−6. Each curve corresponds to a value of damping
indicated in the legend. The red dash curves stand for the results produced by the BHL escape
theory.

In Figure 3.9 (a) shows the temperature dependence of the position of the escape distribu-

tion. The initial phase is a single value, ϕ0 = 0.2, with ϕ̇0 = 0; the sweep rate is η̇ = 10−6. The
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Figure 3.10. The dependence of the position (a) and width (b) of the escape distribution
upon temperature (θ = kBT/E j0) for distributed initial phase. The initial conditions are ϕ0 ∼
N (0.2, 0.04) and ϕ̇0 = 0; the sweep rate is η̇ = 10−6. Each curve corresponds to a value of
damping indicated in the legend. The red dash curves stand for the results produced by the
BHL escape theory.

values of damping α are selected from 10−3 to 2.7×10−7, crossing the ratio α/η̇ = 1. We see

that when α = 10−3 ≫ η̇ , the phase particle escapes at η = 1 at very low temperatures, as we

have seen in Figure 3.3 - the oscillation induced by the initial perturbation has been damped

out when the bias current reaches the one. This curve agrees well with the result of the BHL

theory, which stands for the equilibrium state of the ensemble. When the damping is not too

large, the position of the escape distribution presents “saturation” from a certain temperature

(∼ 10−4). As the value of damping decreases, the saturated peak of escape distribution moves

toward the direction of decreasing bias current, because more initial energy can be preserved

as the system becomes more under-damped and becomes a major factor that triggers the early

escape. In (b), the temperature dependence of the width of escape distribution is shown. No

saturation is observed, and as temperature decreases, the peak of the escape distribution keeps

getting narrower; this is because the initial phase is a single number with zero standard deviation

(width).

The setting of Figure 3.10 is similar to Figure 3.9, except that the initial phase becomes a

normal distribution, ϕ0 ∼ N (0.2, 0.04), meaning that the initial phase distribution centered at

ϕ0 = 0.2 with a standard deviation being σϕ0 = 0.04. Plot (a) looks the same as Figure 3.10,

however, in (b), we observe the saturation of the peak width of the escape distribution, which
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seems to only take place for α/η̇ < 1, as expected. The peak of the escape distribution gets

wider as the damping decreases, until getting to the limit α/η̇ → 0. For α/η̇ ≫ 1, we again

see the straight curve that agrees with the BHL theory.

Figure 3.11. (a) Dependence of the saturated width of the escape current distribution upon
damping for different initial conditions as shown in the legend, with T = 0 and sweep rate
η̇ = 10−6. (b) Dependence of the slope of the width curve in high temperature regime, for
distributed and non-distributed initial phases as shown in the legend. The green triangle at the
right end indicates the slope of the width curve predicted by BHL theory. The other settings
are the same as Figures 3.9 (b) and 3.10 (b).

For the width curves in Figures 3.9 (b) and 3.10 (b), we also concern about the behaviors at

low and high temperature. One measurable is the damping-dependence of the “saturated width”

(σsat), which is defined as the peak width of the escape distribution for T → 0. In Figure 3.11

(a), we can see that given an initial phase with certain width, the logarithm of the saturated width

of the escape current distribution has a linear relation with the damping, and a larger width of

the initial phase distribution can shift the straight line downward but the slope is unchanged, that

is, we have σsat = σ0e−sα , where s is the slope and σ0 is the value of σsat for α → 0. Another

measurable is the damping-dependence of the slope of the width curve of the escape distribution

in high temperature regime. In Figure 3.11 (b), we compare the slope-damping relation for the

two kinds of initial conditions - Gaussian ϕ0 (blue) and single value of ϕ0 (red). It is found

that these two curves are almost overlap for α/η̇ > 1 especially as the influence of the initial

condition is damped out, and as this ratio starts getting lower than one, they deviate - the curve

with distributed initial phase saturates at slope = 0.5, while the curve with ϕ0 = 0.2 keeps

going down. For α = 10−3, we also mark the prediction of the BHL theory (green triangle) that
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agrees well with the results of simulation and is close to the prediction σE ∼ (kBT )2/3 in the

literature [68].

Figure 3.12. Temperature-dependent peak position of escape current distribution. The green
dots stand for the experimental data from [66] with sweep rate η̇ = 2.1×10−9 and α = 0.055;
the blue and black dots stand for the result from the Langevin simulation with the same sweep
rate as the experimental data but the damping coefficients α are respectively 0.055 and 10−10;
the initial phase distribution for the Langevin simulation centers at ϕ0 = 0.0856π with a stan-
dard deviation σ =

√
kBT/E j0, where E j0 = 6.44×10−22J. The red curve is generated by the

Kramers escape theory.

3.4 Experimental background
Up to now we have shown that it is possible to accomplish “satutaration” at low temperatures

using the effect of initial conditions under α/η̇ < 1, while in high temperature regime, the

results by Langevin simulation and BHL/Kramers theory show an excellent agreement. Hence,

one may ask: to match the experimental data, how should we tune the two free parameters in

the initial conditions - the center ϕ0 and standard deviation σϕ0 of the initial phase distribution?

What are these parameters determined by? For example, Figure 3.12 illustrates the experimental

data of the peak position of the switching current distribution (green dots) extracted from [66],

in which, the relevant parameters are C = 0.62 pF , R = 300Ω, Ic = 1.957 µA and dI/dt =

0.4 mA/s. We see the results of the Langevin (α = 0.055) and Kramers simulations agree
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well with the experimental data at high temperatures, but fail as the temperature decreased.

To obtain a saturated escape/switching current that agrees with the experiment or the “MQT”

result, based on the previous discussion in this chapter, we have set ϕ0 ≈ 0.0269 (black dots)

and taken α = 10−10 < η̇ so that the effect of initial conditions can be persisted until the escape

event occurs, but what does this value of initial phase mean? If it exists as a form of energy, then

using the mean potential energy given by equation (1.36), one can obtain
〈
ep
〉
= 0.018. On the

other hand, according to the experimental parameters in [66], we notice h̄ω j0/E j0 = 0.016. Are

these two values of energy actually identical or just coincidentally close? What does the h̄ω j0

mean?

3.5 Conclusion
In this chapter we further discussed the effects of initial conditions for phase particles escaping

out of the Josephson potential well by numerically solving the Langevin equation. For the limit

of zero temperature and zero damping, there exists an analytic expression relating the (mean

of) initial phase ϕ0 and escape current ηE , and by comparing to the numerical simulation, it is

found that this expression works well for ϕ0 < 0.5, giving us a convenient way for estimate the

saturation current for comparing to the experimental one.

For the case of zero temperature and non-zero damping, we confirmed that the response of

the system only depends on the the ratio of the damping coefficient to the sweep rate, α/η̇ ,

instead of one of them (Figure 3.5) solely. When α/η̇ < 1, the responses of the system, i.e.,

the mean/position and the standard deviation/width of the escape current distribution (⟨ηE⟩

and σE , respectively), are sensitive to the initial conditions, including the mean/position and

the standard deviation/width of the initial phase distribution (⟨ϕ0⟩ and σϕ0). As the damping

coefficient increases, crossing α/η̇ = 1, the influence of the initial condition will be rapidly

diminished so the escaping can only take place at η = 1 in the absence of noise.

For the general cases with non-temperature and non-zero damping, the “saturation” of se-

cape distribution is observed. If the initial phase is a distribution, the position and width of

the escape distribution become independent of temperature when the temperature is low and the

damping gets much smaller than the sweep rate. In experiments, this phenomenon is interpreted
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by the theory of macroscopic quantum tunneling (MQT). At the end of this chapter, however,

we showed that it is possible to produce such a saturation based on a classical RCSJ model in

Langevin simulation, by imposing an initial phase distribution with specific mean and standard

deviation. We will discuss this question in the next chapter.
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Chapter 4

Comparison to Experiments

The behaviors of Cooper pairs of Josephson junction is described by the fundamental laws of

quantum mechanics, resulting in the Josephson relations (1.8a) and (1.8b). Based on these two

basic equations, the Resistively Capacitance Shunted Junction (RCSJ) model, which gives the

dynamics of the phase difference across the junction, was proposed. The governing equation

of the phase (1.29) is a stochastic second order ordinary differential equation (Langevin equa-

tion) that consists of macroscopic parameters, including temperature, capacitance, resistance,

and current; the phase difference ϕ , the solution of the equation, is continuous and no dis-

crete energy levels will be obtained. Since 1980s, a series of experiments were reported and

it was found that the RCSJ model only worked in the high temperature regime, giving one of

the mechanisms of switching of junction, called thermal activation (TA). As temperature was

lowered, however, the peak position and width of the switching (escape) current distribution

(SCD) and the escape rate of the phase particle were found to become constant, independent

of temperature [20, 21, 45]. Thus, in the same decade, to interpret these phenomena, the theory

of macroscopic quantum tunnelling (MQT) was proposed [25–28]. This school of approach

concludes that quantization of the Josephson potential is necessary to describe the “tunneling”

at low temperatures, as opposed to thermal escape at higher temperatures; the description of

Josephson relations (1.8a) and (1.8b) are incomplete or just an approximation, so a more ac-

curate quantum theory of the phase should exist [38]. A well-known MQT escape rate for
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zero-temperature and absence of dissipation has been given by (1.50):

ΓMQT = aq

(
ω j

2π

)
e
−7.2 ∆U

h̄ω j
(1+ 0.87

Q )
(4.1)

where aq = 864π∆U/
√

h̄ω j; ∆U is the height of the potential barrier; Q ≡ 1
ω jRC is the quality

factor with plasma frequency ω j. The MQT and TA together are considered forming a complete

description for the behaviors for the phase difference in the theory side at present.

In this chapter, we will explore a classical activation (switching) mechanism for the escape

of the phase particles (junctions) at low temperatures based on the ideas discussed in Chapters 2

and 3, where the “saturation” of peak position and width of escape current distribution has been

observed in the Langevin simulations with an initial phase distribution imposed. The remaining

question from chapter 3 is that, how the position and width of the initial phase distribution

should be determined. If the initial phase relates to an energy, what is value of that energy? If

this works for Langevin simulation, how is this idea reflected on the expression of Kramers or

BHL escape rate?

4.1 Chemical potential induced by plasma oscillation
We have seen in Chapter 3 that adjusting the position and width of the initial phase distri-

bution allows to produce “saturation” for the escape/switching distribution of the phase parti-

cle/Josephson junction. We now explore the source of the energy that provides this non-zero

initial conditions. At the end of Chapter 3, we also noticed that the initial phase that makes the

position of the escape current distribution in the Langevin simulation match the reported exper-

imental data in [66] is close to the normalized energy h̄ω j0/E j0, which is a special but natural

quantity worth investigation. In fact, the energy “h̄ω” has been our old friend and can be seen

in many scenes - energy of photon, spacing of energy of level of quantum harmonic oscillator,

mean energy of phonon, intensity of quantum fluctuation, or expression (1.22) etc.

We recall that the plasma frequency of the S state of Josephson junctions given by (1.13) as

ω j = ω j0(1−η2)1/4, where ω j0 = (2eIc/h̄C)1/2. This can be derived from the analogous LC

circuit or RCSJ model [8,69] as seen in Chapter 1. In the absence of the external current source

(η = 0), the oscillation with the frequency of ω j0 is called “Josephson plasma mode” [9,10,70],

first observed by A. J. Dahm et al. in 1968 [11]. At this point, the energy oscillates between the
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equivalent inductor and capacitor of the junction, and the junction is unstable so the supercurrent

may fluctuate between ±Ic. According to the Anderson equation [7, 9, 41]

h̄
dϕ

dt
= ∂NE ≡ µ, (4.2)

this zero-bias plasma frequency implies there exists an energy in the form of chemical potential

µ across the junction under zero external voltage, instead of zero as indicated by the ∆U in

(1.33). Integrating equation (4.2), we have ϕ = µt
h̄ +const., which yields ω = µ/h̄. For the case

of zero-bias, we have µ0 = h̄ω j0. Therefore, when performing Kramers/BHL and Langevin

simulations, in principle, it is necessary to take into account this chemical potential, which

actually plays a role of lowering the depth of the potential well ∆U and may influence the

switching of the junction. Following is some of our suggestion on the improvements to the

typical Kramers/BHL and Langevin simulations:

(a) For Kramers or BHL simulation, the effective height of the well should take the form

∆Ueff = ∆U − h̄ω j0. However, considering the observation in Chapters 2 and 3 that in high

temperature regime, the information from the starting point of the motion of phase particle will

be covered by the thermal noise, we introduce a correction factor: e−kBT/h̄ω j0 , for simulating the

competition between the thermal fluctuation characterized by αkBT and the energy µ0 = h̄ω j0,

whose influence will be diminished as the temperature goes up. Hence, as a minor modification

to the Kramers/BHL escape rate, the depth of the potential well reads1

∆Ueff = ∆U − h̄ω j0 · e
− kBT

h̄ω j0 . (4.3)

(b) For Langevin simulation, the chemical potential acts as the average potential energy.

Assuming the phase particle is released at position ϕ0 with velocity ϕ̇0 = 0 initially, the total

energy will be Etot = 1− cosϕ0, which yields an average potential energy given by equation

(1.36) in Chapter 2 with small oscillation approximation (supported by experimental data).

Thus, relating (1.36) and the chemical potential µ0 as

1
2
(1− cosϕ0)E j0 = h̄ω j0 (4.4)

1In [42] we took the form ∆Ueff ≈ ∆U − h̄ω j0(1− kBT/h̄ω j0) for T ≪ Tc, where Tc is the critical temperature
of the junction.
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results in the initial phase ϕ0 that should be used for Langevin simulation (ϕ̇ = 0). Since the

trajectory of the phase particle with harmonic oscillation around the minimum of the well is a

circle in the phase plane: H ≈ 1
2 ϕ̇2 + 1

2ϕ2, the same value for ϕ0 calculated from (4.4) can be

imposed to ϕ̇0 alternatively (with ϕ0 = 0). On the other hand, a temperature-dependent thermal

initial condition satisfied the Maxwell-Boltzmann distribution can be applied to the initial phase

derivative ϕ̇0.

4.2 Effect of µ0 on Kramers simulation
In this section we will investigate the effects of the chemical potential µ0 = h̄ω j0 on the Kramers

simulation with the considerations above by replacing the ∆U in the exponential with ∆Ueff in

(4.3). Since the difference between the Kramers and BHL model is the prefector, this improve-

ment works for the BHL as well. Let’s start with a simplest case.

4.2.1 Switching current solved from ∆Ueff(η) = 0

Since the chemical potential lowers the depth of the original well, when the effective well

becomes flat, i.e., when the following equation holds:

∆Ueff = 2E j0(
√

1−η2 −η cos−1
η)− h̄ω j0 = 0, (4.5)

it is expected that the phase particle escapes. Thus, a corresponding switching current ηsw can

be solved from equation (4.5). Note that this is just an oversimplified model with the initial

and final states considered. The complex dynamic processes are neglected and the key factors

for the switching mechanism, such as temperature, damping, sweep rate are not involved, that

is, the switching current ηsw is actually a limit under the case of zero temperature and low

damping, which is also the quantum limit in the MQT rate calculated in the Wentzel-Kramers-

Brillouin (WKB) approximation [27]. We solved the values of ηsw from equation (4.5) based on

the junction parameters from ten selected experiments [45, 66, 67, 71–77], and compared to the

reported values. The results are plotted in Figure 4.1, in which, the calculated switching currents

are recorded on the vertical axis and on the horizontal axis are the corresponding experimental

value of the peak position of the switching current distribution. It can be seen that the the

points well align along a straight line (red) with linear correlation coefficient R = 0.9727. It
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slightly deviate from the ideal line (dash) standing for the experimental and calculated switching

currents being equal, and the cause is that the calculated ηsw is the limit for zero temperature

and damping, while the corresponding experiential values are for low but finite temperature

and damping. By t-test, the probability that the predictions based on (4.5) are not related to

the experimental data is less than 10−5. The high linear correlation shows that the chemical

potential µ0 = h̄ω j0 does have some kind of effect in determining the position of the SCD

peaks.

Figure 4.1. The estimated switching current ηsw v.s. the corresponding reported experimental
values from [45, 66, 67, 71–77]. The horizontal and vertical coordinates of a dot respectively
correspond to the calculated and experimental switching currents; the red line is the linear
fitting curve of the data points, and the dash line denotes the ideal situation with experimental
and calculated switching currents being equal.

4.2.2 Effect of the chemical potential µ0 on Kramers model for T = 0

If the chemical potential is imposed to the Kramers escape rate by replacing ∆U with ∆Ueff in

(4.3) but setting T = 0, it can be expected that the peak position curve of SCD in this limit

will be consistent with the calculated ηsw solved from (4.5). We selected the experimental

data from [66, 72] and plot the comparison in Figure 4.2. As we see, the dash straight line

obtained by solving for ηsw from (4.5), the red peak position curves generated by the modified

60



Washburn Wallraff Inomata Männik Li

(1985) (2003) (2005) (2005) (2007)

C [pF] 0.15 1.6 0.07626 0.26 0.088

Ic [µA] 57.4 325 48.54 2.90 0.748

eff.R [Ω] 23 240 942.9 75 250

dI/dt [mA/s] 0.4 245 42.4 0.088 0.16

(η̇) 6.5×10−12 9.6×10−10 6.3×10−10 1.7×10−10 1.3×10−9

f j0 [Hz] 171.6 125.0 221.3 29.3 25.58

α 0.269 0.00332 0.01 0.279 0.283

E j0 [J] 4.6×10−22 1.1×10−19 1.6×10−20 9.5×10−22 2.5×10−22

Exp. Isat [µA] 56.35 322.3 46.90 2.7586 0.6551

Cal. Isat [µA] 56.16 323.2 47.76 2.7568 0.6660

Exp. Tcr [K] 600 ∼ 300 ∼ 750 ∼ 90 110

Cal. Tcr [K] 510.6 604.9 872 100.5 94.2

Cui Yu Yu Oelsner Massarotti

(2008) (2010) (2013) (2013) (2015)

C [pF] 0.18 0.62 0.26 0.33 4.5

Ic [µA] 12.87 1.957 2.9 2.2 30.41

eff.R [Ω] 200 300 2090 440 N/A

dI/dt [mA/s] 2.116 0.4 8.93 0.0001 2.0

(η̇) 3.5×10−10 2.1×10−9 1.7×10−8 3.2×10−13 4.8×10−13

f j0 [Hz] 74.18 15.59 29.30 22.65 22.81

α 0.0596 0.0549 0.0010 0.0484 0.4653

E j0 [J] 4.2×10−21 6.4×10−22 9.5×10−22 7.2×10−22 1.0×10−20

Exp. Isat [µA] 12.402 1.86 2.7435 2.12 29.83

Cal. Isat [µA] 12.438 1.8756 2.7586 2.0914 30.15

Exp. Tcr [K] ∼ 250 65±5 125 ∼ 56 ∼ 100

Cal. Tcr [K] 275.9 65.02 143.7 54.5 62.5

Table 4.1. The main parameters extracted from the selected experiments [45, 66, 67, 71–77],
and compared to the reported values. and the comparisons between the corresponding experi-
mental and calculated saturation switching current Isat and crossover temperature Tcr.
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Kramers model (4.3), and the experimental data (green dots) approach to the same limits of

peak position of SCD as T → 0, the low temperature region that the original Kramers model

fails (blue solid curves). For higher temperatures, however, discrepancy is significant; this is

not surprising, since µ0 only referred to T = 0. Nevertheless, under the zero-temperature limit,

it is evident that there is a good agreement among experimental data, modified Kramer model,

and the over-simplified model (4.5). The dash straight line generated by (4.5) can be seen as

being equivalent to the “MQT line” (see Fig.2 in [66] and Fig.1 in [67]). Naturally, one may

ask whether the temperature corresponding to the intersection between the “MQT line” and

the Kramers curve is comparable to the “crossover temperature” Tcr estimated by equating the

escape rate for thermal activation and the escape rate for MQT [29, 78]. Here, we also measure

such temperatures corresponding to the intersection on the plots similar to thoese in Figure 4.1

and put them in Table 4.1. It can be seen that the “crossover temperatures” defined in this way

are close to the experimental values of Tcr.

Figure 4.2. The peak positions of SCD from the modified Kramers model by subtracting to the
Josephson potential the chemical potential (red curve), compared to the ones extraced from the
two experiments in [66, 72]. The horizontal axis is the normalized temperature and the ⟨ηsw⟩
on the vertical axis stands for the mean (peak position) of SCD.

62



4.2.3 Effect of the chemical potential µ0 on Kramers model for finite tem-
perature

Now let’s consider a more general situation that the chemical potential µ0 = h̄ω j0 plays the role

in the way as (4.3) shows:

Ueff = ∆U − h̄ω j0 · e
− kBT

h̄ω j0 .

As the temperature increases, the influence of µ0 will be diminished as seen in Chapters 2 and

3 due to the effects of dissipation and thermal fluctuation, and this is now characterized by the

exponential factor, e−h̄ω j0/kBT . The results are plotted in Figures 4.3 and 4.4, in which, our

model (red solid) is compared to the original Kramers curve (dashed) and the experimental data

(dots) reported in [66, 67, 72, 74]. It can be seen that our theoretical curves with the correction

µ0 agree well with the original Kramers curve in high temperature region, which corresponds

to the thermal activation (TA) regime. Meanwhile, the theoretical curves also get closer to the

experimental data in low temperature region, where the original Kramers curve deviates from

the experimental data and approaches η = 1. This low-temperature region corresponds to the

regime of macroscopic quantum theory (MQT) in the literature, here, however, MQT is not

involved. Similar to Figure 4.2, the dotted lines parallel to the horizontal axis in Figures 4.3 and

4.4 denote the switching current where the effective potential well gets flat, treated as a limit

under zero-temperature and zero-damping; the intersection between this straight line and the

original Kramers curve defines the “crossover temperature”, Tcr (see the figure legend), and it

is shown that they agree with the experimental values in Table 4.1.

So far, we have presented the results produced by the improved Kramers model with ∆U

replaced by the ∆Ueff in (4.3) agrees well with the experimental data in the whole range of

temperature, without introducing any free fitting parameters or any MQT concepts. Just like

all experiments so far performed - the critical current Ic is obtained by fitting the experimental

switching distribution data taken at the high temperature regime with the Kramers model, the

value of Ic here is determined by fitting the experimental data taken at all temperatures with our

improved model, but the difference from the reported values is minimal. The specific param-

eters, including the junction capacitance C, sweep rate dI/dt, are the same as shown in Table

4.1, while the critical currents Ic from the experiments [66, 67, 72, 74] and used for Figures 4.3
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and 4.4 are slightly adjusted as Ic,m = {2.902, 0.761, 1.967, 2.244} µA.

Figure 4.3. The temperature dependence of the position (mean) of SCD from experimental
results (dots) reported in [72, 74], original Kramers model (dashed curve) and our models
(solid curve). The horizontal dotted line represents the switching current solved from equation
(4.5) at T = 0; the intersection with Kramers curve defines Tcr , identified by a star.

Figure 4.4. The temperature dependence of the position (mean) of SCD from experiments,
original Kramers model (dashed curve) and our models (solid curve), similar to Figure 4.3
except that the parameters are based on experimental data from [66, 67].

We should note here that the improved model presented above is a minimum modification to

the Kramers (and BHL) model, in order to show that there objectively exists a chemical potential

µ0 = h̄ω j0 that can give a correct prediction for the peak position ηsw of SCD. However, since

we merely corrected the depth of the potential well in the escape rate, in which, the denominator

of the exponential, kBT , indicates the peak width of SCD would still be temperature dependent.

In Figure 4.5 we can see that the data points from each experiments are aligned along straight
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Figure 4.5. Experimental switching current distribution width vs average switching current,
obtained from the experiments [66, 67, 72, 74]. The R in each legend indicates the linear
correlation coefficient of the data points.

lines (red) with linear correlation coefficients R very close to one, meaning that the peak position

and width of SCD have the same dependence on temperature. A complete improved model is

expected to be able to produce saturated SCD peak position and peak width simultaneously, as

the experiments show. Ref. [79] may give us a hint on this.

4.3 The effects of µ0 on Langevin simulation
If the chemical potential µ0 is a correct consideration and does improve the Kramers/BHL

model, then the same success should be able to be replicated in the Langevin simulation at low

temperatures. We have assumed the chemical energy µ0 induced by the zero-bias plasma oscil-

lation enters the RCSJ model as an average potential energy, and according to equation (4.4),

we have 0.5(1−cosϕ0) = h̄ω j0/E j0, which gives an initial phase ϕ0. For instance, the value of

the normalized chemical potential for the experiment in [66] is h̄ω j0/E j0 = 0.016, resulting in

ϕ0 = 0.2539. On the other hand, in the previous chapters we have shown that the information of

the initial condition can be preserved and affects the switching current distribution only when

the damping is lower than the sweep rate, α/η̇ < 1, but it also requires the damping to maintain
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Figure 4.6. Temperature dependence of the mean ⟨ηsw⟩ and standard deviation σsw of switch-
ing current distribution. The red solid curve is generated by Kramers model. The green dots
are the experimental data from experiment [72]. The blue square and triangular dots are from
the Langevin simulations with α = 10−20 and 0.279. The initial conditions are ⟨ϕ0⟩= 0.2833
and σϕ0 =

√
h̄ω j0/150; the normalized sweep rate is 1.7×10−10.

the thermal equilibrium at high temperature. This means that the damping coefficient α should

be a function of temperature. Since the damping in RCSJ model is defined as α = 1/ω j0RC,

where R can be a function of temperature, such as R = R0e∆/kBT given in (1.40), where ∆ is

energy gap of the junction. Note that this expression for R is not the unique one, but just consis-

tent with our consideration for the Kramers/BHL model, that is, α → 0 for T → 0 and α → α0

for high temperature regimes. In the Langevin simulation here, we actually use a discontinuous

damping term that based on these two limit due to lack of specific information for the junction

resistance in superconducting state.

For the initial phase distribution in the Langevin simulation, we will select a Gaussian one,

i.e., N (ϕ0,σϕ0). The reasons are that the experimental data shows that the SCD is also Gaus-

sian, and to guarantee a Gaussian outcome, we have to use a Gaussian initial distribution as an

input as well, since although in high temperature regime, the dissipation-fluctuation theorem

and central limit theorem will yield a Gaussian outcome [80] no matter what the initial condi-

tion is as seen in the previous chapters, at low temperatures and low damping with α/η̇ ≪ 1,

the initial distribution will be preserved. Thus, in Figures 4.6, 4.7 and 4.8, applying a initial

Gaussian distribution centered at ϕ0 given by µ0 with appropriate width σϕ0 (which is an ad-

justable parameter) as shown in the caption of each figure, we generate such peak position and
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Figure 4.7. Temperature dependence of the mean ⟨ηsw⟩ and standard deviation σsw of switch-
ing current distribution. The red solid curve is generated by Kramers model. The green dots
are the experimental data from experiment [74]. The blue square and triangular dots are from
the Langevin simulations with α = 10−20 and 0.283. The initial conditions are ⟨ϕ0⟩ = 0.512
and σϕ0 =

√
h̄ω j0/125; the normalized sweep rate is η̇ = 1.3×10−9..

Figure 4.8. Temperature dependence of the mean ⟨ηsw⟩ and standard deviation σsw of switch-
ing current distribution. The red solid curve is generated by Kramers model. The green dots
are the experimental data from experiment [66]. The blue square and triangular dots are from
the Langevin simulations with α = 10−20 and 0.055. The initial conditions are ⟨ϕ0⟩ = 0.252
and σϕ0 =

√
h̄ω j0/115;the normalized sweep rate is η̇ = 2.1×10−9..

peak width curves consisting of two sections - low damping (squared dots, use α = 10−20 ∼ 0

to guarantee α ≪ η̇) for low temperatures, and normal damping for high temperatures (trian-

gular dots) in thermal activation regime. It can be seen that for both of the peak position and

peak width curves in each case, the Langevin simulation gives perfect agreement with the ex-

perimental data at high temperatures. Although we just use an extreme case for the damping

in order to preserve the initial energy (chemical potantial µ0) for low temperature so that the
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SCD “saturation” can be obtained, at the zero-temperatures limit here, it does agree well with

the experimental data (green dots) as the Kramers model did. Note again there is no problem

that the SCD peak position obtained in the Langevin simulation depends on the position of the

initial phase distribution, but the width of of the initial phase distribution σϕ0 , which is expected

to determine the SCD width, is a free parameters (see the caption under each plot). Finding a

more reasonable description for the damping term α(T ) and erasing the free parameter in the

width of the initial phase distribution are two of our future missions.

4.4 Conclusion
The RCSJ model is purely classical originally, and then a quantum postulate (see section 1.2.3)

was imposed so it gets quantized and is able to describe the behavior of the junctions in low

temperatures. This postulate is necessary or not might be questionable, but one who wants to

negate it must propose a classical model that works for low temperatures like MQT does. In

this chapter, we try to improve the classical Kramers and Langevin simulations by introduc-

ing the chemical potential potential µ0 = h̄ω j0 induced by plasma oscillation. In the improved

Kramers model, the height of the Josephson potential well ∆U is replaced with the temperature-

dependent effective height: ∆Ueff = ∆U − µ0e−kBT/µ0 , in which, the exponential factor is used

to characterize the attenuation of the effect of µ0 due to thermal fluctuation as temperature in-

creases. In the Langevin simulation, the chemical potential acts as an intrinsic energy that the

phase particle carries, leading to a biased initial phase ϕ0. Both of these methods can produce

peak position curves of SCD that agree well with the experimental data at low temperatures,

but there are limitations for each: for the Kramers simulation, the chemical potential in the ex-

pression of ∆Ueff is not able to produce correct peak width curves; for the Langevin simulation,

there is no such an continuous form for the damping term and the factor that determines the

width of the initial phase distribution is still unclear.

Nevertheless, we have shown a possibility that the classical RCSJ model can be able to

give a complete description for the switching problem of the Josephson junction in full range

of temperature, and the finding presented in this chapter - the chemical potential µ0 = h̄ω j0

induced by the plasma oscillation in the junction will be an necessary condition to achieve this.
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Chapter 5

Long Josephson junction

Long Josephson junction (LJJ) is a Josephson junction having one or more dimensions longer

than the Josephson penetration depth λJ . Compared to the zero-dimensional single Josephson

junction discussed in the previous chapters, LJJ has more complex but interesting mathematical

and physical properties, such as fluxon, a quantum of magnetic flux also known as Josephson

vortex induced by supercurrent loop and external magnetic field applied perpendicular to the

length of the long junction (see Figure 5.1). The governing equation describing the phase dif-

ference along the LJJ is the sine-Gordon equation (sGE), a partial differential equation having a

travelling wave solution (a.k.a. solitary wave, soliton), ϕ(r, t), representing the fluxons moving

along the LJJ. For this reason, the terms - fluxon, soliton and Josephon vortex - refer to the same

object in this chapter. The earliest observations of the internal fluxon motion were performed

by Scott et al. in 1969 [81] - magnetic and temperature independent slopes seen on the linear

branch of the I-V characteristics below 2.2 K, and by Fulton et al. in 1973 [82] - finite V-I

steps present in the absence of magnetic field. The perturbation theory of fluxon dynamics and

its application has been widely studied during 1980s - 1990s, e.g. Refs. [83–88]. The typical

applications of sGE include large arrays of Josephson junctions as microwave generators [89]

and detectors, propagation of a crystal dislocation and ultra-short optical pulses [90], magnetic

flux propagation along a Josephson-junction transmission line [91], logic circuits (RSFQ [92],

RFL [93,94]), etc. In this chapter, we will focus on a one-dimensional long Josephson junction

and present some analytic and numerical results.
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Figure 5.1. Left: Two of the LJJ geometries, overlap and annular junction (from [95]). Right:
Cross-section of a long Josephson junction; two superconductor are separated by an insulator
of width W ; a magnetic field B is applied as shown; the solid line inside the junction repre-
sents an integration contour; λL is the London penetration depth and d is the thickness of the
insulator.

5.1 Sine-Gordon equation
The details on the derivation of the sine-Gordon equation can be found in Refs. [8, 69, 90,

91]. Here, let’s start with the macroscopic wave function that describes superconductivity ψ =√
ρ(r, t)eiϕ , where ϕ is the phase of a superconductor and ρ is the number density of Cooper

pairs, and the current density J given by the Ginzburg–Landau equation:

J =− ih̄e∗

2m∗ (ψ
∗
∇−ψ∇

∗
ψ)− e∗2

m∗ |ψ|2A, (5.1)

where e∗ = 2e and m∗ = 2m are the charge and mass of the Cooper pair with e and m being of a

single electron; A is magnetic potential vector. Substituting the wave function in (5.1), we have

J =
eρ

m
(h̄∇ϕ −2eA)

⇒ ∇ϕ =
2e
h̄

(
mJ

2e2ρ
+A

)
. (5.2)

As shown in Figure 5.1 (Right), when the thickness of the insulator d is much smaller than the

London penetration depth λL, the first term with the supercurrent deep into the superconductor
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will be negligible, thus, equation (5.2) becomes

∇ϕ =
2eA

h̄
. (5.3)

Performing path integration respectively from point 1 to 2 and 3 to 4:

ϕ2 −ϕ1 =
∫ 2

1
∇ϕ ·dl =

2e
h̄

∫ 2

1
A ·dl

ϕ4 −ϕ3 =
∫ 4

3
∇ϕ ·dl =

2e
h̄

∫ 4

3
A ·dl

and summing them up, one gets the difference of the “phase difference” across the junction

between x and x+∆x:

ϕ(x+∆x)−ϕ(x) = (ϕ4 −ϕ1)− (ϕ3 −ϕ2) = (ϕ2 −ϕ1)+(ϕ4 −ϕ3)

=
2e
h̄

∮
A ·dl =

2e
h̄

∫
B ·dS

=
2e
h̄

ByD∆x , (5.4)

in which, D = 2λL+d and By is the y-component of the magnetic field B = By(x,z)j, which has

a relation B = ∇×A. Taking the limit ∆x → 0, we have

∂xϕ =
2eByD

h̄
. (5.5)

Since the Maxwell’s equation gives ∇×B = µ0J+ µ0ε∂tE, where µ0 is the magnetic vacuum

permeability, ε is electric permittivity of the insulator, and E is the electric field. Substituting

the expression of the magnetic field in the Maxwell’s equation above leads to

∂xBy = µ0Jz +µ0ε∂tEz . (5.6)

Taking the x derivative of equation (5.5) and combining it with (5.6), we have

∂
2
x ϕ =

2eD
h̄

∂xBy

=
2eDµ0

h̄
Jc sinϕ +

2eDµ0ε

h̄
∂tEz

=
1

λ 2
J

sinϕ +
µ0εD

d
∂

2
t ϕ , (5.7)
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in which, the Josephson equations (1.8a) and (1.8b) have been used; the voltage across the

junction is V = Ezd, and λJ =
(

h̄
2eDµ0Jc

)1/2
is the Josephson penetration depth. Further, the

spatial variable x and time t in equation (5.7) can be respectively normalized to λJ and the zero-

bias plasma frequency ω j0 =
√

2eIc
h̄C , i.e., x → x′ = x/λJ , and t → τ = t/t0, where, t0 = 1/ω j0.

For convenience, in this chapter we will still use x and t as the variables rather than x′ and τ .

Thus, equation (5.7) becomes

∂
2
t ϕ −∂

2
x ϕ + sinϕ = 0 (5.8)

This is the pure or perfect form of sine-Gordon equation in the absence of dissipation, external

bias and noise.

Figure 5.2. The kink (left, c= 0.8) and breather (right, ω = 0.8) solitons at t = 20, generated by
numerically solving the sine-Gordon equation, and the red dots represent the analytic solutions
respectively given by (5.9) and (5.11). The lower two subplots are the corresponding 3D
spatiotemporal plots.

5.1.1 Exact solution to the sine-Gordon equation

The typical solutions to the sine-Gordon equation include plasma mode, breather and kink

solutions [96]. When a bias current, η < 1, is applied on the right-hand side of equation

(5.8), as we have said in the previous chapters, this long junction system with a length L

may be undergoing small oscillations around the minimum of potential ϕmin = sin−1
η , and
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this kind of plasma oscillation is also called “phonon mode” [83], having a general solution as

ϕ(x, t) =
√

2
L ∑An(t)cos(knx), where kn = nπ/L with n being an integer. This is an often-seen

model used for studying the vibration of crystal lattice. The other two are solitary waves and

can be constructed by the convenient “Direct integration method”. Let ϕ(x, t) = f (x− vt + x0),

where v is the group velocity of wave and x0 is an arbitrary constant. It can be shown that, for

v2 < 1, there is an exact travelling wave solution as [97]

ϕ(x, t) = 4tan−1
[

e
± 1√

1−v2
(x−vt+x0)

]
(5.9)

For v2 > 1, similarly, another travelling wave solution reads

ϕ(x, t) =−π +4tan−1
[

e
± 1√

v2−1
(x−vt+x0)

]
(5.10)

Both of these two kinds of solutions are travelling solitary wave solutions, but here we will just

focus on the case of v2 < 1, which represents the propagation of a single flux quantum through

the junction. The “±” in the exponential factor represents kink or anti-kink soliton.

For standing wave solution, one can use a transformation ϕ(x, t) = 4tan−1 f (x)
g(t) , and finally

get

ϕ(x, t) = 4tan−1

[
±
√

1−ω2

ω2
sinωt

cosh(
√

1−ω2 · x)

]
(5.11)

where ω is the angular frequency. This solution is called breather soliton, which oscillates

at a fixed location x and can be considered as nonlinear oscillating bound state formed by a

kink-antikink pair [98]. Figure 5.2 shows the kink and breather solutions. Here, the kink is

travelling to the right with speed of v = 0.8 and the breather is oscillating at x = 0 with angular

frequency ω = 0.8. In the following discussion about soliton/fluxon dynamics, we will use the

kink solution represented by (5.9) to denote the soliton with initial position of x0 and speed of

v.

5.1.2 Thermal s-G equation, a more general form

In general, the dissipation and thermal fluctuation effects should be taken into account in the

sine-Gordon equation. We consider the followings: (1) Like in the Langevin equation, a term

αϕ̇ that represents the resistance due to the normal electron current across the junction, IN =
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V/R, where V and R are respectively the voltage across the junction and junction resistance,

should be added to equation (5.8). For an simple one-dimension long junction, there exists

an additional normal electron current flowing parallel to the junction, leading to the surface

resistance (skin damping) given by the term β∂xxtϕ [91, 99]. (2) Correspondingly, we let the

noise terms that the damping terms intrinsically associated to respectively be nα and νβ , namely,

local noise and non-local (surface) noise (see the spring-mass model in the following section).

(3) Also, an external bias current η = I/Ic can be applied to the junction (along the z-direction

in the right subplot in Figure 5.1). Hence, the general one-dimensional sine-Gordon equation

reads1

∂
2
t ϕ −∂

2
x ϕ +α∂tϕ −β∂xxtϕ + sinϕ = η +nα(x, t)+νβ (x, t) (5.12)

where the two damping coefficients α and β are positive, and the corresponding noises, nα and

νβ , are Gaussian white noise [83]:

⟨nα(x, t)⟩= 0 (5.13)〈
nα(x, t)nα(x′, t ′)

〉
= 2αθδ (t − t ′)δ (x− x′) (5.14)

and 〈
νβ (x, t)

〉
= 0 (5.15)〈

νβ (x, t)νβ (x
′, t ′)

〉
= 2βθδ (t − t ′)δxx(x− x′) (5.16)

where θ = kBT/E0 is the normalized temperature with kB being the Boltzmann constant; T , the

temperature; E0, the rest energy of the soliton having a form E0 =
8h̄JcWλJ

2e where W is the width

of the junction [100]. Equations (5.12)∼(5.24) will be the basis of the discussion in this Chapter

and we will only concern about the kink soliton in (5.9), which describes the a magnetic flux

(fluxon) moving along the junction.

5.2 Analogous mass-spring system
Similar to a small junction that can be analog to a simple pendulum in the gravitational field,

the perfect sine-Gordon equation (5.8) is related to a mechanical system that consists of a series
1For convenience, in the following sections, we will use subscripts to denote the space and time derivatives of

a variable, such as ϕxt ≡ ∂xtϕ .
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of pendulums [99, 101]. Here, assuming the amplitude of the phase oscillation is sufficiently

small, we use a linear spring-mass model [102] to investigate the effect of the resistive damping

α and the surface damping β , and obtain the expressions of the corresponding discrete noise

terms as we have given in (5.86) and (5.87). The detailed discussion and derivation can be

found in Ref. [102]. It is worth noting that although this mechanical system is proposed for

studying the sine-Gordon equation, it is also expected to applied to the actual physical systems

such as periodic particle system, bubble dynamics, etc, like the Frenkel–Kontorova (FK) model

did. A discussion on a similar spring-mass system can be found in [103]; inversely, the methods

developed in this chapter would be applicable for studying those kinds of systems.

Figure 5.3. Analogous mass-spring system, from [102].

In Figure 5.3, the masses M at xi can move in x-direction as the arrow indicates and are

connected to their neighbors by springs kβ , dampers cβ and associated thermal noise sources

Nβ ,i−1 and Nβ ,i, in order to simulate the (non-local) surface effects. Meanwhile, locally, a

spring kα , a damper cα and a noise source Nα are exerted to the mass M at xi. Thus, assuming

the displacement of M is Ui, the equation motion reads

M
d2Ui

dt2 =− kαUi − cα

dUi

dt
+Nα,i − kβ (Ui −Ui−1)− kβ (Ui −Ui+1)

− cβ

(
dUi

dt
− dUi−1

dt

)
− cβ

(
dUi

dt
− dUi+1

dt

)
+(Nβ ,i−1 −Nβ ,i) (5.17)
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where all of the noise terms are given by the fluctuation-dissipation theorem

⟨N∗,i(t)⟩= 0 (5.18)〈
N∗,i(t)N∗, j(t ′)

〉
= 2c∗,ikBT δ (t − t ′)δi j (5.19)

where i means the ith block and the “∗” is α or β .

5.2.1 Normalization of the equation of motion

Measuring the displacement of M in unit of characteristic length r0, distance ∆x in unit of

characteristic length x0, and time in unit of characteristic time t0, i.e., Ui = uir0, ∆x = ∆ξ x0

and t = τt0, where ui, ∆ξ and τ are the corresponding dimensionless quantities, equation (5.17)

becomes

üi =−
(

kαt2
0

ρ∆x

)
ui −

(
cαt0
ρ∆x

)
u̇i +

(
t2
0

ρ∆xr0

)
Nα,i +

(
kβ ∆xt2

0

ρx2
0

)
ui−1 −2ui +ui+1

∆ξ 2

+

(
cβ ∆xt0

ρx2
0

)
u̇i−1 −2u̇i + u̇i+1

∆ξ 2 +

(
t2
0

ρ∆xr0

)
(Nβ ,i−1 −Nβ ,i) (5.20)

where ρ∆x = M and u̇ ≡ dui
dτ

. Defining

κα =
kαt2

0
ρ∆x

, κβ =
kβ t2

0 ∆x

ρx2
0

; (5.21)

α =
cαt0
ρ∆x

, β =
cβ ∆xt0

ρx2
0

; (5.22)

nα,i(τ) =

(
t2
0

ρ∆xr0

)
Nα,i(t) ; (5.23)

νβ ,i(τ) = nβ ,i−1 −nβ ,i =

(
t2
0

ρ∆xr0

)[
Nβ ,i−1(t)−Nβ ,i(t)

]
, (5.24)

equation (5.20) becomes

üi =−καui −α u̇i +nα,i +κβ

ui−1 −2ui +ui+1

∆ξ 2 +β
u̇i−1 −2u̇i + u̇i+1

∆ξ 2 +νβ ,i, (5.25)
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where nα is the local noise and νβ is the non-local noise constructed by two local noises. On

the other hand, based on (5.19), the properties of the normalized local noise now are given as

⟨nα,i(τ)⟩= 0 (5.26)〈
nα,i(τ)nα, j(τ

′)
〉
=

(
t2
0

ρ∆xr0

)2 〈
Nα,i(t)Nα, j(t ′)

〉
=

(
t2
0

ρ∆xr0

)2

2cα,ikBT δ (t − t ′)δi j

= 2αθ

(
δi j

∆ξ

)
δ (τ − τ

′) (5.27)

where θ = kBT/E0 is the normalized temperature with E0 = ρx0r2
0/t2

0 (not the rest energy in the

last section). Similarly, the autocorrelation of the non-local noise νβ given in (5.24) is descrived

by

〈
νβ ,i(τ)

〉
= 0 (5.28)〈

νβ ,i(τ)νβ , j(τ
′)
〉
= (nβ ,i−1 −nβ ,i)(nβ , j−1 −nβ , j)

=

(
t2
0

ρ∆xr0

)2 〈
(Nβ ,i−1 −Nβ ,i)(Nβ , j−1 −Nβ , j)

〉

=−2βθδ (τ − τ
′)

(
1

∆ξ 3

)
×



1, j = i−1

−2, j = 1

1, j = i+1

0, else

(5.29)

in which, the local noise (nβ ) that constructs the non-local noise (νβ ) satisfies

〈
nβ ,i(τ)

〉
= 0 (5.30)〈

nβ ,i(τ)nβ , j(τ
′)
〉
= 2βθ

(
δi j

∆ξ 3

)
δ (τ − τ

′) (5.31)
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5.2.2 From discrete to continuum

Taking the limit ∆ξ → 0, we assume the coefficients in (5.21) and (5.22) remain non-zero or

finite; meanwhile, the central differences in equation (5.25) become

ui−1 −2ui +ui+1

∆ξ 2 → uξ ξ (5.32)

u̇i−1 −2u̇i + u̇i+1

∆ξ 2 → u̇ξ ξ (5.33)

On the other hand, since the spatial function f∆ξ = δi j/∆ξ in (5.27) satisfies

lim
∆ξ→0

∫ +∞

−∞

(
δi j

∆ξ

)
dξ =

1, |ξ j −ξi| ≤ ∆ξ

2 → 0 (i = j)

0, |ξ j −ξi|> ∆ξ

2 → 0 (i ̸= j)
,

it is a Dirac δ -function, i.e., δi j/∆ξ → δ (ξ −ξ ′) for ∆ξ → 0, so that (5.27) becomes

〈
nα(τ,ξ )nα(τ

′,ξ ′)
〉
= 2αθδ (τ − τ

′)δ (ξ −ξ
′) (5.34)

Similarly, taking the limit of the integral of the spatial function in (5.29):

g∆ξ (ξ ) =

(
1

∆ξ 3

)
×



1, j = i−1, ξ j −ξi ∈ (−3
2∆ξ ,−1

2∆ξ ]

−2, j = 1, ξ j −ξi ∈ (−1
2∆ξ , 1

2∆ξ ]

1, j = i+1, ξ j −ξi ∈ (1
2∆ξ , 3

2∆ξ ]

0, else

,

then results in

lim
∆ξ→0

∫ +∞

−∞

g∆ξ (ξ ) =
f∆ξ (ξ −∆ξ )−2 f∆ξ (ξ )+ f∆ξ (ξ +∆ξ )

∆ξ 2 = δξ ξ ,

thus,

〈
νβ (τ,ξ )νβ (τ

′,ξ ′)
〉
=−2βθδ (τ − τ

′)δξ ξ (ξ −ξ
′) (5.35)

Putting the considerations (5.32) ∼ (5.35) into equation (5.25), we obtain the continuous form

for the governing equation (5.17) of the spring-mass system as

ü =−καu−α u̇+nα +κβ uξ ξ +β u̇ξ ξ +νβ (5.36)
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By choosing κα = κβ = 1, this equation will be indentical to the linear form of the sine-Gordon

equation (5.12). This implies that the forms of the autocorrelations of the local and non-local

noises (5.27) and (5.31) tell us what the magnitudes of the noises should be in the simulation

(see the section “discretization of the sine-Gordon equation”) .

5.3 Fourier analysis for the equation of motion
Let’s have a look at the continuous sine-Gordon equation and the discrete governing equation

of the spring-mass system in the momentum (k) space.

5.3.1 Continuous sine-Gordon equation

When the amplitude of the oscillation is small, the approximation sinϕ ≈ ϕ holds, so the the

sine-Gordon equation (5.12) becomes

ϕtt −ϕxx +αϕt −βϕxxt +ϕ = η +nα(x, t)+νβ (x, t) (5.37)

Applying Fourier transform, such as ϕ̃(k, t) = 1√
L

∫ L
0 ϕ(x, t)e−ikxdx, to each term in this equa-

tion, we have

ϕ̃tt +(α +βk2)ϕ̃t +(1+ k2)ϕ̃ = ñα − ν̃β (5.38)

Here, k is the wave number and L is the length of the long junction. Equation (5.38) is the

evolution equation of the phase ϕ(x, t) in k-space. In k-space, the mean of the local noise (cor-

responding to the resistive damping) nα described by (5.13) and (5.14) with periodic boundary

is

⟨ñα(k, t)⟩=
1√
L

∫ L

0
⟨nα(x, t)⟩e−ikxdx = 0 (5.39)

and autocorrelation is

〈
ñα(k, t)ñ∗α(k

′, t ′)
〉
=

〈
1√
L

∫ L

0
nα(x, t)e−ikxdx · 1√

L

∫ L

0
nα(x′, t ′)eik′x′dx′

〉

= 2αθδ (t − t ′)

0, k ̸= k′

1, k = k′

= 2αθδ (t − t ′)δmn (5.40)
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Here, we have applied the sifting property of δ -function. Since it is finite space, k is discrete,

i.e., k = 2πn
L , k′ = 2πm

L , where n,m= 0,1,2, ...,N−1, with N being the number of nodes. Hence,

expressions (5.39) and (5.40) show that the local noise nα in k-space is still white noise. It can

be proved that in infinite space x ∈ (−∞,+∞), where k is continuous, following still holds:

⟨ñα(k, t)⟩= 0 (5.41)〈
ñα(k, t)ñ∗α(k

′, t ′)
〉
= 2αθδ (t − t ′)δ (k− k′) (5.42)

Similarly, for non-local noise that corresponding to the skin damping due to surface resistance,

we have 〈
ν̃β (k, t)

〉
= 0〈

ν̃β (k, t)ν̃
∗
β
(k′, t ′)

〉
=−2(βk2)θδ (t − t ′)δmn (5.43)

in which, k = 2πn
L , k′ = 2πm

L , with n,m = 0,1,2, ...,N − 1; the derivative theorem of Fourier

transform has applied to the δ -function. Still, if the system is infinite, we will have〈
ν̃β (k, t)

〉
= 0 (5.44)〈

ν̃β (k, t)ν̃
∗
β
(k′, t ′)

〉
=−2βk2

θδ (t − t ′)δ (k− k′) (5.45)

5.3.2 Discrete spring-mass equation

Applying discrete Fourier transform to the discrete equation of motion (5.25), we have

¨̃ui +

[
α +

4β

∆x2 sin2
(

k∆x
2

)]
˙̃ui +

[
κα +

4β

∆x2 sin2
(

k∆x
2

)]
ũi = ñα,i + ν̃β ,i (5.46)

To deal with the discrete second derivative in (5.25), the shift theorem is applied, that is, ũi±1 =

ũie±ī( 2πn
N )i, which leads to the sin2(∗) terms in (5.46). For a finite k and a small ∆x (k∆x → 0),

it is found that the terms with sin2(∗) will reduce to βk2, resulting in an similar form identical

to (5.38) if setting κα = 1:

¨̃ui +
(
α +βk2) ˙̃ui +

(
1+βk2) ũi = ñα,i + ν̃β ,i (5.47)

With the expression of discrete local noise in (5.28) and (5.29), we have

⟨ñα,n⟩= 0 (5.48)

⟨ñα,mñ∗α,n⟩= 2αθδ (t − t ′)
δmn

∆x
(5.49)
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noting that the relation between k and n is k = 2πn
L , n = 0,1,2, ...,N−1. Similarly, for non-local

noise, we have 〈
ν̃β (k, t)

〉
= 0 (5.50)

and 〈
ν̃β (k, t)ν̃

∗
β
(k′, t ′)

〉
=

〈
1√
N

N−1

∑
i=0

(nβ ,i−1 −nβ ,i)e
−īkx · 1√

N

N−1

∑
j=0

(nβ , j−1 −nβ , j)e
īk′x′
〉

=

0, k ̸= k′

2
[

4β

∆x2 sin2 (k∆x
2

)]
θδ (t − t ′) 1

∆x , k = k′

= 2
[

4β

∆x2 sin2
(

k∆x
2

)]
θδ (t − t ′)

δmn

∆x
(5.51)

Noting that the “damping coefficient” is consistent with the one in equation (5.46), if k∆x is

small enough, the correlation function will become:〈
ν̃β (k, t)ν̃

∗
β
(k′, t ′)

〉
= 2βk2

θδ (t − t ′)
δmn

∆x
(5.52)

Up to now, it has been shown that, besides the equations of motion themselves and the noises are

equivalent in physical space (see last section), they are also have equivalent forms in k-space.

Particularly, the local and non-local noises in k-space are uncorrelated under different k’s, no

matter if it is continuous or discrete. This also implies that their solutions should be statistically

independent under different modes.

Actually, now we have noticed that, since the spring-mass system in Figure 5.3 is a 3-point

system - a mass M is influenced by its two neighbors, thus one may transform its equation of

motion with 3-point central finite difference, and then obtain a continuous partial differential

equation, which is equivalent to the linear sine-Gordon equation; inversely, the sine-Gordon

equation can also be discretized with the 3-point central difference. However, if one approxi-

mates the sine-Gordon equation with a 5-point central difference, is there such a spring-mass

system and corresponding discrete equation that can get back to the continuous equation and

the noises are uncorrelated in k-space? We will put the answer to this question in the appendix.
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5.4 Fluxon Dynamics
In long Josephson junctiom, a fluxon is induced by circulating supercurrents and acts like a

solitary wave (e.g., kink soliton2) described by the sine-Gordon equation, or like a particle

centered at its mathematical center, described by an equation of fluxon dynamics, which can

be derived from the sine-Gordon equation. As mentioned above, besides the phonon modes

(plasma oscillations), if solitons are present in the long Josephson system, it can be found that

the soliton itself obeys some kind of equation of motion as well. Let’s first define the energy

and momentum of sine-Gordon system that satisfies equation (5.12)

ϕtt −ϕxx +αϕt −βϕxxt + sinϕ = η +nα(x, t)+νβ (x, t) ,

as [91, 104]

H ≡
∫

∞

−∞

[
1
2
(
ϕ

2
t +ϕ

2
x
)
+(1− cosϕ)

]
dx = E (5.53)

and

P ≡−
∫

∞

−∞

ϕtϕxdx (5.54)

Thus, for the soliton travelling along the long junction, by substituting the kink solution given

in (5.9):

ϕ(x, t) = 4tan−1
[

e
± 1√

1−v2
(x−vt+x0)

]
in the Hamiltonian (5.53) and momentum (5.54), we have

E = mγ (5.55)

P = mγv (5.56)

where m = 8 is the “effective mass” [105] of the soliton with x0 is being position, and γ =

(1−v2)−1/2 is the Lorentz factor with v being the speed of soliton. Thus, the kink can be treated

as a relativistic particle that satisfies the energy-momentum-mass relation E2 = P2 +m2. Note

that (5.56) implies the velocity of the soliton in terms of momentum is v≡ dX0
dt = P√

m2+P2 , where

2In this thesis, we assume solitary wave and soliton refer to the same thing, i.e., the solitary wave solutions of
sGE.
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X0 is the position of the soliton or the center of the kink. In the absence of the noise terms, the

time derivative of the Hamiltonian (5.53) is

dE
dt

=
∫

∞

−∞

(ϕttϕt +ϕxϕxt +ϕt sinϕ)dx

=−
∫

∞

−∞

(
αϕ

2
t +βϕ

2
xt −ηϕt

)
dx (5.57)

It can be seen that the damping terms dissipate the energy of the system while the force term

or bias current η is adding energy. That is, if α = β = 0 and η = 0, it becomes dE
dt = 0 - the

energy of the fluxon governed by the perfect sine-Gordon equation (5.8) will be conserved. The

same procedure can be applied to the the change of the momentum in time. According to the

definition (5.54), we have

dP
dt

=−α

∫
∞

−∞

ϕtϕxdx+β

∫
∞

−∞

ϕxtϕxxdx−
∫

∞

−∞

ϕx(nα −νβ )dx+2πη (5.58)

It is clear that for the undamped and unbias case described by the pure sine-Gordon equation

(5.8), the momentum is conserved as well. Inserting the kink solution (5.9) into (5.58) resulting

in the equation of motion of the soliton as

dP
dt

=−αP− 1
3

βP

[
1+
(

P
8

)2
]
+2πη + ε(t) (5.59)

where ε(t) =
∫

∞

−∞
ϕx(nα −νβ )dx, which can be proved to satisfy

⟨ε(t)⟩= 0 (5.60)〈
ε(t)ε(t ′)

〉
= 2γ

(
α +

β

3

)(
kBT
E0

)
δ (t − t ′) (5.61)

This means ε(t) is also describing a white noise.

5.4.1 Diffusive soliton

When the bias current η is zero, the soliton is driven by the noise only, so the speed is small

(P → 0, γ → 1) and (5.59) can be further reduced to

dP
dt

=−
(

α +
β

3

)
P+ ε(t) (5.62)
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This is a typical Langevin equation describing a motion of a Brownian particle. Using a stan-

dard method from textbooks of statistical mechanics, we can calculate the quantity:
〈
(∆P)2〉=〈

[P(t)−⟨P(t)⟩]2
〉
, as3

〈
(∆P)2〉= (kBT

E0

)(
1− e−2ᾱt)=

2ᾱ

(
kBT
E0

)
t, 0 < t ≪ 1/α

kBT
E0

, t ≫ 1/α

(5.63)

where ᾱ = α + β/3. We can see that at the beginning of the motion, the momentum of the

drifting particle is increasing linearly. Comparing to the Einstein relation for momentum [106],〈
(∆P)2〉 = 2Dpt, with Dp being the diffusion coefficient of momentum, one gets Dp = (α +

β/3)(kBT/E0). As the time goes by, the particle will ultimately attain thermal equilibrium, so

that ⟨∆P⟩= P(0) = 0, thus, we have
〈
P2〉= kBT/E0, i.e., the kinetic energy of the soliton will

be

⟨Ek⟩=
〈
(∆P)2〉

2m
=

(
kBT

2mE0

)
. (5.64)

where m = 8 is the effective mass of the soliton. On the other hand, still for the case t ≫

1/α , with the displacement of the soliton, X(t) = 1
m
∫ t

0 P(t ′)dt ′, one can calculate the quantity〈
(∆X)2〉, which will be4

〈
(∆X)2〉= 2kBT/E0

m(α +β/3)
t . (5.65)

Comparing it to the Einstein relation for displacement,
〈
(∆X)2〉 = 2Dxt, gives the diffusion

coefficient as

Dx =
kBT/E0

m(α +β/3)
(5.66)

5.4.2 Confined soliton

Let’s consider a perturbed sine-Gordon equation that reads

ϕtt −ϕxx +αϕt −βϕxxt + sinϕ =−κ(⟨ϕ(t)⟩−⟨ϕ0⟩)+nα(x, t)+νβ (x, t) ,

3Integrating equation (5.62) and taking time average, we have ⟨∆P(t)⟩ = ⟨∆P(0)⟩e−ᾱt ; by the definition of〈
(∆P)2

〉
and using the autocorrelation (5.61) then leads to (5.63).

4Integrating equation (5.62), one has ∆P(t) = P(0)e−ᾱt +
∫ t

0 ε(t ′)e−ᾱ(t−t ′)dt; then the autocorelation function
of momentum will be ⟨P(t)P(t ′)⟩ = (kBT/E0)e−ᾱ|t−t ′|. Using the definition of X(t) one gets an expression of〈
(∆X)2

〉
, combining which with the autocorelation function of momentum will lead to (5.65).
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that is, the bias current or force term in equation (5.12) takes the form η = −κ(⟨ϕ⟩− ⟨ϕ0⟩),

where κ > 0 is a constant, ⟨ϕ(t)⟩ = 1
L
∫ L

0 ϕdx is the average phase through the long junction

with L being its length. Let the equilibrium of the kink be at the mid-point, i.e., X0 = L/2, then

correspondingly, ⟨ϕ0⟩= (2π ·L/2)/L = π . Here, η is to simulate an elastic restoring force like

“ f = kx”, so we expect that the soliton is an harmonic oscillator trapped in a quadratic potential

well. Since the area below the curve of the kink (5.9) at time t is S(t) =
∫ L

0 ϕdx and the upper

and lower boundary of the kink is 2π , if the kink soliton travels a distance ∆X = X(t ′)−X(t)

during ∆t = t ′− t, the change of area below the curve will be ∆S = S(t ′)−S(t) = 2π∆X . With

this consideration, the force term can be expressed as

η =−κ(⟨ϕ⟩−⟨ϕ0⟩) =−κ

L
[S(t)−S(0)] =−2πκ

L
[X(t)−X(0)] (5.67)

where X(t) = L⟨ϕ⟩/2π , so that the equilibrium position of the soliton is X0 = X(0) = L/2.

Hence, inserting η into equation (5.59) leads to

dP
dt

=−αP− 1
3

βP

[
1+
(

P
8

)2
]
−
(

4π2κ

L

)
[X(t)−X0]+ ε(t) (5.68)

Since P≈mγ(v)v with m= 8 and v= Ẋ , under small-velocity approximation, one has γ → 1 and

P = mẊ . For convenience, we count the displacement of the soliton relative to the equilibrium

position: X(t)→ X(t)′ = X(t)−X0, but still use the old notation “X(t)” in the equation; thus,

the equation of motion of the confined soliton in a potential well is obtained as

mẌ +m
(

α +
β

3

)
Ẋ +κe ·X = ε(t) (5.69)

where κe = 4π2κ/L is the effective elastic constant. This means the soliton is oscillating in

the quadratic potential U(X) = 1
2κeX2. Once thermal equilibrium is attained, the Boltzmann

distribution is satisfied:

ρ(X) = ρ0e−
U(X)

kBT/E0 = ρ0e−
X2

2kBT/κe (5.70)

where ρ0 is the normalization constant. This gives the standard deviation for the distribution of

the position or displacement of the soliton as

σx =

(
θL

4π2κ

)1/2

(5.71)

where θ = kBT/E0.
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5.5 Discretization of the sine-Gordon equation
To perform numerical simulation for the fluxon dynamics, the continuous sine-Gordon equation

(5.12) has to be discretized. An principal requirement is the statistical quantities, such as poten-

tial and kinetic energies, can be time-step invariant within the stability range. Inspired by the GJ

algorithm [59] used for the Langevin simulations in the previous chapters, here, we generalize

it for solving the partial differential equation (sGE).

5.5.1 The u-equation

Letting u ≡ ϕ and v ≡ ϕt = ut , following we will derive a scheme for u and v. For equation

(5.12) with zero bias, η = 0:

ϕtt −ϕxx +αϕt −βϕxxt sinϕ = nα(x, t)+νβ (x, t) ,

integrating the both sides from tn to tn+1 leads to

vn+1 − vn =
∫ tn+1

tn
(uxx − sinu)dt +β (un+1

xx −un
xx)−α(un+1 −un)+nα −νβ (5.72)

where the discrete noise terms read

nα =
∫ tn+1

tn
nα(x, t ′)dt ′ (5.73)

νβ =
∫ tn+1

tn
νβ (x, t

′)dt ′ (5.74)

On the other hand, integrating the both side of the expression v = du
dt by trapezoidal rule, one

has

un+1 −un =
∆t
2
(
vn + vn+1) (5.75)

Substituting the vn+1 in (5.72) and (5.75)

un+1 −un =
∆t
2

[
2vn +

∫ tn+1

tn
(uxx − sinu)dt

+β (un+1
xx −un

xx)−α(un+1 −un)+nα −νβ

]
(5.76)

and letting the integral on the right-hand-side of (5.76) be (uxx − sinu)∆t leading to

un+1 −un = ∆tvn +
∆t2

2

[
un

xx − sinun +
β

∆t

(
un+1

xx −un
xx
)]

− α∆t
2
(
un+1 −un)+ ∆t

2
(
nα −νβ

)
(5.77)
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Combining the un+1 −un terms in (5.77) yields an implicit equation for un+1:

un+1 = un +b∆tvn +
b∆t2

2

[
un

xx − sinun +
β

∆t
(un+1

xx −un
xx)

]
+

b∆t
2

(nα −νβ ) (5.78)

in which, b = 1
1+αdt

2
. If letting f = un

xx − sinun + β

∆t (u
n+1
xx −un

xx), equation (5.78) becomes

un+1 = un +b∆tvn +
b∆t2

2
f +

b∆t
2

(nα −νβ ) (5.79)

This has the same form as that of the single Brownian particle in [59] and f is the external

force acting on the particle or each node. The second-order position derivative of u in finite

difference form can be uxx =
ui−1−2ui+ui+1

∆x2 , where i denotes the ith node. Hence, keeping the old

un
xx terms on the right-hand-side and moving all of the new un+1 terms to the left, we obtain the

final version of the position equation:(
−βb∆t

2∆x2

)
un+1

i−1 +

(
1+

βb∆t
∆x2

)
un+1

i +

(
−βb∆t

2∆x2

)
un+1

i+1 =

un
i +b∆tvn

i +
b∆t2

2

[(
1− β

∆t

)
un

xx − sinun
i

]
+

b∆t
2

(nα −νβ ) (5.80)

This is a tridiagonal system of equations that need to be solved for u = ϕ .

5.5.2 The v-equation

We still need an discretized equation for v = ut . Let’s get back to the integral in equation (5.72)

and let ∫ tn+1

tn
(uxx − sinu)dt =

dt
2
[
(un+1

xx − sinun+1)+(un
xx − sinun)

]
so that

vn+1 − vn =
∆t
2
[
(un+1

xx − sinun+1)+(un
xx − sinun)

]
+β (un+1

xx −un
xx)−α(un+1 −un)+nα −νβ (5.81)

which can be written as

vn+1 = vn +
∆t
2
( f n + f n+1)+nα −νβ (5.82)

where

f n = un
xx − sinun

i −
2β

∆t
un

xx +
2α

∆t
un

i (5.83)

f n+1 = un+1
xx − sinun+1

i +
2β

∆t
un+1

xx − 2α

∆t
un+1

i (5.84)
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Here uxx =
ui−1−2ui+ui+1

∆x2 and f n and f n+1 are just the symbols for simplification and have noth-

ing to do with the f or ”force” term defined by (5.79). To obtain correct kinetic statistics, one

might consider using the half-step velocity [60]:

vn+ 1
2 =

un+1 −un
√

b∆t
(5.85)

So far, we have finished deriving the final programmable scheme (5.80) and (5.82) for respec-

tively calculating the phase, u = ϕ , and the time derivative of the phase, v = ϕt , of each node

along the discretized long Josephson junction.

5.5.3 Noise and boundary conditions

From the autocorrelation functions (5.27) and (5.31) of the local and non-local noises in the

spring-mass system discussed in the previous chapters, the noise nα corresponding to the resis-

tive damping α due to the normal current can be expressed as

nα,i =
√

2αθ∆t/∆x ·σi (5.86)

where σi is Gaussian random number generated by the “Ran2()” random-number generator [62],

and the noise νβ corresponding to the surface/skin damping β due to the surface resistance will

be

νβ ,i = nβ ,i−1 −nβ ,i (5.87)

in which,

nβ ,i =
√

2βθ∆t/∆x3 ·σi . (5.88)

where σi is another Gaussian random number. We will use Born-Von Karman (periodic) bound-

ary conditions given as [102]

u−1 = uN−1, v−1 = vN−1

uN = u0, vN = v0 (5.89)

in which, the subscribes denote the (∗)th nodes in the discretized long junction.

88



5.6 Results
The simulations presented in this chapter is to test the availability of the generalized GJ al-

gorithm to the partial differential equation (sGE) and to test the understandings on the fluxon

dynamics based on the spring-mass model. The diffusive and confined solitons will be used for

the testing.

Figure 5.4. Diffusive soliton: (a) the displacement of soliton varying with time. The parame-
ters are as shown on the plot. (b) the mean of X(t)2, which increases with time linearly (solid
line) and satisfies the Einstein relation (dash line). (c) The diffusion coefficient Dx by simula-
tion and the comparison to the theoretical value.

5.6.1 Diffusive soliton

The soliton described by the long junction sine-Gordon equation (5.12) or the fluxon equa-

tion (5.62) is drifting under impact of noise in the absence of force terms. When the thermal

equilibrium is attained, one can measure the diffusion constant of position by the Einstein re-

lation Dx =
〈
(∆X)2〉/2t, where t is time and ∆X = X(t)− X(0) is the displacement of the

soliton measured from the starting point. The theoretical value has been given by (5.71), that is,

Dx =
kBT/E0

m(α+β/3) . Figure 5.4 shows the the position X , the mean square of position
〈
∆X2〉, and

the diffusion coefficient Dx of the soliton varying with time. In (a), we can see the soliton drifts

around the starting point X(0) = 0 driven by noise. In (b), the mean square of position increases

linearly with time and agrees well with the theory. In (c), the diffusion coefficient is maintained
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around the theoretical value of 0.0125 after a short transient time. These results are as expected

under the specific set of parameters α = β = 1, θ = 0.1. In Figure 5.5, we present the effect

of the parameters in the expression of Dx. In (a) it can be seen that the Dx value is independent

of the time step up to ∆t ∼ 0.1, beyond which, the measured Dx value will be divergent (not

shown in the plot). In (b), Dx is proportional to temperature below θ = 0.5 and higher than that

it gradually deviates from the theoretical line. In (c) and (d), Dx agrees well with the theoretical

curves as the functions of the two damping constants, α and β , within four orders of magnitude.

Figure 5.5. Diffusive soliton: (a) The time-step independence of the diffusion coefficient of
the soliton, within the range shown in the plot. (b) The diffusion coefficient as a function of
the normalized temperature θ . (c) and (d): The diffusion coefficient as a function of the two
damping coefficients, α and β . The dots denote the results from simulations and the red solid
curves represent the theoretical ones.

5.6.2 Confined soliton

The soliton described the equation (5.69) is driven by noise and effective restoring force. When

the thermal equilibrium is attained, the position of the soliton should follow the Boltzmann

distribution (5.70) with the theoretical standard deviation given by (5.71): σx =
√

θL
4π2κ

, and the

velocity should satisfy the Maxwell velocity distribution as well. In Figure 5.6, the parameters

for the simulation are θ = 0.1, α = β = 0.5, L = 4 and κ = 1.0; the node spacing and the

time step are respectively ∆x = 0.02 and ∆t = 0.01. Figure 5.6 (a) shows the trajectory of
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the soliton in the phase space, performing a Brownian motion around the equilibrium points

(0,0). In (b) are the Boltzmann distribution for the soliton position and the typical Maxwell-

Boltzmann distribution for the velocity by simulation compared to the theoretical curve (red,

the expressions are shown on the plot). The standard deviations of the Boltzmann distribution

for the position is measured to be σx = 0.102, which agree well with the theoretical value

0.1007. In Figure 5.7 shows the standard deviation as a function of temperature θ = kBT/E0,

effective elastic coefficient κe, distance ∆x between two neighboring nodes on the distritized

long junction, and the length of the junction L. We can see the results in (a) (b) and (d) match the

corresponding theoretical curve produced by the expression (5.71); for (c) however, when the

spacing between two neighboring nodes gets too large (∼ 1), the measured σx starts deviation

from the theoretical value.

Figure 5.6. Confined soliton: (a) Trajectory of the soliton in phase space. (b) the Boltzmann
distribution for the position and the Maxwell-Boltzmann distribution for the velocity by the
simulation (dots) compared to the theory (red curve)]. The parameters in the simulation are
θ = 0.1, α = β = 0.5, L = 4 and κ = 1.0. The node spacing and the time step are respectively
∆x = 0.02 and ∆t = 0.01.

5.7 Conclusion
In this chapter, we propose a spring-mass model analog to the one-dimensional long Josephson

junction, and shows that the equation of this mechanical system can be mapped to the sine-

Gordon equation of the long junction. With this model, we have a better understanding to the

normal resistance and surface resistance in the long junction, and the corresponding noises,

which is actually the local noise and non-local noise present in the spring-mass system, giving

91



Figure 5.7. Confined soliton: the standard deviation of the Boltzmann distribution for the soli-
ton position as a function of (a) temperature, (b) effective spring constant, (c) distance between
neighboring nodes and (d) the length of the long junction. The dots denote the simulation re-
sults and the solid line is the theoretical one given by (5.71).

us specific forms for these two kinds of noises in the simulation. An Fourier analysis was done

for investigating the noise properties in the wave-number (k) space, and it shows that the local

and non-local noises in the k-space are still uncorrelated between any two modes, as expected.

The spring-mass model itself could be a nice model applied to actual physical and engineering

systems, and the relevant algorithm given in this chapter is also applicable tool for studying

them.

On the other hand, we discretized the sine-Gordon equation using the method for deriving

the GJF algorithm for Langevin simulation, generalizing this method so it can solve an partial

different equation. To test the scheme, we performed simulations for the diffusive and con-

fined solitons and compared the results to the existing theory of fluxon dynamics. Respectively,

the diffusion coefficient of the diffusive soliton and the standard deviation of the Boltzmann

distribution of the soliton position were measured and it was shown that the results were in ac-

cordance with the prediction of the theory. Besides, the confined soliton in a quadratic potential

is shown attained thermal equilibrium - the position satisfies the Boltzmann distribution and the

velocity follows the Maxwell-Boltzmann distribution.

This chapter is an extension of the previous chapters on single Josephson junction, but also
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a prepared discussion for the future work, since the any idea presented in the previous chapters,

such as saturation of SCD, chemical potential due to the plasma oscillation, etc., in principle,

can be repeated on the long junction. Meanwhile, the long junction is a more complex system

than single junction, meaning that it has more interesting mathematics and physics worthy to

explore. This chapter is a starting point for the proceeding.
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Chapter 6

Summary

In this thesis we discussed the switching problem of typical single Josephson junctions from

Chapters 1 to 4, and long Josephson junction in Chapter 5. Chapter 1 is introductory and

historical and physical background, basic equations and concepts of Josephson junction were

presented. In Chapter 2, we demonstrated some non-equilibrium phenomena observed from

the switching current distribution (SCD), where the information of switching of the junction

is encoded. The switching of Josephson junction from superconductive state to the resistive

state as the external bias current gets close to a critical current, can be analog to a Brownian

particle (namely, phase particle) escaping from a tilting periodic potential well driven by thermal

noise. We studied the effects of the bias current, temperature, damping, initial conditions of the

phase to the SCD. Temperature determines the strength of the noise, which is one of a power

sources of the Brownian particle. Increasing temperature may stimulate early switching of the

junction. Damping is a drain of energy but also plays a role of media passing the energy to

the particle from the noise. The damping and temperature have the system attained thermal

equilibrium, which, however, can be destroyed by the increasing bias current, another power

source for the phase particle. We confirmed by the simulations that the boundary between the

equilibrium and the non-equilibrium is the unity of the ratio of damping coefficient to the the

sweep rate (α/η̇ = 1). When this ratio is low, the system would be in non-equilibrium state and

the information from the initial conditions of the motion can be preserved until the escape takes

place.

Thus, in Chapter 3, we continued studying the effects of the initial conditions under various
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damping coefficients and temperatures, demonstrating how it affected the switching current.

Since the characteristics of the initial conditions, including the width and position of the initial

phase distribution, can be preserved if it is not damped out by the dissipation, one can observe

the “saturation phenominon” of the SCD under α/η̇ ≪ 1. This phenomenon is interpreted

by the theory of macroscopic quantum tunnelling (MQT) today, that is, the saturation SCD is

due to the phase particle tunneling out of the barrier. At the end of this chapter, however, we

showed that it is possible that giving an appropriate initial phase distribution can produce a

temperature-independent SCD peak position curve comparable to experimental data.

In Chapter 4, based on the understanding on the saturation of SCD, and the chemical po-

tential induced by the plasma oscillation given by the Anderson equation µ0 = h̄ω j0, our first

finding is that, in zero-temperature and zero-damping limits, just simply subtracting this poten-

tial energy from the potential height may lead to an escape current very close to the published

experimental data, implying that the energy of plasma oscillation might be a key for the clas-

sical RCSJ model to successfully interpret the saturation of SCD observed in experiments. An

improved Kramers model was then proposed for producing SCD using the parameters from the

literature, and it was found that the peak-position curves agree well with the experimental data.

On the other hand, by introducing the chemical potential to the initial conditions, we found that

the peak position curve generated in Langevin simulation can be corrected in low temperatures

as well. We conclude that the energy of the plasma oscillation is a necessary condition for the

RCSJ model to describe the saturation phenomenon as MQT does, but we emphasize that the

improved Kramers model is still incomplete and an model that can generate a correct width

curve of SCD is required; in the improved Langevin simulation, there exist a free parameter for

determining the width of the SCD. This is the problems to be solved in the future.

Chapter 5 is on long Josephson junction and can be treated as a prepared chapter for the

future work, since all of the ideas on the switching problems of single Josephson junction should

be able to be reproduced on the long junction. The long junction also has more complex physics,

such as soliton dynamics. To understand the sine-Gordon equation, the governing equation

of the long junction, a mechanical spring-mass model was proposed, and based on that, we

generalized the GJ algorithm for solving the sine-Gordon equation. We applied this algorithm
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on the soliton dynamics and obtained nice results.

Overall, this thesis proposed an alternative classical switching mechanism besides the MQT

for single Josephson junction in low temperatures, and the key is the consideration of the chemi-

cal potential induced by the plasma oscillation. We expect that in the future this idea can be also

verified on LJJ and a more complete model for the escape rate theory and Langevin simulation

will be constructed as well.
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Appendix A

Five-point system

A.1 Discrete equation for the 5-point spring-mass system
In Figure 5.3 we see a 3-point system, in which a mass is affected by its two neighbors, math-

ematically corresponding to a discrete equation with second-order finite difference as shown in

equation (5.25):

uxx =
ui−1 −2ui +ui+1

∆x2

This is commonly seen in solid state physics when discussing the classical treatment for 1D

lattice or linear chain. On the other hand, an partial differential equation can also be discretized

by this 3-point finite difference. Now we ask: if one discretize, let say, the sine-Gordon equation

with a 5-point finite difference with fourth-order accuracy:

uxx =
−ui−2 +16ui−1 −30ui +16ui+1 −ui+2

12∆x2 , (A.1)

does it correspond to a mass-spring system with one mass influenced by its five neighbors?

Thus, here, we assume there exists such a unknown system and follow the same procedures in

Chapter 5, to see if the noise still have a similar autocorrelation function under a 5-point ap-

proximation. Thus, for the discrete spring-mass equation of motion (5.25), it should be modified

as

üi =−καui −α u̇i +κβ

−ui−2 +16ui−1 −30ui +16ui+1 −ui+2

12∆x2 (A.2)

+β
−u̇i−2 +16u̇i−1 −30u̇i +16u̇i+1 − u̇i+2

12∆x2 +nα,i +νβ ,i (A.3)
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A.2 Discretization of the sGE with 5-point scheme
For the sine-Gordon equation discretized with the 5-point central differencing scheme, the u-

equation (5.80) now turns into(
βb∆t

24d∆x2

)
un+1

i−2 +

(
−2βb∆t

3∆x2

)
un+1

i−1 +(
1+

5βbdt
4∆x2

)
un+1

i +

(
−2βbdt

3dx2

)
un+1

i+1 +

(
βbdt
24dx2

)
un+1

i+2

= un
i +b∆tvn

i +
b∆t2

2

[(
κβ − β

∆t

)
un

xx −καun
i

]
+

b∆t
2

(nα −νβ ) (A.4)

which is a circulant penta-diagonal system of equation under periodic boundary conditions. The

v-equation (5.82) becomes

vn+1 = vn +
dt
2
( f n + f n+1)+nα −νβ (A.5)

where

f n =

(
κβ − 2β

dt

)
un

xx −
(

κα − 2α

∆t

)
un

i (A.6)

f n+1 =

(
κβ +

2β

∆t

)
un+1

xx −
(

κα +
2α

∆t

)
un+1

i (A.7)

For convenience, the old uxx terms are kept on the right-hand side of the u and v equations, but

noting that they are approximated by the 5-point central finite difference in (A.1). The periodic

boundary conditions are given as

u0 = uN−2(+2π)

u1 = uN−1(+2π)

uN = u0(−2π)

uN+1 = u1(−2π) (A.8)

The 2π in the brackets are only for the soliton case, since the phase difference between the

upper and lower boundaries is 2π .
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A.2.1 Fourier Analysis for the discrete equation

Applying Fourier transform to the discrete equation of motion for the 5-point mechanical system

described by (A.3), we have

¨̃ui +

[
α +β

16sin2(k∆x/2)− sin2(k∆x)
3∆x2

]
˙̃ui+[

κα +κβ

16sin2(k∆x/2)− sin2(k∆x)
3∆x2

]
ũi = ñα,i + ν̃β ,i (A.9)

Due to the periodic boundary conditions, k∆x= πn/N, n= 0,1,2, ...,N−1. The β and κβ terms

will respectively reduce to βk2 and κβ k2 under long-wave approximation (k∆x → 0), which is

consistent with the continuous equation (5.38).

The local noise for the 5-point system is the same as in 3-point system (in physical or k-

space). In k-space, it is given by

⟨ñα(k, t)⟩= 0〈
ñα(k, t)ñ∗α(k

′, t ′)
〉
= 2αθδ (t − t ′)δmn (A.10)

In the 3-point system, the non-local noise is defined by two neighboring local noises as νβ ,i(t) =

nβ ,i−1(t)− nβ ,i(t), while for the 5-point system, however, it is not easy to be visualized as

some kind of connections between neighboring nodes, but what can be expected is that the

autocorrelation function in physical space should be able to transform to a continuous form

under long-wave approximation, just like in (5.16):

〈
νβ (x, t)νβ (x

′, t ′)
〉
= 2βθδ (t − t ′)δxx(x− x′) (A.11)

Similar to (5.29), under the 5-point approximation, its discrete form should take

〈
νβ ,i(t)νβ , j(t

′)
〉
=−2βθ

δ (t − t ′)
∆x3

× 1
12



0, |i− j| ≥ 3

−1, |i− j|= 2

16, |i− j|= 1

−30, i = j

(A.12)

99



Meanwhile, inspired by the similar β terms in (5.46) and (5.51), from equation (A.9), one can

predict that in k-space, the autocorrelation function would have the following form:〈
ν̃β ,m(t)ν̃

∗
β ,n(t

′)
〉
= 2β

[
16sin2(k∆x/2)− sin2(k∆x)

3∆x2

]
θδ (t − t ′)

δmn

∆x
, (A.13)

where k∆x = 2πn/N. Based on this, we try to construct the non-local noise for the 5-point

system in physical space. Assuming the non-local noise relates to the nearest four nodes as

νβ ,i = A ·nβ ,i−2 +B ·nβ ,i−1 +C ·nβ ,i +D ·nβ ,i+1, (A.14)

where A, B, C and D are the undetermined coefficients. Based on this definition and (A.12),

the autocorrelation of µβ ,i will be

〈
νβ ,i(t)νβ , j(t

′)
〉
=
〈
(A ·nβ ,i−2 +B ·nβ ,i−1 +C ·nβ ,i +D ·nβ ,i+1)

(A ·nβ , j−2 +B ·nβ , j−1 +C ·nβ , j +D ·nβ , j+1)
〉

= 2βθ
δ (t − t ′)

∆x3 × 1
12



0, |i− j| ≥ 4

AD = 0, |i− j|= 3

AC+BD = 1, |i− j|= 2

AB+BD+CD =−16, |i− j|= 1

A2 +B2 +C2 +D2 = 30, |i− j|= 0

(A.15)

There are 4 equations with 4 unknowns. The solution is:

A

B

C

D

=



0

−2∓
√

3

4

−2±
√

3


,



0

2∓
√

3

−4

2±
√

3


,



−2∓
√

3

4

−2±
√

3

0


,



2∓
√

3

−4

2±
√

3

0


(A.16)
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Now, let’s calculate the non-local noise in k-space (select A=0):

ν̃β ,n =
1√
N

N−1

∑
i=0

νβ ,ie
−ī[ 2πni

N ]

=
1√
N

N−1

∑
i=0

(
B ·nβ ,i−1 +C ·nβ ,i +D ·nβ ,i+1

)
e−ī[ 2πn

N ]i

=
√

2βθ∆t/∆x3 · 1√
N

N−1

∑
i=0

(B ·σi−1 +C ·σi +D ·σi+1)e−ī[ 2πn
N ]i

=
√

2βθ∆t/∆x3 · 1√
N

N−1

∑
i=0

[
Bσieī( 2πn

N ) +Cσi +Dσie−ī( 2πn
N )
]

e−ī[ 2πn
N ]i

=
√

2βθ∆t/∆x3
[
Beī( 2πn

N ) +C+De−ī( 2πn
N )
]

σ̃n

=
√

2βθ∆t/∆x3
[
−8sin2

(
k∆x

2

)
− ī ·2

√
3sin(k∆x)

]
σ̃n (A.17)

This is one of the forms of the non-local noise in k-space. Since (A.15) has eight solutions,

there should be eight similar forms in terms of complex numbers. Starting with the expression

of νβ ,i in (A.17) or a general form with A, B, C and D, it is easy to show that the guessing νβ ,i

given in (A.14) would satisfy (A.13) as expected.

Therefore, we have shown that discretizing the sine-Gordon equation with the 5-point cen-

tral difference is equivalent to the 3-point central difference, since the equations of motion and

the noises in physical and k space, although more complex, take the same form. The noises are

still white noises and uncorrelated to the ones in different modes.
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