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Comparison of mean radiant and air temperatures in mechanically-
conditioned commercial buildings from over 200,000 field and laboratory 

measurements 

Megan Dawe, Paul Raftery, Jonathan Woolley, Stefano Schiavon, Fred Bauman  
 Center for the Built Environment, University of California Berkeley, Berkeley, CA, USA 

ABSTRACT 

We assessed the difference between mean radiant temperature ( ! ) and air temperature ( ! ) in 
conditioned office buildings to provide guidance on whether practitioners should separately 
measure !  or operative temperature to control heating and cooling systems. We used 
measurements from 48 office buildings in the ASHRAE Global Thermal Comfort Database, five 
field studies in radiant and all-air buildings, and five test conditions from a laboratory 
experiment that compared radiant and all-air cooling. The ASHRAE Global Thermal Comfort 
Database is the largest of these three datasets and most representative of typical thermal 
conditions in an office; in this dataset the median absolute difference between !  and !  was 0.4 

 (with 5th, 25th, 75th, and 95th percentiles = 0.2, 0.2, 0.6, and 1.6 °C). More specifically, the 
median difference shows that  was 0.4  warmer than  (with 5th, 25th, 75th, and 95th 
percentiles = -0.4 °C, 0.2 °C, 0.6 °C, and 1.6 °C). The laboratory experiments revealed that in a 
radiant cooled space !  was significantly (p<0.05) cooler than !  (average difference -0.1 ! ), 
while in the all-air cooled space !  was significantly (p<0.05) warmer than !  (average difference 
+0.3 ! ). These observations indicate that !  and !  are typically closer in radiant cooled spaces 
than in all-air cooled spaces. Although the differences are significant, the effect sizes are 
negligible to small based on Cohen’s d and Spearman’s rho. Therefore, we conclude that 
measurement of !  is sufficient to estimate !  under typical office conditions, and that separate 
measurement of !  or operative temperature is not likely to have practical benefits to thermal 
comfort in most cases – this is especially true for buildings with radiant systems. Furthermore, 
spatial and temporal variations in !  can be greater than or equal to the difference between !  and 
!  at any one location in a thermal zone, thus we expect that such variations typically have a 
greater impact on occupant thermal comfort than the differences between !  and ! .  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GRAPHICAL ABSTRACT 

!  

KEYWORDS 

Thermal comfort, mean radiant temperature, operative temperature, air temperature, HVAC, 
laboratory experiment, field study, radiant heating and cooling. 

HIGHLIGHTS 
• Assessed the difference between !  and !  from over 200,000 pairs of measurements  

• Median absolute difference between !  and !  is 0.4 ℃ 

• !  is an appropriate estimate of !  in mechanically-conditioned offices 

• Spatial and temporal variations in air temperature can be greater than !   
• Operative temperature sensors would not likely benefit thermal comfort 
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1.INTRODUCTION 

Under typical thermal conditions in an office, the human body releases about 58 to 60 % of 
sensible heat in the form of radiation [1], therefore mean radiant temperature ( ! ) and air 
temperature ( ! ) have approximately equal effect on thermal comfort [1,2]. Mean radiant 
temperature is defined as “the temperature of a uniform, black enclosure that exchanges the same 
amount of heat by radiation with the occupant as the actual surroundings…” [3], and is used in 
thermal comfort models such as Fanger’s Predicted Mean Vote (PMV), which provides the 
general guidance for the thermal comfort standards ASHRAE 55, ISO 7330, and EN 15251 [1,4–
6]. The definition underwent an important update for ASHRAE 55-2017, which modified it from 
only accounting for long-wave radiation heat exchange with enclosure surfaces to also including 
short-wave radiation heat exchange (e.g., lights, solar). Although long-wave radiation from 
internal heat gains is still not captured in the definition, the modification is closer to fully 
capturing radiant heat gains in a space; however, the measurement protocols in ASHRAE 
Handbook of Fundamentals and ISO 7726 allows !  to be calculated only from surrounding 
surface temperatures, omitting these other sources of radiant heat exchange [1,7].  

Even though !  has an important impact on occupant thermal comfort, most practitioners use 
thermostats to control heating and cooling systems. These thermostats are meant to measure ! . 
but there are several factors that can influence their measurement, including location and 
construction of the thermostat housing. Thermostats are used to control both all-air and radiant 
systems – although radiant buildings sometimes use a combination of thermostat measurement 
and slab or loop water temperature to control the system [8,9]. 

The importance of !  has been prominently underlined by researchers and practitioners focused 
on radiant heating and cooling systems. To improve thermal comfort and account for internal, 
solar, and other radiant heat gains, some researchers have recommended using operative 
temperature sensors to control radiant systems [2,10–13]. Operative temperature combines the 
effects of ! , ! , and air velocity. The suggestion for an operative temperature sensor implies that 
researchers believe there is a significant and practical difference between !  and !  in radiant 
heated or cooled spaces. However, recent studies have produced mixed results on whether an 
operative temperature sensor would be more appropriate to achieve thermal comfort than !  for 
radiant system operation [11,14]. In practice, an operative temperature sensor is not necessary for 
radiant buildings, since there are a growing number of buildings with radiant heating or cooling, 
and very few, if any, use operative temperature sensors and have shown to provide thermal 
conditions that are at least as satisfactory as all-air buildings [15,16]. 

The questions at hand are whether !  and !  are significantly different in typical office settings, 
whether the difference depends on the type of heating or cooling system (radiant or all-air), and 
whether the difference is large enough to warrant the use of an operative temperature sensor. 
Many studies using energy simulations, controlled laboratory experiments, and field studies have 
assessed the differences between !  or operative temperature and !  in thermal zones conditioned 
by radiant or all-air systems:  

t̄r
ta

t̄r

t̄r
ta

t̄r

ta t̄r
t̄r ta

ta

t̄r ta

t̄r ta

Energy and Buildings, June 2019                                    !                                     https://doi.org/10.1016/j.enbuild.2019.109582              3
https://escholarship.org/uc/item/2sn4v9xr

https://doi.org/10.1016/j.enbuild.2019.109582
https://escholarship.org/uc/item/2sn4v9xr


• The 2016 ASHRAE HVAC Systems and Equipment Handbook uses the metric average 
uncooled (unheated) surface temperature (AUST), which is similar to !  but only accounts 
for surfaces that are not internally cooled or heated (i.e., not active radiant surfaces) [17]. 
The handbook states that in a typical commercial building, AUST is close to the indoor ! , 
except in instances where the main heat gain is through the walls, or where envelopes are 
dominated by glazing [18]. With the increasing stringency of envelope requirements in 
energy codes, heat transfer through the envelope may not be prominent and more spaces 
may meet this criterion if they are relatively new and meet ASHRAE 90.1 prescriptive 
envelope requirements.  

• Studies suggest that interior surface temperatures and !  may not be close to indoor !  in 
spaces with direct solar heat gains [18–22], but that solar heat gain can have a lesser 
effect on internal surface temperatures where a radiant cooled floor is present compared 
to the same conditions with an all-air cooling system [18,21,20].  

• Using, energy simulations, Feng et al. [23] found that for cooling in a heavyweight zone 
with south-facing windows, !  and operative temperature are closer to one another for a 
radiant ceiling in cooling than for an all-air system in cooling.  

• Jia et al. [14] conducted laboratory experiments with radiant ceiling panels and radiant 
slab with internal heat gains and solar heat gains from the south. The experiment 
measured temperatures at various points in the testbed and found that the maximum 
difference between operative temperature and !  was 0.2 °C for the ceiling panels and 0.6 
°C for the radiant slab.  

• A laboratory experiment by Catalina et al. [24] with radiant ceiling panels under steady 
state conditions found that the maximum difference between operative temperature and !  
was 0.8 °C from 96 measurement points in a 3.10 x 3.10 x 2.40 m test cell. The radiant 
ceiling panel temperature was varied while the surface temperatures of the remaining five 
surfaces was maintained at 26 °C.   

• Lastly, Lin et a. [25] conducted a controlled field study in three adjacent rooms using an 
all-air heating system, a radiator, and radiant floor heating and found that the difference 
between !  and !  was within ±0.5 °C for all system types.  

As exemplified by its very definition, !  is a theoretical value that represents the net radiant flux 
between a human body and the surrounding environment. Notably, the studies referenced 
comprise different heat gain types, sources, and proportions, different sensor locations, sensor 
types and methods used to calculate !  or operative temperature. As described in ISO 7726 [7], 
there are multiple methods to calculate ! . Many field studies have used a fast response grey 40 
mm ping pong ball and in laboratory experiments it is common to use a black globe thermometer 
of 150 mm diameter. Some studies did not allow direct solar or other heat gain sources into the 
space; and some used multiple sensors, while others used a single sensor.  Several studies have 
shown that factors including room geometry [2,26,27], sensor placement [2,28,24,26,27], and 
heat gain types result in different !  values when all else remains constant. Differences in 
measurement technique, such as sensor placement, affect whether or not measurement of all 
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physical parameters in a space (e.g.: ! , ! , and air velocity) will accurately represent the entire 
space. 

Furthermore, Guo et al. [29] and Meggers et al. [30] suggest that the traditional methods of 
measuring and calculating !  may not be accurate, even at low air velocities. Simone et al. [27] 
found that there are similar challenges for measuring operative temperature. Lastly, energy 
simulation engines such as EnergyPlus do not account for the direct component of radiant heat 
gains for ! . Instead it uses one of three calculation methods based on surrounding surface 
temperatures [31]; therefore, direct radiant heat gains such as solar, lights, and other internal 
sources that would impact an occupant are not captured.  

The objectives of the study presented in this article were to (1) assess the difference between !  
and !  across varying indoor environments(including all-air and radiant cooled spaces), (2) 
understand if the difference is statistically significant, and (3) understand if accounting for the 
difference (i.e., by using an operative temperature sensor) would likely have practical benefits to 
occupant thermal comfort. We achieved these objectives by assessing measured data in the 
ASHRAE Global Thermal Comfort Database II (Comfort Database) [32], and then by assessing 
finer-grained time-series data from two projects to support the findings: a controlled laboratory 
experiment that compared radiant and all-air cooling [33,34] and a series of field studies of 
radiant and all-air buildings.. To our knowledge, this study assembles the most comprehensive 
group of data to compare !  and !  measurements in typical office spaces, and provide evidence 
on whether operative temperature sensors likely to have practical benefits to occupant thermal 
comfort. This dataset comprises a wide range of measurement techniques and heat gain scenarios 
experienced in typical office settings, which, thereby providing high confidence that the 
statistical results are not bias by the measurement and study techniques highlighted above. 
Additionally, this study provides context to designers, building operators, and those investigating 
thermal comfort on how to appropriately estimate !  in typical circumstances.  

2.METHODOLOGY 

The difference between !  and !  was calculated for three separate datasets: 

• 6,593 pairs of point-in-time temperature measurements from 48 office buildings in nine 
Köppen climates in seven countries on five continents and all four seasons (summer and 
winter as the majority) from the ASHRAE Global Thermal Comfort Database II (Comfort 
Database) [32] 

• Five test conditions from a controlled laboratory experiment conducted at Lawrence 
Berkeley National Laboratory’s (LBNL) FLEXLAB using side-by-side radiant and all-air 
(but otherwise identical) testbeds in cooling mode. The experimental variables were the 
proportions of convective, radiant, and solar heat gains in the space [33,34]. There are 
190,344 pairs of one-minute interval temperature measurements (dry bulb and globe) 
from six specified locations for all five test conditions in each testbed. 

• Five field studies in two radiant and three all-air office buildings located in California 
with between four and fifteen temperature measurement locations in each building for a 
total of 42 measurement locations. Four of the studies collected data for two to three 

t̄r ta

t̄r

t̄r

t̄r
ta

ta t̄r

t̄r

t̄r ta

Energy and Buildings, June 2019                                    !                                     https://doi.org/10.1016/j.enbuild.2019.109582              5
https://escholarship.org/uc/item/2sn4v9xr

https://doi.org/10.1016/j.enbuild.2019.109582
https://escholarship.org/uc/item/2sn4v9xr


weeks and one study for ten weeks. The studies were not intended to be comparisons 
between buildings. Studies occurred during varying times of the year and some in 
different years: three in summer, one in fall, and one in winter. There are 41,691 pairs of 
15-minute interval temperature measurements (dry bulb and globe) from the five field 
studies.  

We calculated both the absolute and relative differences between !  and ! (!  = !  and 
! T = !  – ! ). The absolute difference describes the magnitude of the difference between !  and ! , 
regardless of which is cooler or warmer. The outside conditions and system operating mode (i.e., 
cooling or heating) can differ between buildings in the Comfort Database and the Field Studies; 
considering the absolute difference between temperatures ensures that we properly capture 
differences instead of canceling out positive and negative differences. The relative difference 
simply provides the observed differences in temperature during the analysis period, accounting 
for direction.  

There are benefits and limitations to each of the datasets. We base our conclusions primarily on 
the Comfort Database and we use the laboratory and field study data as supporting evidence to 
further explicate the findings. The Comfort Database represents a broad range of building 
construction, HVAC systems and operation, and climates. The laboratory experiment is 
exceptionally accurate and offers a carefully controlled comparison of radiant cooling and all-air 
cooling, but it only represents a handful of scenarios in one climate and in one thermal zone. 
Similarly, the field studies represent a handful of specific scenarios and cannot be directly 
compared to one another. The field study dataset is a result of combining data from five 
independent field studies that were not collected with the intent of comparison in mind. 
Consequently, the number of sensors, sensor locations, system operation, study period, HVAC 
system and building types are not consistent between studies.  

The laboratory and field study data are continuous measurements, while the Comfort Database is 
composed of point-in-time measurements. For the laboratory and field studies, !  and !  are 
measured at the same locations; for the Comfort Database we can confirm that measurements 
were taken at the same height, but cannot confirm that they were at the same  location; although 
this is assumed based on standard practice. For each pair of !  and !  measurements, we 
calculated the temperature differences at each sensor location. The Comfort Database only 
includes data from occupied hours, and for the laboratory and field study data we only 
considered measurements for typically occupied hours (06:00 – 18:00). We only investigated 
system type for the controlled laboratory experiment and the field study data; although the 
Comfort Database indicates whether or not each building includes mechanical cooling, it does 
not provide information about mechanical system type.  

2.1.Measurements and Calculations 

For the laboratory experiment and field studies, the !  was measured using a fast response 
thermistor that is protected from radiant heat by thin radiant shield. Operative temperature was 
measured using a small globe sensor, which has the same thermistor placed at the center of a 40 
mm ping pong ball painted grey with 95% emissivity. Studies have shown this is an accurate 
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approach to measure operative temperature with a fast response time [27,35,36]. We used a bi-
directional anemometer to measure air velocity in the field studies and an omni-directional 
anemometer in the laboratory experiment. Instruments were slightly different in the laboratory 
experiment and field studies, and we provide the types and uncertainty details in Section 2.2 
Laboratory Experiment and Section 2.3 Field Studies.  

Using ! , globe temperature ( ! ), and air velocity ( ! ) measurements, !  can be calculated. As 
described by Humphreys [35] and Fanger [4], operative temperature ( ! ) can be calculated as the 
simple mean of !  and ! , Equation 1 [1], when !  is below 0.2 m/s, as also specified in ISO 7726 
[7]. When !  is measured with a globe sensor of diameter 40 mm and 95% emissivity, !  is 
representative of ! . 

!  

where !  is measured with the 40 mm globe sensor. This can be rewritten to solve for !  in 
Equation 2: 

!  

When !  is greater than 0.2 m/s, convection at the globe surface increases, and !  is calculated 
using Equation 3 [37]. 

!  

where !  is the globe temperature measurement of any size globe, !  is the globe diameter (m), !  
is the air velocity (m/s), and !  is the globe emissivity.  

For the Comfort Database, we eliminated entries where air velocity is greater than 0.2 m/s and 
used Equation 2 because the database does not provide enough information about the globe 
sensors. This eliminated 10% of the complete air-conditioned office building entries, the large 
majority of which were in Australia and India where fans may be in use. Air velocity 
measurements were taken in three of the field studies (one radiant building and two all-air 
buildings), and of those, only 3% of measurements were greater than 0.2 m/s. We used Equation 
3 in those instances. We expect that the majority of air velocities would be low in the remaining 
two buildings and so we used Equation 2 to calculate !  when air velocity was unknown. In the 
laboratory experiment, air velocity was measured once for each test condition, but not recorded 
continuously. Air velocity was below 0.2 m/s for all test conditions; therefore, Equation 2 was 
used to calculate ! . 

2.2.Laboratory Experiment 

We used data from a controlled experiment that Woolley et al. [33,34] conducted in a pair of 
side-by-side testbeds at Lawrence Berkeley National Laboratory FLEXLAB [38]. The 
experimental facility and system operation are described in [33]. A summary of the key 
parameters relevant for this analysis is provided below. The testbeds are equivalent in all aspects 
except for the cooling system type: one with radiant cooling using internally cooled metal ceiling 
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panels (Twa model MOD-RP1), and the other with air cooling through overhead diffusers. 
Although the experiment used low mass metal ceiling panels, they covered 72% of the ceiling 
area, and we expect that the !  and !  produced in these experiments is very similar to what would 
be produced on average by a radiant system with somewhat different percent surface area 
coverage, such as 100% with a higher thermal mass slab. Although the overall heat transfer 
dynamics are different between a low mass and high mass radiant system, the surface 
temperatures required to maintain an operative temperature setpoint would be the same given all 
other conditions are the same.  

For each of the five test conditions, they operated the two testbeds simultaneously, imposed 
equivalent internal gains, and controlled each system to maintain equivalent operative 
temperatures at 26 °C during all periods that required cooling. Each test condition had the same 
total amount of heat gain, with different proportions of convective, radiant, and solar heat gains. 
For this study, we only used typical hours of occupancy (06:00 to 18:00) to depict the 
temperatures occupants would experience in the space.  

The experimenters recorded air and operative temperature measurements at six locations on 
measurement trees along the centerline of each testbed. The sensors were located at 0.6 m and 
1.1 m in height at horizontal distances of 3.45 m, 5.3 m, and 7.16 m from the south wall, which 
has 33% window-to-wall ratio. The sensors captured continuous temperature measurements and 
recorded one-minute averages. Table 1 in Woolley et al. [33] provides the sensor types and 
measurement uncertainty. Using these uncertainties, Table 1 provides the uncertainty of 
calculated metrics 

Table 1. Uncertainty of measurements and calculated metrics for laboratory experiments 

2.3.Field Studies 

The field study data comes from studies that the Center for the Built Environment conducted 
between 2011 and 2013. We collected indoor environmental measurements for two- to ten- week 
periods in five office buildings located in California: two with radiant heating and cooling and 
three with all-air heating and cooling. Table 2 provides a summary of the field studies. Studies 
occurred in different California climate zones and during various seasons, meaning some of our 
data may be from buildings in heating mode, while other are from buildings in cooling. 
Measurement periods may not be fully representative of the full range of temperatures 
experienced in each space over the course of all seasons.  

t̄r ta
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Table 2. Field study site summary 

The field study teams acquired measurements using indoor climate monitors, shown in Figure 1, 
which included a dry bulb temperature sensor ( ! ) and a globe sensor (operative temperature) – 
among other instruments; bi-directional anemometers were included in three of the studies. 
Heinzerling et al. [41] provide measurement instruments and uncertainties, and Table 3 provides 
the uncertainties of calculated metrics. Although equipment was calibrated prior to deployment, 
the sensors were not installed in fixed positions, and so we cannot be certain that they were not 
moved by occupants or influenced by other factors. We cannot quantify this uncertainty. 

Table 3. Uncertainty of measurements and calculated metrics for field studies 

We placed these indoor climate monitors in occupied spaces at seated or standing height, 
typically on top of desks or tables in workstations or common areas (e.g., conference rooms). 
Some indoor climate monitors may have been at locations that received intermittent direct solar 
radiation. A data acquisition system in each climate monitor measures each sensor continuously 
and records one-minute average values. For this study, we only used typical hours of occupancy 
(06:00 to 18:00) to depict the temperatures occupants would experience in the space, and used 
fifteen-minute average measured values. 

b1 [39]
Radiant 

heating and 
cooling 26 May – 13 Jun 2011 (19 days) Spring/Summer

4

b2 [40]
Radiant 

heating and 
cooling 18 Jan – 01 Apr 2014 (74 days) Winter/Spring

2

b3 All-air heating 
and cooling 31 Aug – 20 Sep 2012 (21 days) Summer 9

b4 All-air heating 
and cooling 06 Nov – 25 Nov 2012 (20 days) Fall 15

b5 All-air heating 
and cooling 06 Jun – 19 Jun 2013 (14 days) Summer 12

ta

Calculated Metric Uncertainty (Equation 2) Uncertainty (Equation 3)

± 0.13 °C ± 0.09 °C

± 0.14 °C ± 0.11 °CTemperature difference ( )t̄r − ta

Mean radiant temperature ( )t̄r
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!  
Figure 1: Indoor climate monitors may include some or all of the pictured sensors, and at minimum, have 
dry bulb and globe thermometers. Dry bulb sensors are shielded from radiation with a thin mylar sheet. 
None of the monitors included CO2 sensors. 

2.4.ASHRAE Global Thermal Comfort Database II 

The open-source database includes approximately 107,000 sets of physical measurements of 
indoor thermal environments, with accompanying “right-here-right-now” subjective evaluations 
of thermal comfort and preference from building occupants.  

We filtered the data for office buildings with mechanical cooling, including mixed-mode (i.e.: 
uses both passive and mechanical cooling) when air conditioning was active; all buildings also 
have mechanical heating. We eliminated duplicate entries where a single set of indoor 
environmental measurements were applied to a group of occupant responses. Lastly, we 
eliminated entries where !  and operative temperature were the same as a precaution against 
potential reporting errors where !  measurements were used for operative temperature; this 
slightly increases the magnitude of our findings about the absolute difference between !  and ! . 
The final dataset has 6,593 entries from at least 48 office buildings in nine Köppen climates in 
seven countries on five continents, and all four seasons (53% in summer, 24% in winter, 23% 
spring/fall).  

Additional characteristics about the buildings, such as HVAC system type, size, year of 
construction or renovation, and envelope features are not known; however, we expect that nearly 
all of the office buildings in the dataset use all-air systems for heating and cooling. The database 
does not include information about measurement methods, sensor types, calibration, and 
measurement uncertainty; there is additional uncertainty in these measurements due to potential 
methodological differences between studies. We cannot quantify this uncertainty. 

2.5.Data Analysis 

We analyzed the data using R version 3.5.0 software [42].  

For the laboratory tests, we performed statistical analysis of the difference between !  and !  in 
each testbed. The number of data points was larger than recommended to carry out a Shapiro-
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Wilk test for normality; instead we used a Q-Q plot. We determined that the data is not normally 
distributed (which is not surprising because the test conditions maintained operative 
temperature), and so we used a Wilcoxon Rank Sum and Signed Rank Tests to compare !  and !  
in the radiant and all-air testbeds.  

For the Comfort Database, we reviewed the distribution of data using various methods to ensure 
it was a representative sample and that factors such as study author, season, country and climate 
did not mask important trends. This was done to ensure that a few studies or prolific researchers 
with a large portion of the measurements did not skew the analysis. We performed a 10-fold 
cross-validation ten times (i.e., 100 samples) after randomizing the data order, and reviewed the 
distribution of our metric of interest: !  = !  – ! . Second, we looked at the !  distribution 
(i.e., median, interquartile range, and mean) for each study. The results suggest that there is some 
variance between studies, but that the mean and median !  is consistent across groups. Lastly, 
we evaluated !  versus the monthly outside air temperature, which was available for 20% of 
the dataset and ranged from -5 °C to 33 °C. The results of each test did not identify any clear 
trend or indication that the data was skewed by particular studies, study author, season, or 
outside air temperature. See the Appendix Figure A-1, Figure A-2, and Figure A-3 for detailed 
results. 

For all figures and descriptions of the analysis, the data distributions are shown with box-and-
whisker plots (the thick horizontal line is the median, the whiskers are out to the 5th and 95th 
percentiles). Graphs were prepared using “GGplot2” [43]. We report numeric summary as the 
median value with the 5th, 25th, 75th, and 95th percentiles in parentheses (e.g. 0.4 °C (0.2, 0.2, 0.8, 
and 2.2 °C)). 

3.RESULTS AND DISCUSSION 

3.1.Difference between mean radiant and air temperatures 

Figure 2 presents results for the absolute temperature difference ( ! ). The 
median absolute value for the Comfort Database was 0.4 °C (0.2, 0.2, 0.6, and 1.6 °C). The 
Comfort Database is the most diverse data source, and therefore most representative of 
distribution of typical thermal conditions in office buildings. The median value for the field study 
data was 0.4 °C (0.0, 0.2, 0.8, and 1.8 °C), the median value for the laboratory testbed with all-
air cooling was 0.3 °C (0.0, 0.2, 0.6, and 1.0 °C), the median value for the laboratory testbed 
with radiant cooling was 0.3 °C (0.0, 0.1, 0.6, and 1.2 °C). Considering all datasets, !  is 
generally within 0.4 °C of !  measurements regardless of building type, system type or system 
operation. The 75th percentile values of each dataset are less than 1.0 °C. The 95th percentile 
values in the Comfort Database and the Field Study are larger than the Laboratory study.  
Although we cannot definitively conclude the cause of this larger distribution, it could be the 
result of sensor exposure to direct sunlight or instrumentation calibration errors. . It is also 
crucial to note that the absolute temperature differences are very close to the calculated 
measurement uncertainty for the field study data. 
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!  
Figure 2: Absolute temperature difference ( ! ) for all datasets. The box represents the 
interquartile range (i.e., 25th to 75th percentiles) and the whiskers represent the 5th and 95th percentiles. 
The field study and laboratory data consist of continuous measurements at each of the sensor locations, 
which are at 15-minute intervals for the field studies and one-minute intervals for the laboratory. The 
field study and laboratory data support the Comfort Database results. 

Figure 3 provides the relative temperature difference ( !  = !  – ! ), which shows that !  was 
typically slightly warmer than !  for all datasets except the radiant testbed in the laboratory 
experiment. The Comfort Database median value was 0.4 °C (-0.4 °C, 0.2 °C, 0.6 °C, and 1.6 
°C), the field study data median value was 0.1 °C (-1.1 °C, -0.2 °C, 0.5 °C, and 1.7 °C), the 
laboratory all-air testbed median value was 0.3 °C (-0.2 °C, 0.0 °C, 0.6 °C, and 1.0 °C), and the 
laboratory radiant testbed median value was 0.0 (-1.1 °C, -0.3 °C, 0.2 °C, and 0.7 °C). These 
values are very close to the calculated measurement uncertainty for the field study data. 

Each dataset shows some instances where !  was cooler than ! , which is expected for radiant 
buildings in cooling, but can also occur due to exterior heat loss and cooler surfaces during cold 
weather in either an all-air or radiant building. Considering all datasets, the median values 
indicate that !  is generally close to !  across different buildings, seasons, and system operations; 
the range between the 5th and 95th percentiles in the Comfort Database is 2.0 °C: -0.4 °C to 1.6 
°C, meaning that only 10% of the 6,593 entries in the dataset have instances where !  and !  are 
farther apart than these values.  

For the laboratory experiments, we performed a statistical comparison of !  and !  for each 
testbed under all test conditions using a two-sided Wilcoxon test. For both testbeds, we found 
that the mean !  is statistically different (p<0.05) than the mean ! . However, the effect size (using 
Pearson’s rho and Cohen’s d) for the radiant testbed is negligible ( !  = 0.1, d=0.1) and the effect 
size for the all-air testbed is negligible to small ( !  = 0.3, d=0.3). We used effect size 
interpretations suggested from Cohen [44] and Ferguson [45]. The difference in mean values 
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(mean !  – mean ! ) for the all-air and radiant testbeds from the Wilcoxon tests were 0.3 °C and 
-0.1 °C, respectively. The effect sizes indicate that there is negligible to small practical 
importance to the difference in temperature values. 

!  
Figure 3: Relative temperature difference ( ! T = !  – ! ) for all datasets. The box represents the 
interquartile range (i.e., 25th to 75th percentiles) and the whiskers represent the 5th and 95th percentiles. 
The field study and laboratory data consist of continuous measurements at each of the sensor locations, 
which are at 15-minute intervals for the field studies and one-minute intervals for the laboratory. The 
field study and laboratory data support the Comfort Database results. 

In the laboratory experiment with radiant cooling, there were instances when !  was warmer than 
!  . Through closer examination, we identified that this occurred when radiant heat gains 
dominated the heat gain mix, which directly affected the !  and resulted in !  warmer than ! . 
However, as Woolley et al. [33] show, the interior surface temperatures in the radiant testbed 
were always cooler than those in the all-air testbed, and cooler than the operative temperature 
setpoint, even when !  was warmer than ! . This highlights an important error produced by 
calculating !  from surface temperatures, which does not capture direct radiant heat gains to 
occupants, such as any heat sources that have a radiant component.  

The distribution of relative temperature differences from the field study data has an interquartile 
range centered around zero (meaning in some instances !  is lower than !  because data includes 
different system types (i.e., radiant and all-air) operating in different seasons (and therefore 
heating or cooling) and collected at different sensor locations (i.e., interior and perimeter). The 
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Comfort Database also includes different seasons but does not result in temperature difference 
distribution crossing zero. Additionally, we did not establish a strong trend between !  and !  
compared to outside air temperature from the Comfort Database (see Appendix Figure A-3); 
therefore, we conclude that the system type and sensor location (particularly at the perimeter) 
primarily affect this observation for the field study. We assessed the field study data in aggregate, 
as shown in Figure 3, because there were too many uncontrolled variables between studies to 
make direct comparisons feasible. We considered the difference between !  and !  at each sensor 
location in the field studies to understand the variability when assessed over time. The results 
show that !  and !  are practically equivalent in the majority of locations and instances. See the 
Appendix Figure B-1 for results of this analysis. A feature of the field study data is that it 
includes continuous measurements. We provide examples of the evolution of !  and !  at select 
field study sensor locations in the Appendix Figure B-2, which also explains some of the 
challenges with using field study data, such as when sensors experience periodic direct solar 
radiation  

3.2.Spatial and temporal variation of air temperature 

To better understand whether or not the difference between !  and !  has practical implications to 
occupant thermal comfort, we compared the results to spatial and temporal variations in ! .  . 
ASHRAE Standard 55 allows for some variation in ! . For example, !  from the ankle to the head 
region can vary by 3.0 °C at any given time for a seated occupant and the operative temperature 
can drift by as much as 3.3 °C over the course of 4 hours, if it does not change by more than 1.1 
°C within 15 min [3]. These allowances are larger than the differences we found between !  and 
! . We investigated the field study and laboratory continuous measurement data further to 
determine if any of the difference was due to !  variation. We used the field study data to assess 
temporal changes during typical hours of operation, and the laboratory data to assess spatial 
variations because the field studies provide the most realistic example of what would occur in an 
office setting, but we do not have enough sensor locations to assess spatial variation within a 
zone. 

The results of the field study temporal variation assessment, which are further explained in the 
Appendix Figure C-1, show that the median daily range of air temperature (maximum !  – 
minimum !  for each day) recorded at each sensor location during typical hours of occupancy 
ranged from 0.8 °C to 3.2 °C for sensors located in interior zones. It is important to note that at 
least one of these field studies was testing demand response control algorithms that involved 
relatively large changes in indoor air temperatures. We only looked at interior zones to avoid 
influence from direct solar radiation. Furthermore, the results of spatial variation in air 
temperature analyzed using the laboratory data show that the median difference in !  between any 
two sensor locations at the same height and at the same time ranged from a minimum of 0.1 °C 
to a maximum of 0.4 °C in the all-air testbed and a minimum 0.1 °C to a maximum of 0.3 °C in 
the radiant testbed, similar to the difference found between !  and ! . The laboratory tests 
represent a single zone that is carefully controlled, and we would expect larger spatial variation 
in real circumstances. Further details can be found in the Appendix Figure C-2. These results 
support findings from Kim et al. [46] that show within the same thermal zone of an all-air office 
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building controlled to maintain air temperature between 22 to 25 °C, temperatures at occupant 
workstations varied from the zone mean by more than 0.2 °C 50% of the time, and by more than 
!  0.4 °C 25% of the time. Kim et al. [46] also found that within the building (not necessarily the 
same zone), temperatures at occupant workstations varied by 1.1 °C or more 50% of the time, 
and that temperature at individual workstations varied by 0.5 °C from the zonal thermostat 
readings. 

The difference between !  and !  is smaller than that of temporal variation of !  at a single 
location and is similar to the spatial variation of ! within a zone. The !  temporal and spatial 
analyses show that there are variations in !  within a typical office thermal zone which can have 
implications to occupant thermal comfort. This also shows that the difference between !  and !  is 
not just caused by changes in ! . It appears from the data that the non-uniformity of thermal 
comfort conditions within the same thermal zone – both spatial and temporal – will have a larger 
impact on thermal comfort than the assumption that !  and !  are the same in most cases. 

4.RECOMMENDATIONS 

This analysis strongly implies that under typical conditions in office buildings for both radiant 
and all-air buildings, !  is a close approximation for ! , and more specifically, !  
based on the Comfort Database, which includes a variety of building structures, climates, 
seasons, and system operations. The literature has suggested using operative temperature sensors 
to control radiant system operation and improve occupant thermal comfort. This analysis proves 
that separately measuring !  or operative temperature would not provide practical benefit to 
occupant thermal comfort for most cases in typical office scenarios. Although not specifically 
analyzed, there are likely exceptional scenarios where one could reasonably expect larger and 
more practically impactful differences between !  and ! . Such exceptional scenarios could 
include: design day conditions, locations close to surfaces with unusually high or low 
temperature (e.g., next to a window on a cold day), scenarios with very high heating or cooling 
loads, and locations with direct solar heat gains as identified in ASHRAE Standard 55 – 2017 
and SolarCal in the CBE Thermal Comfort Tool [3]. We did not analyze any of these particular 
scenarios and cannot conclude whether or not that the field measurements from the Comfort 
Database or the Field Studies captured design day conditions. Contrary to the suggestion of 
many previous researchers, the laboratory comparison of radiant cooling and all-air cooling 
shows that if operative temperature sensors were used to control mechanical systems, they would 
benefit thermal comfort in spaces with all-air cooling more than spaces with radiant cooling. 
Moreover, !  variations within a thermal zone suggest that properly placed thermostats relative to 
occupant locations could be more impactful to thermal comfort than measuring !  or operative 
temperature.  

For thermal comfort investigations, it is appropriate to estimate !  from !  measurements for both 
all-air and radiant heated and cooled buildings for typical office conditions if more detailed data 
is not available. However, detailed data should be used to assess thermal comfort under the 
exceptional scenarios mentioned, such as for locations next to a window. The median difference 
between !  and !  revealed by this study (0.4 °C) translates to a small difference in PMV. For 
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example, in summer clothing (0.5 clo), metabolic rate 1.1, and low air velocity (0.15 m/s), a 
difference of 0.4 °C between !  and !  results in a PMV difference of 0.04 when !  is 23.0 °C and 
0.06 when !  is 21.0 °C. 

5.CONCLUSION 

We calculated the difference between !  and !  from three data sources, resulting in a substantially 
sized dataset of temperature measurements across different climates, building types, system 
types, system operations, and measurement methods. Considering only the Comfort Database, 
which is the largest and most representative dataset, the results show that under typical thermal 
conditions in mechanically-conditioned office buildings, !  is 0.4 !  (with interquartile range = 
0.4 °C) warmer than ! . Considering system type (i.e., radiant and all-air), there was a significant 
(p<0.05) difference between !  and !  for both the radiant and all-air laboratory testbeds operating 
in cooling, but with negligible effect size in the radiant testbed and a negligible to small effect 
size in the all-air testbed; meaning there is not practical implication of the differences in mean 
values. Therefore, there would be no clear benefit from measuring operative temperature or !  to 
control heating and cooling systems to improve thermal comfort, especially not for radiant 
systems, for which the difference between !  and !  is negligible. It may be more important for 
thermal comfort to consider the appropriate placement of thermostats than to measure !  or 
operative temperature because the spatial and temporal variations of !  in a thermal zone could 
have a greater impact on occupant thermal comfort than the small differences between !  and ! . 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Appendix 

A. Analysis of Comfort Database 

To ensure that the results from the Comfort Database were not skewed by any particularly large 
studies, we randomly shuffled the data entries and performed a 10-fold cross validation for ten 
times, resulting in 100 random sample groups consisting each of 10% of the data. For each 
sample group, we calculated the mean, median, 25th percentile, and 75th percentile of the 
difference between  and . As seen in Figure A1, the median, 25th percentile, and 75th percentile 
are consistent for most of the sample groups and the mean is within 0.2 °C. This is showing that 
the 0.4 °C difference is robust and not affected by a specific study. 

!  
Figure A1. Cross-validation results for 100  

Figure A2 shows the distribution of temperature difference between !  and !  for each of the 
Comfort Database studies and identifies each study by the season the study was conducted. The 
seasons are based on the month of the study, while the actual outside air temperature for each of 
the studies will have varied based on actual location. The figure shows that although there is 
some variation between studies, most studies support the conclusion that !  is a close 
approximation for ! . 
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!  
Figure A2. Distribution of temperature difference between !  and !  by Comfort Database field study, identified by season of 
study. The dashed red line is at 0.4 °C, which is the median value calculated for the entire database. As seen, there is some 
variation by study, but most studies support the calculated value of 0.4 °C.  

Lastly, to test against possible bias due to the majority (53%) of the Comfort Database 
measurements being from summer periods, we looked at the difference between !  and !  versus 
the average monthly outdoor air temperature in the study period, shown in Figure A3. This value 
was available in the Comfort Database for 20% of the data entries and ranges from -5 °C to 33 
°C. Real time outdoor weather data was not available. Figure A3 shows that there is not a clear 
and relevant trend between monthly average outdoor temperature and the difference between  !  
and ! , even at the more extreme weather conditions observed, which is further supported by the 
local regression line. 
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!  
Figure A3. Difference between !  and !  versus average monthly outdoor air temperature shows that there is not a strong 
influence of outside temperature on the difference between the two internal temperatures. Even at outside air temperatures below 
0 °C, there are instances where !  is greater than ! , and vice versa. The fitted line uses local regression with a 95% confidence 
interval.  

B. Field Study supporting data 

The field study data provides useful insight into the variability of the difference between !  and !  
at each sensor location over time due to the continuous measurements at each location. This is 
important to consider because the Comfort Database represents temperature measurements at a 
point in time, but in reality, it is likely the temperatures vary over time. However, the field 
studies are limited in that they only represent five buildings in California and the studies were 
not designed in a way to compare between buildings; the number of and placement of sensors in 
each building is noticeably different and the system operation is different. For example, one 
building was testing demand response which involved relatively large changes in indoor 
temperatures, some buildings were likely operating in heating, and others in cooling.  

In Figure B1, we plotted the distribution of the difference between !  and !  during typical hours 
of operation (Monday through Friday from 06:00 to 18:00) for each sensor location and 
identified the relative location within the building (i.e., interior, perimeter, and unknown where 
location could not be verified). In some instances, perimeter sensors are located directly next to 
windows, and direct solar heat gains likely influence the measurements. We did not identify 
sensors by system type (i.e., radiant or all-air) because there are too many uncontrolled 
differences between the field studies to make reasonable comparisons between system types. The 
results show that there is indeed variation by building and sensor location, but that in most 
instances, there is relatively small difference between !  and ! , supporting the study’s 
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conclusion. The per sensor location results show that !  can be higher than !  in both radiant and 
all-air buildings, both at the perimeter and at the interior.  

!  
Figure B1. Distribution of the temperature difference at each sensor location for the field studies. The sensor locations are 
identified by the building ID and sensor ID, for example b1_icm1 is building 1 sensor location 1. For some buildings, we do not 
have relative sensor locations within the building and identify these as “unknown”. 

Figure B2 provides examples of the data from select sensor locations from the field studies. The 
left column shows ! , ! , and operative temperature over time. The right column shows the rolling 
distribution (i.e., the median, 25th percentile, and 75th percentile) of the difference in between  
and !  for each 15-minute period from each day for the entire study period; meaning that the 
median value represents the median difference between !  and !  at that 15-minute period across 
all of the days within the study period. As can be seen by comparing sensor b5_icm11, which is 
at the building perimeter, to b5_icm8, which is in the interior, some sensors are influenced by 
direct solar radiation and could skew the overall analysis. Although not seen in the field study 
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dataset, similar observations may occur for sensors located next to windows with cold outdoor 
conditions. 
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Figure B2. Examples of temperature measurements and the rolling distribution of the difference between !  and !  at seven sensor 
locations from the field studies. Some sensors are located at the perimeter of the building and the influence of direct solar 
radiation can be seen. 

C. Temporal and spatial variation of air temperature 

Figure C1 shows the daily range (i.e., maximum – minimum) of air temperatures at each interior 
sensor location from the field studies during typical hours of operation (Monday to Friday from 
06:00 to 18:00). Most locations experience a daily distribution below 2.0 °C, which is within 
typical temperature deadband range. We excluded perimeter sensors that could be influenced by 
direct solar radiation or cold window surfaces, as seen in the example plots for Figure B2. 

!  
Figure C1. Distribution of daily air temperature range (maximum – minimum) at each interior measurement location during 
typical occupied hours (06:00 – 18:00) and typical occupied days (Monday – Friday). The range represents the 25th and 75th 
percentiles, with the whiskers representing the 5th and 9th percentiles. Not all field study buildings are represented because sensor 
location was not verified for all buildings. 

Figure C2 shows the results of spatial variation analysis for the laboratory testbeds with six 
sensor locations in each testbed. We calculated the difference between each of the three sensors 
at 0.6 m height and the three sensors at 1.1 m height for each of the five test conditions, omitting 
the sensors with direct solar radiation to be consistent with the analysis calculating the difference 
between !  and ! . The median difference in !  between any two of the three sensor locations at 
the same height and at the same time ranged from a minimum of 0.1 °C to a maximum of 0.4 °C 
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in the all-air testbed and a minimum 0.1 °C to a maximum of 0.3 °C in the radiant testbed. The 
spatial variation appears to be small, which is likely a result of the highly controlled laboratory 
experiment, in a zone that did not contain furniture or partitions, and sensor locations omitting 
direct solar radiation.  

!  
Figure C2. Spatial differences in air temperatures from each laboratory experiment between 08:00 to 18:00 over six days, based 
on one-minute interval data.
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