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Abstract 

Large language models (LLMs) were trained to predict words 
without having explicit semantic word representations as hu-
mans do. Here we compared LLMs and humans in resolving 
semantic ambiguities at the word/token level by examining the 
case of segmenting overlapping ambiguous strings in Chinese 
sentence reading, where three characters “ABC” could be seg-
mented in either “AB/C” or “A/BC” depending on the context. 
We showed that although LLMs performed worse than hu-
mans, they demonstrated a similar interaction effect between 
segmentation structure and word frequency order, suggesting 
that this effect observed in humans could be accounted for by 
statistical learning of word/token occurrence regularities with-
out assuming an explicit semantic word representation. Never-
theless, across stimuli LLMs’ responses were not correlated 
with any human performance or eye movement measures, sug-
gesting differences in the underlying processing mechanisms. 
Thus, it is essential to understand these differences through 
XAI methods to facilitate LLM adoption. 

Keywords: EMHMM; eye tracking; large language models; 
reading; Chinese 

Introduction 

Large language models (LLMs) are trained to predict words 

from massive datasets of text. Although their predictions ap-

pear to follow the semantic meaning of the inputs in most 

cases and exhibit human-like behavior in sentence under-

standing, LLMs did not learn about the semantic representa-

tion of words explicitly as humans do. More specifically, hu-

mans semantic representations of words have been shown to 

be highly associated with sensory-motor experiences (e.g., 

Bedny & Caramazza, 2011). In contrast, LLMs use word/to-

ken co-occurrence regularities to process sentences, which 

lack sensory-motor representations of the words. Wang et al. 

(2020) found that during object color recognition tasks, both 

sighted and blind participants showed activation in the left 

dorsal anterior temporal lobe, whereas only sighted partici-

pants showed activation in the ventral occipitotemporal color 

perceptual region. This finding suggested there are at least 

two forms of word representations in humans: sensory-de-

rived and language- and cognition-derived. In addition, alt-

hough blind participants had similar performance to sighted 

participants, they had greater individual variability, perhaps 

due to individual differences in compensatory strategies. 

Similarly, without any explicit sensory representation of 

words, LLMs’ sentence processing and linguistic decisions 

may depend mainly on statistical regularities of word/token 

co-occurrences learned from large datasets, and thus may dif-

fer from humans’ regardless of their human-like behavior in 

sentence understanding. In addition, humans process words 

in a sentence sequentially due to the constraints from speech 

production or limitations of human visual attention in the case 

of reading (Rayner et al., 2013), whereas LLMs can process 

all words in a sentence context simultaneously when learning 

to predict the next word in a sentence. This difference may 

also lead to differences in how words are represented and pro-

cessed in humans vs. LLMs. Here we aimed to investigate 

this possibility through examining a special case of word- or 

token-level semantic ambiguity resolution, word segmenta-

tion in Chinese sentence reading. 

Semantically ambiguous sentences are common in natural 

languages. However, humans do not typically have difficul-

ties in resolving these ambiguities in daily life. To examine 

whether LLMs have similar semantic disambiguation abili-

ties as humans, Liu et al. (2023) presented LLMs with am-

biguous English sentences with more than one interpretations 

(for instance, the sentence “The cat was lost after leaving the 

house” can be interpreted as “the cat was unable to find its 

own way” or “the cat was unable to be found”). They asked 

LLMs to generate disambiguations for a sentence, and then 

recruited humans to evaluate LLMs’ performance by major-

ity voting. They found that the disambiguations generated by 

GPT-4, which performed the best among the LLMs in their 

study, were considered correct only 32% of the time in human 

evaluation, much lower than human performance in this task. 

This result suggested that sentence disambiguation may be a 

difficult task for LLMs as compared with humans. 

Instead of sentence-level semantic disambiguation, where 

a word may have multiple meanings and the resolution de-

pends on the sentence context, here we focused on word- or 

token-level semantic disambiguation. Word segmentation in 

Chinese sentence reading provided a unique opportunity for 

this examination. More specifically, in Chinese sentence 

reading, there is no word boundary information such as space 

used in other languages. Thus, full understanding of Chinese 

sentences requires correct segmentation at the word/token 

level. In a sentence with a three-character overlapping am-
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biguous string (OAS), denoted as "ABC", in which the mid-

dle character could form distinct words with the characters on 

both its left (word AB) and its right (word BC), different seg-

mentations could lead to different interpretations of the sen-

tence, and typically only one of them would be consistent 

with the semantics of the sentence. For instance, the OAS表

明早 could be parsed as 表明/早 (show and early) or 表/明

早 (form and tomorrow morning). However, in the sentence 

in Figure 1a, only the segmentation on the top was correct, 

and the sentence was interpreted as “the experiment results 

show that discovering and treating the disease early can pre-

vent a major disease”. In previous studies (Huang & Li, 2020; 

Huang et al., 2021), the average comprehension accuracy was 

95% in human participants (Chinese readers), showing that 

humans could perform well in this word-level disambigua-

tion task. Since LLMs do not have explicit word semantic 

representations and their word-level semantic processing de-

pends mainly on word/token co-occurrence regularities 

learned from large datasets, we expected that they may make 

more mistakes than humans in this task. We also speculated 

that they may process these OASs differently from humans, 

which could lead to different word segmentation decisions 

across OAS conditions or individual trials. 

Eye tracking has been commonly used to examine cogni-

tive processes involved in sentence reading. In disambiguat-

ing OASs, Huang and Li (2020) reported that participants 

typically had shorter first-fixation duration, shorter gaze du-

ration, and shorter second-pass reading time in the OAS re-

gion and shorter total sentence reading time in the AB/C than 

in the A/BC segmentation structure (Huang & Li, 2020). This 

result suggested that humans’ cognitive processing was influ-

enced by segmentation structure. In addition, the word fre-

quency of word AB and BC in an OAS appeared to influence 

readers’ processing efficiency, as participants had shorter fix-

ation duration and shorter first-pass and go-pass reading time 

when words in the OAS region followed the high-low fre-

quency order (when word AB had higher frequency than BC) 

than the low-high order (Huang et al., 2021). These effects 

may be related to humans’ left-to-right sentence reading di-

rection.  

Accordingly, in the current study, we measured human 

readers’ cognitive processes involved in disambiguating 

OASs using gaze duration and first-fixation duration in the 

OAS region. In addition, we used Eye Movement analysis 

with Hidden Markov Models (EMHMM; Chuk et al., 2014) 

to quantify human readers’ word segmentation processes. 

More specifically, EMHMM is a machine learning approach 

for eye movement analysis. By assuming two models with 

different word segmentation structures (Figure 1), we may 

use the log-likelihoods of a participant’s eye movement data 

being generated by the models to quantify how well one’s eye 

movement behavior follows a particular word segmentation 

interpretation. To compare with LLMs’ processing of OASs, 

we measured LLMs’ preference for the correct segmentation 

structure for sentences with an OAS, as measured via sen-

tence likelihoods. We then examined the effect of segmenta-

tion structure and frequency order on participants’ word seg-

mentation performance and eye movement behavior, and 

compared them with LLMs’ accuracy and preference for the 

correct word segmentation structure. We hypothesized that 

humans’ performance and eye movement behavior would be 

influenced by frequency order and segmentation structure in 

the OAS region as in previous studies, and there may be an 

interaction between frequency order and segmentation struc-

ture where the advantage of having a high-low frequency or-

der may be larger when the correct segmentation structure is 

AB/C. In contrast, since LLMs may have a better ability to 

process multiple words simultaneously, they may exhibit a 

weaker segmentation structure or a frequency order main ef-

fect. However, they may still exhibit an interaction effect be-

tween frequency order and segmentation structure, where the 

preference for the correct segmentation structure would be 

higher when the correct segmentation structure matched the 

word frequency order (i.e., AB/C in the high-low frequency 

order condition, and A/BC in the low-high frequency order 

condition), and this word frequency effect could be learned 

purely from statistics of word occurrences in the training da-

taset (e.g., Schepens et al., 2023). Also, since LLMs do not 

have explicit sensory-motor representation of the words, they 

may not perform as well as humans in word segmentation. 

 

 
Figure 1: (a) Examples of predefined ROIs in the AB/C 

pattern (top) and the A/BC pattern (bottom). (b) Example 

HMM summarizing a participant’s gaze transition pattern 

during reading. Ellipses show predefined ROIs as 2-D 

Gaussian emissions and represent 2 SD from the mean. The 

color of the fixation shows the assignment to its ROI. Table 

on the bottom shows transition probabilities among the 

ROIs. Priors show the probabilities that a fixation sequence 

starts from the ellipse. 

Methods 

Participants 

We recruited 65 adult native Chinese readers as the partici-

pants (46 females). According to a power analysis, a sample 

size of 52 was needed to acquire a large effect size (following 

previous studies on Chinese OAS, e.g., Huang & Li, 2020; 

Huang et al., 2021) in a 2 x 2 repeated ANOVA (f = .40; β 

= .2; ɑ = .05). A sample size of 55 was needed to acquire a 

large effect size in a linear multiple regression with one tested 
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predictor (f2 = .35; β = .2; ɑ = .05). The participants were aged 

from 18-30 (M = 21.508, SD = 2.873).  

Materials 

The Chinese sentence reading task consisted of 80 sentences. 

We first chose from Huang et al. (2021) 40 3-character tradi-

tional Chinese OASs, each of which could be parsed as either 

AB/C or A/BC segmentation structure depending on the con-

text. Word frequency information was from the Text Corpus 

for Word frequency in Contemporary Chinese (Institute of 

Linguistics, Academia Sinica, 2005). In 20 of the OASs, the 

word AB had higher word frequency (M = 141.48 occur-

rences per million) than the word BC (M = 1.58 occurrences 

per million), t(35) = 12.30, p < .001. We referred to these as 

OASs with a high-low frequency order. In the other 20 OASs, 

the word AB had lower word frequency (M = 1.44 occur-

rences per million) than the word BC (M = 167.39 occur-

rences per million), t(35) = -8.62, p < .001. These OASs were 

referred to as having a low-high frequency order. Each OAS 

appeared in two Chinese sentences: in one sentence the cor-

rect segmentation of the OAS was AB/C, whereas in the other 

the correct segmentation was A/BC. Each sentence contained 

10 to 20 characters (M = 15.201). Sentence lengths and aver-

age character complexity defined by number of strokes in a 

sentence were matched across the conditions. To perform by-

item analysis, according to a power analysis, a sample size of 

32 items was needed to acquire a large effect size in a 3 x 2 x 

2 between-within ANOVA (f = .40, β = .2; ɑ = .05). A sample 

size of 56 was needed to acquire a large effect size in a 2 x 2 

between-subject ANOVA (f = .40, β = .2; ɑ = .05).  

Design 

In human data analysis, the design consisted of two within-

participant variables, frequency order (high-low vs. low-high) 

and segmentation structure (AB/C vs. A/BC). The dependent 

variables were performance as measured in accuracy and re-

action time (RT) when judging the segmentation structure 

through key responses, and eye movement measures during 

natural sentence reading (the first sentence presentation in 

Figure 2; see Procedure for details) including OAS total gaze 

duration (the sum of the duration of all fixations within the 

OAS region), OAS first-fixation duration (the duration of the 

first-fixation landing into the OAS region), and eye move-

ment pattern as quantified using EMHMM (see EMHMM 

section for details). Linear regression analyses were used to 

examine whether eye movement measures could predict 

reading performance.  

To examine whether LLMs exhibited similar behavior as 

humans, we measured the preference of the LLMs for the cor-

rect segmentation structure, i.e., AB/C or A/BC, by compar-

ing the LLM's log-likelihoods of the two possible segmenta-

tions. Specifically, given the same stimuli as the human study, 

 
1 Using "/" led to the largest difference in the posterior probability be-

tween the two options among a series of symbols, numbers, English letters, 

and Chinese characters that we tested.  

we inserted the symbol “/” to indicate two possible segmen-

tation structures of the OAS.1 The LLM's log-likelihoods of 

these two sentences were calculated, and the log-likelihoods 

were converted into posterior probabilities indicating the 

LLMs preference for the correct segmentation. We then com-

pared Davinci-003 (Kalyan, 2024) and GPT-3.5 Turbo In-

struct (GPT-3.5-TI; Singh, 2023) and examined the effects of 

segmentation structure and frequency order through a by-

item ANOVA with model as a between-subject factor and 

segmentation structure and frequency order as within-subject 

factors on the preference for correct segmentation structure. 

To compare LLM and human behavior, we directly com-

pared LLMs’ preference for the correct segmentation struc-

ture with human accuracy in selecting the correct segmenta-

tion structure. A 3 x 2 x 2 between-within ANOVA was used 

to examine the effect of group (human vs. Davinci-003 vs. 

GPT-3.5-TI), segmentation structure, and frequency order on 

the preference/accuracy. Linear regression was used to exam-

ine whether LLMs’ preference of correct segmentation struc-

ture could predict humans’ segmentation performance and 

eye movement behavior. 

Procedure 

In the Chinese sentence reading task, participants started with 

a practice trial, followed by four experimental blocks, with 

each block containing 20 sentences. The experimenter en-

sured that participants understood the task and answered the 

practice trial correctly before they proceeded to the experi-

mental blocks. At the beginning of each block, a nine-point 

calibration procedure was performed. Each trial started with 

a solid dot at the screen center for drift check, followed by a 

cross on the left side of the screen. Participants were in-

structed to look at the cross when it appeared. After a fixation 

was detected at the cross, the cross disappeared, and the target 

sentence was presented 1° of visual angle to the right of the 

cross. Participants read the sentence naturally and pressed the 

spacebar to indicate finishing reading. The cross then ap-

peared again on the left side of the screen and participants 

were instructed to look at the cross again. After a fixation was 

detected at the cross, the cross disappeared, and the same sen-

tence with the OAS highlighted in red was presented 1° of 

visual angle to the right of the cross. Participants pressed the 

key “F” if they thought the correct segmentation structure of 

the OAS was AB/C, otherwise pressed the key “J” (Figure 2). 

 

 
Figure 2: Procedure of the Chinese sentence reading task. 
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EMHMM 

We used EMHMM with fixed-ROIs to quantify participants’ 

segmentation processes as reflected in eye movement behav-

ior (e.g., Cho et al., 2022a; 2022b; 2022c; Chuk et al., 2020; 

Lo et al., 2023). Following previous eye movement studies 

on reading where ROIs were typically pre-defined to be on 

individual words with the assumption that words are the basic 

functional units of sentence processing (e.g., Perfetti, 1985), 

we predefined an ROI on each word except for the OAS re-

gion in a sentence. In order to quantify participants’ eye 

movement patterns along the contrast between the two seg-

mentation structure interpretations AB/C and A/BC, we con-

structed two models, with the ROIs in the OAS regions fol-

lowing the two segmentation structures respectively (Figure 

1a). Then, we summarized each participant’s gaze transitions 

during reading each sentence using an HMM in terms of the 

predefined ROIs and transition probabilities among the ROIs 

(Figure 1b), for each of the two segmentation structures re-

spectively. In the HMM, each hidden state corresponded to 

an ROI, and fixations within an ROI were assumed to follow 

a Gaussian distribution. The representative models of AB/C 

and A/BC segmentations were then formed by summarizing 

all individual AB/C and A/BC models respectively2. For each 

participant, we quantified the eye movement pattern during 

reading each sentence along the dimension contrasting the 

AB/C and A/BC segmentation patterns using L-R (Left vs. 

Right word segmentation) scale, which is defined as (L - R) / 

(|L| + |R|), where L refers to the log-likelihood of the partici-

pant’s eye movement data under the HMM of the AB/C pat-

tern, and R refers to the log-likelihood of the participant’s 

data under the HMM of the A/BC pattern (e.g., An & Hsiao, 

2021; Chan et al., 2018; Chan, Suen et al., 2020; Chan, Barry 

et al., 2020; Hsiao, An et al., 2021; Liao et al., 2022; Zhang 

et al., 2019; Zheng et al., 2022). A more positive L-R scale 

indicates greater similarity to the AB/C pattern. 

Results 

Human data 

In accuracy, the results revealed a main effect of segmenta-

tion structure, F1(1, 64) = 18.173, p < .001, ηp
2 = .221 (it was 

not significant in the by-item analysis, F2(1, 76) = 2.182, p 

= .144): participants had higher accuracy in the AB/C than 

the A/BC segmentation structure condition. This effect inter-

acted with frequency order, F1(1, 64) = 53.022, p < .001, ηp
2 

= .453, F2(1, 76) = 9.175, p = .003, ηp
2 = .108: in the high-

low frequency order condition, participants had higher accu-

racy in the AB/C than the A/BC segmentation structure, t1(64) 

= 7.665, p < .001, t2(76) = 3.186, p = .011; this pattern was 

reversed in the low-high condition, t1(64) = -2.895, p = .026, 

t2(76) = -1.097, p = .692 (Figure 3a). 

In RT, a main effect of segmentation structure in the by-

subject analysis was observed, F1(1, 64) = 11.495, p = .001, 

ηp
2 = .152 (it was not significant in the by-item analysis, F2(1, 

 
2 A better method to derive the representative models is to use hidden 

Markov mixture model (Zhang et al., 2023). 

76) = 2.113, p = .150): participants had shorter RT in the 

AB/C than the A/BC segmentation structure (Figure 3b). 

In OAS total gaze duration, the results revealed a main ef-

fect of segmentation structure, F1(1, 64) = 6.384, p = .013, ηp
2 

= .092, (it was not significant in the by-item analysis, F2(1, 

76) = 1.512, p = .223): participants had shorter OAS total 

gaze duration in the AB/C than the A/BC segmentation struc-

ture. This effect interacted with frequency order, F1(1, 64) = 

77.027, p < .001, ηp
2 = .546, F2(1, 76) = 20.641, p < .001, ηp

2 

= .214: in the high-low condition, participants had shorter 

OAS total gaze duration in the AB/C than the A/BC segmen-

tation structure, t1(64) = -8.728, p < .001, t2(76) = -4.082, p 

= .011; this pattern was reversed in the low-high condition, 

t1(64) = 5.291, p < .001, t2(76) = 2.343, p = .097 (Figure 3c). 

In OAS first-fixation duration, the results revealed a main 

effect of segmentation structure, F1(1, 64) = 7.089, p = .010, 

ηp
2 = .100, F2(1, 76) = 5.093, p = .027, ηp

2 = .063: participants 

had shorter OAS first-fixation duration in the AB/C than the 

A/BC segmentation structure. This effect interacted with fre-

quency order, F1(1, 64) = 8.727, p = .004, ηp
2 = .120, F2(1, 

76) = 6.698, p = .012, ηp
2 = .081: in the high-low frequency 

order, participants had shorter OAS first-fixation duration in 

the AB/C than the A/BC segmentation structure, t1(64) = -

3.955, p = .001, t2(76) = -3.314, p = .008; this effect was not 

observed in the low-high condition t1(64) = -.274, p = .993, 

t2(76) = .462, p = .967 (Figure 3d). 

In the L-R scale, no effect was observed (Figure 3e). 

Linear regression showed that L-R scale was a marginally 

significant predictor for average RT across trials, ꞵ = -.243, p 

= .053, with F(1, 62) = 3.895, p = .053, R2= .059 (Figure 3f). 

 

 
Figure 3: (a) Accuracy, (b) RT, (c) OAS total gaze dura-

tion, (d) OAS first-fixation duration, (e) Eye movement pat-

tern as assessed in L-R scale, and (f) Correlation between L-

R scales and average RT. 
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LLM data 

In LLMs’ preference for the correct segmentation structure, 

the results revealed an interaction between frequency order 

and segmentation structure (by-item analysis), F2(1, 65) = 

5.373, p = .024, ηp
2 = .076: in the high-low frequency order, 

LLMs had marginally higher preference for correct segmen-

tation structure in the AB/C than the A/BC segmentation 

structure, t2(65) = 2.434, p = .081. In addition, there was a 

marginal interaction between frequency order, segmentation 

structure, and groups, F2(1, 65) = 3.016, p = .087, ηp
2 = .044, 

whereas there was no main effect of groups, F2(1, 65) = 0.182, 

p = .671. It showed that Davinci-003 and GPT-3.5-TI did not 

differ significantly in overall performance, but the interaction 

between frequency order and segmentation structure was 

stronger in Davinci-003 (F2(1, 65) = 9.564, p = .003, ηp
2 

= .128) than GPT-3.5-TI (n.s.; Figure 4). There was no main 

effect of segmentation structure, F2(1, 65) = 1.217, p = .274, 

which was different from human data. 

 

 
Figure 4: LLMs’ preference for correct segmentation 

structure: (a) Davinci-003, and (b) GPT-3.5-TI. 

Comparison between humans and LLMs in perfor-

mance 

LLMs’ accuracy was determined according to their calcu-

lated preferences. If the preference for the correct segmenta-

tion structure was higher than the preference for the wrong 

segmentation structure for a given sentence, it would be 

marked as a correct response. The results showed that hu-

mans had higher accuracy than LLMs (Table 1). 

 

Table 1: Accuracy mean and SD of humans, Davinci-003, 

GPT-3.5-TI in each condition. SD are in the parentheses. 

 Human Davinci-003 GPT-3.5-TI 

High-low AB/C .967 (.049) .947 (.229) .895 (.315) 

High-low A/BC .860 (.120) .563 (.512) .688 (.479) 

Low-high AB/C .900 (.147) .750 (.447) .813 (.403) 

Low-high A/BC .937 (.085) .889 (323) .833 (.383) 

 

When we compared humans’ accuracy with LLMs’ prefer-

ence for correct segmentation structure in the by-item analy-

sis, the results revealed a main effect of group, F2(2, 130) = 

8.465, p < .001, ηp
2 = .115: humans’ accuracy was higher than 

Davinci-003’s preference, t2(65) = 3.742, p = .001, and GPT-

3.5-TI’s preference, t2(65) = 3.105, p = .008. In addition, an 

interaction between frequency order and segmentation struc-

ture was observed, F2(1, 65) = 8.334, p = .005, ηp
2 = .114: in 

the high-low frequency order, subjects had higher accu-

racy/preference in the AB/C than the A/BC segmentation 

structure, t2(65) = 3.019, p = .019. There was no interaction 

among group, frequency order, and segmentation structure, 

F2(2, 130) = 1.854, p = .161, suggesting that humans and 

LLMs did not significantly differ in this interaction effect be-

tween frequency order and segmentation structure. Also, no 

other main effect or interaction effect was found. 

Processing similarities between LLMs and humans 

Linear regression was used to test whether LLM’s preference 

for correct segmentation structure could predict human word 

segmentation processes revealed in eye movement behavior. 

The results showed that GPT-3.5-TI’s preference for correct 

segmentation structure was a marginally significant predictor 

for L-R scale, ꞵ = .233, p = .054, with F(1, 67) = 3.845, p 

= .054, R2 = .054 (Figure 5a), whereas Davinci-003’s prefer-

ence was not a significant predictor for L-R scale, ꞵ = .013, p 

= .298, with F(1, 67) = 1.100, p = .298, R2 = .016 (Figure 5b). 

GPT-3.5-TI’s and Davinci-003’s preference for correct seg-

mentation structure could not predict humans’ OAS total 

gaze duration or OAS first-fixation duration. In addition, they 

were not a significant predictor for human word segmentation 

performance in accuracy or RT. 

 

 
Figure 5: correlation between L-R scale and LLMs’ pref-

erence for correct segmentation structure: (a) Correlation 

between L-R and GPT-3.5-TI’s preference, and (b) correla-

tion between L-R and Davinci-003’s preference. 

Discussion 

Here we tested whether LLMs resolved semantic ambiguities 

in the same way as humans in word segmentation during Chi-

nese sentence reading. More specifically, in segmenting 

words in OASs in a sentence context, previous research has 

reported that Chinese readers exhibited a segmentation struc-

ture effect (i.e., an advantage in processing AB/C over A/BC) 

and a frequency order effect (i.e., an advantage when AB is 

of higher word frequency than BC) since humans generally 

process words in a sentence sequentially from left to right. In 

contrast, LLMs are able to process multiple words in a sen-

tence simultaneously, and thus may exhibit a weaker effect. 

In contrast, both humans and LLMs may exhibit an interac-

tion effect between frequency order and segmentation struc-

ture (i.e., when the correct segmentation is AB/C, a pro-

cessing advantage if AB is of higher word frequency than BC, 

and vice versa if the correct segmentation is A/BC) since this 

word frequency effect may be learned purely from statistics 
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of word occurrences in the training dataset. In addition, 

LLMs may not perform as well as humans in resolving OASs 

since they did not learn about the semantic representation of 

words as explicitly as humans do.  

Our human data showed a significant main effect of seg-

mentation structure in accuracy, RT, OAS total gaze duration, 

and OAS first-fixation duration in the by-subject analysis, 

although it was not significant in the by-item analysis of some 

measures. Also, a higher similarity of participants’ eye fixa-

tion behavior to the AB/C segmentation structure interpreta-

tion as indexed by L-R scale using EMHMM was marginally 

associated with faster RT, suggesting that human readers 

were indeed more efficient in processing AB/C segmentation 

structures due to left to right sequential word processing. 

These results were consistent with previous research (Huang 

& Li, 2020). However, in contrast to Huang et al. (2021), we 

did not observe a main effect of frequency order. Note that 

Huang et al. (2021) only used sentences with AB/C as the 

correct OAS segmentation as the stimuli. In a separate anal-

ysis, we found that if we only considered these sentences in 

our stimuli, a significant frequency order effect was found, 

consistent with Huang et al. (2021). Our results thus suggest 

that when both AB/C and A/BC segmentation structures were 

considered, there was no main effect of frequency order. 

In contrast to humans, LLMs did not show an advantage 

for AB/C segmentation structure in the measure of preference 

for the correct segmentation structure. However, since we 

were not able to manipulate the parameters of Davinci-003 

and GPT-3.5-TI to create different versions of the model for 

a by-subject analysis to be compared with human data, this 

result was limited to by-item analysis. When we compared 

LLMs and humans in a by-item analysis, no interaction effect 

between group and segmentation structure was found. Thus, 

although it remains unclear whether LLMs would demon-

strate a weaker segmentation structure effect than humans in 

a by-subject analysis, our current results suggested that they 

may not differ in the segmentation structure effect.  

In our human data we also observed an interaction between 

segmentation structure and frequency order in accuracy, OAS 

total gaze duration, and OAS first-fixation duration. This was 

consistent with previous research (Ma et al., 2014). Con-

sistent with our hypothesis, LLMs also exhibited this interac-

tion in the measure of preference for the correct segmentation 

structure, suggesting that this interaction effect observed in 

humans could be accounted for by statistical learning of 

word/token occurrence regularities from the linguistic mate-

rials that the learners were exposed to without the assumption 

of explicit semantic word representation or sequential word 

processing. Note that between the two LLMs tested here, 

Davinci-003 showed a marginally stronger interaction effect 

than GPT-3.5-TI. As compared with Davinci-003, GPT-3.5-

TI had fewer parameters. Thus, number of parameters may 

play an important role in accounting for LLMs’ behavior.  

When we compared humans’ and LLMs’ overall perfor-

mance in segmenting words in OASs, humans generally out-

performed the LLMs, consistent with our hypothesis. Perhaps 

humans could use richer internal representations of words 

that involve both sensory-derived and language- or cogni-

tion-derived information (e.g., Wang et al., 2020) to facilitate 

resolving semantic ambiguities. However, it remains possible 

that an LLM with a larger number of parameters can achieve 

a human-level ability without explicit semantic or memory 

representations. Future work may examine these possibilities.  

When we examined the associations between humans’ and 

LLMs’ segmentation processes across stimuli, we found that 

LLMs’ preference for the correct segmentation structure was 

not correlated with any of the performance or eye movement 

measures in the humans data, except for a marginal correla-

tion with eye movement pattern assessed using L-R scale. 

This result suggested that although LLMs demonstrate hu-

man-like behavior in language processing, there may be fun-

damental differences in their processing mechanisms that led 

to differential processing across stimuli. Understanding the 

similarities and differences between human and LLM lan-

guage processing have important implications for ways to fa-

cilitate human-AI interaction, such as providing appropriate 

explanations to enhance user understanding, inducing an ap-

propriate level of user trust, and enhancing safety of AI adop-

tion (Hsiao & Chan, 2023). Future work may use explainable 

AI (XAI) methods such as GradCAM (Liu, Zhang et al., 

2023a; 2003b) to visualize the internal representations of 

LLMs and compare them with human data to better under-

stand the processing differences between them. 

In conclusion, through comparing LLMs and humans in re-

solving semantic ambiguities involved in word segmentation 

in Chinese sentence processing, we showed that although 

LLMs performed worse than humans in general, they showed 

a similar interaction between segmentation structure and 

word frequency order effects. This result suggested that this 

interaction observed in humans could be accounted for by sta-

tistical learning of word/token occurrence regularities in 

LLMs without assuming an explicit semantic representation 

of words. Nevertheless, it remains unclear whether LLMs 

could account for the segmentation structure effect observed 

in human data, which is related to humans’ left-to-right se-

quential processing of words in a sentence. Also, LLMs’ re-

sponse to the stimuli was not correlated with any human per-

formance or eye movement measure, suggesting differences 

in the underlying processing mechanisms. Future work will 

use XAI methods to better understand these processing dif-

ferences between humans and LLMs to enhance human-LLM 

mutual understanding and facilitate LLM adoption. 
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