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Abstract1

Certain general facets of biotic response to climate change, such as shifts in phenology and2

geographic distribution, are well characterized, however, it is not clear whether the3

observed similarity of responses across taxa will extend to variation in other4

population-level processes. We examined population response to climatic variation using5

long-term incidence data (collected over 42 years) encompassing 149 butterfly species and6

considerable habitat diversity (10 sites along an elevational gradient from sea level to over7

2,700 meters in California). Population responses were characterized by extreme8

heterogeneity that was not attributable to differences in species composition among sites.9

These results indicate that habitat heterogeneity might be a buffer against climate change,10

and highlight important questions about mechanisms maintaining inter-population11

differences in responses to weather. Despite overall heterogeneity of response, population12

dynamics were accurately predicted by our model for many species at each site. The13

overall correlation between observed and predicted incidence in a cross validation analysis14

was relatively high ((Pearson’s r = 0.43, SE 0.01) and 96% of observed data fell with the15

predicted 95% credible intervals. Prediction was most successful for more abundant species16

and those that maintain year-round breeding populations (e.g. resident species), as well as17

for sites with lower annual turnover. However, recent years with severe drought conditions18

were much less predictable. Population-level heterogeneity in response to climate variation19

and the limits of our predictive power highlight challenges for a future of increasing20

climatic variability.21
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Introduction22

One of the chief ecological discoveries of recent decades is the finding that biotic responses23

to climatic variation include dramatic changes in phenology and geography. For example,24

the first flowering date for many temperate zone plant species has advanced by many weeks25

(Parmesan, 2007; Root et al., 2003), and elevational and geographic range limits for many26

species of both plants and animals are shifting (Chen et al., 2011; Parmesan & Yohe, 2003;27

Walther et al., 2002). These biotic responses appear to be robust and generalizable across28

species, but some variation in responses has been observed (Mills et al., 2017; Thomas &29

Lennon, 1999; Sagarin et al., 1999). While we also know that populations can respond30

directly to climate variation (Andrewartha & Birch, 1954; Diamond et al., 2016),31

understanding and predicting more nuanced responses is an ever more pressing need as32

climate patterns shift. For example, physiological stress associated with abiotic variation33

has led to morphological evolution (Parmesan, 2006; Smith et al., 1995) and to population34

declines (Both et al., 2006; Gibbons et al., 2000), although considerably less is known35

about the generality of these phenomena compared to changes in phenology and geography.36

Nor do we know the extent to which responses to climate variation are consistent among37

populations of a species that occur in different habitats. In part, this is because many of38

these population responses are not as easily standardized across studies (as compared to,39

for example, first flowering date or upper elevational limit, but see Mills et al. (2017)). One40

way to address this gap in our knowledge is with single studies that encompass a large41

number of species and habitat types (Oliver et al., 2010). Sufficiently large studies, of42

which we offer one here, should be able to ask, for example, if certain climate variables43

have more or less widespread effects (positive or negative) on population dynamics across44

species, and if these effects are specific to local environmental or habitat conditions. Such45

studies can also provide an assessment of our ability to predict responses to climate change.46

Here we examine a large, single-observer butterfly dataset encompassing 149 species47
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observed along an elevational gradient that includes one of the highest mountain ranges in48

North America (Fig. 1, Table S1). The ten sites comprise a transect that extends from sea49

level to the east side of the Sierra Nevada Mountains. These sites were visited50

approximately every two weeks (excluding months at higher elevations when temperatures51

are below the level at which insects are active), and the presence or absence of individual52

butterfly species was noted by AMS. The duration of surveys varies across sites, with53

Suisun Marsh (SM) having the longest record (42 years analyzed here (1972-2013)) and the54

shortest records being 26 years (1988-2013) for three sites (West Sacramento (WS), North55

Sacramento (NS) and Washington (WA) (Fig. 1)) (mean = 34.7 years, Table S1). We56

considered every species by site combination to be a population. From these observations,57

our index of population dynamics (which we refer to as “day positives”) was calculated as58

the number of days in a year that a given species was observed, out of the total number of59

visits to a site. This incidence-based approach is logistically feasible for a large fauna, and60

day positives encompass multiple population features including overall abundance and61

duration of flight window (Casner et al., 2014b; Forister et al., 2011) (Supporting62

Information). The effects of weather variables on day positives can be effectively modeled63

in a hierarchical Bayesian framework (Nice et al., 2014; Harrison et al., 2015) that64

estimates the effect of climatic variation at multiple levels including individual populations65

(population-level parameters) and among populations at individual sites (site-level66

parameters) (Fig. 1). Here we employ this Bayesian hierarchical modeling approach and67

focus specifically on site-level parameters that capture the response to climatic variation of68

the constituent populations of species at each site (Nice et al., 2014). In this way, we can69

specifically quantify effects across species at a community level. We ask whether responses70

to climate variation are similar among sites, and explore our ability to predict these71

responses and the factors that limit prediction.72
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Materials and Methods73

Data Collection, Climate Covariates and Statistical Model74

Data on the presence and absence of butterflies were collected by a single observer (AMS)75

from biweekly visits to ten sites that comprise a transect across California (Fig. 1, Table76

S1). We used data from 1972 to 2013. These data were pruned to remove any species that77

was observed less than five years at a particular site. Further details of data collection have78

been described elsewhere (Forister et al., 2010, 2011; Shapiro, 2011). Parts of these data79

have been used to address a variety of questions about butterfly responses to climate80

change (Forister & Shapiro, 2003; Thorne et al., 2006; Espeset et al., 2016; Forister et al.,81

2010, 2011; Shapiro, 2011; Harrison et al., 2015; Nice et al., 2014; Pardikes et al., 2015,82

2017; Forister et al., 2018) and other factors (Forister et al., 2016). Here we present the83

first hierarchical analysis of these data focused on site-level variation.84

We examined the response of populations (i.e. “population-level responses”) and85

entire butterfly assemblages at sites (i.e. “site-level responses”) to climatic variation using86

data for 12 local variables and one regional variable (Fig.s 2, 3). The population, that is, a87

particular species at a particular site, is the basic unit of analysis. For example, monarch88

butterflies (Danaus plexippus) at Donner Pass (DP) constitute a population that is distinct89

from monarchs at Suisun March (SM), or painted ladies (Vanessa cardui) at Donner Pass90

(DP). The weather variables included measures of precipitation, maximum and minimum91

temperatures and monthly sea-surface temperatures. Quarterly precipitation and92

temperature records were obtained using PRISM (Parameter-elevation Relationships on93

Independent Slopes Model, PRISM Climate Group, see http://prism.oregonstate.edu) and94

represent the year from September of the preceding year to August of the current year.95

Thus, these climate variables were chosen to include factors likely to influence the butterfly96

flight season for each year. Precipitation values used here are average daily measures97

calculated as monthly averages and then averaged over each season (i.e. “Fall98
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Figure 1: Site locations and example probability densities. A) Butterflies have been monitored for up to
42 years at these 10 sites, which comprise a transect across northern California. (E) The transect covers
a diversity of habitats from sea-level (Suisun Marsh, SM) to 2,775m (Castle Peak, CP), and from the
Sacramento River delta, to the Coast Range and Sierra Nevada mountains, to the high desert of the western
Great Basin. Data for 149 butterfly species were analyzed with a linear, hierarchical model. Model-based
probability densities of site-level standardized β coefficients are shown for weather covariates, including: (B)
spring precipitation, (C) summer minimum temperature, and (D) the year effect. The vertical, dashed lines
in B-D indicate a value of zero. The transect sites span habitat variation including (F) alpine habitat at
Castle Peak (CP), (G) montane habitat at Lang Crossing (LC), and (H) low elevation, mixed agricultural
and urban habitat in West Sacramento.
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Precipitation” is the average daily precipitation for September, October and November for99

each year). We also used the monthly composite sea-surface temperature and climate data100

from the El Niño - Southern Oscillation (ENSO) data base (specifically we used the101

multivariate ENSO index which is the first principal component from six temperature,102

atmospheric pressure, wind and cloudiness variables available at:103

http://www.esrl.noaa.gov/psd/enso/mei/table.html) (Wolter & Timlin, 2011). These104

ENSO variables have been demonstrated to be related to climatic variation and ecological105

variation in North America (e.g., Mochizuki et al., 2010). The multivariate ENSO index106

values are averaged across months to provide a yearly average value. The year in which107

butterfly data were collected was also included in the model (i.e. a “year” effect) to assess108

trends over time and to account for other factors influencing species’ occurrences besides109

the climate covariates described above (e.g. biotic interactions, pesticides (Forister et al.,110

2016)). All covariates were standardized using z-transformation.111

We used a generalized linear model in a Bayesian, hierarchical framework to analyze112

butterfly presence/absence data. Day positives (DP), the number of days during a year113

that a butterfly species was detected at a transect site, was modeled using the binomial114

distribution with the number of trials equal to the number of visits for each year. This115

fraction of day positives is highly correlated with absolute count abundance for most116

species and we use it here as a measure of the response of populations to climate variation117

(Forister et al., 2011; Casner et al., 2014b). A generalized linear model with a logit link118

function that incorporated effects of the 13 climate variables (described above) and the119

effect of years was fit to these data using a hierarchical Bayesian approach implemented in120

the BUGS language (Gilks et al., 1994) using JAGS (version 3.2.0) (Plummer, 2003) and121

run in R (R Development Core Team, 2012) using the rjags package. This Bayesian122

hierarchical approach has prove to be an effective strategy in other analyses of these data123

(Nice et al., 2014; Harrison et al., 2015). Our hierarchical model consisted of populations of124

species nested within each site. Model specification is provided in the Supporting125
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Information. This framework facilitates quantification of uncertainty in parameter126

estimates in the form of credible intervals (CIs) for each parameter, and uncertainty is127

propagated to all levels of the hierarchy. For example, we use day positives as a proxy for128

population abundance which undoubtedly introduces uncertainty into the estimation of129

population-level parameters which in turn contributes to uncertainty in site-level130

parameters. Thus, the credible intervals around parameter estimates are an accurate131

accounting of the various kinds of error in these analyses, including the error created by132

day positives being an imperfect estimator of abundance (Forister et al., 2011; Casner133

et al., 2014b).134

Posterior distributions for all parameters were estimated using two MCMC chains135

with 30,000 steps each in JAGS. To confirm that the MCMC algorithm sampled the136

stationary distribution, diagnostic tests were performed for each analysis (Supporting137

Information). Standardized regression coefficients, β coefficients, and 95% equal-tail138

credible intervals were calculated for each of the 10 sites and for all 665 populations across139

all sites for all 13 climate covariates and year (i.e. there are 10 sites (site level) and 665140

species-by-site combinations (population level) for which coefficients were estimated, see141

supporting information). The site level is the highest level of the hierarchical model, which142

means that each site is modeled independently. Site-level coefficients and CIs were plotted143

and population-level values were tabulated. Variation among sites was examined and144

illustrated by constructing a heat map for the site-level coefficients for all 13 weather145

covariates for all 10 sites in R using the gplots package (R Development Core Team, 2012).146

To assess whether heterogeneity in response to climate variation among sites was a product147

of differences in species composition across the 10 transect sites, we repeated the148

hierarchical analysis described above, but restricted this analysis to 18 species which occur149

at all sites (Table S2). We then calculated the Pearson correlation coefficient, r, between150

site-level parameter estimates from the full model and the parameters estimated from the151

limited set of 18 species.152
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Model Validation and Predictability153

We assessed model performance using a posterior predictive check with cross validation154

that involved dropping out 10% of the data and using the model parameters to predict the155

missing day positive data. This was done ten times dropping different parts of the data set156

to generate an entire predicted data set. We then estimated the correlation between157

observed and predicted data as a global measure of model fit, and we calculated the158

proportion of the observed data that fell within the 95% CI of the predicted data as an159

estimate of model precision.160

We used the same modeling and posterior predictive check strategy to measure our161

ability to predict the observed data for different periods of time, for resident species (those162

which maintain breeding populations at specific sites (Nice et al., 2014; Pardikes et al.,163

2015; Forister et al., 2016)), versus non-resident butterfly species (which do not breed164

locally), and for each site. Here we define “predictability” as the correlation between165

observed and predicted data. Specifically, we asked whether the model can predict data166

from seven years from 2007 to 2013. These seven years include two major droughts in167

California from 2007 to 2009 and from 2011 to 2013 (Supporting Information). Given that168

periods of drought can have dramatic and complex effects on butterfly populations169

(Shapiro, 1979; Ehrlich et al., 1980), we consider these extreme years to be an appropriate170

test of the predictive power of our hierarchical model. The day positive data for these171

seven years were removed from the data set and predicted as in the posterior predictive172

checks using the remaining 35 years of data. Estimates were obtained from 20,000 MCMC173

steps. As we did for the posterior predictive checks (above), predictions were assessed by174

calculating Pearson’s correlation coefficient, r, between log transformed observed and175

predicted day positives for each population (site × species) for which the mean number of176

day positives across years was greater than one. In this case, correlations between log177

transformed observed and predicted day positives were calculated specifically for the seven178

year period from 2007 to 2013. We also counted how often the observed data was not179
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contained within the predicted data 95% CI. The model’s ability to predict day positives180

for these seven years from 2007 to 2013 was compared to the model’s predictions for sets of181

seven contiguous years replicated as 1972-1978, 1979-1985, 1986-1992, 1993-1999 and182

2000-2006, and for seven randomly selected years (replicated five times). For each of these183

analyses, separate runs of the model were used to predict day positives for the years in184

question.185

Species Turnover and Predictability186

We examined how variation in butterfly community richness and evenness might covary187

with our model’s ability to predict butterfly occurrences. Specifically, we examined188

sequential turnover in community composition using Hill numbers (Hill, 1973; Jost, 2006,189

2007; Marion et al., 2017). Hill number (qD) values vary as a function of the parameter q,190

which determines the relative sensitivity to common versus rare species. When q = 0, the191

measure is analogous to richness, where each species is weighted equally regardless of192

abundance. When q = 1, species are weighted by their relative abundance as in the193

commonly used Shannon’s index. When q = 2, rarer species are down-weighted in194

importance as in the commonly used Simpson’s index. Higher orders of q continue to195

increasingly down-weight the importance of rare species. β-diversity expressed as Hill196

numbers provide the “effective number” of distinct communities in a sample. Pairwise197

β-diversity as Hill numbers provides an intuitive summary of community dissimilarity (Hill,198

1973; Jost, 2006, 2007; Marion et al., 2017). Here, qDβ is constrained between 1 and 2,199

where qDβ = 1 indicates that two community samples are identical (i.e., effectively one200

distinct community), and where qDβ = 2 indicates that two community samples are201

completely different (i.e., effectively two distinct communities). Subtracting one from qDβ202

provides turnover, or the expected proportional change from one sample to the next. We203

calculated mean sequential turnover across years for orders of q equal to zero, one and two204

and examined the correlation between turnover and the correlation between predicted and205
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observed day positives. A positive correlation would indicate that our model performs206

better when there is greater among-year variation in community composition and evenness,207

whereas a negative correlation would indicate that our model performs best when208

communities are more similar, on average, from year to year.209

Results210

The effect of climatic variation on butterfly populations was readily detected and211

heterogeneous. All weather variables were characterized by varying effects along the212

elevational gradient, with positive effects (i.e. positive regression coefficients) in some213

locations and negative effects in others (see Fig. 2 and Table S3 for coefficients from the214

hierarchical model, see Fig.s S1-S13 and Table S5-S7 for details of individual climate215

variables, see Tables S9-S11 for population-level coefficients). Despite transect-wide216

heterogeneity, adjacent sites in some cases showed similar effects; see, for example the217

positive effects of increasing sea surface temperatures (El Niño-Southern Oscillation), or218

spring minimum temperatures at lower elevations and the more negative or neutral effects219

of these variables at higher elevations (Fig. 2). A smaller number of variables show even220

greater consistency of effect, including the generally positive effects of increasing summer221

maximum temperatures (warmer daily high temperatures) and the negative effects of222

spring precipitation (see Fig. 3 where variables are clustered by similarity of223

population-level response). The positive effects of increasing summer maximum224

temperatures might be a simple consequence of accelerated growth in ectothermal225

organisms under higher temperatures (Kingsolver, 2000). The negative relationship with226

spring precipitation is likely a consequence of reduced feeding time during cloudy227

conditions having a negative impact on butterfly abundance, direct mortality associated228

with wet conditions, disruption of phenological matching between butterfly and host229

plants, or indirect effects mediated by changes in host plant quality (Bale et al., 2002;230
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Stefanescu et al., 2003; Parmesan & Yohe, 2003).231

The heterogeneity in response to climate variation observed among sites was not232

directly attributable to differences in species composition. The correlation between233

site-level parameter estimates (standardized β coefficients) from the full data and the234

restricted data of 18 species (Supporting Information) was high (Pearson’s r = 0.82),235

indicating that the observed heterogeneity in response to climate variation is not solely236

explained by differences in species composition among sites (Table S2, Fig. S14).237

Despite the overall high heterogeneity across transect sites in response to climate238

variation, these responses of butterfly populations were predictable, but to varying degrees.239

We used a posterior predictive check with cross validation to assess the model’s ability to240

predict the observed data (Supporting Information). Overall, predictability, measured as241

the correlation between observed and predicted day positives, across the entire data set was242

relatively high (Pearson’s r = 0.43, SE 0.01, Table S8) and 96% of observed day positives243

fell within the 95% credible intervals of the predicted data (Table S8). Predictability was244

lowest for relatively rare butterflies and there was a generally positive correlation between245

observed day positives and our ability to predict butterfly occurrences (Table S8, Fig.246

S16). This pattern was evident at the site-level as well: sites with higher mean day247

positives exhibited greater predictability (Fig. 4A). Further, resident butterflies were more248

readily predicted by our model compared with non-residents. This pattern is undoubtedly249

related to the lower predictability of less common butterflies: on average, resident250

butterflies had higher occurrences (day positives) than non-residents (Fig. S16).251

Our ability to predict butterfly occurrences was also lowest for sites with high252

year-to-year species turnover (Fig. 4B). For the three Hill numbers we calculated (q=0, 1,253

and 2), there was a negative correlation between turnover and predictability (Fig. 4B, Fig.254

S15). This negative relationship was strongest when the contribution of rare species was255

down-weighted (Fig. 4B), which indicates that the effect of community turnover is256

important and not simply a product of rare species being more difficult to predict. The257
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Figure 2: The effect of weather variables on butterfly communities. Each panel includes the median values
(points) and 95% CIs (bars) for the site-level responses (standardized β coefficients) to weather variables
and the year effect. Sites are arranged from west (bottom = SM) to east (top = SV). Colors and site
abbreviations are the same as in Fig 1. Note that the scale of x-axes varies among panels. Vertical dashed
lines represent values of zero.
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Figure 3: Heat map illustrating the patterns of responses of butterfly populations to inter-annual variation
in weather at each of the transect sites. Sites are arranged from west to east, site abbreviations are the same
as in Fig 1. Weather variables are arranged by similarity of responses. The dendrogram on the left shows
the patterns of similarities among variables and across sites. Sites showed a generally negative response
(red squares) to increasing summer minimum temperature and spring precipitation, but showed a generally
positive response (blue squares) to increasing summer maximum temperature and summer precipitation.
Sites showed highly heterogeneous responses to most aspects of climate variation, especially, for example,
variation in spring maximum temperature and winter precipitation. A histogram of standardized coefficients
is presented at the bottom of the figure.
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negative impact of higher turnover on our predictive ability suggests that habitats with258

frequent disturbance (e.g. fire prone areas), or high immigration (e.g. mountain top259

habitats or other islands), will be least predictable, an effect that might be exacerbated if260

increasing climate variability (Cai et al., 2014; Cubasch et al., 2001; Seneviratne et al.,261

2014) causes greater turnover.262

Our ability to predict was also variable across time. We asked specifically if263

parameters estimated from 35 years of data could be used to predict species occurrences264

during the seven year period from 2007 to 2013 that included two severe droughts in265

California (Supporting Information). We found that butterfly occurrences were extremely266

difficult to predict accurately for these seven years compared to other sets of seven267

contiguous years, or sets of seven randomly chosen years (Fig. 4C, Table S8). The median268

predictability for the 2007 to 2013 period was 0.09 and substantially lower than for sets of269

seven randomly chosen years in which predictability ranged from 0.38 to 0.50 (Table S8).270

Not only did the model exhibit its lowest predictive ability for the period 2007 to 2013, but271

also model predictability declined over time. This suggests that the ability to predict272

species responses to climatic variation will become more difficult over coming years as the273

climate becomes more variable and extreme climate events become more frequent274

(Easterling et al., 2000).275

In contrast to the generally multifarious responses to climatic variation, the276

butterfly faunas at all but one of the sites have strong negative associations with year277

(Table S3, Fig. 2). This evidence of decline is consistent with previous reports (Pardikes278

et al., 2015). The one exception is at the highest elevation (CP), where the local fauna has279

increased in species richness, apparently as a consequence of colonization and persistence of280

butterflies that were previously less common or absent from the highest elevation (Forister281

et al., 2010). We identified several climatic factors that might be important for explaining282

declining butterfly populations, in particular minimum temperatures. Higher summer283

minimum temperatures (warmer overnight lows) had a negative impact at most sites (Fig.284
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Figure 4: Overall site-level predictability increases with increasing mean butterfly occurrences and decreases
with year-to-year species turnover and over time. (A) Predictability, defined as the mean correlation between
observed and predicted butterfly occurrences (day positives), is lowest for transect sites with lower mean day
positives. Lower elevation sites, with longer seasons and more opportunities to observe butterflies had higher
mean predictability compared to higher elevation sites. Colors and site abbreviations are the same as in
Fig 1. (B) Transect sites with higher species turnover had lower mean predictability. Year-to-year turnover
was estimated with the Hill number (qD) exponent, q = 2 (Hill, 1973; Jost, 2006, 2007; Marion et al., 2017)
with rarer species down-weighted in importance as in the commonly used Simpson’s index (see Supporting
Information). Mean turnover is the expected proportional change in the community at a site from one year
to the next. (C) Predictability decreased over time and was lowest for the seven years between 2007 and
2013, which is a period that includes two major droughts in California. (It should be noted that the years
prior to 1988 do not include observations from all ten sites (see Supporting Information, Table S1)).
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2), and summer minimum temperatures are rising across many sites (Fig. S11, Table S5)285

and across the state of California (Mazur & Milanes, 2009). Rising minimum summer286

temperatures negatively impact larval host plants and nectar sources (Kelly & Goulden,287

2008). Minimum temperatures in other seasons have a more variable effect, which is288

presumably due to habitat differences (Table S1). Indeed, habitat heterogeneity might be289

an important buffer against directional change for mobile organisms (Harrison & Quinn,290

1989; Oliver et al., 2010, 2014; Hindle et al., 2015). Winter minimum temperatures, for291

example, have both strong positive and negative effects across sites and such variation292

could provide refuges for species with population connectivity. However, the standardized293

effect of year at most sites is approximately two times larger than the effects measured for294

weather variables (Fig. 2, Table S3). Because the strong year effects were estimated in295

models that controlled for climatic effects, we infer that non-climatic factors are influential296

in the observed declines. These other factors might include interactions with natural297

enemies and invasive species (Graves & Shapiro, 2003), and availability of food resources298

(Tylianakis et al., 2008), or abiotic factors, such as land use change (Casner et al., 2014a),299

pesticides (Forister et al., 2016), and other anthropogenic effects.300

Discussion301

Unanswered questions remain regarding the causes and consequences of heterogeneous302

faunal responses to climatic variation. We hypothesize that local idiosyncrasies of303

topography and microclimate, and their interaction over time, explain much of the304

variation in butterfly responses (Moritz & Agudo, 2013). These differences among sites305

might impact butterflies directly through physiological and behavioral mechanisms, or306

indirectly through microclimatic and topographic effects on other species that interact with307

butterflies (Van der Putten et al., 2010; Tylianakis et al., 2008; Ovaskainen et al., 2013).308

For example, the two highest elevation sites (CP and DP) are often characterized by309
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disparate responses to climatic variation (Fig. 2), and, despite geographic proximity, they310

contain distinct habitats. DP includes extensive wet and dry meadow complexes, while CP311

extends to tree line and alpine vegetation. We do not know, however, if disparate butterfly312

responses at these sites are primarily driven by population differentiation or differences in313

ecological processes. Intraspecific variation in responses could be correlated with314

geographic position relative to species’ range margins with peripheral populations perhaps315

being more sensitive to climate variation as has been shown in butterflies (Mills et al.,316

2017). Furthermore, habitat heterogeneity might strongly influence patterns of dispersal317

and connectivity among sub-populations of particular species (Warren et al., 2001).318

Climate change might result in a greater proportion of marginal habitats (i.e. “sink”319

habitats), although at the same time, such habitat heterogeneity might ameliorate some of320

the impacts of climate change, especially for mobile organisms that can find refuge in a321

mosaic of different habitats (Harrison & Quinn, 1989; Oliver et al., 2010, 2014; Hindle322

et al., 2015; Nadeau et al., 2017). Consequences of climate change within the context of323

habitat-specific responses to climate will likely be complex, and could include an increase324

in the proportion of marginal (or “sink”) habitats. Another possibility is that325

habitat-specific responses associated with microclimatic and topographic heterogeneity326

could offer refugia for mobile organisms. This possibility of refugial habitats was not327

supported in a recent analysis of these same sites throughout the major drought years of328

2011 to 2015 (Forister et al., 2018). Those analyses, however, focused on community-level329

summary statistics and did not analyze species-specific responses; thus much remains to be330

learned about the interaction between extreme climatic events and heterogeneity of species-331

and site-specific responses that we report here.332

Despite the observed heterogeneity of responses, our overall ability to predict333

butterfly occurrences was relatively good. Cross validation demonstrated that the334

differences between observed and predicted occurrences were generally small and the vast335

majority (96%) of observed values were included in the credible intervals of predicted336



19

occurrences. However, predictability was lower for non-resident species compared to337

residents, and for rarer species. Predictability was also lower at sites with higher338

year-to-year turnover in constituent species and these differences were not solely339

attributable to rare species (Fig. 4B). Most alarmingly, our ability to predict butterfly340

occurrences declined over time and was lowest for the last seven years of our data, a period341

that included extreme droughts in California (Fig. 4C). If the decline in predictability342

parallels increasing variability in climate and increasing frequency of extreme events, then343

our ability to predict future butterfly responses might already be largely compromised344

given predictions of an increasingly variable future climate (Easterling et al., 2000). The345

links presented here between lower predictability, lower relative abundance, increasing346

turnover of species within sites, and climate variability suggest a possible mechanism for347

the decrease in predictive power. However, more investigation is required before we can348

firmly conclude that increasing climate variability is the cause of the decline in349

predictability. Studies of other communities and other taxa will provide valuable insights350

into the the limits of prediction.351

While these unknowns should guide future work, the results reported here offer at352

least four concrete conclusions. First, we should consider among-site heterogeneity when353

designing long-term studies. The diversified responses to climate variation reported here354

suggest that among-site habitat heterogeneity might play a critical role in mediating how355

assemblages of species respond to climate change. Second, strong heterogeneity of faunal356

response means that global forecasts of biotic effects of climate change will be inaccurate in357

some cases, such as when changing climate conditions increase population densities in one358

area and decrease populations in another. Third, a substantial proportion of the variation359

among sites, and among populations, is not likely to be explained by abiotic factors alone,360

which suggests a potentially central role for biotic interactions influencing heterogeneity of361

response. Fourth, despite the heterogeneity of faunal response to climatic variation,362

prediction of species occurrences was possible, but our ability to predict butterfly363
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occurrences was highest for more abundant species, sites with lower annual turnover, and364

for years without extreme climate events, particularly extreme droughts. Given the likely365

increase of extreme weather events due to climate change (Cai et al., 2014; Cubasch et al.,366

2001; Seneviratne et al., 2014), these results emphasize the benefits that could be accrued367

through analyses of predictability of the population dynamics of diverse taxa. The complex368

variation observed in responses to inter-annual variation in weather, and the limits to our369

ability to predict those responses, demonstrates that there is much more to learn about370

mechanistic links between climate change and population dynamics.371
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