
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Improving Fruit Harvesting Speed with Multi-Armed Robots

Permalink
https://escholarship.org/uc/item/2sm6z5mq

Author
Pueyo Svoboda, Natalie Christine

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2sm6z5mq
https://escholarship.org
http://www.cdlib.org/

Improving Fruit Harvesting Speed with Multi-Armed Robots

By

NATALIE C. PUEYO SVOBODA
DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Biological Systems Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Stavros G. Vougioukas, Chair

Zhaodan Kong

Brian Bailey

Committee in Charge

2024

i

Dedicated to . . .

I dedicate this dissertation work to my mom, Monika Svoboda, my sister, Nicole Pueyo, and

Abhinav Sinha who supported and encouraged me throughout the whole process. This work

would not exist without them. I should also dedicate this to my dog, Nova. She kept me

moving even during the darkest of times.

Also, a thank you to all my friends, lab mates, and relatives who encouraged, supported, and

inspired me.

A special thank you to my mentor, Stavros Vougioukas, whose support was instrumental

during my journey. He gave tremendous support, encouragement, and assistance, as well as

the freedom I needed, not only to grow, but to flourish during my graduate career.

ii

Contents

1 Abstract vi

2 Introduction 1

2.1 Motivation . 1

2.2 The challenge of high-speed robotic fruit harvesting 2

2.3 Objective statement . 4

2.4 Contribution of this thesis . 5

3 Literature Review 6

3.1 Defining the general problem of arm-to-fruit scheduling for multi-armed harvesters 6

3.2 The evolution of scheduling solutions for multi-armed harvesters 7

3.2.1 Pick-and-place, an alternate look at the same problem 11

3.3 Research gaps and challenges . 13

3.3.1 Robot model with arms in series and in parallel 13

3.3.2 Optimizing both FPE and FPT using dual-objective optimization . . 13

3.3.3 Dynamic scheduling and vehicle speed selection 15

4 Modeling the fruit harvesting process in an orchard segment 17

4.1 Introduction and approach . 17

4.2 Defining the orchard segment and harvester frames 18

4.3 Modeling the harvest of a single fruit with a single arm 21

4.4 Modeling the harvest of multiple fruits with a single arm 25

4.5 Modeling the harvest of multiple fruits with multiple arms 27

4.5.1 Arms working only in series . 28

4.5.2 Arms working only in parallel . 30

4.5.3 Arms working in series and in parallel 32

4.6 Model considerations due to constant forward speed 34

iii

5 Multi-objective scheduling maximizing FPT while meeting a minimum

FPE 37

5.1 Introduction and approach . 37

5.2 Using software-defined row limits for load balancing between rows 38

5.3 Combining harvester speed selection and scheduling to maximize results . . . 40

5.4 Formulating First Come First Served as the benchmark scheduling algorithm 42

5.5 Dual-objective scheduling to maximize FPT while meeting a minimum FPE 45

5.5.1 Maximizing FPT using Goal Programming 48

5.6 Harvesting whole orchard rows using the Sliding Planning Window model . . 51

6 Workspace partitioning and speed selection to improve harvesting speeds 56

6.1 Harvester settings . 56

6.2 Digitizing apple locations . 57

6.3 Comparing workspace partitioning methods with best speed 58

6.4 Improving combined FPE and FPT by determining a “best” harvester speed 59

6.5 Experiment results and discussion . 60

6.5.1 Comparing workspace partitioning method results when using the best

harvester speeds . 60

6.5.2 Effect on FPE and FPT caused by fixed versus best harvester speeds 63

7 Evaluating scheduling strategies for multi-armed fruit harvesters 65

7.1 Comparing scheduling results between FCFS with ESS and dual-objective MILP 65

7.1.1 Important Gurobi settings . 66

7.2 Experiment results and discussion . 67

8 Extending the harvest to whole orchard rows using Sliding Planning Win-

dows 71

8.1 Sliding Planning Window for fruit harvesting 71

8.2 Experiment results and discussion . 73

iv

9 Conclusion 78

9.1 Row partitioning and speed selection . 78

9.2 Comparing FCFS and Goal Programming 79

9.3 Sliding Planning Window . 81

10 Future Research 82

v

1 Abstract

Successfully automating the harvest of fresh-market apples requires that robots match or

exceed the apple picking throughput (FPT) of humans, at 0.83 fruits/s, while achieving a

high fruit picking efficiency (FPE, percent of harvested fruits). To this end, robotic harvesters

are built with multiple arms, though this introduces challenges. Fruit distributions are

non-uniform, requiring workload balancing between arms. This can be accomplished through

strategies such as flexible arm workspaces, having the harvester in constant motion, and

choosing the right scheduling algorithm.

To address the need for workload balancing, we simulated a constantly moving harvester

with multiple 3-degree of freedom arms sharing column workspaces. The arm’s movements

were constrained by the column’s frame and software-defined vertical limits which prevented

collisions between the arms. Initially, the harvester scheduled 3.5 m sections of orchard

rows. It knew the location of all fruits, so could optimize its vertical arm limits, choose a

“best,” fixed harvester speed, and compute the schedule for that orchard row segment. Two

scheduling algorithms were evaluated, First Come First Served (FCFS) and a Mixed Integer

Linear Programming formulation based on Goal Programming (GP). Later, harvesting was

extended to the whole orchard rows using a new, semi-dynamic strategy, the Sliding Planning

Window (SPW). The orchard row was solved as a series of individual, short, sequential, and

overlapping planning windows which maximized the cumulative Orchard Row-FPT (OR-FPT)

and OR-FPE.

Simulation experiments with real fruit distribution data validated our approach, resulting in

combined throughput and efficiency gains for multiple harvester configurations. Increasing the

number of arms increased the combined FPT and FPE. Using FCFS and the best harvester

speed for nine arms, partitioning the columns to make rows of arms containing the same

number of fruits resulted in a mean of 1.374 fruits/s compared to 1.049 fruits/s when the

vi

rows of arms were all the same height. Both achieved at least 95% FPE. Scheduling with GP

improved the mean FPT to 2.0 fruits/s. When harvesting whole orchard rows, SPW always

achieved at least 95% OR-FPE, however the amount of overlap between planning windows

affected OR-FPT. No overlap resulted in a mean OR-FPT of 1.0 fruits/s. Overlapping half

the previous planning window achieved 1.86 fruits/s. Further increasing the overlap decreased

the OR-FPT. These results show that workload balancing could be used to increase the

throughput of multi-armed harvesters and introduces a way to do this semi-dynamically.

vii

2 Introduction

2.1 Motivation

In the $14 to $18 billion U.S. fresh-market fruit industry, labor takes up between 30% to

60% of total operational costs Q. Zhang and Karkee, 2016. In April 2020 alone, around 688

thousand farmworkers were hired in the US Farm Labor (May 2020), 2020. Because of this,

the industry has been heavily impacted by recent, country-wide labor shortages Blanco, 2016.

In 2019, 56% of surveyed farmers in California alone reported labor shortages, especially for

crops that are labor-intensive Adapting to Farm Worker Scarcity Survey 2019, 2019, with

no end in sight. Real farm wages across the U.S. have been on the rise for decades Zahniser

et al., 2018, with the last five years seeing a record increase of 2.8% per year due to labor

shortages “USDA ERS - Farm Labor,” n.d. During the same time-frame, there has been a rise

in demand for H2-A workers, a very expensive option for employers Maria and Salassi, 2019;

“USDA ERS - Farm Labor,” n.d. The shortage has been exacerbated by improving conditions

in Mexico and a growing focus on stronger enforcement at the US-Mexico border, Haspel,

2017. With the lack of labor, farmers face losing their crops. In California, 18% of growers

that responded to a 2017 survey by the California Farm Bureau either downsized or did not

harvest their crops Agricultural Labor Availability Survey Results, 2017. In 2019, an updated

survey found that 31% of surveyed farmers have switched away from high labor acreage like

fruit orchards to low maintenance crops like nut tree orchards over the last five years, and

56% of respondents said that they are turning increasingly towards technology to help them

decrease their reliance on labor Adapting to Farm Worker Scarcity Survey 2019, 2019. This

same trend towards mechanization is being seen throughout the agricultural industry in the

U.S. Blanco, 2016.

1

2.2 The challenge of high-speed robotic fruit harvesting

Two technologies are being explored to automate fruit harvesting. The first is shake-and-catch,

where the trees are shaken to dislodge the apples, which are caught by the system as they

fall down. Although very fast, shake-and-catch systems do not work for fresh-market apples

because it causes bruising (Calvin et al., 2022; Z. Zhang et al., 2016). The second technology

is a selective harvester, a robot that can harvest apples one-by-one without causing damage.

This technology has been in development for over 50 years with the goal of improving two

major performance metrics: Fruit Picking Efficiency (FPE) and Fruit Picking Throughput

(FPT). The first, FPE, measures the percent of harvestable fruits harvested by the system.

The second metric, FPT, measures the speed of harvest in fruits per second. A robotic

harvester must have both high FPE and FPT to be successfully commercialized.

Early robotic harvesters lacked adequate fruit identification technology and had difficulties

working within the three-dimensional canopies (Q. Zhang and Karkee, 2016; Q. Zhang and

Pierce, 2016). Leaves, branches, and other fruit impacted both FPE and FPT through

occlusion of harvestable fruits. Robotic harvesters were deemed important enough, however,

to spur changes in tree fruit breeding and orchard management. Fruit trees were bred and

trained into trellis structures that flattened out the canopies, making it easier to see and

reach the fruits. These changes decreased occlusion and eased the reachability constraints.

Furthermore, detection rates dramatically improved through the use of machine learning, as

shown in Bac et al., 2014; Koostra et al., 2021. For example, in Tang et al., 2020, the use

of neural networks gave a recognition accuracy of 95.35% for citrus identified in its natural

environment. These developments have once again spurred interest in robotic harvesters,

both in academia and in industry. Systems can now target a close-to 100% FPE, since a

large majority of harvestable fruits can be identified and reached. This is important because

a crucial economic study into automated fruit harvesting by Harrell, 1987 shows that FPE

has a higher sensitivity than FPT. However, this comes with a challenge: FPE and FPT are

2

conflicting metrics.

Harvesting fruits takes time. Z. Zhang et al., 2016 measured people harvesting speeds at

0.83 fruits/s while robots harvested 0.06 fruits/s. This difference in FPT is problematic

because growers require both speed and efficiency. As shown in the 2014 and 2021 agricultural

robot reviews Bac et al., 2014; Koostra et al., 2021, since the 1970s, the main focus of robotic

harvesting research to improve FPT has been motion planning. Most research during that

time focused on increasing speeds for arms with six degrees-of-freedom (DOF) which are

expensive to run and complicated to control, but have the range of motion needed to move

within complicated environments like tree canopies and between leaves. Results of motion

control research, however, did not have significant enough effects on harvesting speeds to

offset the cost of the robots Bac et al., 2014; Koostra et al., 2021. With this in mind, both

academia and companies, such as FFRobotics and Advanced.Farm, pivoted towards harvester

concepts that use multiple arms with only three degrees of freedom (DOF), decreasing motion

control complexity and cost, while increasing overall harvesting speeds. Such “simple” arms

perform very well in flat systems such as the trellised orchards; in fact, Edan and Miles, 1993

showed that Cartesian robots harvesting melons had better reach, and were easier to control

than a more complicated system. Another example is the multi-armed harvester described

in Li et al., 2023 which harvested a trellised orchard row, section-by-section, with an average

FPE of 79.31% and an average FPT of 0.17 fruits/s for all sections. On the commercial side,

Advanced.Farm described being able to harvest an average of 0.17 fruits/s with the goal of

increasing it to 0.27 fruits/s in their grant proposal “2023 Technology Research Review,”

2022. Results such as these show that multi-armed harvester can increase FPT while keeping

FPE high. However, it is important to note that to do this, the arms have to work together

and be allocated to the fruits correctly (Edan and Miles, 1993; Recce et al., 1996). This task

requires scheduling many arms in real-time while taking into account continuously changing

fruit distributions that are non-uniform. It is challenging because even a single arm scheduling

3

problem falls under known NP-hard problems, while the multi-armed problem is strongly

NP-hard (Garey and Johnson, 1978; Gerkey and Matarić, 2004); the problem space for

task assignment increases exponentially with the number of tasks and arms. Furthermore,

complicates arise from the clustering and non-uniform distribution of fruits and the dynamic

nature of orchards, where fruit locations can change while harvesting takes place. To keep

things simple, existing research into scheduling for multi-armed harvesters, such as Li et al.,

2023; Mann et al., 2016; Recce et al., 1996; Scarfe, 2012, mainly focus on developing scheduling

that maximizes the FPE. Adding the second optimization objective, FPT, increases the

complexity of the problem; However, as previously noted, robotic harvesters will require high

FPE and FPT to be successful. Thus, there is a need for a method to schedule many arms in

real-time which can adapt to changes in the incoming fruit distribution and changes to the

fruits being immediately harvested.

2.3 Objective statement

The main goal of this dissertation is to improve the Fruit Picking Throughput (FPT) of

multi-armed, fruit-harvesting robots while keeping the Fruit Picking Efficiency (FPE) high,

through the development of a scheduling framework for arm-to-fruit assignment. Such a

framework will be able to:

1. Model the fruit picking process with arms working in series and in parallel with flexible

workspaces,

2. Introduce workload balancing strategies to improve scheduling results,

3. Compute the best schedule and harvester speed combination which maximize FPT

while meeting a minimum FPE threshold,

4. Use the sliding planning window to optimize the schedule, harvester speed, and arm

row limits dynamically along a whole orchard row,

4

5. Determine how FPT changes as the number of arms increases.

The dissertation will describe the algorithmic and experimental tools enabling the design,

modeling, simulation, and optimization of the multi-armed robotic harvester scheduling

framework.

2.4 Contribution of this thesis

The contributions of this thesis include:

1. Proposing a realistic way to make arm workspaces flexible in one dimension while

removing the need for collision avoidance,

2. Evaluating dual-optimization strategies for constantly moving harvesters which can

compute the best schedule and harvester speed combination to maximize FPT while

meeting a minimum FPE threshold,

3. Presenting a novel way to harvest whole orchard rows dynamically and near-optimally

while only knowing the location of fruits in range of the harvester’s cameras.

5

3 Literature Review

3.1 Defining the general problem of arm-to-fruit scheduling for

multi-armed harvesters

Multi-armed, fruit harvester scheduling falls under the optimization problems known as

multiagent task scheduling. This is a field which attempts to determine a schedule that

pairs agents to tasks in an effort to optimize an objective; for example, creating a schedule

to finish all tasks as quickly as possible or finish the most tasks with the least agents. For

multi-armed harvesters, scheduling means to create schedules that determine which arms

should harvest fruit and when. Scheduling can be used to optimize both the number of fruits

harvested and the speed of that harvest; however, only single objective optimization was

used for multi-armed harvesters until Yang et al., 2022 introduced the use of dual-objective

optimization for a mushroom harvester.

Many optimization problems are NP-hard problems which take a lot of computation power

and time to reach a solution. Formally, the multiarmed harvester fits in the general problem

described by the oft-cited Gerkey and Matarić, 2004 as multiple robots that can perform a

single task at a time and each task require at most a single robot to complete, with time

extended assignment (ST-SR-TA). An arm can harvest a single apple at a time, and each

apple only requires a single arm. The last descriptor, time extended assignment, is used when

the system has existing knowledge of multiple jobs. Harvesters commonly have knowledge of

either all the fruits in the row or all the fruit in the section they are working in. Understanding

the general problem is important because, in optimization, related problems can be solved in

the same, or a similar, fashion. However, complications arise because this particular problem

type is a well-known, strongly NP-hard problem which cannot be solved optimally except for

very small instances. Not only does the amount of time it takes to find an optimal schedule

grow exponentially as the number of fruits and arms increase, but, for these larger problem

6

spaces, there is no way to prove if a solution is the optimal one in real time. Thus, most

research into scheduling for multi-armed harvester focuses on ways to reduce the complexity,

through strategies such as the use of heuristics.

3.2 The evolution of scheduling solutions for multi-armed har-

vesters

The first paper which mention scheduling for multi-armed harvesters is Edan and Miles,

1993. It used the Traveling Salesman Problem (TSP) to schedule the harvest of melons using

multiple arms working in parallel across the melon row. The objective was to harvest all

fruits, using multiple arms to speed up the overall speed. Edan and Miles, 1993 was the first

to show that as the number of arms working in parallel increased, the average amount of

time to harvest a fruit decreased. However, the largest decrease in average time to harvest

was with the addition of the first arm; after three arms, the drop in average time to harvest

was less than 1% due to the non-uniform nature of the fruit distribution.

Scheduling for multi-armed kiwi harvesters appeared next, in Scarfe, 2012; Williams et al.,

2019. Their research focused primarily on cluster dependencies and collision avoidance because

picking the incorrect kiwi in a cluster can cause other fruits to fall or lead to arm collisions.

In Scarfe, 2012, this was done by locating all fruits and clusters in the area above the robot

and dividing the fruits approximately equally among the arms with complete clusters assigned

to individual arms. This was a naive way of scheduling which did not attempt to optimize

the schedule, but it could be performed in real time. However, in-field tests resulted in an

FPT per arm of 0.45 fruits/second/arm, half the desired speed. This system was expanded

in Williams et al., 2019 which used safety distances between arms to avoid collisions, rather

than dividing the fruits into groups for each arm. Based on the reported seconds per fruit,

the four-armed harvester could pick 0.182 fruit/s on average, and harvested close to 50% of

the fruits. The largest time sink was the detection system which added 3 s/image at each

7

detection step.

Zion et al., 2014 was the first to formulate the problem as a non-TSP optimization problem.

The paper examined two different combinatorial algorithms, the k-colorable subgraph problem

and the taxi dispatcher problem to schedule melon harvesting for robots with multiple 2-DOF,

Cartesian arms. Both combinatorial-based algorithms produced near-optimal to optimal

results for the 2-DOF arms and solved in seconds for whole rows of melons. However, the

team hypothesized that 3-DOF arms, which could not use these heuristics, would produce

better results. Work by the same team, Mann et al., 2016, expanded the previous research

to 3-DOF arms by formulating the melon harvesting problem as a time dependent team

orienteering problem with time windows (TDTOPTW). The TDTOPTW was approached as

a combinatorial graph-coloring problem which could work with higher fruit densities, tested

up to 5 fruits/m2, and solved much faster than TSP or the branch-and-prune methods. In

fact, solutions took polynomial solving time, and it was proved optimal when solving for

maximum FPE. However, this formulation had some limits: the combinatorial approach

required that the minimum speed be limited to removed cycles in the schedules which meant

that it would have difficulties working with high density crops such as apples. The paper

also showed that 3-DOF outperforms 2-DOF in most cases, though, at lower speeds (< 0.15

m/s), the resulting FPE for the two systems is very close.

In Barnett, 2018; Barnett et al., 2020, kiwi fruit identification and localization were done

offline and separately from the harvesting, but the partitioning for scheduling was done in

real time. The system divided the fruit evenly between arms to load balance, with a second

stage to reallocate fruits to arms if a fruit had dependencies. In Barnett, 2018 (see Fig. 1),

the reallocation was done either based on the fruit’s hanging height and x-coordinate, or

through a greedy TSP approach based on the nearest next fruit. The two algorithms resulted

in almost identical results, even though there was a greater Euclidean traveled distance when

8

Figure 1: Concept art of a multi-armed kiwi robotic harvester from Barnett et al., 2020 with
two arms sharing a workspace along the x-axis.

using the x-rank algorithm. On the other hand, the TSP algorithm was plagued by collision

issues that the x-rank algorithm did not have. In the x-rank algorithm all the arms traveled

in the same direction which physically avoided the problem. The x-rank algorithm was then

used in Barnett et al., 2020 with Cartesian arms to test if it performed better than the

articulated arms in the presence of clustering. Cartesian arms resulted in more uniform

workload distribution between the arms and shorter task completion times in nine out of ten

in-field tests.

Arikapudi, 2019; Arikapudi and Vougioukas, 2023 were the first two papers to examine

scheduling for multi-armed harvesters in a grid-like configuration with arms working inde-

pendent of each other in disjoint, rectangular work cells. The matrix structure alongside

TSP resulted in high FPE values in orchards with two different tree structures each with

more than 2000 fruits. Arikapudi and Vougioukas, 2023 also studied how the number of arms,

and the workspace partitioning into cells for these arms, affected FPE and FPT. Similarly

to Edan and Miles, 1993, results in Arikapudi and Vougioukas, 2023 showed that increasing

9

Figure 2: Concept art of a multi-armed kiwi robotic harvester from Li et al., 2023 where
horizontal arms are coupled.

the number of arms increased overall harvesting speeds, but after a threshold, provided

diminishing returns per-arm. The mean seconds per fruit (1/FPT) followed a power law as

a function of arms per machine, irrespective of cell or harvester configuration. Dividing the

workspace into cells based on equal number of fruits produced better results than dividing

it into equally sized cells. This was because the division of cells by equal number of fruits

better balanced the workload between the arms when testing on real fruit distributions.

Li et al., 2023 posed the multi-armed harvester scheduling problem as a vehicle routing

problem solved using the Markov game framework to devise an efficient picking sequence

and multi-agent reinforcement (MARL) as a target allocation scheme focused on cooperation

between the arms. The goal of this project was to minimize overall operational time for four

robotic arms set in a 2x2 pattern. As shown in Figure 2, the horizontal arms are coupled

and must move up and down together. Over all sections, the proposed scheduling strategy

had an average FPE of 79.31% with an average FPT of 0.17 fruits/s. When tested against a

Genetic Algorithm (GA) heuristic, their MARL strategy took around 1 s to finish compared

to around 8 s by GA. Furthermore, GA was unable to handle situations where an arm failed

to grasp a fruit leading to more harvesting rounds while the MARL strategy only required

10

one round because a failed task could be renewed immediately. The authors believe that

results could be improved by changing the mechanical design to have decoupled horizontal

arms and a way to change the arm’s angle of attack to reach fruits that were partly obscured

by leaves, branches, or wires.

Multi-objective optimization was used to schedule a multi-armed mushroom harvester in Yang

et al., 2022. It combined a Genetic Algorithm decompose a multiple TSP problem into

individual TSP problems and Ant Colony Optimization to compute the shortest trajectory

of each arm. The goal of the trajectory optimization was to get a both a high FPE and

FPT while avoiding collisions between arms. The harvester achieved an FPT of 0.33 fruits/s

and 97% FPE, producing schedules that were 21% faster than a two-chromosome genetic

algorithm and 15% better a genetic stepwise algorithm. It was noted that the operation time

of the algorithm needs to be improved to allow the system to work in real-time.

3.2.1 Pick-and-place, an alternate look at the same problem

Task scheduling for conveyor belts shares many of the complications seen in multi-armed fruit

harvesting: they are online, have time-windows due to the conveyor belt movement, incoming

objects have non-uniform distributions, both throughput and efficiency have to be maximized,

etc. They have a strikingly similar problem space based on the ST-SR-TA general form and are

already found in commercial settings, making scheduling for pick-and-place conveyor systems

a great case study for multi-armed harvesters. Interestingly enough, conveyor scheduling

has gone a very different route than research in multi-armed fruit harvesting scheduling,

with simpler and less optimal task scheduling being the preferred commercial method. A

majority these systems, such as Daoud et al., 2014; Huang et al., 2012, 2015; Humbert, Pham,

et al., 2015, focus on determining which combination of dispatching rules—first-in-first-out

(FIFO), last-in-first-out (LIFO), shortest processing time (SPT), etc.—should be used for a

particular line of arms to obtain the best throughput and efficiency. However, there is more

11

experimental research that looks to speed up or better optimize scheduling which include:

Bozma and Kalalıoğlu, 2012 uses non-cooperative game theory while Choudhury et al., 2022;

Tika et al., 2020 focus on multi-layered approaches.

‘Part dispatching rules’ such as FIFO and SPT have low computation costs and, in single-

armed, under loaded systems, can be proved optimal for various cases (Mattone et al., 1998).

Simple dispatching algorithms can quickly become overloaded when the average distance

between consecutive objects becomes too small and lose many items. Their low computation

cost, however, makes up for their problems. Most research into this space (Daoud et al.,

2014; Huang et al., 2012, 2015; Humbert, Pham, et al., 2015) focuses on determining the best

combination and order of dispatching rules. The results remain suboptimal but can generally

be calculated in real time.

More experimental strategies include Bozma and Kalalıoğlu, 2012; Choudhury et al., 2022;

Tika et al., 2020. Bozma and Kalalıoğlu, 2012 has arms make decisions independently based

on local information, minimizing both communication and complexity overhead. Results

show that it picks up the same number of objects as a simple strategy where arms pick up the

closest objects, though the workload distribution is more even among the arms. Tika et al.,

2020 uses a two-layer optimization-based control policy involving task scheduling in the top

layer and path planning, along with the motion constraints, at the bottom one. Unfortunately,

results showed that the strategy was limited due to the complexities inherent in the problem;

tests in Tika et al., 2020 could only be performed using two non-Cartesian arms and a

maximum of 12 objects. A more recent example of the use of multi-layers by Choudhury

et al., 2022 describes a hierarchical strategy that can work under uncertainty (what if the

arm misses a task) and time constraints. Scale-ability is still an issue, however, with the task

allocation as the bottleneck.

12

3.3 Research gaps and challenges

3.3.1 Robot model with arms in series and in parallel

Edan and Miles, 1993 shows that there are benefits to multiple arms in series or in parallel;

since then, most research based itself on harvesters with many arms in one of those two

configurations. A single row or a single column of arms is possible for lower density fruits,

such as for melons in Edan and Miles, 1993; Mann et al., 2016, both of which resulted in

high FPE values when the harvester had around six arms. For orchards, where fruits are

produced at higher densities, the harvester might require a grid-like configuration to handle

the non-uniform fruit distributions and to keep the robot’s size practical. Both Arikapudi and

Vougioukas, 2023; Li et al., 2023 show that the matrix configuration are beneficial, though

the workspace configuration of the arms matters a lot. Arikapudi and Vougioukas, 2023 states

that the best arm configurations are either having the arms in a single row or in matrix-like

configurations, where the total arms are divided into two rows or two columns. Importantly,

dividing the workspace into cells based on equal number of fruits produces better results than

dividing it into equally sized cells. By doing so, the workload is balanced for all arms. The

multi-armed harvester in Li et al., 2023 also uses a matrix-like configuration for four arms,

however the arms in each row are coupled and move together in the vertical direction. This

coupling was a challenge and the study’s conclusion specifically stated that better results

could be obtained if the arms were completely independent of each other. Both show that

multiple arms with thoughtful work cell partitioning could lead to better FPE and FPT

results; the challenge is to do this dynamically while avoiding collisions between arms.

3.3.2 Optimizing both FPE and FPT using dual-objective optimization

Although all research into scheduling for multi-armed harvesters reports both FPE and FPT

(or 1/FPT), optimization is generally performed for one or the other, not both. For example,

in Mann et al., 2016, the heuristic maximizes FPE; changes to FPT are incidental or require

13

manual changes between tests which are unoptimized and cannot be optimized without

changes to their setup. The opposite is true of papers that prioritize FPT, such as in Li et al.,

2023, where all identified fruits are scheduled to be harvested, and optimization is performed

to minimize the traversal times between fruits. FPE changes in Li et al., 2023 are caused by

failed grasping attempts rather than as part of the optimization process. This is problematic

because optimizing for a single objective limits the results to either a maximum FPE or

FPT, when the “optimal” solution is likely to be a trade-off between the two. In “2023

Technology Research Review,” 2022, under the ”Automated Apple Harvester” by the company

Advanced.Farm, an economic analysis of their current system defines success as harvesting

between 30 to 50% of the apples at a speed of 0.5 fruits/s. The harvester in Li et al., 2023,

while scheduling for an FPE of 100%, when including the start-and-stop motion of the whole

system, achieved FPT results of 0.114 and 0.132 fruits/s on two orchard sections with final

FPE values of 71% and 81%. Because FPE and FPT are in opposition, as shown in Edan

et al., 1993, it is likely that dropping the hard 100% FPE requirement could lead to a higher

FPT that is closer to a commercial system’s definition of success. The mushroom harvester

in Yang et al., 2022 achieved the best FPT at 0.33 fruits/s with a success rate of 97% by

only guaranteeing that their FPE would be above 95%. However, as seen for mushroom

harvester, this requires that the problem be treated as a multi-objective problem that look

for solutions that optimize both FPE and FPT, rather than a single metric. These minimum

values should be determined by the growers and economic analysis for the specific crops. Two

types of multi-objective optimization solutions exist: (a) solving for the Pareto front, a set of

all solutions that cannot be improved without degrading at least one of the objectives, and

(b) solving for a single value in the Pareto front by converting the multi-objective problem

into single-objective optimization problem, called scalarization. The first method shows

what Pareto optimal FPE and FPT combinations could be possible and the trade-offs that

would make these combinations possible, making it useful for analyzing the effects of design

parameters on robotic harvesters. Scalarization, on the other hand, is useful when computing

14

harvesting schedules used by the robot. The design of the robot is set, and the minimum

required FPE and FPT values are known by this point, so a set of optimal schedules is

superfluous and time-consuming to go through. Instead, with scalarization, a single schedule

that meets the desired specifications is computed and followed by the harvester.

3.3.3 Dynamic scheduling and vehicle speed selection

Vehicle motion was evaluated for a single arm harvester in Edan et al., 1993. Results showed

that continuous vehicle motion decreased the seconds per fruit (1/FPT), with variable vehicle

speed outperforming constant vehicle speed. By matching the vehicle speed with incoming

fruit density, the system was 3.3 % faster and was able to pick a higher percentage of fruits.

This can be compared with results in Li et al., 2023; Yang et al., 2022, which have the

harvester advance along the crop row, stop at each new grouping of fruit to harvest them, and

moving forward again to the next segment with fruits. The start-and-stop strategy in Li et al.,

2023 caused a difference between the mean reported FPT for all sections where the vehicle

stopped, and the global FPT, reported as ‘Number of fruits harvested per hour,’ for two

in-orchard tests. The average ‘section’ FPT was 0.17 fruit/s, while the global FPT for the two

tests was 0.13 fruits/s and 0.11 fruits/s. These results indicate that continuous motion along

the crop row with variable speed is desirable, but it adds challenges to computing schedules.

Edan et al., 1993 changes the speed based on the number of fruits in incoming clusters which

is an algorithm that can be cheaply and quickly computed. However, the number of incoming

fruits in a cluster as a measure of speed might not work with multi-armed systems which are,

as shown by Arikapudi and Vougioukas, 2023, affected by the non-uniform distribution of

fruit, not just the density. Treating the vehicle speed as an optimization variable is possible,

and confers benefits such as: (a) the speed can be computed automatically alongside the

schedule, providing a way to get the best combination of speed and schedule, (b) don’t have

to worry about determining the parameters of the incoming fruit distribution that affect the

optimality of the speed However, this increases the size of an already large problem space,

15

more so if the speed needs to be dynamic, changing as the incoming fruit distribution changes.

It is likely that the problem becomes intractable unless strategies are employed to either

reduce the problem space or pose the problem as a solvable heuristic. Potential strategies

for this type of problem include multi-layered scheduling, such as in Tika et al., 2020 where

TSP and Model Predictive Control are used to calculate the schedule and the trajectory, in

that order. Of note, the schedule is recalculated every so often as new items approach the

arms on the conveyors. This approach is similar to Edan et al., 1993, which also recalculates

the schedule as new information becomes available, providing a semi-dynamically updating

schedule.

16

Figure 3: Concept art of the robotic harvester made up of four columns, each with three
arms.

4 Modeling the fruit harvesting process in an orchard

segment

4.1 Introduction and approach

This chapter describes a multi-armed robotic harvester model with arms both in series and

in parallel, moving at a constant speed along orchard rows. The harvester consists of C

number of columns set side-by-side, each with R number of arms (or rows) within each

column. The columns of arms will be set on a vehicle that is always in motion. All arms

are identical Cartesian arms, with three linear axes which move independently based on

trapezoidal velocity profiles. The arms inside a column share the workspace and their vertical

positioning is physically constrained, in the vertical direction, only by the arms (or frames)

above and below them. Instead of physical limits, software-defined vertical limits will be

computed to create rows in which the arms can move freely while avoiding collisions with

other arms.

Orchard rows will be broken up into smaller segments to simulate how the harvester may

only know the locations of fruits in sight of its cameras. Within a segment, the harvester

17

orchard row

xO

yO zO xw

yw zw

xs

ys zs

Figure 4: Top-down view of the orchard row frame O, segment frame s, and harvester’s
workspace frame w with respect to each other over a harvesting run.

will move with a constant speed, though speeds can vary between segments as needed. The

harvester will solve single segments of orchard rows individually. All fruit locations are known

and are static within the segment.

4.2 Defining the orchard segment and harvester frames

The orchard row’s frame will be the global frame, and it will describe the volume of space

enclosing all fruits. It is centered at the start of the current orchard row, at the edge of the

canopy and on the ground. Fig. 4 shows a top-down view of the frame. The x-axis will point

into the tree canopies, the y-axis will point along the orchard row, and the z-axis will point

upwards. The orchard frame’s bounds in the x-axis start at the edge of the canopy and end

at the center of the canopy, in the same plane as the tree trunks. In the y-axis, the bounds

enclose all the fruits between the start and end of the orchard row. Lastly, the z-axis bounds

will start below the bottom-most fruit and end above the top-most fruit.

It is assumed that the harvester only knows the location of fruits within view of its cameras.

Because of this, the orchard frame is broken up into segments which can be scheduled and

harvested independently as the system moves forward. Each one will be centered at some

(xs, ys, zs) and have the same length ds along the y-axis. The orchard row and the segments

18

zO

xO
yO

orchard row frame

segment frame
zS

xS
yS

Figure 5: Side view of the orchard row frame and the visualization of what potential segment
frames could be chosen within the orchard row frame.

have matching x and z-coordinates and bounds.

Because segments are scheduled independent of one another, the harvester’s frames are set in

reference to the segment frames rather than the orchard row frame. The harvester frame

will be the “workspace,” or the volume of space with fruits that the system can currently

harvest. It is composed of the volume of space in front of the harvester’s arms, encompassing

the volume of space starting at the fully retracted grippers and ending at the tree trunks, as

seen in Figure 6. The y and z-coordinates of the frame are set at the back-most column’s

bottom-back corner (minimum y and z-coordinates with respect to the segment frame), and

include all the columns, up to the front-most column’s front frame. For example, if there is

only one column, then the workspace is that one column frame, if there are three columns,

the workspace would encompass all three column frames and any space between the columns.

It is assumed that the harvester is far enough from the tree canopies, some distance wo when

retracted, such that any arm will be too far back to hit the tree’s branches when moving

19

Harvester work-volume

column
workspace

column
workspace

zw

xw

yw

Figure 6: Concept art showing the platform carrying two columns which make up the
workspace frame. Each column has a modular arm that can move anywhere within the
shaded, green area which indicates the two separate column work areas in the Y − Z plane.

within the Y − Z plane. This means that the x-axis of the harvester’s frame is centered

wo distance away from the segment frame’s center. Fig. 4 gives a visual representation of

this. As for the column’s y-bounds, the system is in constant motion which means that the

coordinates of the workspace and column frames change with time along the y-axis. As

noted, the workspace frame is centered at the bottom, back of the harvester. Assuming that

the workspace begins a run at y-coordinate Q, the workspace frames’ y-locations can be

calculated using

yv(t) = Q+ V ∗ t (1)

This allows us to set the back-most column’s index at 0. Each individual column’s frame will,

similarly to the harvester, be centered at column’s bottom, back corner. To find a column

frame’s locations at time t, we can use

ycmin(t) = Q+ (c+ 1)dc + cdo + V t ∀c = 0, 1, ..., C − 1 (2)

20

while a column’s front frame would be located at

ycmax(t) = Q+ (c+ 2)dc + cdo + V t ∀c = 0, 1, ..., C − 1 (3)

c is the column’s index, dc is the length of a column along the y-axis, V is the harvester’s

speed along the y-axis, and do is the distance between columns, if any. Lastly, and for ease of

calculation, the z-bounds of the harvester match the tallest segment’s z-bounds.

4.3 Modeling the harvest of a single fruit with a single arm

Harvesting a single fruit by one arm is modeled as a single Cartesian arm within a single

column within a segment, towed by a vehicle with constant speed along the positive y-axis.

The fruit i is located at (xi, yi, zi) in the segment frame, and is static within this frame.

Because the harvester is moving forward with a constant speed, however, the fruit is moving

with respect to the workspace frame of the arm. At the start, the arm will be fully retracted

with zero initial velocity with reference to the moving vehicle. It will start at the back and

center of the column frame.

We assume that, even if the workspace is smaller than the segment frame, the workspace

will cover the whole segment frame volume over time, by traveling along the y-axis. This

means that there exists a time window, TWi, describing when the fruit can be reached and

harvested; before and after the time window, the fruit is unreachable. The start and end

time for the single fruit is calculated as:

TWi = ti ∈
[
yi − (Q+ dc)

V
,
yi −Q

V

]
(4)

ti is the time of harvest of fruit i and Q is the harvester’s starting location on the y-axis,

and thus the arm’s starting y-coordinate, with respect to the section frame. The harvester’s

speed is assumed constant at all points of the run, with no initial acceleration or ending

21

deceleration period.

The time it takes for an arm to harvest a fruit is based on the distance the arm has to travel

to get to the fruit; the farther the fruit’s coordinates from the arm’s start coordinates, the

longer it takes to finish the harvest. In this paper, the time for an arm to harvest a single

fruit is named the handling time, or Th, and it is made up of a series of steps, each taking

some amount of time based on the distance traveled. An arm takes all steps in the same

order when picking any fruit. The steps taken by every arm are:

• “approach”: moves within the column frame (Y − Z plane) from the arm’s starting

coordinates to the fruit’s location,

• “extension”: extends out from the Y − Z plane to the fruit’s coordinate within the

canopy,

• “detachment”: grabs the fruit after some constant time duration tg,

• “retraction”: retracts back to the column frame, mirroring the extension step,

• “transport”: (gripper) moves to a drop-off point on one of the edges,

• “drop-off”: (gripper) drops off the fruit onto a conveyor over a constant time.

The steps are sequential, each must be completed, and they cannot be stopped and started.

While the arm is going through these steps, it is considered “busy” until it has finished the

whole process. If the arm has not been assigned to harvest the fruit or has already harvested

the fruit, it is considered “idle.” As noted in the list, these steps are affected by the subsystem

used to harvest the fruit. For example, a mechanical gripper has the added steps where it

has to drop off the fruit at a conveyor. A vacuum subsystem would remove the need for the

drop-off by having the fruit move directly to a bin using soft ducting.

Depending on the gripper, there are up to four movement steps which are variable in duration

22

and up to two time steps with a constant duration. Each movement step’s time duration

values are calculated using a trapezoidal or triangular velocity curve that takes the arm and

fruit’s x-, y-, and z-coordinates as well as the arm’s motor’s maximum acceleration amax,

deceleration dmax ≈ amax, and velocity vmax specs. The algorithm is based on Besset and

Béarée, 2017’s initial steps towards calculating an S-curve velocity trajectory. At each step

of the picking cycle, and depending on if the distance traveled is long enough to reach the

maximum arm velocity, the optimal velocity profile is calculated as either trapezoidal or

triangular, assuming maximum (bang-bang) acceleration step profiles. The minimum distance

to reach the maximum arm velocity is

∆dv,max =
v2max − v0
2amax

+
v2max

2dmax

. (5)

If |∆d| ≥ ∆dv,max, the velocity profile is trapezoidal because the arm will reach the maximum

velocity during movement in that axis. This determines how the trajectory parameters and

variables are calculated. These include the motor’s maximum acceleration, ar, velocity vr,

and deceleration dr and the duration of time the motor will accelerate, Ta, stay at a constant

velocity, Tv, and decelerate Td. Defining the sign of the motion as s = sign(∆d), we get the

following equations for the trapezoidal profile

ar = s ∗ amax; dr = s ∗ dmax; vr = s ∗ vmax; (6)

Ta =
vr − v0

ar
; Td =

vr
dr
; Tv =

∆d− s ∗∆dv,max

vr
. (7)

Otherwise, if |∆d| < ∆dv,max, the velocity profile becomes triangular which changes the

equations to

ar = s ∗ amax; dr = s ∗ dmax; vr = s ∗

√
2 ∗ amax ∗ dmax ∗∆d− dmax ∗ v20

amax + dmax

; (8)

23

Ta =
vr − v0

ar
; Td =

vr
dr
; Tv = 0. (9)

Summing Ta, Tv, and Td gives the duration of movement in one axis which can be used to

calculate the duration of each movement step.

During the approach phase, the fully retracted arm moves in the Y and Z-axes independently,

from the arm’s starting y-coordinate yc,r to the fruit’s coordinate at yi, and the starting

z-coordinate zc,r to the fruit’s coordinate zi. The distance traveled by the arm in each axis is:

∆dy = |yi − yc,r| (10)

∆dz = |zi − zc,r|. (11)

Movement in these two axes happens simultaneously to minimize the approach time. Because

this happens, it will take a duration equal to the highest travel time between travel in

the y-axis or in the z-axis, or Tyz = max(Ty, Tz). The longer distance in the two axes

determines the step’s duration. Once the correct y and z-coordinates are reached, the arm

extends toward the fruit over Tx duration of time. The grasping time, Tg is constant, and is

followed by retraction of the arm back to the frame, Tx,retract ≈ Tx. Lastly, if using a gripper,

Tc = Tyz,conveyor + Td where the arm moves to the conveyor and takes a constant time to drop

the fruit onto the conveyor. The total handling time for a fruit is then calculated using

Th,gripper = Tyz + 2Tx + Tg + Tc. (12)

As noted above, however, a vacuum harvesting subsystem would not require Tc, leading to

the equation

Th,vacuum = Tyz + 2Tx + Tg. (13)

Thus, if the harvesting process of the fruit starts at a time t, it will end at t+ Th. As long as

24

the detachment step ends before max (TW), the fruit is considered harvested. Otherwise,

the fruit will have been missed by the arm.

It is important to note that the gripper’s maximum velocity, acceleration and deceleration

values are different for each axis, depending on the motors controlling the movement. The

motors are chosen so that the specific axis’ length over which a motor moves, max(∆d),

result in |max(∆d)| = ∆dv,max, such that the motor never spends much time at the constant

velocity section of the trapezoidal velocity profile. It is preferred that the velocity profile

always be triangular because the motors are always accelerating or decelerating, which is

optimal. The harvester’s constant speed will affect the choice in motor specifications for the

y-axis because the harvester’s speed has to be taken into account through the arm’s starting

speed variable when calculating ∆dv,max.

4.4 Modeling the harvest of multiple fruits with a single arm

In this section, the single-arm-to-single-fruit model is expanded to a model describing a

single arm harvesting multiple fruits while being towed with constant speed in the positive

y-direction. N number of harvestable fruits are available to the arm. From the start, the

harvester knows the location of all harvestable fruits, and these locations are assumed static,

with respect to the segment frame, throughout the run. We need to generate an order in which

the arm will harvest these fruits, a sequence Σ. This sequence has to fit within the duration of

time it takes for the system to enter the segment frame, traverse the length between the start

and end y-coordinates of the segment, and fully exit the segment frame. Fruits can be missed

if there are too many for one arm to handle or if the combinations of time windows and

mean handling time make it impossible for the arm to harvest all fruits within the allotted

time. The total harvesting time can be computed using the single-arm-to-single-fruit method

described in the previous section and applied to each successive fruit in Σ, with one caveat:

the approach step’s duration is variable based on what fruit was previously harvested by the

25

arm.

When entering an orchard row or an individual segment, the single column starts a column’s

length from the start of the canopy. All fruits are unreachable at first. Once the harvester starts

moving, fruits enter the column’s workspace and the arm can start harvesting. Harvesting

stops once the back of the harvester passes the end of the segment, such that all fruits have

been passed by the column.

A fruit can only be harvested by the arm if the harvester has moved far enough that the fruit

has entered the arm’s workspace. We calculate this time using Equation 4 for every fruit.

Although the arm can begin the steps to harvest a fruit before the fruit enters its workspace,

the detachment step (when the arm comes in physical contact with the fruit), must happen

before the fruit passes beyond the arm’s reach. The time of harvest must happen at or before

max (TWi). Furthermore, the arm can only harvest one fruit at a time, during which it is

considered “busy.” Once a fruit i is harvested, it is not available to be harvested anymore.

Furthermore, fruit i cannot be harvested if the arm is still busy with a previous fruit j,

max (TWi) > tj + T j
h . (14)

The sequence of fruits that the arm follows while it harvests will be the result of an optimization

process that maximizes user-defined criteria such as FPE or FPT. Generating a usable Σ

is highly dependent both on the time window and handling time values of every fruit. Σ

must be able to describe both the order at which the fruits are harvested and the times

at which the fruits are harvested. Therefore, if P fruits were harvested in the run, let

Σ = {σ(1), σ(2), ..., σ(P)} be the fruit picking sequence; for example, if σ(4) = [12, 2.7], the

fruit with index 12 is the fourth fruit to be harvested at time 2.7 s. We compute FPE for P

26

harvested fruit in the whole segment with N total fruits as:

FPE =
P

N
. (15)

FPT is calculated by first computing the overall travel time, T , across the segment, from the

harvester’s starting point at Q to the stopping point at Q+D.

T =
D

V
, (16)

which leads to

FPT =
P

T
. (17)

We calculate the mean handling time as the sum of the individual handling times of picked

fruits, divided by the number of picked fruits. Assuming that the fruits harvested have

indexes (k = 1, 2, ..., P),

Th =
P∑

k=1

T k
h . (18)

4.5 Modeling the harvest of multiple fruits with multiple arms

This section presents a model for harvesting a single segment of an orchard row, with N

total fruits, using multiple linear arms, and computing the model’s associated FPT and

FPE. Like in the single arm sections, coordinates are expressed in the segment’s frame. This

frame will contain N number of fruits, all assumed harvestable. Every fruit i is positioned at

its coordinates (xi, yi, zi), with i = 0, 1, ..., N − 1 ordered by their y-coordiante such that

the first fruit encountered by the harvester is i = 0, and the last fruit is i = N − 1. The

segment is harvested as the harvester moves along it with constant speed V over the travel

length D. However, unlike the single arm sections, the harvester may be made up of multiple

columns of arms, requiring multiple column frames contained within the workspace frame.

The harvester starts at the y-coordinate Q, already at the constant speed V ; the harvester

27

zw

xw yw

 c = 0 c = 1 c = 2

Figure 7: Concept art of a multi-armed robotic harvester made up of three columns, each
with one arm, set in a row such that the arms work in series with each other.

will not accelerate or decelerate over a run. A run ends when the back of the harvester reaches

the end of the travel length. Within the workspace frame, the grippers may only move in

the Y − Z plane within their respective column frame. All columns and all grippers within

the columns are identical, and the frames for both columns and grippers are stationary with

respect to the moving platform and to each other. Note that when there are multiple arms

in a column, the arms are limited to moving in the vertical direction by software-defined

z-coordinate limits. c = 0 is set as the back-most column frame and c = C − 1 the front-most

column frame, r = 0 is set as the bottom row and r = R− 1 is set as the top row.

4.5.1 Arms working only in series

We modeled the process of harvesting a segment of an orchard row with several linear

arms working in series along a single row as follows; the robot is made up of C number of

rectangular, upright column frames, each with one arm, set side-by-side on top of a harvesting

platform. Since there is only one row, grippers will be bound in the z-axis by their respective

column frame. The grippers start fully retracted, centered vertically in the column and all

28

the way next to the back.

An ordered sequence of harvest, Σc, is generated for every arm c at the beginning of a run

based on the fruits within the segment’s frame. The arms will harvest the fruits as determined

by their respective harvesting sequence, in the order and at the times given for each fruit. We

let Σc = {σ(1), σ(2), ..., σ(P c)} be the harvesting sequence for arm c, with the order of σ(k)

indicating the order of harvest, and the values within σ(k) indicating the fruit index and the

time of harvest. A fruit i can only ever be in one sequence and, once added, will remain

within that sequence for the rest of the run. The overall order of harvest, Σ, is obtained

by combining and sorting every column’s harvesting sequence, based first on the time of

harvest, followed by the arm number; for example, if fruit i and fruit j were harvested at the

same time by c = 2 and c = 0, respectively, then Σ = σ(kj), σ(ki), where σ(kj) = [j, tj, 0],

σ(ki) = [i, ti, 2], and tj = ti. It should be noted that the σ(k)s in overall harvesting sequence,

Σ, include the harvesting arm index, the fruit index, and time of harvest.

Because there are multiple columns, the time window calculations have to be expanded;

every column has a time window for when each fruit enters and exits the column’s workspace.

These are calculated by extending Equation 4 to take into account the distance between each

column’s starting y-coordinate—based on its index, c, and the cell width, dc—and the fruit’s

yi within the section frame.

TW c
i = tc,ri ∈

[
yi − (Q+ dc(c+ 1) + doc)

V
,
yi − (Q+ dcc+ doc)

V

]
. (19)

Although the arms in the separate columns are independent of each others and not affected

by which fruits are in its Σc, the FPE and FPT are strongly affected by the final Σ. Better

combined FPE and FPT results are obtained when the harvest jobs are spread out amongst

all the arms, rather than when fewer arms do more work (Edan et al., 1993), indicating that

29

 r = 0

 r = 1

 r = (R-1)

zw

xw yw

Figure 8: Concept art of a multi-armed robotic harvester made up of one column with three
software-defined (purple lines) cells set one-on-top of the other. The arms are limited to their
software-determined row indicated by the purple, dashed line.

load balancing is important to get the best results.

We can compute the overall FPE using Equation 15 with the overall number of harvested

fruits, P , calculated by:

P =
C−1∑
c=0

P c. (20)

For arms working in series, the FPT and handling time are computed with P using Equa-

tions 17 and 18.

4.5.2 Arms working only in parallel

A harvester with R number of arms working in parallel within one column is modelled as

a single upright column with multiple identical Cartesian grippers placed one on top of

the other within the column. Because there is only one column, the column frame is the

workspace frame. The arms all share the column and are physically limited in their vertical

travel only by each other and the top and bottom frame members. Software will be used to

30

divide the column into R total rectangular rows, each row containing one arm. Dividing the

column into rows is important to avoid collisions without resorting to collision avoidance.

This division of the column is done once, before starting any harvesting operations in a

segment. Because an arm can only be assigned fruits that are within its row boundaries, it

cannot generate paths that could lead to collisions with the arms above or below it. However,

the software-defined nature of these rows provides flexibility to deal with changes in fruit

distributions between segments.

Some important considerations when calculating each arm’s vertical limits are as follows:

• all vertical limits in the columns are computed once, at the start of a run, and they

stay static for that run,

• the column’s bottom is row 0’s bottom vertical limit, and the column’s top is row R− 1

top vertical limit,

• grippers take up vertical space within the columns.

This last point is important. If not taken into account when calculating the software-defined

z-limits, there are likely to be collisions between arms. This height will require that there

be some ‘dead space’ equal to the gripper’s height, hg, between arms’ z-limits to take into

account the gripper’s geometry. Any fruit with a z-coordinate within the column’s dead

space cannot be harvested by any arm.

Like for the multiple arms in one row, every arm in the column is provided its own ordered

harvesting sequence, Σr, which it will follow to harvest fruits in the segment, and which

when combined with all other Σr leads to the overall ordered harvest sequence Σ. A fruit

can only be added to Σr if the fruit’s z-coordinate is within an arm’s vertical limits. This

means that each fruit can only be harvested by one arm during the time window calculated

by Equation 4. FPE, FPT, and handling time calculations are equivalent to the calculations

31

dw

 r = 0

 r = 1

 r = (R-1)

 …

 c = 1 c = 0 c = 2 … c = (C-1)

dc

hc

hr
R

zw

xw yw

do

Figure 9: Concept art of the robotic harvester made up of four columns, each with a width
dc and three arms. The distance between the back frame of c = 0 to the front frame of
c = (C − 1) make up the workspace length dw. The three arms share the whole column as
a workspace, with a total height of hc and software defined row heights hr, increasing the
system’s flexibility. Each column will have its own frame of reference which is centered at the
bottom, back-most point within the frame’s work area (shaded in green).

in the single-row Section, except that the sum is over all P r values.

4.5.3 Arms working in series and in parallel

This section discusses the unification of the multi-armed single-column and single-row models

into a model where the harvester has multiple columns set side-by-side, each with multiple

linear arms (see Fig. 9) mounted within them. Arms in different columns are independent of

each other, but within a column the arms share the area enclosed by the frame which requires

the use of software z-limits to prevent collisions. A harvesting sequence will be generated

for each arm, Σc,r = {σ(1), σ(2), ..., σ(P c,r), }. σ(k) contains the fruit index, time of harvest,

arm column number, and arm row number, such that σ(k) = [i, ti, c, r]. When combining

all Σc,r into the unified sequence Σ, the order is based first on time of harvest, followed by

column number, and finally row number. Like in previous multi-armed sections, the total

32

number of harvested fruits is calculated as the sum of fruits harvested by each arm,

P =
C−1∑
c=0

R−1∑
r=0

P c,r. (21)

Like in the single column model, the columns have dead space bands between rows which

grippers cannot enter to avoid collisions. However, the addition of more columns allows us to

change the dead space locations from column to column such that no two dead space bands

overlap. The dead space of each additional column will be placed immediately above or below

the existing lowest or highest dead space, in an alternating pattern. The resulting pattern

means that every fruit can be reached by at least one column of arms. Assuming the index

of columns starts at 0, even numbered columns will be offset − c
2
hg while odd columns will be

offset c+1
2
hg, as visualized in Figure 10. We determine if a column is even or odd if their c

index is even or odd. We treat the second column (c = 1) as an odd numbered column, but

hg

hghg

Figure 10: Visualization of the dead space offset when there are three columns.

33

the offset is calculated from column c = 0. The result is that

zce,rmax = zce−2,r
min − hg, ∀ce = 2, 4, ..., C − 1 (22)

and

zco,rmin = zco−2,r
max + hg, ∀co = 3, 5, ..., C − 1. (23)

4.6 Model considerations due to constant forward speed

For the multi-armed harvester, each fruit is a job that has to be assigned to an agent, or

arm. Each fruit has a non-constant handling time that is ‘time dependent;’ the handling time

changes depending on when the arm begins the process of harvesting the fruit. The closer

subsequently harvested fruits are, the shorter the handling time for the second fruit because

the arm doesn’t have to move as far. Furthermore, an arm can only harvest a fruit within

its work volume which is determined by the arm’s extension capabilities, the front and back

column frame locations, the software and frame imposed limits above and below the arm,

and the harvester speed. The constant forward speed means that the fruits “move” within

this volume in the negative y-axis direction—towards the back of the system—as time passes.

This means that fruits have a time window during which they can be harvested by a specific

arm in a specific column. Equation 19 calculates the time window, TW c
i , or duration during

which fruit i is located within column c’s work volume

TW c
i = tc,ri ∈

[
yi − (Q+ dc(c+ 1) + doc)

V
,
yi − (Q+ dcc+ doc)

V

]

where yi is fruit i’s y-coordinate, Q is the workspace’s current location in the world frame, dc

is the column’s width (along the y-axis) and do the space between cells, c is the column’s

index, V is the harvester speed in m/s, and tc,ri is the time when fruit i is harvested by the

arm in column c and row r. Time tc,ri is the end of the “detachment” step of fruit harvesting,

the third out of four steps for a vacuum based harvester. The i-th fruit’s TW c
i values helps

34

Figure 11: Arm-to-fruit assignment is dependent on each fruits’ y-coordinates and the
handling time for each fruit, since the arm will be busy until the handling time is finished.
In this image only fruits number 2, 3, and 4 might be harvestable by the arm. Fruit 0 is past
the frame and fruit 1 cannot be reached before it passes the frame. Fruit 3 might be too close
to fruit 2 and, if V is very fast, could pass the frame before the arm has finished harvesting
fruit 2.

determine when the fruit is within the work volume and so, when fruit i can be physically

grabbed or vacuumed by an arm. If max(TW c
i) < 0, then the fruit cannot be harvested

by the arm in column c because it has already passed beyond the arm’s work volume by

passing the back frame. Such a fruit is represented in Fig. 11 as fruit 0. If min(TW c
i) < 0 but

max(TW c
i) > 0, the fruit is already within c’s work volume. As long as max(TW c

i) > 0, the

fruit is still potentially harvestable. In Fig. 11, fruit 1, 2, and 3 all fall in this category, though

fruit 1 is likely unpickable because the arm is too close to the back edge and too far away

from the arm to be reached in time. In a case where min(TW c
i) < 0 but max(TW c

i) > 0,

min(TW c
i) should be set to zero, since negative time does not make sense. Once an arm c

is assigned a fruit i after harvesting fruit j, and it begins the process, it must go through

all harvesting steps between fruits j and i, before the job is considered finished. In Fig. 11,

35

fruits 2 and 3 are an interesting edge case. If the harvester speed is too fast, then fruit 3 may

not be harvestable because the minimum time between j and i’s harvest might have fruit

3 passing the back frame column before it can be harvested. Extending Equation 14 for a

vacuum gripper, i can only be harvested after j if:

max (TW c
i) ≥ tcj + T j

x + T ji
yz + T i

x + T i
g (24)

After tcj, the arm must retract, move to i in the Y − Z plane, extend to i, and take time to

grab i before max (TW c
i) time is reached. This is further complicated because the handling

time encompasses multiple steps, some which can start before min(TW c
i), or take place

beyond max(TW c
i)—movement in the Y − Z plane and the extension in X can be started

before the fruit comes into the work volume, while retraction and gripper drop-off movements

can be performed even after the fruit would have passed the back frame.

36

5 Multi-objective scheduling maximizing FPT while

meeting a minimum FPE

5.1 Introduction and approach

This chapter focuses on the development of multi-objective scheduling to obtain the maximum

possible FPT while meeting an FPE lower bound when working with multi-armed harvesters.

To do this, the harvester first performs load balancing across rows through software-defined

row boundaries and then computes the best harvester speed and schedule combination. This

process is then extended to whole orchard rows by solving for the best harvester settings and

schedule for small segments of the orchard, one at a time.

To load balance the workload between rows, we divide the rows so that every row has

approximately the same number of fruits. Based on these rows, the scheduler will find a

best combined speed and schedule. None of this is solved dynamically, e.g., in real time.

Instead, the system computes a single set of row limits, schedule, and harvester speed for the

segment of the orchard row that it can observe. Together, the harvester settings and schedule

maximize FPT while meeting a minimum FPE value. Although we prioritize FPE due to its

higher sensitivity (see Harrell, 1987), it is important that FPT be as high as possible for the

harvester to be useful.

Obtaining the best combination of speed and schedule is complicated because FPE and FPT

are at odds with each other, as described in Edan et al., 1993. We tested two scheduling

strategies to get the best harvester speed and schedule combination. The first is a greedy,

naive strategy where the scheduler loops through a set of discrete speeds, solves the scheduling

problem for each velocity, and chooses the schedule and speed combination that meet the

requirements. In contrast, the second strategy poses the optimization problem as a dual-

objective optimization problem, with the harvester speed as one of the optimization variables.

37

Finally, we use dynamic planning over a Sliding Planning Window to extend harvesting from

a single segment to the whole orchard row. This is necessary for three reasons: the harvester

can only “see” fruits in front of it, optimization problems can fail if the problem space is too

large, and optimizing the settings and schedule once, for the whole orchard row, would be

suboptimal. Not only can the harvester only see a small section of the orchard at any one

time, but a whole orchard row has too big of a problem space to solve using MILP, especially

as the number of arms increases. Thus, we break up the orchard row into a series of sequential

segments, set one after the other, and each segment is solved individually. Segments can

overlap one another, such that fruits that were missed or which moved can be re-visited,

and horizons are used to provide future knowledge for better results. This has the added

benefit that the best row height, vehicle speed, and schedule combination is obtained for

each segment. Such a strategy provides even better results than solving for a schedule for the

whole orchard row in a single pass.

5.2 Using software-defined row limits for load balancing between

rows

The flexibility of software-defined z-axis limits for the rows is important because fruit

distributions are not uniform along the z-axis. By defining the limits through software instead

of physical frames, the harvester can determine the best location for these limits and react to

the distribution while still avoiding the need for collision avoidance. When harvesting an

orchard segment, the harvester will calculate the z-limits once, at the very start, and keep

that configuration for the whole run. One way of doing this is by calculating the z-axis limits

of rows so that each row contains the same number of fruits as the other rows.

If we assume that all fruits take around the same amount of time to harvest, partitioning

the columns into rows with the same number of fruits (by fruits) would lead to workload

balancing across the rows. All the rows will take the same amount of time to harvest; if the

38

workload was unbalanced, instead, the row with the most fruits would require more time to

finish harvesting fruits while the row with the fewest fruits would require less time. With

unbalanced workloads, any harvester speed becomes suboptimal. FPE suffers if the system

goes faster because more fruits are left behind in the slower rows, while FPT decreases if the

slower speeds are chosen and many arms in the rows with fewer fruits are left idling. The

more extreme the non-uniformity of the fruit distribution, the more important it becomes

that the system be able to react to it.

To show the effects of using z-axis limits for workload balancing across rows, we compare it

setting all rows to have equal heights. The calculations for the naive, equal heights’ method

are as follows. The bottom limits are calculated using

zrtop =
hc

R
r +

1

2
hg ∀r = 1, 2, ..., R− 1 (25)

while the top limits are calculated using

zrbot =
hc

R
(r + 1)− 1

2
hg ∀r = 1, 2, ..., R− 1. (26)

These equations take into account the dead-space caused by the gripper’s physical height.

Although not shown here, the limits for a cell in column c and row r, for both this method

and the next, will be slightly different across columns due to offsets calculated to minimize

dead-space. This alternating dead-space pattern is described in Chapter 3.

The method to calculate z-axis limits so that every row has around the same number of fruits

is as follows; the fruits are ordered, based on their z-coordinate, into a sequence M . The

total number of fruits are then divided by the number of rows such that nr = floor(N/R).

Fruits at indexes

m(r) = {(r + 1) ∗ nr} ∀r = 0, 1, 2, ..., R− 1 (27)

39

are the fruits located at the highest point in row r, and their z-coordinates,

M(m(r)) = {zm(0), zm(1), ..., zm(R−1)}, (28)

can be used to determine the top z-limits of their respective row, except for the top-most row.

However, the row z-limits should not be placed exactly on the fruits’ coordinates to avoid

putting the fruit as the boundary. Instead, the z-coordinate used for the z-limit will be the

average coordinate between zm(0) and zm(0)+1. Mathematically, the z-limits are calculated

using

zrtop =
(M(m(r)) +M(m(r) + 1))

2
∀r = 0, 1, ..., R− 2 (29)

and

zrbot = zr−1
top + hg ∀r = 1, 2, ..., R− 1 (30)

5.3 Combining harvester speed selection and scheduling to maxi-

mize results

Determining the harvester speed is very important because it has a large effect on both FPE

and FPT. A good speed helps distribute the fruits among the columns by constraining how

many fruits a single arm can harvest during a run; too slow, and the front arms will be busy

harvesting all the fruits while the back arms will remain idle. When the harvester’s speed is

too fast compared to the amount of time it takes an arm to go through all the steps in the

picking cycle, the arms will not have enough time to harvest fruits. The “best” speed will be

one that provides just enough time that all arms remain busy over the majority of the run,

while still having time to harvest most fruits. However, it is too complicated to implement

dynamic speed selection that matches changes in fruit density in real-time while providing

near-optimal dual-objective scheduling results. Instead, speed selection will be implemented

alongside the scheduler. The two will work together to find the best combined harvester

speed and schedule to obtain a maximum FPT given a minimum FPE is met.

40

Figure 12: Diagram of the steps taken when using the exhaustive speed search strategy.

Two different strategies are used to find the best speed along with the arm-to-fruit schedule.

The first is used as a baseline and is an Exhaustive Speed Search (ESS), a loop that contains

the scheduler and which loops through discrete harvester speed values in ascending order

until an FPE value of less than 95% is reached, choosing the previous run. Figure 12 shows a

diagram of the ESS. This strategy works because as the harvester’s speed increases, FPE is a

monotonically non-increasing function and FPT is a monotonically non-decreasing function.

In other words, FPE will only ever go down while FPT will ever only go up over the range of

speeds used in this thesis. Once FPE drops below 95%, no further increase can be seen for

FPE, so the previous harvester speed will have the highest possible FPT for an FPE above

the required threshold. This is a very easy strategy but greedy and suboptimal. A second way

to choose the harvester speed is to include it as a decision variable within an optimization

problem. This is seemingly less complicated to implement; however, the optimization’s

problem-space grows a lot. Although the MILP method can theoretically provide better

results, the growing complexity increases the chance of making the problem intractable and

41

unsolvable with current technologies.

5.4 Formulating First Come First Served as the benchmark schedul-

ing algorithm

The FIFO scheduling algorithm known as First Come First Served (FCFS) is used as the

benchmark scheduling algorithm. Although uninformed and suboptimal, it is commonly used

in multi-armed, pick-and-place industrial applications, see Daoud et al., 2014; Huang et al.,

2012; Humbert, Pham, et al., 2015, because it is easy to implement and a schedule can be

calculated in real time. In a FCFS algorithm, jobs are sorted by some desired value—arrival

time, location, etc.—and then assigned to an agent one-by-one, in ascending index order of

the sorted list or array, to be completed by the agent before a new job is assigned. To better

fit the robotic harvesting system, however, the base FCFS algorithm requires extensions such

as the addition of time windows, multiple agents, and dynamic handling time.

In the multi-armed harvester FCFS algorithm, fruits are sorted by their y-coordinate, and

the algorithm assigns arms to fruits by the fruit’s distance to the column frames. Once the

fruits are sorted by their y-coordinate, the TW for every fruit is calculated based on a given

V value. The arm (or arms) are set as “idle” and assigned to the first fruit that has not been

harvested nor assigned to a different arm. Once an arm is assigned to a fruit, it is set as

“busy” until it has finished harvesting the fruit and retracted back to xV
min; this assumes that

every fruit assigned to an arm will be harvested. Harvesting a fruit i, assuming a vacuum

gripper, is based on Equation 13, with four steps: move within the Y − Z plane to yi and zi,

extension to xi, grabbing, and retraction back to xV
min. Let i be the fruit to be harvested,

j be the previously harvested fruit, and c, r be the arm doing the harvesting. If there are

multiple rows per columns, only fruits with z-coordinates between the row’s z-limits can be

assigned to arms in row r. FCFS starts by checking if j + 1 is available to be harvested and

in the correct row. If so, then i = j + 1. Otherwise, the code will loop through the queue of

42

sorted fruits until it identifies one that is available and in the correct row and that will be

i. The algorithm then checks if it is possible to harvest i after j by checking if c, r will be

become “idle” in time to move to and grab i while it’s in c, r’s workspace. This is checked by

seeing if

tc,rj + T j
X ≤ max(TW c

i)− (T ji
yz + T i

X + tgrab), (31)

then i can be harvested after j. Otherwise, if

tc,rj + T j
X > max(TW c

i)− (T ji
yz + T i

X + tgrab), (32)

then i cannot be harvested by c and must be harvested by an arm further back, if possible.

If i can be harvested after j, then the algorithm must figure out at what time to start the

harvesting process. If the harvest time and retraction to harvest fruit j is less than i fruit’s

time of entry into the frame’s workspace plus all the steps to reach the fruit, or,

tc,rj + T j
X ≤ min(TW c

i)− (T ji
yz + T i

X), (33)

then i is too far forward to start right after finishing the retraction step for j. The arm is

assumed to move to i’s z-coordinate and the front frame while it waits, and, atmin(TW c
i)−T i

X ,

c will extend so that at min(TW c
i) + tgrab the arm can grab the fruit. If instead

tc,rj + T j
X > min(TW c

i)− (T ji
yz + T i

X), (34)

then c will be busy harvesting j past min(TW c
i), and arm c, r should start moving towards i

immediately.

43

Algorithm 1 FCFS arm-to-fruit scheduler

Require: List of fruits sorted by y-coordinates in ascending order, TY Z[j, i] and TX[i]
calculated beforehand. Y [i] and Z[i] fruit i’s y and z-coordinates, Q in the same frame
as Y [i] and Z[i], V in m/s.

declare: busy till[R,C] : 2D ARRAY of FLOAT
declare: busy with[R,C] : 2D ARRAY of INT
declare: i harvested[N] : 1D ARRAY of BINARY

1: for i = 0, N − 1 do
2: tws,0 := (Y [i]− (Q+ dc))/V ▷ Start, i enters column front
3: tws,C := (Y [i]− (Q+ (C − 1) ∗ dc + (C − 2) ∗ do))/V
4: twe,0 := (Y [i]−Q)/V ▷ End, i exits column back
5: twe,C := (Y [i]− (Q+ (C − 2) ∗ dc + (C − 3) ∗ do))/V
6: tws := range(tws,0, tws,C , step = −(dc + do)/Vm) ▷ All column start times
7: twe := range(twe,0, twe,C , step = −(dc + do)/Vm) ▷ All column end times
8: for c = C − 1, 0 do ▷ Start at the front column (C − 1) and move backwards
9: if i harvested[i] == 1 then ▷ If fruit i already harvested, go to i+ 1
10: break
11: end if
12: for r = 0, R− 1 do
13: if Z[i] > zbot[c, r] and Z[i] < ztop[c, r] then
14: j := busy with[r, c] ▷ Previously harvested fruit by arm c, r
15: if i > 0 then
16: j2i = TY Z[j, i]
17: else ▷ If i = 0, j = 0 and TY Z[0, 0] = inf
18: Ty = V profile(Q, Y [i]) ▷ Calc TYZ movement from Q to i
19: Tz = V profile((ztop[c, r]− zbot[c, r])/2, Z[i])
20: j2i = max(Ty, Tz)
21: end if
22: if busy till[c, r] + j2i+ TX[i] + tgrab ≤ twe[c] then ▷ Mark i as picked
23: i harvested[i] := 1
24: if busy till[c, r] ≤ tws − (j2i+ TX[i]) then ▷ Wait to start harvesting
25: t := tws[c] + tgrab
26: else ▷ No need to wait, start once not busy
27: t := busy till[r, c] + j2i+ TX[i] + tgrab
28: end if
29: busy till[r, c] := t+ TX[i]
30: busy with[r, c] := i
31: break ▷ Fruit i is done, move to i+ 1
32: end if
33: end if
34: end for
35: end for
36: end for

44

5.5 Dual-objective scheduling to maximize FPT while meeting a

minimum FPE

We hypothesize that the best results will be achieved if the objective function optimizes

both FPE and FPT. Results from using FCFS as the scheduling algorithm are suboptimal

not only because the algorithm is uninformed, but it also focuses more on FPE. A more

optimal way to compute schedules for the harvester involves using Mixed-Integer Linear

Programming (MILP), a form of mathematical optimization, and converting the problem into

a dual-objective optimization problem. The problem is defined mathematically, including an

objective function as well as any constraints, and solved using a commercial solver. More

specifically, we will use scalarization to find the best schedule and harvester speed combination,

given constraints such as a minimum achieved FPE.

As shown by Mann et al., 2016, the multi-armed harvester problem can be described

mathematically by the Time Dependent Team Orienteering Problem with Time Windows

(TDTOPTW). This is an extension of the Orienteering Problem, or OP, fist described in Fomin

and Lingas, 2002. The goal of the OP is to maximize the total score of an individual that

starts at a specified point, visits as many checkpoints (vertices) as possible, and returns to

the end point within a given time frame. Vertices can be missed and can have specific scores

related to them, so some are offer a greater incentive if chosen as part of the visited points.

The orienteering problem by itself is NP-hard. When extended to the TDTOPTW, it is

NP-hard and MAX-SNP-hard, as shown by Fomin and Lingas, 2002; Gavalas et al., 2014.

Solving small problem instances optimally is time and computationally expensive, while larger

problems cannot be solved optimally with current technologies and knowledge. Although

there are heuristics developed for the TDTOPTW (see Gavalas et al., 2014; Mann et al.,

2016), they can be very situational and must be tested within the specific work. Instead, we

will keep the problem size small by breaking the orchard rows into segments and solving each

segment independently.

45

It is important to note that the underlying TDTOPTW MIP formulation used for this

project’s multi-armed harvester is similar, but not identical, to the formulation in Mann

et al., 2016. The time window calculations are changed such that the 0-th column is the

back-most column and fruits can start within the system’s view window, whereas in Mann

et al., 2016 the fruits always start in front of the system’s front-most work cell. The equation

to calculate the time window is also extended and is written in Equation 19. Multiple rows

of arms are a further addition to the MIP formulation. Instead of only having arms in series,

one after the other, the system has a grid-like matrix of arms all working together both in

series and in parallel. This means that an arm in a row cannot harvest fruits outside their

workspace which is limited both in the y-axis by the column’s front and back frames and

in the z-axis by software limits or the column’s top and bottom frame. It also means that

calculating FPE and FPT has to take into account the rows and the columns, as shown in

the following Equations 15 and 17,

FPE =
1

N

(R−1)∑
r=0

(C−1)∑
c=0

(N−1)∑
i=0

xc,r
i

and

FPT =
V

dw

(R−1)∑
r=0

(C−1)∑
c=0

(N−1)∑
i=0

xc,r
i .

c = 0, 1, ..., (C − 1) is the column index, r = 0, 1, ..., (R − 1) is the row index, and i =

0, 1, ..., (N − 1) the fruit index, with C, R, and N being the total number of columns, rows,

and harvestable fruits, respectively. xc,r
i is a binary value indicating if fruit i is or is not

harvested by the arm in column c, row r.

To make this problem into a dual-objective optimization problem, we use Scalarization. This

method, described in Gunantara, 2018, is used to solve for single answers when working with

multiple objectives. It requires that “subjective preferences” be provided by a Decision Maker

because, when there are multiple, conflicting objectives there usually isn’t a single, best

46

answer; every answer is a trade-off between the objectives. This is true of the multi-armed

harvester because FPE and FPT are conflicting objectives; the highest FPE would be at the

lowest speeds, the highest FPT would result in too few fruits being harvested. We can use

knowledge of the growers’ preferences to provide constraints such as a minimum FPE that

must be harvested. The simplest way of formulating scalarized multiple-objective problems is

through “Classical” solving methods. These are simple extensions to existing single objective

optimization problems. Though, it is important to note that the Classical methods are

potentially inefficient and only locally non-dominated, Ngatchou et al., 2005.

We will focus on a single method, Goal Programming (see Ngatchou et al., 2005), to solve for

both FPE and FPT. It does so by choosing solutions where the FPE and FPT are optimized

on given desired values, FPE∗ and FPT ∗. For FPT, these values are determined based on

its relationship to the FPE, the number of fruits in a segment N , the length traveled over a

segment D, and the harvester speed V ,

FPT =
N ∗ V ∗ FPE

D
. (35)

All of these additions mean that the problem space is much greater than the problem space

for the max FPE formulation. However, they do not require an outer loop to determine

the harvester speed and in theory should produce better results. To make them more likely

to succeed, initial guesses for the harvester speed are obtained before running the MILP,

decreasing the overall problem space. The lower bound for the harvesters’ speed is computed

based on the mean handling time, Th, distance traveled, the number of arms, and the number

of available fruits,

Vlb =
D ∗ C ∗R
N ∗ Th

. (36)

The upper bound is set to be 5 cm/s more than the lower bound. This is to limit the problem

space and increase the chance of finding a solution.

47

5.5.1 Maximizing FPT using Goal Programming

The first scalarized multi-objective formulation which includes the harvester speed as a

decision variable is based on Goal Programming (GP), described in Caramia and Dell’Olmo,

2020; Deb et al., 2016; Jones and Tamiz, 2016, which uses an objective function alongside an

aspiration level, z̄g, to form a goal fg(x) ≤ z̄g, where G is the number of objectives. Rather

than maximize or minimize a value, GP minimizes the deviation, δg = z̄g − fg(x) between the

objective function value and the aspiration level. The deviation is presented as two positive

values, δg = δ−g − δ+g , where δ−g is the slack and δ+g is the surplus. GP can be formulated in

multiple ways, though this thesis will focus on the well established weighted sums methods.

Because the goal is to maximize FPE and FPT while still meeting the goals, the slack will be

used in the objective function. The number of objectives will be G = 2, where g = 1 for FPE

and g = 2 for FPT. The FPT slack’s lower bound will be a negative value to allow it to go

below the “desired” minimum. This bound is calculated by finding a maximum theoretical

FPT,

FPTmax =
C ∗R
Th,min

, (37)

which uses the minimum handling time, Th,min, seen empirically. The lower bound for the

FPE slack will be set at 0 so that the solver focuses on FPT.

In this formulation FPE and FPT will be defined using Equations 15 and 17, respectively.

The aspiration values will be 95% for FPE and the solution to 35 for FPT. To make sure

that the units in the objective function are the same, the weight multiplied with the FPT

slack will be D/N . Furthermore, only the FPT objective will be rewarded if the slack value

goes below FPT ∗. Rewarding FPE as well has the solver prioritize FPE by a large margin

producing low FPT results.

48

minimize
2∑

g=1

wgδ
−
g (38a)

subject to

R−1∑
r=0

C−1∑
c=0

xc,r
i ≤ 1, i = 0, . . . , (N − 1) (38b)

,

tc,rj + TXi + TY Zji + TXj + tgrab − tc,ri ≤ M(2− xc,r
i − xc,r

j), i, j : Yj < Yi, (38c)

i, j = 0, . . . , (N − 1),

c = 0, . . . , (C − 1),

r = 0, . . . , (R− 1),

tc,ri − TXi − tgrab ≥ −(TXmax + tgrab)(1− xc,r
i) + 0.0001xc,r

i , i = 0, . . . , (N − 1), (38d)

c = 0, . . . , (C − 1),

r = 0, . . . , (R− 1),

tc,ri ≥ min(TWstartci , TWendci), i = 0, . . . , (N − 1), (38e)

c = 0, . . . , (C − 1),

r = 0, . . . , (R− 1),

tc,ri ≤ max(TWstartci , TWendci), i = 0, . . . , (N − 1), (38f)

c = 0, . . . , (C − 1),

r = 0, . . . , (R− 1),

xc,r
i = 0, i, r : zi < zr,bot, (38g)

i, r : zi > zr,top,

xc,r
i = 0, i : Si = 2 (38h)

,

xc,r
i = 0, i, c : max(TW c

i) ≤ 0, (38i)

TWstartci ∗ V = yi − (Q+ dcell(c+ 1)), i = 0, . . . , (N − 1), (38j)

c = 0, . . . , (C − 1),

TWendci ∗ V = yi − (Q+ dcell ∗ c), i = 0, . . . , (N − 1), (38k)

c = 0, . . . , (C − 1),

TWstartci = max(0, TWstartci), i = 0, . . . , (N − 1), (38l)

c = 0, . . . , (C − 1),

TWendci = max(0, TWstartci), i = 0, . . . , (N − 1), (38m)

c = 0, . . . , (C − 1),

FPE ≤ 1

N

(R−1)∑
r=0

(C−1)∑
c=0

(N−1)∑
i=0

xc,r
i (38n)

49

,

FPE ≥ FPE∗ − δ−1 , (38o)

FPT ≤ V

dw

(R−1)∑
r=0

(C−1)∑
c=0

(N−1)∑
i=0

xc,r
i (38p)

,

FPT ≥ FPT ∗ − δ−2 (38q)

where

xc,r
i ∈ {1, 0} tc,ri ∈ ℜ+ Vmin ≤ V ≤ Vmax [m]

0 ≤ TWstartci ≤ tub 0 ≤ TWendci ≤ tub FPT, FPE ∈ ℜ+

δ−1 ≥ 0 δ−2 ≥ Th,min

(38b) means that at most one arm can be assigned to one fruit. (38c) means that time elapsed

between pickup of any two fruits reached by the same arm is at least retraction for fruit i

plus movement from i to j plus extension to j plus a grabbing time. (38d) means that if the

fruit is at or behind the back edge of the column, then it cannot be picked because the arm,

at minimum, has to extend out and grab the fruit. (38e) and (38f) mean that the time of

harvest for fruit i by the arm in column c and row r has to be within the calculated time

windows for that fruit and that column, the smaller value is the start time and the larger

value is the end time. (38g) means that if fruit i’s z-coordinate is outside the arm’s z-axis

range of movement, do not pick it. (38h) means that if fruit was removed because it has

already been scheduled and picked, do not schedule it again. (38i) means that if TWend is

negative, the fruit has passed the column k’s back edge and cannot be harvested by any arm

in that column. (38j) and (38k) calculate the start and end of the time window over which

arms in column c can harvest fruit i based on the chosen V . (38l) means that a fruit cannot

be harvested at a negative time so if the TWstart value is negative, at least part of the time

window does not count because the fruit is close to the back edge of the column and the

actual TWstart should be at 0 s. (38m) means that if TWend is negative, the ith fruit is

50

completely behind a column’s back edge, resulting in an unpickable fruit for that column.

Set the start time window value to 0 s so that the solver can run. (38n) means that defines

FPE and sets it as an upper bound so that a later soft constraint can set a lower bound for

FPE. (38o) means that a soft constraint that sets a lower bound to the FPE value that

can be violated if it’s not possible to get that value. If FPEsl is positive, it shows by how

much the constraint was violated. (38p) means that defines FPT and sets it as an upper

bound so that a later soft constraint can set a lower bound for FPT . (38q) means that a soft

constraint that sets a lower bound to the FPT value that can be violated if it’s not possible

to get that value. If FPTsl is positive, it shows by how much the constraint was violated.

5.6 Harvesting whole orchard rows using the Sliding Planning

Window model

There is a need to expand the optimization of the harvester from a single segment to a whole

row. We propose to implement a Sliding Planning Window (SPW) with a finite time-horizon

determined by the harvester’s Sliding Window length, dp, travel length, D, and harvester

speed, V . The whole orchard row is broken up into short, sequential, and overlapping

segments, similar to those solved in the single segment stage, and scheduled based only on

the knowledge of the individual segments. Each segment will make up a “Sliding Window,” a

representation of the section of the orchard row that the harvester’s cameras can “see” and

for which it knows the location of all harvestable fruits. As shown in Figure 13, the Sliding

Window includes the volume in front of the arms and a “horizon,” a small volume at the

front of the harvester that locates the fruits that will soon enter the work volume. This

provides knowledge of the upcoming fruits which will enter the front column’s work volume,

improving the system’s ability to plan. Thus, a Sliding Window spans the length

dp = dw + dh (39)

51

dhdw

xw

ywzw

Figure 13: Top-down view and 2-D projections of the Sliding Window, dp, made up of the
workspace, dw, and horizon, dh, view windows.

and height hc, which is based on the height of the columns. The Sliding Window can be

exploited to create local, static data of the currently harvestable fruits by “freezing” the fruit

data within the volume while the harvester moves along its length. It updates this knowledge

every time it travels D distance, breaking up the orchard row into smaller problems that

are easier to schedule. Each section is treated like an individual optimization problem with

a fraction of the total number of fruits. Furthermore, by breaking up the whole orchard

row into sections, the system can react to changes in fruit density or distributions in a more

dynamic fashion. Row z-limits, the harvester speed, and the schedule can be recalculated

every traveled distance, D, to adjust to more local changes in fruit distribution, density, and

locations. We assumed that fruit localization does not include tracking fruits between Sliding

Windows because of the high computation time needed to do so.

52

The sliding window methodology allows the system to optimize for the present and future

knowledge but still remain flexible enough that it can react to changes while harvesting. At

the start of the orchard row, the harvester is located a vehicle length outside the canopy.

Only the horizon will contain any fruits and the harvester has to move into the canopy

before the arms start working. This is similar to computing the schedule and harvester

speed combination for single segments. Once inside the orchard row, however, most Sliding

Windows contain fruit within their work volume and the arms should be busy immediately.

Assuming the harvester starts at the y-coordinate Q, the system goes through the following

steps:

1. the origin of the Sliding Window is set at Q, such that the system has knowledge of all

fruit between the coordinates Q and Q+ dp,

2. this knowledge is “frozen” and treated like a static optimization problem, even though

the system never stops moving,

3. using the fruit location data, the system determines the boundaries for the rows of

grippers,

4. the system computes the schedule and harvester speed combination based on the Sliding

Window’s fruit locations and gripper row limits,

5. while moving at the chosen harvester speed, the system harvesters the fruits according

to the resulting schedule,

6. once the harvester has traveled D distance to Q+D, the system “slides” the Sliding

Window to the new starting coordinate Q+D and restarts the process.

Figure 14 visualizes how the Sliding Windows move along with the harvester. Importantly,

when working in a whole orchard row, the travel length is smaller than the harvester’s Sliding

Window, unlike the single segment section where the travel length is larger than the length of

segment with fruits. The shorter the travel length, the more the system can reschedule and

53

S0

S1

zo

ox
yo

D

zw

xw
yw

zo

xo
oy

D

zw

xw
yw

zo

xo
yo

S0

S1

S2

Figure 14: 2D projections of a series of static views updated every time the vehicle moves
a given distance D. The views are called Sliding Windows, denoted as Sl. Each Sliding
Window saves the static set of fruits in view of the system at that point in time, for which
the system then creates a schedule for harvest. A travel length D is chosen to be smaller
than the length of the workspace to have subsequent snapshots overlap (shown in blue) so
that that knowledge of that set of fruits can be updated and rescheduled over time.

react to changes in the orchard such as movement in branches or fruits that were previously

not located. If it is too short, though, the time spent computing the schedule will drown out

everything else because scheduling is a time-consuming process.

Each schedule is computed as if the whole Sliding Window was to be harvested. These

schedules should lead to a minimum FPE that matches the minimum FPE desired for the

whole orchard row. Once the schedule is finalized, any fruits that will not be reached by the

54

end of the travel length D are removed from the schedule. This means that the real harvested

FPE for that Sliding Window will be lower than the desired FPE, but, by the end of the

orchard row, the overall percent of harvested fruits will be closer to the desired FPE than the

individual Sliding Window results. If the schedule was instead computed based on the travel

length, it would lose the “future” information that the rest of the Sliding Window provides.

55

6 Workspace partitioning and speed selection to im-

prove harvesting speeds

We performed two experiments to test the effects of partitioning the column workspaces into

horizontal rows using two methods, alongside speed selection, on scheduling for multi-armed

robotic harvesters. Tests were performed through simulations, using digitized distribution

data from v-trellised apple orchards. Schedules were computed for 111, 3.5 m segments using

FCFS and FCFS with ESS. The resulting FPE and FPT were analyzed to determine the effects

of different workspace partitioning methods, harvester speeds, and harvester configurations.

The first experiment compared two methods to partition the harvester’s columns into rows of

arms when the harvester moved along orchard segments at a chosen “best” harvester speed.

The second experiment tested how the FPE and FPT obtained using the best harvester speed

compared to using fixed harvester speeds for all segments. For this second experiment, the

columns were always partitioned so that each row had an equal number of fruits. All tests

were run on the same 111 segments and nine harvester configurations shown in Fig. 15.

6.1 Harvester settings

The harvester has columns 1 m long and 3.5 m tall, with 0.15 m of space between columns

and 0.05 m high dead bands. Grippers will be set at a distance of 0 m from the fruit with

the x-coordinate closest to the harvester. For all tests, the harvester started at Q = −3.3 m

with respect to the segment and ended at the y-coordinate 3.5 m. Each arm axes had their

own maximum acceleration velocity, and deceleration shown in Table 1.

max acceleration (m/s2) max velocity (m/s) max deceleration (m/s2)
x-axis 2 4 2
y-axis 1.4 2.8 1.4
z-axis 1.3 2.8 1.3

Table 1: Maximum acceleration, velocity, and deceleration settings for the three axis of every
arm.

56

(a) 1/1/1 (b) 2/1/2 (c) 3/1/3

(d) 1/2/2 (e) 2/2/4 (f) 3/2/6

(g) 1/3/3 (h) 2/3/6 (i) 3/3/9

Figure 15: Harvester column and row configurations, denoted as C/R/C*R, used in the
experiments. Configurations range from one column with one row to three columns each with
three rows. The dashed line shows potential locations of software-defined z-limits.

6.2 Digitizing apple locations

On October 13, 2022, a field experiment was conducted at an orchard in Lodi, California,

USA (38.075018, -121.182455). The apples were v-trellised Pink Lady apples which had

already undergone the first of two harvest passes. The experiment involved using a cart with

a mast and a camera system consisting of four cameras. However, only one camera was used

for this research. The cart was moved inside the orchard to capture the position of the fruit

in the apple canopy. The camera used in the experiment was the Realsense D435i, recorded

at a resolution 1280x720, 30 fps, and with portrait orientation. The images were captured

using the Robot Operating System (ROS), a meta-operative system.

57

Realsense

D435i

3D apple in

1st camera Frame

YoloV8

Apple detection

O
R

B
-S

L
A

M
3 Feature extraction

Feature matching

Pose estimation

Loop closure

Map building

Depth Filter

Body pose SE(3) Clustering

3D Apple in Camera Frame

Figure 16: Diagram showing the mapping of apples to digitize their location in 3D space.

A diagram of the mapping of the apples is shown in Figure 16. The image sequence is

processed by ORB-SLAM3, which is an established approach for simultaneous localization

and mapping (Campos et al., 2021). The resulting camera pose in SE(3) is used to convert

the apple detected in the camera frame into a common frame (R0, t0). In addition, the image

is also used to detect the apples using YoloV8 Jocher et al., 2023, and the dataset used to

train the object detector was published in Villacrés et al., 2023. Once the apples are detected,

the center of the bounding boxes is converted into a 3D camera frame using the intrinsic

camera parameters and a depth map from the Realsense camera.

To avoid possible detection of apples belonging to trees in other rows, all detections with a

distance more significant than 2 m are filtered out. The 3D center apples are then converted

using the body pose SE(3) obtained with ORB-SLAM, thus giving them a common reference

frame. Finally, clustering-based Density-based spatial clustering is applied to mitigate

duplicate apple detections.

6.3 Comparing workspace partitioning methods with best speed

This experiment compares two workspace partitioning method described in Section 5.2 and

their effect on FPT and FPE when the harvester is moving at the best speed. The first

partitioning method divides the workspace, so all rows are equal in height (partition by

height). The second method divides the workspace so that all rows contain an equal amount

of fruits (partition by fruits) and, thus, more equal workloads across rows. Because fruit

58

distributions are non-uniform, partitioning the columns of arms by height and by fruits would

intuitively produce different results. Partitioning by fruits should react to the non-uniformity

while by height does not. Thus, we hypothesize that partition by fruit will produce better

FPT results for configurations with multiple rows of arms. FPE should be similar for both

partition methods because ESS chooses speeds that lead to schedules that harvest at least

95% of fruits in a segment. We test these methods on the nine harvester configurations shown

in Fig. 15.

In order to evaluate if there is a difference between partitioning the columns based on fruits

and partitioning based on height, we tested the changes to FPE and FPT of the two methods

and different harvester configuration. We use Welch’s t-test to compare the mean FPE and

FPT obtained in each experiment, with the null hypotheses being that the mean of both

partitioning methods does not differ for any one harvester configuration. A 95% confidence

level is used for all t-tests. To determine the direction of possible difference in mean, the

spread of the FPE and FPT are plotted in a box plot and analyzed visually.

6.4 Improving combined FPE and FPT by determining a “best”

harvester speed

We hypothesize that determining the best harvester speed for each orchard row segment leads

to a higher combined mean FPT and mean FPE output, compared to setting all segment

harvester speeds to be the same. To determine the “best” harvester speed for individual

segments, we use FCFS with ESS, where the code loops through a set of discrete harvester

speed values. The schedule in the loop that results in the last FPE above 95% is used for

that segment. Six fixed speeds, V = 1, 5, 10, 15, 20, 100 cm/s, are used as baseline speeds

while the discrete speed values are Vess = 1, 2, 3, ..., 100 cm/s. Once a speed is chosen, that

value is constant along the whole segment.

59

V = best cm/s, 95% confidence level
FPE FPT

C/R/C*R p-value Decision p-value Decision
1/1/1 1.00 Accept the null 1.00 Accept the null
1/2/2 0.66 Accept the null 0.00 Reject the null
2/1/2 1.00 Accept the null 1.00 Accept the null
1/3/3 0.24 Accept the null 0.00 Reject the null
3/1/3 1.00 Accept the null 1.00 Accept the null
2/2/4 0.66 Accept the null 0.00 Reject the null
2/3/6 0.63 Accept the null 0.00 Reject the null
3/2/6 0.96 Accept the null 0.00 Reject the null
3/3/9 0.81 Accept the null 0.00 Reject the null

Table 2: Results of the t-test comparing the FPE and FPT means of workspace partitioning
by fruit versus by height for all configurations at V = best cm/s.

Like in the experiment comparing column partitioning methods, the harvester speeds are

tested on 111, 3.5 m orchard row segments. The five baseline speeds and the best speeds are

all tested on the same nine C/R/C ∗ R configurations. All runs have the arm workspaces

partitioned by fruits. The mean FPE and mean FPT of each harvester speed and configuration

are plotted to help visualize the effects of the speeds on the means.

6.5 Experiment results and discussion

6.5.1 Comparing workspace partitioning method results when using the best

harvester speeds

As the number of arms increased, we saw that the mean FPT generally rose while the mean

FPE remained stable above 95%. For all configurations with more than one row of arms,

the means of the two partition methods were likely not the same (Confidence level of 95%).

Visually, both plots in Fig. 17 show that partition by fruit obtained a higher mean FPT. The

largest difference was seen for configuration 3/3/9, where partition by fruit achieved a mean

FPT of 1.374 fruits/s while partition by height achieved 1.049 fruits/s. Compared to the FPT

obtained by both partition methods for configuration 1/1/1, at 0.247 fruits/s, partition by

fruit has a gain of 0.618 fruits/s per arm, while partition by height gets a gain of 0.472 fruits/s

per arm. For configurations with the same number of arms, more rows performed better

60

90

95

100
m

ea
n

FP
E

(%
) 95% FPE threshold

equal fruits
equal height

0

1

2

m
ea

n
FP

T
(f/

s)

1/1
/1

1/2
/2

2/1
/2

1/3
/3

3/1
/3

2/2
/4

2/3
/6

3/2
/6

3/3
/9

No. columns/rows/arms

0

10

20

30

m
ea

n
be

st
 V

 (c
m

/s
)

(a) Line plots comparing the means

92.5

95.0

97.5

100.0

FP
E

(%
)

0

1

2

FP
T

(fr
ui

ts
/s

)

1/1
/1

1/1
/1

1/2
/2

1/2
/2

2/1
/2

2/1
/2

1/3
/3

1/3
/3

3/1
/3

3/1
/3

2/2
/4

2/2
/4

2/3
/6

2/3
/6

3/2
/6

3/2
/6

3/3
/9

3/3
/9

No. columns/rows/arms

0

10

20

30

be
st

 V
 (c

m
/s

)

equal fruits
equal height

(b) Box plots comparing the spread

Figure 17: Plots comparing the results of partitioning workspaces by fruit vs. by height
for 111, 3.5 m segments of digitized apples. The plots show the FPE, FPT, and the chosen
‘best’ harvester speed for nine harvester column and row configurations. In the box plots, the
means are indicated by green triangles.

than more columns, as shown by dips in the mean FPT in Fig. 17a. The columns are 3.5 m

high, and it takes the arms a long time to move up and down that length. Furthermore, the

left-to-right movement of the arms within the column is aided by the harvester’s forward

speed.

For the 1/2/2 and 1/3/3 harvester configurations, a drop is seen in FPE. These are the

single column harvester configurations which means that any fruits within the dead-space

bands between rows cannot be harvested. As described in Section 3.5.3, when there are more

columns, the dead-bands for all columns are offset so that all fruits are harvestable. Testing

showed that for 1/3/3, partition by fruits had, on average, 1.25 fruits within the dead bands,

though the max was 5 fruits, while partition by height had on average 0.75 fruits in the

dead-band with a max of 2 fruit. On the other hand, harvester configurations 2/1/2 and

3/1/3 saw a drop in FPT. As single row configurations, the arms had to harvest fruits along

the whole column, potentially having to move 3.5 m up and down between fruits. This led to

schedules with slower harvester speeds to make sure the 95% FPE threshold was met.

61

0 25 50 75 100 125 150 175 200
0

20

40

60

80

100

be
st

 V
 (c

m
/s

)

0 25 50 75 100 125 150 175 200
Number of fruits in segment

0.0

0.5

1.0

1.5

2.0

2.5

FP
T

(fr
ui

t/s
)

E * (ln(N) F)
N = 19.746 * (ln(N) (11.736))

N

d= 0.930

A * ln(N) + B= 0.054 * ln(N) + (0.032)
d= 0.601

(a) C/R/C*R = 1/1/1

0 25 50 75 100 125 150 175 200
0

20

40

60

80

100

be
st

 V
 (c

m
/s

)

0 25 50 75 100 125 150 175 200
Number of fruits in segment

0.0

0.5

1.0

1.5

2.0

2.5

FP
T

(fr
ui

t/s
)

E * (ln(N) F)
N = 80.685 * (ln(N) (41.170))

N

d= 0.922

A * ln(N) + B= 0.219 * ln(N) + (0.112)
d= 0.791

(b) C/R/C*R = 1/3/3

0 25 50 75 100 125 150 175 200
0

20

40

60

80

100

be
st

 V
 (c

m
/s

)

0 25 50 75 100 125 150 175 200
Number of fruits in segment

0.0

0.5

1.0

1.5

2.0

2.5

FP
T

(fr
ui

t/s
)

E * (ln(N) F)
N = 136.678 * (ln(N) (120.526))

N

d= 0.884

A * ln(N) + B= 0.371 * ln(N) + (0.327)
d= 0.837

(c) C/R/C*R = 2/3/6

0 25 50 75 100 125 150 175 200
0

20

40

60

80

100

be
st

 V
 (c

m
/s

)

0 25 50 75 100 125 150 175 200
Number of fruits in segment

0.0

0.5

1.0

1.5

2.0

2.5

FP
T

(fr
ui

t/s
)

E * (ln(N) F)
N = 168.205 * (ln(N) (148.753))

N

d= 0.945

A * ln(N) + B= 0.457 * ln(N) + (0.404)
d= 0.864

(d) C/R/C*R = 3/3/9

Figure 18: Scatter plots showing the relationship between the number of fruits in a segment
and both the best harvester speed and FPT when the rows are partitioned by fruits. Each
point represents the results from running the scheduler on one 3.5 m segment out of 111 of
these segments. Harvester speed is chosen with ESS to maximize FPT while achieving a
minimum FPE of 95%.

The relationships between the number of fruits in each segment and the FPT and harvester

speed, when the workspaces are partitioned by fruits, can be visualized in Fig. 18. These

plots showed that the harvester speeds trended down while FPT trended up as the number of

fruits increased until reaching a steady state when there are too many fruits for the arms to

handle. The harvester speed’s maximum value was limited by its relationship to the number

of arms, the distance traveled, the number of fruits, and the handling time of fruits defined

by Equation 36. In the plots in Fig. 18, these were constant parameters, except for the

number of fruits. Because of this, the harvester speed followed a curve related to 1/N , as

62

N increased. This affected FPT which is defined by Equation 35. The limits on the speed

meant that FPT remained low when there were few fruits. As the number of fruits increased,

FPT increased, though very slowly, as described in Equation 37. This indicated that FPT

followed a logarithmic curve with the form A ∗ ln(N) + B. Using the Index of Agreement

error metric (Willmott, 1981), we saw that the fit for the logarithmic curve was a bit low,

perhaps due to the discrete nature of the number of fruits and the harvester speeds. The

curve for the harvester speed was found by setting Equation 35 equal to FPT’s logarithmic

equation and solving for the harvester speed. Thus,

V = D
E ln (N) + F

N
, (40)

where E = D∗A
FPE

and F = D∗B
FPE

.

It is important to note that the fruit localization data was obtained after a first harvest

had already taken place. This means that the tests are based on lower densities than the

harvester would be expected to work on.

6.5.2 Effect on FPE and FPT caused by fixed versus best harvester speeds

This experiment tested how choosing the best harvester speed for individual 3.5 m orchard

segments compared to using six baseline speeds on every segment. The harvester workspaces

were partitioned by fruit for all tests. Fig. 19 showed that low baseline speeds had high mean

FPE and low mean FPT. Higher speeds had the opposite problem. The highest fixed speed,

100 cm/s, had the lowest FPE and a lower FPT than the best speed, as well as 5, 10, and

20 cm/s. This indicated that after a speed threshold, the harvester picks too few fruit to

cancel out the gains in FPT because the speed is too high. In contrast, choosing the best

speed led to a mean FPE above 95% while the mean FPT remained high. The best speed

matched or exceeded the mean FPT of the following fixed speeds: 1, 5, 10, and 100 cm/s.

63

1/1
/1

1/2
/2

2/1
/2

1/3
/3

3/1
/3

2/2
/4

2/3
/6

3/2
/6

3/3
/9

0

25

50

75

100

m
ea

n
FP

E
(%

)

V = 1
V = 5
V = 10
V = 15
V = 20
V = 100
V = best

1/1
/1

1/2
/2

2/1
/2

1/3
/3

3/1
/3

2/2
/4

2/3
/6

3/2
/6

3/3
/9

No. columns/rows/arms

0.5

1.0

1.5

m
ea

n
FP

T
(fr

ui
ts

/s
)

Figure 19: Plot comparing the mean FPE and mean FPT when using fixed speeds compared
to using the best speed for each segment. Scheduling performed with FCFS with ESS. Results
are shown for five baseline speeds, V = 1, 5, 10, 15, 20, 100 cm/s and the best speed for all
nine harvester configurations.

This meant that, although finding the best speed never resulted in the highest FPE or FPT,

it led to the best combined FPE and FPT.

64

7 Evaluating scheduling strategies for multi-armed fruit

harvesters

In this chapter we examine if a dual-objective MILP formulation leads to higher FPT, while

harvesting 95% of fruits, compared to FCFS with ESS. Both scheduling strategies were tested

on four harvester configurations over 35, 3.5 m segments of digitized apple data. Harvester

settings for all tests are the same as described in Section 5.1. The resulting FPE, FPT,

and harvester speeds for each scheduling strategy were compared and analyzed. To test if

either had an effect on workload balancing, we plotted the percent of time each arm spent

idle versus harvesting over a single, 72 fruit segment. Finally, the running time of the two

algorithms was compared. MILP is known to be time-consuming which can be problematic

on systems that need results quickly. When solving single segments, this is not a problem;

however, once outside of simulations, a harvester’s FPT could be impacted if it takes too

long calculating schedules to harvest fruits in real orchards. Thus, the final running time for

each algorithm could be very important.

7.1 Comparing scheduling results between FCFS with ESS and

dual-objective MILP

This experiment compares the results obtained using FCFS with ESS (described in Section

4.4) and a dual objective MILP formulation based on Goal Programming (described in Section

4.5.2). Both scheduling algorithms attempt to maximize FPT while obtaining a minimum

FPE of 95%. Although the 95% value is not a hard bound, the algorithm must be able to

reliably meet the given threshold to be useful. FCFS is an uninformed task partitioning

algorithm, which we hypothesize will lead to worse results than the MILP formulations,

though it will probably compute them faster. In fact, when running the MILP algorithm with

a range of possible harvester speeds between 1 and 100 cm/s, the algorithm was unable to

compute solutions. This required that the range of possible speeds be decreased by providing

65

an upper and lower bounds on the speed, based on Equation 36, with the mean handling time

empirically computed as 2.75 s/fruit. FCFS with ESS could pick a harvester speed between 1

to 100 cm/s with discrete time intervals of 1 cm/s. In this chpater we will do a performance

evaluation to compare the difference between the two algorithms.

In order to evaluate if there is a difference between FCFS with ESS and the MILP algorithm,

we tested how the FPE, FPT, and the running time differed for the two algorithms for four

harvester configurations. All experiment configurations are tested on 6, 10 m digitized

fruit distributions divided into segments of 3.5 m lengths. This leads to a total of 35 usable

segments, where a segment has at least twenty fruit. We use Welch’s t-test to test if the

algorithms’ FPE, FPT, and running time means differ for each harvester configuration. A

95% confidence level is used for all t-tests. The null hypothesis we use for all tests is that

the means do not differ. A box plot is used to visualize the spread of FPE, FPT, and the

running time, for each method and each configuration. If the t-test indicates a difference

between means, the box plot is used to determine the direction.

Lastly, we will also examine the percent of time each arm spends harvesting compared to idle

for both scheduling strategies. The total time being examined includes the time that the

harvester spends entering and exiting each segment, increasing the idle time by a workspace

length for every arm. The harvester will move a total of 6.8 m in each run. The time

harvesting is separated into four states, moving in the Y − Z plane, extending, grabbing,

and retracting. These results can be used to visually examine if either scheduling strategy

provides workload balancing across the columns.

7.1.1 Important Gurobi settings

Solving MILP problems requires a dedicated solver. We used a commercial solver Gurobi

Optimizer version 10.0.3 build v10.0.3rc0 for this job. All tests were computed on an AMD

66

Ryzen 9 7950X 16-Core Processor with 16 physical cores and 32 logical processors, allowing

the use of up to 32 threads. This included the FCFS runs.

Because the dual-objective formulation is non-convex, runs had the NonConvex variable set

to 2. Settings for every run on Gurobi included a 10 min solving time limit (TimeLimit), with

the initial 35 s solved using the Gurobi NoRel heuristic (NoRelHeurTime). This timer would

be too long to be realistic on a moving harvester, however, it allows most runs to succeed and

provide results. As this indicates, MILP is computationally expensive and slow, especially as

the number of variables increase. However, improvements to the hardware and formulations

could lead lower the computation time needed while still providing better results than naive

algorithms such as FCFS. If the time-limit was reached before the MIP Gap reached the

default (1E − 4), the last solution found was used, which means optimality was not always

reached.

7.2 Experiment results and discussion

We expected that using MILP to solve for harvesting schedules would result in better FPT than

using FCFS. Looking at Fig. 20a, results varied. Harvester configurations 2/3/6 and 3/3/9

showed a difference between both scheduling strategies, but it seemed that configurations

1/1/1 and 1/3/3 did not. However, the t-test results are shown in Table 3 indicate that

there was a difference between scheduling strategies for all configurations. 1/1/1 and 1/3/3

resulted in mean FPE values lower than 95%, however they differed by very little, 2.5% at

most. For these tests, the Goal Programming bounds on FPE did not reward solutions that

went above the desired value for FPE, while the bounds for FPT did provide rewards for

going above the desired FPT value. This was done in a bid to maximize FPT while keeping

FPE close or above the desired value. Changing the bounds to reward FPE for going above

95% would likely remove this issue, though the final mean FPT for 1/1/1 and 1/3/3 might

drop to compensate for the difference. We believe that one and three arms were close to their

67

92.5

95.0

97.5

100.0
m

ea
n

FP
E

(%
) 95% FPE threshold

algorithm = fcfs
algorithm = goal

0

1

2

m
ea

n
FP

T
(fr

ui
ts

/s
)

1/1
/1

1/3
/3

2/3
/6

3/3
/9

No. columns/rows/arms

0

20

40

m
ea

n
V

(c
m

/s
)

(a) Line plots comparing the means

92.5

95.0

97.5

100.0

FP
E

(%
)

0

1

2

FP
T

(fr
ui

ts
/s

)

1/1
/1

1/1
/1

1/3
/3

1/3
/3

2/3
/6

2/3
/6

3/3
/9

3/3
/9

No. columns/rows/arms

0

20

40

V
(c

m
/s

)

FCFS
Goal Programing

(b) Box plots comparing the spread

Figure 20: Plots comparing the spread in FPE, FPT, the best harvester speed when using
FCFS with ESS versus Goal Programming to maximize the FPT while harvesting 95% of
fruits. 35, 3.5 m segments of digitized apples were tested for each scheduling strategy and
four harvester configurations.

Difference in mean, 95% confidence level
FPE FPT

C/R/C*R p-value Decision p-value Decision
1/1/1 0.00 Reject the null 0.00 Reject the null
1/3/3 0.02 Reject the null 0.01 Reject the null
2/3/6 0.11 Accept the null 0.00 Reject the null
3/3/9 0.63 Accept the null 0.00 Reject the null

Table 3: Results of the t-test comparing the FPE and FPT means when using FCFS with
ESS versus Goal Programming for 35 segments with length 3.5 m. Four configurations are
used in this experiment with all rows partitioned to have the same number of fruits.

maximum workload, so the lack of reward for a higher FPE had a larger effect on them. The

scheduler likely prioritized increasing FPT over FPE, since it would be rewarded, leading to

the current results. The configurations with six and nine arms, on the other hand, were not

at their maximum workload, which resulted in both a high FPT and an FPE at or above the

desired FPE value.

Using MILP for scheduling achieved mean FPT values that are closer to the theoretical

maximum FPT for each arm configuration. This theoretical maximum is calculated using

Equation 37 with a minimum handling time equal to 2.55 s/fruit. For 1/1/1 this theoretical

68

(a) FCFS (b) Goal Programming

Figure 21: Plots comparing the percent time each arm spent idle versus in one of the four
harvesting steps for a vacuum-type gripper. A single segment with 72 fruits was harvested in
simulation using both FCFS and Goal Programming to compare the effects of the scheduling
method on workload balancing. The harvester was set to have configuration 3/3/9 with rows
partitioned to have the same number of fruits.

maximum is equal to 0.392 fruits/s and for 3/3/9 it is 3.529 fruits/s. When using FCFS, a

single arm only reached 68% of the theoretical maximum FPT and nine arms 44%. MILP,

on the other hand, reached 86% for one arm and 57% for nine arms. We had hypothesized

that MILP could also obtain an increase in FPT more closely resembling a linear increase

proportional to the number of arms, compared to FCFS. When we calculated the speedup

from one to nine arms, Goal Programming had a slightly higher speedup value at 5.94, while

FCFS achieved a speedup of 5.86. The values were more similar than expected, so we believe

further experiments are important to determine if there is an intrinsic limit to the possible

speedup due to some property of the system, or if changing limits and bounds for Goal

Programming would lead to higher speedup values.

We hypothesized that MILP led higher mean FPT because it could better balance the

workload between columns. By plotting the percent of time each arm in a 3/3/9 configuration

spent idle versus harvesting in a single segment, we showed that the MILP does lead to better

workload balancing between columns. Fig. 21 showed that when using FCFS, the back-most

arms did less work than the two arms in front of them. This was true of all rows. When

using MILP, there percent of time harvesting was similar between columns in the same rows.

69

Mean running time for each algorithm, in seconds
Algorithm C/R/C*R

1/1/1 1/3/3 2/3/6 3/3/9
FCFS 0.00 +/- 0.00 0.00 +/- 0.00 0.01 +/- 0.00 0.02 +/- 0.00
GP 235.95 +/- 272.82 32.28 +/- 14.19 472.10 +/- 237.11 335.59 +/- 291.86

Table 4: Table showing the running time when using First Come First Served versus Goal
Programming for the four harvester configurations. Running time is in seconds.

Furthermore, Fig. 21b showed that each row of arms spent a higher total percent of time

harvesting instead of idle when MILP was used, compared to Fig.21a.

When comparing running times for the algorithms, FCFS with ESS produced results much

faster than MILP, as shown in Table 4. Although it ran multiple loops to find the best

speed and schedule combination, the mean running time for all configurations was 0.020 s

or less. In contrast, Goal Programming took, for 1/1/1, 2/3/6, and 3/3/9, over 230 s per

schedule, with the slowest mean running time of 472 s by 2/3/6. Configuration 1/3/3 was a

little faster at 32.3 s. Decreasing the time limit in Gurobi too much would likely degrade

the results. Instead, some potential ways to decrease the solving time include making the

segments shorter, reducing the number of fruits needed to be scheduled, or reducing either the

95% FPE threshold or the maximum theoretical FPT threshold determined by Equation 37.

Determining good bounds for the decision variables also has a large effect, not only on the

results, but also on the running time.

70

8 Extending the harvest to whole orchard rows using

Sliding Planning Windows

We want to extend our results form solving single segments to solving whole orchard rows.

To do so, will test if the Sliding Planning Window model, described in Section 4.6, will result

in a series of schedules that result in a maximized total Orchard Row-FPT (OR-FPT) and at

least 95% Orchard Row-FPE (OR-FPE). These OR values will be calculated based on the

total number of fruits, total distance, and total running time of the orchard row sections,

unlike the Sliding Window-FPE (SW-FPE) and FPT (SW-FPT) values which are calculated

over their respective Sliding Window. It was hypothesized that the shorter the travel length

with respect to the Sliding Window length, the better the results. We believed that the faster

rate of scheduling and increased overlapping lengths would allow the harvester to better

optimize the row partitions, harvester speed, and schedule. Each Sliding Window will be

scheduled using FCFS with ESS because results could be calculated in real time.

8.1 Sliding Planning Window for fruit harvesting

In this experiment we are testing if the Sliding Window method will result in at least 95%

of fruits harvested while maximizing FPT. We will examine how changing the length of the

travel length with respect to the harvester length affects the global Orchard Row results. We

hypothesize that the smaller the travel length, the better the results.

Tests are performed on 32 digitized orchard row sections and four harvester configurations,

using three travel lengths: the same size as the workspace length (D = 1 ∗ dw), 1/2 of the

workspace length (D = 1/2 ∗ dw), and 1/3 of the workspace length (D = 1/3 ∗ dw). The

harvester Sliding Window length is sized according to the settings in Section 5.1 for the

workspace length and a 0.5 m long horizon. As an example, the harvester configuration 3/3/9

has a Sliding Window size of 3.8 m; its first travel length is equal to 3.3 m with a 0.5 m

71

C/R/C*R
D 1/1/1 1/3/3 2/3/6 3/3/9

1 ∗ dw (m) 1.0 1.0 2.15 3.30
1/2 ∗ dw (m) 0.50 0.50 1.08 1.65
1/3 ∗ dw (m) 0.33 0.33 0.72 1.10

Table 5: Sliding window lengths in meters for every harvester configuration.

overlap with the next Sliding Window due to the horizon. This is followed by the second

and third travel lengths of 1.65 m with 2.15 m overlap and 1.1 m travel length with 2.7 m of

overlap. The three Sliding Window lengths for every configuration are shown in Table 5.

The digitized orchard row sections all have different lengths between 9.33 to 17.50 m. Because

of this, each run has a different number of Sliding Windows even if the travel lengths are

the same. For all tests, rows are partitioned to have equal number of fruits and solved with

FCFS with ESS. The possible harvester speeds range between 1 to 80 cm/s with increments

of 1 cm/s.

We will examine how the travel length affects the final OR-FPE and OR-FPT, as well as

the mean Sliding Window-FPT (SW-FPT), harvester speed, and the number of fruits. The

OR-FPE and OR-FPT will be used to determine which of the three travel lengths is able

to obtain the highest combined total FPT and FPE. Success will require that the harvester

achieves OR-FPE of 95% or greater. The Sliding Window values, on the other hand, will be

used to assess how the harvester performs as it travels along the orchard row.

We use ANOVA to test if there is a difference between mean OR-FPE and mean OR-FPT

for the three travel lengths. Assumptions were tested using the Shapiro test of normality

assumption and Bartlett test of homogeneity of variance. Neither assumption was generally

met for any harvester configuration; though, for Normality, the Central Limit Theorem

applies because the number of observations was greater than 15 for all samples. To work

72

Welch’s ANOVA for OR-FPE, 95% CI
C/R/C ∗R F p-value Decision

1/1/1 0.115 0.891 Accept the null
1/3/3 0.015 0.985 Accept the null
2/3/6 0.214 0.808 Accept the null
3/3/9 0.581 0.560 Accept the null

Table 6: Results from using Welch’s ANOVA to determine if at least one the Orchard Row-
FPE means differed between the three travel lengths for four different harvester configurations.
Each travel length was tested on 32 orchard row sections.

Welch’s ANOVA for OR-FPT, 95% CI
C/R/C ∗R F p-value Decision

1/1/1 8.285 0.001 Reject the null
1/3/3 199.906 0.000 Reject the null
2/3/6 136.200 0.000 Reject the null
3/3/9 96.075 0.000 Reject the null

Table 7: Results from using Welch’s ANOVA to determine if at least one of the Orchard Row-
FPT means differed between the three travel lengths for four different harvester configurations.
Each travel length was tested on 32 orchard row sections.

with the lack of homogeneity of variance, we use Welch’s ANOVA and the Games-Howell

Test for multiple comparisons to determine if there are differences between the means. All

testes were performed with a 95% Confidence Level.

8.2 Experiment results and discussion

This experiment tested how the travel length affected results when using the Sliding Planning

Window method. Three travel lengths were tested, the first was the same length as the

harvester’s workspace, the other two were shorter at one-half and one-third the workspace

length. Welch’s ANOVA tests were performed to determine if the were statistically significant

differences between OR-FPE means and OR-FPT means for the three travel lengths for each

harvester configuration. Results are shown in Tables 6 and 7.

The ANOVA results indicated that there was a statistically significant difference only between

OR-FPT means and not OR-FPE means. The Games-Howell post-hoc test for multiple

73

Games-Howell post-hoc test, 95% CI
A and B 1 ∗ dw and 1/2 ∗ dw 1 ∗ dw and 1/3 ∗ dw 1/2 ∗ dw and 1/3 ∗ dw

C/R/C ∗R T p-value Decision T p-value Decision T p-value Decision
1/1/1 -4.015 0.001 Reject the null -3.104 0.008 Reject the null 0.965 0.601 Accept the null
1/3/3 -19.448 0.000 Reject the null -13.275 0.000 Reject the null 3.655 0.002 Reject the null
2/3/6 -16.116 0.000 Reject the null -11.529 0.000 Reject the null 5.528 0.000 Reject the null
3/3/9 -13.821 0.000 Reject the null -9.835 0.000 Reject the null 4.236 0.000 Reject the null

Table 8: Results from Games-Howell post-hoc test to determine exactly which OR-FPT
group means are different.

comparisons was used with a 95% Confidence Level to test which OR-FPT means differed

for each configuration. It found that the mean value of OR-FPT was significantly different

between all groups and all configurations except between 1/2 ∗ dw and 1/3 ∗ dw for harvester

configuration 1/1/1 (see Table 7).

We determined the direction of difference between means by plotting the mean and spread of

the two Orchard Row variables over all four harvester configurations. Looking at Figure 22a,

we saw that all travel lengths achieved the minimum 95% mean OR-FPE. It was surprising

that the mean OR-FPE for 1 ∗ dw dropped as the number of arms increased, though it was

a slight drop. 1/3 ∗ dw performed the best for OR-FPE, achieving close to 100% for all

configurations. Figure 22a shows that the mean OR-FPT increased as the number of arms

1/1/1 1/3/3 2/3/6 3/3/9
no. columns/rows/arms

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Or
ch

ar
d

Ro
w

FP
E

(%
)

D_size
1*dw
1/2*dw
1/3*dw

(a) Orchard Row FPE

1/1/1 1/3/3 2/3/6 3/3/9
no. columns/rows/arms

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Or
ch

ar
d

Ro
w

FP
T

(fr
ui

ts
/s

)

D_size
1*dw
1/2*dw
1/3*dw

(b) Orchard Row FPT

Figure 22: Orchard Row FPE and FPT plots comparing the mean and spread obtained when
using three different travel lengths, D = 1 ∗ dw, D = 1/2 ∗ dw, and D = 1/3 ∗ dw.

74

increased. Surprisingly, the best mean OR-FPT was achieved by the travel length 1/2 ∗ dw

and not 1/3 ∗ dw. It seems that decreasing the travel length below 1 ∗ dw improves both mean

OR-FPE and mean OR-FPT up until a certain point. At some unknown shorter length, the

mean OR-FPT begins to drop. This is a similar response in OR-FPT to that of FPT when

using too high a harvester speed for single segments (see results for fixed speed V = 100 cm/s

in Section 5.5.2), though the effect on OR-FPE is the opposite. When using a single fixed

speed that it too high for single segments, the mean FPE drops to values way below the

minimum threshold. Lastly, 1 ∗ dw produced the lowest OR-FPT.

To understand what produced these Orchard Row-FPE and FPT values, we plotted the

mean Sliding Window-FPE, FPT, and harvester speed against the number of fruits in the

Sliding Windows. From the scatter plots in Fig. 23, we saw that the shorter travel lengths

habitually harvested less than 95% of the fruits in individual Sliding Windows, though with

the re-scheduling this translated in OR-FPE values above 95%. Interestingly enough, 1 ∗ dw

generally had higher individual SW-FPE values close to or above 95%, but it still had the

lowest OR-FPE. For individual Sliding Windows, the SW-FPE does not have to reach the

FPE threshold for the OR-FPE to reach the OR-FPE threshold as long as the travel length

is smaller than the length of the workspace. The smaller the Sliding Window compared

to the workspace, the lower the SW-FPE can be. 1/2 ∗ dw and 1/3 ∗ dw both resulted in

higher individual SW-FPT values, with very similar scatter patterns in size and shape. The

OR-FPT seemed to be related to the mean of the SW-FPT with respect to the number of

fruits in the Sliding Window. However, 1/3 ∗ dw resulted in more total Sliding Windows, and

they were more likely to have fewer fruits in them because there was so much overlap. This

likely limited how high the OR-FPT could get. Lastly, the harvester speed scatter plot in

Fig. 23 revealed that, between 1/2 ∗ dw and 1/3 ∗ dw, 1/2 ∗ dw could choose higher harvester

speeds for the same number of fruits. The same pattern emerged for the two larger travel

lengths, 1 ∗ dw could choose higher speeds than 1/2 ∗ dw.

75

0 25 50 75 100 125 150 175
0

50

100

SW
-F

PE
(%

) D_size
1*dw
1/2*dw
1/3*dw

0 25 50 75 100 125 150 175
0

1

2

3
SW

-F
PT

(fr
ui

ts
/s

)

0 25 50 75 100 125 150 175
Fruits in SW

0

25

50

75

Ha
rv

es
te

r S
pe

ed
(c

m
/s

)

0 25 50 75 100 125 150 175
Fruits in SW

0

100

Fr
ui

ts
 in

 S
W

Figure 23: Scatter plots showing the relationships between the Sliding Window-FPE, FPT,
harvester speed, and the number of fruits and the number of fruits in each Sliding Window.
Points colored to denote the travel length that produced the point. Results obtained scheduling
32, 10 m orchard row sections using the Sliding Planning Window method.

The harvester configuration has a large effect on the results. The scatter plots were separated

by harvester configuration in Fig. 24. These scatter plots show that 1/1/1 was limited

to the lowest speeds, resulting in all SW-FPT values remaining below 0.75 fruits/s. This

harvester configuration also had the widest SW-FPE spread for all travel lengths. As the

number of arms increased, the SW-FPE spread dropped but the spread for SW-FPT and the

harvester speed all increased. More arms allowed the harvester to choose higher speeds while

maintaining the 95% OR-FPE, which translated into higher possible SW-FPT and OR-FPT

values.

76

0

20

40

60

80

100

SW
-F

PE
(%

)

C/R/C*R = 1/1/1

0

20

40

60

80

100

SW
-F

PE
(%

)

C/R/C*R = 1/3/3

0

20

40

60

80

100

SW
-F

PE
(%

)

C/R/C*R = 2/3/6

0 25 50 75 100 125 150 175
Fruits in SW

0

20

40

60

80

100

SW
-F

PE
(%

)

C/R/C*R = 3/3/9

D_size
1*dw
1/2*dw
1/3*dw

(a) Sliding Window FPE

0.0

0.5

1.0

1.5

2.0

2.5

3.0

SW
-F

PT
(fr

ui
ts

/s
)

C/R/C*R = 1/1/1

0.0

0.5

1.0

1.5

2.0

2.5

3.0
SW

-F
PT

(fr
ui

ts
/s

)

C/R/C*R = 1/3/3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

SW
-F

PT
(fr

ui
ts

/s
)

C/R/C*R = 2/3/6

0 25 50 75 100 125 150 175
Fruits in SW

0.0

0.5

1.0

1.5

2.0

2.5

3.0

SW
-F

PT
(fr

ui
ts

/s
)

C/R/C*R = 3/3/9

D_size
1*dw
1/2*dw
1/3*dw

(b) Sliding Window FPT

0

10

20

30

40

50

60

70

80

Ha
rv

es
te

r S
pe

ed
(c

m
/s

)

C/R/C*R = 1/1/1

0

10

20

30

40

50

60

70

80

Ha
rv

es
te

r S
pe

ed
(c

m
/s

)

C/R/C*R = 1/3/3

0

10

20

30

40

50

60

70

80

Ha
rv

es
te

r S
pe

ed
(c

m
/s

)

C/R/C*R = 2/3/6

0 25 50 75 100 125 150 175
Fruits in SW

0

10

20

30

40

50

60

70

80

Ha
rv

es
te

r S
pe

ed
(c

m
/s

)

C/R/C*R = 3/3/9

D_size
1*dw
1/2*dw
1/3*dw

(c) Sliding Window V

Figure 24: Scatter plot showing the relationship between the Sliding Window-FPE, FPT,
and the harvester speed with the number of fruits in each Sliding Window for each harvester
configuration. Points colored to denote the travel length that produced the point. Results
obtained scheduling 32, 10 m orchard row sections using the Sliding Planning Window
method.

77

9 Conclusion

9.1 Row partitioning and speed selection

The first set of experiments presented simulation studies that compared how partitioning

columns into rows and speed selection affected the FPT and FPE when harvesting single

segments. FCFS was used to schedule the arm-to-fruit assignments. If the best speed was

required, FCFS was run with ESS to find the speed that maximized FPT, provided that

95% fruits were harvested. Experiments were performed on nine harvester configurations

spanning from one arm in a single column to nine arms in three columns and three rows.

Digitized fruit locations for v-trellised apples were used in the simulations.

In the first experiment, two row partitioning strategies were compared, dividing the columns,

so rows either had equal heights or an equal number of fruits. The best speed was found

for each segment. Both partitioning methods achieved the minimum 95% FPE, however,

partitioning by fruit allowed the harvester to move at faster speeds leading to higher FPT.

As the number of arms increased, the difference in FPT between the partitioning methods

increased. With that said, for the same number of arms, results were better when there

were more arms set into more rows rather than more columns. This was because there was

a maximum horizontal distance of 1 m compared to a maximum vertical distance of 3.5 m.

The more arms in a column, the less they would have to move up and down to harvest all

fruits while the horizontal travel stayed the same.

Results also showed that FPT followed a logarithmic curve with respect to the number of

fruits in a segment. Few fruits limited the speed such that FPT remained low. As the number

of fruits increased, FPT increased, though the rate of increase became slower. Speed, on the

other hand, followed a curve related to ln (N)/N with respect to the number of fruits. Few

fruits in a segment allow the system to choose faster speeds. As the number of fruits in a

78

segment increased, a slower speed would be chosen to reach the required 95% FPE. This

shows that the number of arms has a large effect on the chosen speed and resulting FPT.

More arms allow for faster speeds and, thus, faster FPT.

In the second experiment, we compared scheduling 3.5 m segments with six fixed speed versus

choosing the best speed for each segment for both partitioning methods. Low fixed speeds

resulted in high FPE but low FPT, while fast fixed speeds had the opposite effect. Choosing

the best speed resulted in the best combined FPE and FPT. It led to high FPT values even

while keeping FPE at or above 95%, unlike the fixed speeds which traded one for the other.

This indicates that speed selection is very important when maximizing FPE and FPT at

the same time. FCFS with ESS could be made faster by switching ESS to binomial search,

speeding up results. Although FCFS’s speed is not a bottleneck, per se, Binomial Search

could be useful if the number of speeds is increased by adding fractional values, such as

having the step between speeds be 0.25 cm/s. However, more informed algorithms would

likley lead to even better combined FPT and FPE. For example, the use of MILP would

provide near-optimal schedule and speed combinations, though its generally slow computation

times need to be assessed.

9.2 Comparing FCFS and Goal Programming

The second set of experiments presented a comparison between using FCFS with ESS and a

dual-objective MILP formulation based on Goal Programming; both algorithms were used to

find schedules that maximize FPT while matching or exceeding a minimum FPE threshold.

Schedule and speed combinations were computed in simulation for 35, 3.5 m segments of

digitized orchard rows. Speed selection was limited to a range of 1 to 100 fruits/s. FCFS was

limited to discrete speed values while the MILP formulation could choose from a continuous

range.

79

Using Goal Programming resulted in higher mean FPT for all four harvester configurations

tested in this experiment. The configurations with one and three arms had FPE lower than

the threshold by around 2.5%. We hypothesize that the configurations with fewer arms were

too close to their maximum workload to obtain the minimum FPE with the current MILP

FPE upper bound settings.

Goal Programming was expected to result in an almost linear increase in FPT proportional

to the increase in arms. Although it did result in better mean FPT for all configurations,

MILP did not result in a much higher speedup than FCFS as the number of arms increased.

Goal Programming resulted in a speedup of 5.94, while FCFS resulted in a speedup of 5.86

from one to nine arms. More research is necessary to determine if there is a limit to the

possible speedup which is inherent to the problem, or if changes to the MILP formulation

could improve this value. We suspect that MILP achieves higher mean FPT values compared

to FCFS because it might be better at balancing the workload between columns, allowing it

to choose faster speeds. However, only one example of this is presented, so it cannot be said

with certainty.

Lastly, Goal Programming performs better than FCFS with ESS for all harvester configura-

tions, but it is very expensive computationally and time-wise. FCFS with ESS took at most

0.020 s to compute, while the fastest MILP solved took 32.4 s. More realistically, however,

Goal Programming took over 230 s to solve for a schedule. A smaller time limit on the solver

would speed up the computation but would result in worse schedules and speeds. Instead,

work should go into determining if changes to the bounds in the formulation, segment length,

or other strategies can be used to decrease solving time. FCFS, on the other hand, should be

used if real time scheduling is a requirement, rather than near-optimal results.

80

9.3 Sliding Planning Window

The third set of experiments presented a scheduling algorithm-agnostic method to solve

whole orchard rows semi-dynamically, while still maximizing the orchard row’s final FPT and

harvesting at least 95% of fruits. Scheduling and speed selection were computed for Sliding

Window lengths made up of the harvester’s workspace length plus a 0.5 m horizon. However,

the schedule and harvester speed were only acted upon over a set travel distance before a new

schedule and harvester speed combination were produced. The Sliding Planning Window

method was tested with three different travel lengths to see if there was any difference,

and if there was, which of the three travel lengths worked the best. Schedules and speed

combinations were computed for 32 digitized orchard rows of varying lengths using FCFS

with ESS. Speed selection was limited to the range 1 to 80 cm/s.

All three travel lengths achieved the minimum mean OR-FPE. The best mean OR-FPT

was produced by the middle-valued travel length which was equal to half the harvester’s

workspace length. The worst outcome was produced by the longest travel length which was

equal to the workspace length, such that there was no overlap between Planning Windows.

There does seem to be a “best” travel length, since the shortest travel length produced a

worse OR-FPT than the middle-length one; however, finding this best length is left as an

exercise for future research.

By plotting the individual SW-FPE, SW-FPT, harvester speed, and number of fruits, it

was determined that longer travel lengths allow the harvester to choose higher speeds.

Furthermore, individual SW-FPE values can be a lot lower than the FPE threshold and the

OR-FPE will still match or exceed the threshold. The smaller the travel length compared to

the harvester workspace, the lower the SW-FPE can be. Dividing the SW-FPE, SW-FPT,

and harvester speed scatter plots by the harvester configuration showed that all configurations

followed these general trends. However, this also allowed us to show that the number of

81

arms has a large effect on the results. Like for the single segments, as the number of arms

increase, the harvester can choose higher speeds and still obtain the same or better SW-FPE

values. Because of this, more arms can obtain higher SW-FPT values which translate to

higher OR-FPT values.

This method is simple to employ, but it allows the harvester to react more dynamically to

incoming fruit distributions and to changes in the orchard. A hypothesized benefit of this

method is that if there are changes during the harvest of a Sliding Window, e.g. apples move

due to a branch moving, they will be taken into account within the next schedule as long as

the change is within the new Sliding Window. In fact, this method does not require fruit

tracking between Sliding Windows because each one is solved independently. This means

that the computer vision system requires less resources and there are fewer potential points

of failure.

A challenge to this method is that it requires constant rescheduling. FCFS with ESS works

well with it because it can be calculated in real time. However, more time intensive scheduling

algorithms might have trouble keeping up. If done thoughtfully, it might be possible to

use the time between Planning Windows, while the harvester harvests apples, to compute

schedules. This comes with some challenges, such as needing to create the next fruit map

ahead of time, reducing the system’s ability to react to uncertainty in fruit locations or

changes between Planning Windows. More research is needed to evaluate this method.

10 Future Research

There are still several limitations in this research that will be explored in future research:

1. Testing should be performed on higher fruit densities to evaluate any changes, if any,

to the results. Because the apples were digitized after a first harvest pass had already

82

been performed, the densities were lower than might be expected. We hypothesize

that with higher densities, the harvester will choose lower harvester speeds to continue

harvesting 95% of fruits. The effects on FPT are less clear since the increase in fruits

harvested might offset the lower speeds.

2. Future work should incorporate uncertainty, such as the chance that identified apples

might be false positives or that apples may have moved between Planning Windows.

Although research such as Li et al., 2023 incorporates some uncertainty, it does so

by allowing arms to attempt the harvest the same fruit three times before removing

the apple from consideration. For the continually moving harvester, this may not be

appropriate because a Planning Window is treated as a static problem over the Travel

Length. If an arm has to make multiple attempts, the system might not be able to

follow through on the rest of the existing schedule. Instead, shorter Travel Distances

between Planning Windows might allow the system to replan fast enough that the

harvest of the problematic fruits could be re-attempted in each Planning Window.

3. It will be essential to add checks to avoid collisions due to changes in arm and row

limit placement between Planning Windows. Current simulations do not take into

account how the arm’s starting position and the changes in row limits between Planning

Windows might cause conflicts as the arms move to harvest fruits within their new

rows. A safety measure, such as giving the arms time to move to their new positions,

would help improve the safety of the system.

4. All experiments were performed in simulation. Future work needs to be implemented

on a physical prototype to obtain more realistic results.

83

References

2023 technology research review. (2022). Washington Tree Fruit Research Commission.

Adapting to Farm Worker Scarcity Survey 2019 (tech. rep.). (2019). California Farm Bureau

Federation. https://www.cfbf.com/wp-content/uploads/2019/06/LaborScarcity.pdf

Agricultural Labor Availability Survey Results (tech. rep.). (2017). California Farm Bureau

Federation. http://www.cfbf.us/wp-content/uploads/2017/10/CFBF-Ag-Labor-

Availability-Report-2017.pdf

Arikapudi, R. (2019). Model-based estimation of fruit harvesting performance of arrays of

telescopic robotic arms [Doctoral dissertation, University of California, Davis].

Arikapudi, R., & Vougioukas, S. G. (2023). Robotic tree-fruit harvesting with arrays of

cartesian arms: A study of fruit pick cycle times. Computers and Electronics in

Agriculture, 211, 108023.

Bac, C. W., van Henten, E. J., Hemming, J., & Edan, Y. (2014). Harvesting robots for high-

value crops: State-of-the-art review and challenges ahead. Journal of Field Robotics,

31 (6), 888–911. https://doi.org/https://doi.org/10.1002/rob.21525

Barnett, J. (2018). Prismatic axis, differential-drive robotic kiwifruit harvester for reduced

cycle time [Doctoral dissertation, The University of Waikato]. https://hdl.handle.net/

10289/12444

Barnett, J., Duke, M., Au, C. K., & Lim, S. H. (2020). Work distribution of multiple Cartesian

robot arms for kiwifruit harvesting. Computers and Electronics in Agriculture, 169,

105202. https://doi.org/10.1016/j.compag.2019.105202

Besset, P., & Béarée, R. (2017). FIR filter-based online jerk-constrained trajectory generation.

Control Engineering Practice, 66, 169–180. https://doi.org/10.1016/j.conengprac.2017.

06.015

Blanco, O. (2016, September). The worker shortage facing America’s farmers. Retrieved

August 26, 2020, from https://money.cnn.com/2016/09/29/news/economy/american-

farm-workers/index.html

84

https://www.cfbf.com/wp-content/uploads/2019/06/LaborScarcity.pdf
http://www.cfbf.us/wp-content/uploads/2017/10/CFBF-Ag-Labor-Availability-Report-2017.pdf
http://www.cfbf.us/wp-content/uploads/2017/10/CFBF-Ag-Labor-Availability-Report-2017.pdf
https://doi.org/https://doi.org/10.1002/rob.21525
https://hdl.handle.net/10289/12444
https://hdl.handle.net/10289/12444
https://doi.org/10.1016/j.compag.2019.105202
https://doi.org/10.1016/j.conengprac.2017.06.015
https://doi.org/10.1016/j.conengprac.2017.06.015
https://money.cnn.com/2016/09/29/news/economy/american-farm-workers/index.html
https://money.cnn.com/2016/09/29/news/economy/american-farm-workers/index.html

Bozma, H. I., & Kalalıoğlu, M. (2012). Multirobot coordination in pick-and-place tasks on a

moving conveyor. Robotics and Computer-Integrated Manufacturing, 28 (4), 530–538.

Calvin, L., Martin, P., & Simnitt, S. (2022). Adjusting to higher labor costs in selected us

fresh fruit and vegetable industries.

Campos, C., Elvira, R., Rodŕıguez, J. J. G., Montiel, J. M., & Tardós, J. D. (2021). Orb-slam3:

An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE

Transactions on Robotics, 37 (6), 1874–1890.

Caramia, M., & Dell’Olmo, P. (2020). Multi-objective optimization. In Multi-objective man-

agement in freight logistics: Increasing capacity, service level, sustainability, and

safety with optimization algorithms (pp. 21–51). Springer International Publishing.

https://doi.org/10.1007/978-3-030-50812-8 2

Choudhury, S., Gupta, J. K., Kochenderfer, M. J., Sadigh, D., & Bohg, J. (2022). Dynamic

multi-robot task allocation under uncertainty and temporal constraints. Autonomous

Robots, 46 (1), 231–247.

Daoud, S., Chehade, H., Yalaoui, F., & Amodeo, L. (2014). Efficient metaheuristics for pick

and place robotic systems optimization. Journal of Intelligent Manufacturing, 25 (1),

27–41.

Deb, K., Sindhya, K., & Hakanen, J. (2016). Multi-objective optimization. In Decision sciences

(pp. 161–200). CRC Press.

Edan, Y., Engel, B., & Miles, G. E. (1993). Intelligent control system simulation of an

agricultural robot. Journal of intelligent and Robotic Systems, 8 (2), 267–284.

Edan, Y., & Miles, G. E. (1993). Design of an agricultural robot for harvesting melons.

Transactions of the ASAE, 36 (2), 593–603.

Farm Labor (May 2020) (tech. rep.). (2020, May). USDA, National Agricultural Statistics

Service.

Fomin, F. V., & Lingas, A. (2002). Approximation algorithms for time-dependent orienteering.

Information Processing Letters, 83 (2), 57–62.

85

https://doi.org/10.1007/978-3-030-50812-8_2

Garey, M. R., & Johnson, D. S. (1978). “strong”np-completeness results: Motivation, examples,

and implications. Journal of the ACM (JACM), 25 (3), 499–508.

Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., & Vathis, N. (2014). Efficient

heuristics for the time dependent team orienteering problem with time windows.

Applied Algorithms: First International Conference, ICAA 2014, Kolkata, India,

January 13-15, 2014. Proceedings 1, 152–163.

Gerkey, B. P., & Matarić, M. J. (2004). A formal analysis and taxonomy of task allocation in

multi-robot systems. The International journal of robotics research, 23 (9), 939–954.

Gunantara, N. (2018). A review of multi-objective optimization: Methods and its applications.

Cogent Engineering, 5 (1), 1502242.

Harrell, R. (1987). Economic analysis of robotic citrus harvesting in florida. Transactions of

the ASAE, 30 (2), 298–0304.

Haspel, T. (2017). Perspective — Illegal immigrants help fuel U.S. farms. Does affordable

produce depend on them? Washington Post. Retrieved June 22, 2020, from https:

//www.washingtonpost.com/lifestyle/food/in-an-immigration-crackdown-who-will-

pick-our-produce/2017/03/17/cc1c6df4-0a5d-11e7-93dc-00f9bdd74ed1 story.html

Huang, Y., Chiba, R., Arai, T., Ueyama, T., & Ota, J. (2012). Part dispatching rule-based

multi-robot coordination in pick-and-place task. 2012 IEEE International Conference

on Robotics and Biomimetics (ROBIO), 1887–1892.

Huang, Y., Chiba, R., Arai, T., Ueyama, T., & Ota, J. (2015). Robust multi-robot coordination

in pick-and-place tasks based on part-dispatching rules. Robotics and Autonomous

Systems, 64, 70–83.

Humbert, G., Pham, M., Brun, X., Guillemot, M., & Noterman, D. (2015). Comparative

analysis of pick & place strategies for a multi-robot application. 2015 IEEE

20th Conference on Emerging Technologies & Factory Automation (ETFA), 1–8.

https://doi.org/10.1109/ETFA.2015.7301450

86

https://www.washingtonpost.com/lifestyle/food/in-an-immigration-crackdown-who-will-pick-our-produce/2017/03/17/cc1c6df4-0a5d-11e7-93dc-00f9bdd74ed1_story.html
https://www.washingtonpost.com/lifestyle/food/in-an-immigration-crackdown-who-will-pick-our-produce/2017/03/17/cc1c6df4-0a5d-11e7-93dc-00f9bdd74ed1_story.html
https://www.washingtonpost.com/lifestyle/food/in-an-immigration-crackdown-who-will-pick-our-produce/2017/03/17/cc1c6df4-0a5d-11e7-93dc-00f9bdd74ed1_story.html
https://doi.org/10.1109/ETFA.2015.7301450

Humbert, G., Pham, M.-T., Brun, X., Guillemot, M., & Noterman, D. (2015). Comparative

analysis of pick & place strategies for a multi-robot application. 2015 IEEE 20th

Conference on Emerging Technologies & Factory Automation (ETFA), 1–8.

Jocher, G., Chaurasia, A., & Qiu, J. (2023, January). Ultralytics YOLO (Version 8.0.0).

https://github.com/ultralytics/ultralytics

Jones, D., & Tamiz, M. (2016). A review of goal programming. Multiple criteria decision

analysis: State of the art surveys, 903–926.

Koostra, G., Wang, X., Blok, P. M., Hemming, J., & van Henten, E. (2021). Selective

harvesting robotics: Current research, trends, and future directions. Current Robotics

Reports, 2 (1), 95–104. https://doi.org/https://doi.org/10.1007/s43154-020-00034-1

Li, T., Xie, F., Zhao, Z., Zhao, H., Guo, X., & Feng, Q. (2023). A multi-arm robot system for

efficient apple harvesting: Perception, task plan and control. Computers and Electronics

in Agriculture, 211, 107979.

Mann, M. P., Zion, B., Shmulevich, I., Rubinstein, D., & Linker, R. (2016). Combinatorial

Optimization and Performance Analysis of a Multi-arm Cartesian Robotic Fruit

Harvester—Extensions of Graph Coloring. J Intell Robot Syst, 82 (3-4), 399–411.

https://doi.org/10.1007/s10846-015-0211-5

Maria, B., & Salassi, M. S. (2019). Trends in U.S. Farm Labor and H-2A Hired Labor: Policy

and Related Issues. MLR, 34 (1). https://doi.org/10.21916/mlr.2013.39

Mattone, R., Adduci, L., & Wolf, A. (1998). Online scheduling algorithms for improving

performance of pick-and-place operations on a moving conveyor belt. Proceedings. 1998

IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146),

3, 2099–2105.

Ngatchou, P., Zarei, A., & El-Sharkawi, A. (2005). Pareto multi objective optimization.

Proceedings of the 13th International Conference on, Intelligent Systems Application

to Power Systems, 84–91. https://doi.org/10.1109/ISAP.2005.1599245

87

https://github.com/ultralytics/ultralytics
https://doi.org/https://doi.org/10.1007/s43154-020-00034-1
https://doi.org/10.1007/s10846-015-0211-5
https://doi.org/10.21916/mlr.2013.39
https://doi.org/10.1109/ISAP.2005.1599245

Recce, M., Taylor, J., Plebe, A., & Tropiano, G. (1996). Vision and neural control for an

orange harvesting robot. Proceedings of International Workshop on Neural Networks

for Identification, Control, Robotics and Signal/Image Processing, 467–475. https:

//doi.org/10.1109/NICRSP.1996.542791

Scarfe, A. J. (2012). Development of an autonomous kiwifruit harvester: A thesis presented in

partial fulfilment of the requirements for the degree of doctor of philosophy in industrial

automation at massey university, manawatu, new zealand. [Doctoral dissertation,

Massey University].

Tang, Y., Chen, M., Wang, C., Luo, L., Li, J., Lian, G., & Zou, X. (2020). Recognition and

localization methods for vision-based fruit picking robots: A review. Frontiers in Plant

Science, 11, 510. https://doi.org/10.3389/fpls.2020.00510

Tika, A., Gafur, N., Yfantis, V., & Bajcinca, N. (2020). Optimal scheduling and model

predictive control for trajectory planning of cooperative robot manipulators. IFAC-

PapersOnLine, 53 (2), 9080–9086.

USDA ERS - Farm Labor. (n.d.). Retrieved July 23, 2020, from https://www.ers.usda.gov/

topics/farm-economy/farm-labor/#wages

Villacrés, J., Viscaino, M., Delpiano, J., Vougioukas, S., & Cheein, F. A. (2023). Apple orchard

production estimation using deep learning strategies: A comparison of tracking-by-

detection algorithms. Computers and Electronics in Agriculture, 204, 107513.

Williams, H. A., Jones, M. H., Nejati, M., Seabright, M. J., Bell, J., Penhall, N. D., Barnett,

J. J., Duke, M. D., Scarfe, A. J., Ahn, H. S., et al. (2019). Robotic kiwifruit harvesting

using machine vision, convolutional neural networks, and robotic arms. biosystems

engineering, 181, 140–156.

Willmott, C. J. (1981). On the validation of models. Physical geography, 2 (2), 184–194.

Yang, S., Jia, B., Yu, T., & Yuan, J. (2022). Research on multiobjective optimization

algorithm for cooperative harvesting trajectory optimization of an intelligent multiarm

straw-rotting fungus harvesting robot. Agriculture, 12 (7), 986.

88

https://doi.org/10.1109/NICRSP.1996.542791
https://doi.org/10.1109/NICRSP.1996.542791
https://doi.org/10.3389/fpls.2020.00510
https://www.ers.usda.gov/topics/farm-economy/farm-labor/#wages
https://www.ers.usda.gov/topics/farm-economy/farm-labor/#wages

Zahniser, S., Taylor, J. E., Hertz, T., & Charlton, D. (2018, November). Farm Labor Markets

in the United States and Mexico Pose Challenges for U.S. Agriculture (tech. rep.

No. 201). USDA, Economic Research Service.

Zhang, Q., & Karkee, M. (2016). Fully Automated Tree Fruit Harvesting. 23 (6), 16–17.

Zhang, Q., & Pierce, F. J. (2016). Agricultural automation: Fundamentals and practices. CRC

Press.

Zhang, Z., Heinemann, P. H., Liu, J., Baugher, T. A., & Schupp, J. R. (2016). The development

of mechanical apple harvesting technology: A review. Transactions of the ASABE,

59 (5), 1165–1180.

Zion, B., Mann, M., Levin, D., Shilo, A., Rubinstein, D., & Shmulevich, I. (2014). Harvest-order

planning for a multiarm robotic harvester. Computers and Electronics in Agriculture,

103, 75–81. https://doi.org/10.1016/j.compag.2014.02.008

89

https://doi.org/10.1016/j.compag.2014.02.008

	Abstract
	Introduction
	Motivation
	The challenge of high-speed robotic fruit harvesting
	Objective statement
	Contribution of this thesis

	Literature Review
	Defining the general problem of arm-to-fruit scheduling for multi-armed harvesters
	The evolution of scheduling solutions for multi-armed harvesters
	Pick-and-place, an alternate look at the same problem

	Research gaps and challenges
	Robot model with arms in series and in parallel
	Optimizing both FPE and FPT using dual-objective optimization
	Dynamic scheduling and vehicle speed selection

	Modeling the fruit harvesting process in an orchard segment
	Introduction and approach
	Defining the orchard segment and harvester frames
	Modeling the harvest of a single fruit with a single arm
	Modeling the harvest of multiple fruits with a single arm
	Modeling the harvest of multiple fruits with multiple arms
	Arms working only in series
	Arms working only in parallel
	Arms working in series and in parallel

	Model considerations due to constant forward speed

	Multi-objective scheduling maximizing FPT while meeting a minimum FPE
	Introduction and approach
	Using software-defined row limits for load balancing between rows
	Combining harvester speed selection and scheduling to maximize results
	Formulating First Come First Served as the benchmark scheduling algorithm
	Dual-objective scheduling to maximize FPT while meeting a minimum FPE
	Maximizing FPT using Goal Programming

	Harvesting whole orchard rows using the Sliding Planning Window model

	Workspace partitioning and speed selection to improve harvesting speeds
	Harvester settings
	Digitizing apple locations
	Comparing workspace partitioning methods with best speed
	Improving combined FPE and FPT by determining a ``best'' harvester speed
	Experiment results and discussion
	Comparing workspace partitioning method results when using the best harvester speeds
	Effect on FPE and FPT caused by fixed versus best harvester speeds

	Evaluating scheduling strategies for multi-armed fruit harvesters
	Comparing scheduling results between FCFS with ESS and dual-objective MILP
	Important Gurobi settings

	Experiment results and discussion

	Extending the harvest to whole orchard rows using Sliding Planning Windows
	Sliding Planning Window for fruit harvesting
	Experiment results and discussion

	Conclusion
	Row partitioning and speed selection
	Comparing FCFS and Goal Programming
	Sliding Planning Window

	Future Research

