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Serial testing for latent tuberculosis 
using QuantiFERON-TB Gold In-Tube: 
A Markov model
Mark W. Moses1, Alice Zwerling1, Adithya Cattamanchi2, Claudia M. Denkinger3, Niaz Banaei4, 
Sandra V. Kik5, John Metcalfe2, Madhukar Pai6 & David Dowdy1

Healthcare workers (HCWs) in low-incidence settings are often serially tested for latent TB infection 
(LTBI) with the QuantiFERON-TB Gold In-Tube (QFT) assay, which exhibits frequent conversions 
and reversions. The clinical impact of such variability on serial testing remains unknown. We used a 
microsimulation Markov model that accounts for major sources of variability to project diagnostic 
outcomes in a simulated North American HCW cohort. Serial testing using a single QFT with the 
recommended conversion cutoff (IFN-g > 0.35 IU/mL) resulted in 24.6% (95% uncertainty range, UR: 
23.8–25.5) of the entire population testing false-positive over ten years. Raising the cutoff to >1.0 IU/
mL or confirming initial positive results with a (presumed independent) second test reduced this false-
positive percentage to 2.3% (95%UR: 2.0–2.6%) or 4.1% (95%UR: 3.7–4.5%), but also reduced the 
proportion of true incident infections detected within the first year of infection from 76.5% (95%UR: 
66.3–84.6%) to 54.8% (95%UR: 44.6–64.5%) or 61.5% (95%UR: 51.6–70.9%), respectively. Serial QFT 
testing of HCWs in North America may result in tremendous over-diagnosis and over-treatment of LTBI, 
with nearly thirty false-positives for every true infection diagnosed. Using higher cutoffs for conversion 
or confirmatory tests (for initial positives) can mitigate these effects, but will also diagnose fewer true 
infections.

Health care workers (HCWs) are at risk for exposure to tuberculosis (TB) and are routinely tested for latent TB 
infection (LTBI) as part of most infection control programs in North American hospitals1–3. Traditionally, HCWs 
have been screened with the Tuberculin Skin Test (TST), and preventive therapy provided for those testing posi-
tive1,4, but over the last decade, interferon-gamma release assays (IGRAs) have been introduced as an alternative 
to the TST5–7. IGRAs–including the QuantiFERON-TB Gold In-Tube (QFT, Qiagen, Valencia, USA) and T-SPOT.
TB (Oxford Immunotec, Oxfordshire, UK)–offer several advantages over the TST, including improved specificity 
(particularly in BCG vaccinated populations)7, in vitro testing, and the requirement that patients make only a 
single visit. As a result, many hospitals in the United States have begun to use IGRAs for serial testing of HCWs; 
this practice has revealed unexpectedly frequent conversions and reversions among IGRA results8–13, the clinical 
implications of which remain unclear.

IGRA results are known to have multiple sources of variability (unrelated to TB infection), which may con-
tribute to the observed variation in test results14. The clinical implications of such variability in the setting of serial 
testing remain unknown. As a result, it is uncertain how best to implement IGRAs for serial testing of HCWs–for 
example, to reduce the occurrence of false positives among individuals subjected to numerous repeat tests, serial 
testing might warrant a different cutoff for a conversion or confirmatory testing of initial positive results. A recent 
systematic review15 summarized the evidence on potential sources of IGRA variability; evidence was strongest 
for boosting of IGRA (and specifically, QFT) responses by previously placed TSTs, delays in sample processing 
prior to incubation, and variations in the blood volume drawn. The evidence base for quantifying variability in 
serial testing by T-SPOT.TB (which has fundamental methodological differences in performance, compared to 
QFT) was somewhat weaker, and sources of T-SPOT.TB variability are likely to be different from those related to 

1Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA. 2Department 
of Medicine, UCSF, San Francisco, USA. 3Tuberculosis and Hepatitis Programme, FIND, Geneva, Switzerland. 
4Department of Medicine, Stanford University, Palo Alto, USA. 5Evidence Team, KNCV, The Hague, Netherlands. 
6Department of Epidemiology & Biostatistics and McGill International TB Centre, McGill University, Montreal, 
Canada. Correspondence and requests for materials should be addressed to M.P. (email: madhukar.pai@mcgill.ca) 
or D.D. (email: ddowdy1@jhmi.edu)

received: 29 April 2016

accepted: 07 July 2016

Published: 29 July 2016

OPEN

mailto:madhukar.pai@mcgill.ca
mailto:ddowdy1@jhmi.edu


www.nature.com/scientificreports/

2Scientific Reports | 6:30781 | DOI: 10.1038/srep30781

QFT. We therefore constructed a simulation of hypothetical North American HCWs undergoing serial testing 
with QFT, taking into account best estimates of both within-subject variability (probabilities of conversion and 
reversion in populations at very low risk of TB infection) and two important additional sources of variability 
(incubation delays and variation in blood volume). We use this simulated population to project the outcomes of 
serial QFT testing over a period of ten years.

Methods
Overview.  We used a microsimulation Markov model to project diagnostic outcomes in a simulated HCW 
cohort under different serial screening strategies. The simulated cohort comprised 10,000 hypothetical HCWs 
at a representative North American institution undergoing serial LTBI screening using QFT every year over a 
period of ten years. The model incorporates the major sources of variability in serial QFT results as well as dif-
ferent serial screening strategies, including different cutoffs for a QFT conversion and confirmatory testing with 
different degrees of correlation (modeled as Pearson correlation coefficients) between initial and confirmatory 
results (Fig. 1).

Modeling Approach.  To accomplish the model objectives, the model first assigns each individual HCW to 
one of three “QFT classes” based on the IFN-gamma response (0.00–0.19 International Units (IU)/mL [“class 1”], 
0.20–0.99 IU/mL [“class 2”], or ≥​1.00 IU/mL [“class 3”]), reflecting the distribution of initial QFT results from 
a large, multi-center study of HCWs at low risk of TB infection who were tested serially under semi-controlled 
conditions8. This “class” then dictates the HCW’s future “underlying” QFT results on a yearly basis under random 
within-subject variability alone, as follows. First, we take the initial QFT results from the aforementioned study, 
dividing these QFT results into the same three classes. Thus, for example, individuals in this study whose initial 
QFT result was 0.00–0.19 IU/mL would be assigned to “class 1”. Then, we fit a gamma distribution to the repeat 
QFT results in each class, again using the serial testing data from the aforementioned study. (For example, if nine 
of ten patients whose initial QFT results were <​0.20 IU/mL in the source study had a repeat value of 0.00 IU/mL,  
and one had a repeat value of 0.40 IU/mL, we would fit a gamma distribution to those values, to apply to the 
simulated HCWs in class 1.) Gamma distributions were selected because their lower bound is zero, but results 
are distributed in a right-skewed fashion with an infinite upper bound. The cutoffs for the three classes were 
selected based on natural cut-points in the data8, and to be maximally conservative (i.e., reducing the probability 
of false conversions on serial testing). Finally, to account for within-subject variability within each class, we assign 
a different “underlying” QFT value to each simulated HCW on a yearly basis, each yearly value representing a 
random draw from the distribution corresponding to that HCW’s class. We assume for simplicity that, at intake, 
all members of the cohort are free of actual TB infection.

In subsequent years, in addition to the within-subject variability as described above, an annual risk of true 
TB infection is applied. In the baseline scenario, we assume a high-risk HCW population in a North American 
healthcare institution in which 0.1% of the cohort acquires LTBI each year16,17. This annual risk of infection is 
varied in scenario analyses. The process of true infection is modeled by replacing the previous “underlying” QFT 
result with a new “underlying” value selected by randomly sampling from the distribution of positive QFT test 
results in the same study (i.e., assuming that the distribution of positive results in this study is similar to the dis-
tribution of true-positive results following true TB infection) [8].

Figure 1.  Markov model of serial QuantiFERON-TB (QFT) testing. Panel A illustrates the method by 
which each individual’s measured QFT result was calculated at each year t. This result reflects the individual’s 
initial underlying QFT “class”, within-subject variability from year to year, and two additional sources of 
variability, as described in the methods. *​Within-subject variability is incorporated through annual random 
draws from distributions based on each individual’s initial underlying QFT class. Panel B shows the four-state 
Markov model. We assume that healthcare workers (HCWs) enter as true negatives and cycle between other 
states on an annual basis for 10 years based on yearly QFT result (according to different conversion cutoffs 
and testing strategies, as described in the Methods) and true latent tuberculosis infection (LTBI) status. QFT: 
Quantiferon-TB Gold IN-Tube test, LTBI: latent tuberculosis infection, TST: tuberculin skin test, HCW: health 
care workers.
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After assigning an “underlying” QFT value to each simulated HCW in each year (to account for within-subject 
variability and the possibility of true infection)8,10,18, the model incorporates additional variation in QFT results 
according to two additional sources of variability (Fig. 1A): (1) variation in blood volume: 1 mL+​/−​ 0.2 mL19 
(assuming variation in either direction on 5% of all blood draws, for a total of 10%); and (2) pre-analytical delay 
of six or 12 hours20,21 (assuming each occurs in 5% of blood draws, for a total of 10%). We performed a sensitivity 
analysis that also included variability from TST boosting22–24, assuming boosting in 2% of all blood draws. We 
considered TST boosting an unlikely source of variability in individuals enrolled in a QFT screening program 
and thus excluded it from all other analyses. Each of these sources of variability is modeled as a beta distribution 
(with defined upper and lower bounds); values and ranges for change in QFT results are presented in Table 1. 
For HCWs randomly selected to experience each source of variability, a value would be selected from the corre-
sponding distribution and added (or subtracted) from the “underlying” QFT value to obtain the final measured 
QFT value in that year. Variability from blood volume, pre-analytical delay, and TST boosting is assumed to occur 
independently between each other and over time, such that the occurrence of one of these sources of variability 
in one year has no bearing on whether it or another source of variability occurs again in the current year or in a 
subsequent year.

The model can thus be represented mathematically as follows. Given an “underlying” QFT value (ast) in each 
year, additional variability in QFT results is added according to Equation 1:

∑= + λ
=

Measured QFT a x
(1)t st

k
kt skt

1

5

where ast is the “underlying” QFT value (conditional on TB infection status) as described above, k represents the 
additional sources of variability for which sufficient data were available in the systematic review (pre-incubation 
delay, blood volume, plus true TB infection15), λ​kt is an indicator variable drawn from a binomial distribution 
corresponding to the probability that k occurred in year t (1 =​ yes, 0 =​ no), and xskt is a value randomly drawn 
from a beta distribution fit to the measured variability in QFT results among people whose initial QFT value was 
in class s, and whose repeat tests were known to have been exposed to each item k, using data from the systematic 
review15.

After incorporating these sources of variability and true LTBI infection, measured QFT results are truncated 
between 0 and 10 IU/mL (corresponding to manufacturer’s guidelines), and a test result (positive or negative) 
is assigned at each year, according to different cutoffs for a positive result and different testing strategies (single 
test, or initial positive test requiring confirmation with a repeat test). Based on the test result and true LTBI status 
(incorporating this annual risk of TB infection) at each year, individuals in the population cycle between four 
Markov states: true negative, false negative, true positive, and false positive (Fig. 1B). All eligible (previously neg-
ative) individuals are assumed to undergo testing each year, and individuals who test positive (according to the 
selected cutoff and testing strategy) are assumed to be offered treatment for LTBI and therefore not subjected to 
further testing. QFT reversions are thus not explicitly modeled, as they have no bearing on outcome. Our primary 
outcome is the proportion of the population in each of the four states (with particular interest in the false-positive 
state) at the end of ten years. Key secondary outcomes include the number of QFT tests that would be performed 
over ten years and the proportion of people with true TB infection who would be properly identified as true 
positive in the first year after the infection occurred (i.e., those at greatest risk of progression to active disease 
and therefore greatest priority for preventive therapy, despite the relatively low accuracy of QFTs in predicting 
progression to active TB15).

Sensitivity Analyses.  We evaluated outcomes using the manufacturer’s recommended conversion cutoff for 
a positive test result (≥​0.35 IU/mL), as well as higher cutoffs at regular intervals (≥​0.5, ≥​0.75, and ≥​1.0 IU/mL). 
In addition, we modeled the correlation between initial and confirmatory tests in separate analyses as a Pearson 
correlation coefficient of 0.0 (presumed independent tests), 0.5, and 0.9 (best reflection of available data)25. We 
evaluated a wide range of thresholds for defining the three QFT classes (not shown), choosing the thresholds 
above based on natural breaks in the data distribution and a desire to be conservative in our assumptions. To 
evaluate the impact of the different modeled sources of variability on the outcomes of serial testing, we performed 
additional model runs in which each source of variability was removed from the model. Finally, we ran 1,000 
separate model simulations (of 10,000 individuals each) to construct 95% uncertainty ranges (95% URs) as the 
2.5th and 97.5th percentile of results across all simulations.

Results
In the base case scenario (0.1% annual risk of TB infection), 0.9% (95%UR: 0.7–1.1%) of the population expe-
rienced a true incident TB infection within ten years. Under a testing strategy in which a QFT conversion was 
defined as an initial value of <​0.35 IU/mL followed by a subsequent test ≥​0.35 IU/mL–and with no confirmatory 
testing–24.6% (95%UR: 23.8–25.5%) of the population was projected to test false positive by the end of ten years, 
versus 0.85% (95% UR: 0.68–1.04%) true positives: a ratio of 29 false positives for every true positive TB infec-
tion diagnosed. Under this strategy, 23.5% (95%UR: 15.4 −​33.7%) of patients with true incident infections were 
missed on the first test after infection. Including variability due to TST boosting nearly doubled the number of 
false positives, while removing variability due to incubation delays and blood volume (i.e., limiting variability to 
within-subject variability) did not materially change results (data not shown).

We then evaluated different strategies for reducing the false positive: true positive ratio, by instituting a higher 
cutoff for conversion and/or requiring confirmation of positive tests, under different assumptions about the 
correlation between the initial and confirmatory test (Fig. 2). Increasing the cutoff for a conversion to 1.0 IU/
mL reduced the proportion of the population testing false-positive in ten years to 2.3% (95%UR: 2.0–2.6%)  
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(Figs 2 and 3), but at the expense of reducing the percentage of true TB infections diagnosed within the first year 
after infection to 54.8% (95%UR: 44.6–64.5%).

The value of a confirmatory test depended strongly on the modeled correlation between initial and confirm-
atory test results. If the hypothetical correlation between initial and confirmatory test was high, outcomes were 
very similar whether or not confirmatory testing was performed. (See Fig. 2, “0.9” bars, and Fig. 3, middle and 
right-hand panels.) By contrast, if confirmatory tests were uncorrelated with the initial test result (Fig. 2, “0.0” 
bars, and Fig. 3, left panel), confirmatory testing even at a threshold of 0.35 IU/mL reduced the ten-year false 
positive percentage from 24.6% to 4.1% (95%UR: 3.7–4.5%). In this case, confirmatory testing also reduced the 
proportion of true infections detected within one year from 76.5% to 61.5% (95%UR: 51.6–70.9%).

At a higher annual risk of TB infection, the proportions of true positive tests increased, but the number of false 
positive tests remained the same, such that the false positive: true positive ratio declined (Table 2). In an extreme 
scenario of 1.0% annual risk of TB infection per year (1 of every 100 individuals tested actually has incident TB 
infection), assuming a correlation between initial and confirmatory testing of 0.5, a cutoff of 1.0 IU/mL, and only 
within-subject variability, the number of individuals testing true positive (7.95%) was much greater than the 
number testing false positive (0.55%). As a result, the post-test probability of a positive test representing true TB 
infection in this scenario was 0.94, versus 0.035 in the base case (0.1% annual risk of infection, no confirmatory 
testing, cutoff of 0.35 IU/mL).

Discussion
Using QFT for annual serial testing among HCWs in a low-incidence setting such as North America may lead 
to tremendous over-diagnosis of QFT conversions, and likely over-treatment of patients testing false-positive for 

Parameter Value* Distribution Source

Distributions Used to Account for Within-Subject Variability:

  Initial QFT (to determine QFT class) 0.00 (0.05) Gamma 8

  Annual “Underlying” QFT Result 8,10,18

  QFT class 0–0.19 IU/mL 0.00 (0.11) Gamma

  QFT class 0.20 IU/mL–0.99 IU/mL 0.00 (0.61) Gamma

  QFT class ≥​1.00 IU/mL 10 (2.82) Gamma

Additional Sources of Variability:

  Probability of Event Assumed

  6-Hour Pre-incubation Delay 0.05 Binomial

  12-Hour Pre-incubation Delay 0.05 Binomial

  0.8 mL Blood Sample 0.05 Binomial

  1.2 mL Blood Sample 0.05 Binomial

  Annual Risk of TB Infection 0.01 Binomial

Change in QFT Result According To:

  6 Hour Pre-analytical Delay 20,21

  QFT class 0–0.19 IU/mL 0.02 [−​0.14, 4.23] Beta

  QFT class 0.20 IU/mL–0.99 IU/mL −​0.16 [−​0.60, 0.19] Beta

  QFT class ≥​1.00 IU/mL −​2.03 [−​7.97, 0.86] Beta

  12 Hour Pre-analytical Delay 20,21

  QFT class 0–0.19 IU/mL 0.01 [−​0.13, 0.61] Beta

  QFT class 0.20 IU/mL–0.99 IU/mL −​0.16 [−​0.89, 0.06] Beta

  QFT class ≥​1.00 IU/mL −​2.85 [−​7.16, 0.00] Beta

  0.8 mL Blood Volume 19

  QFT class 0–0.19 IU/mL 0.03 [−​0.02, 0.33] Beta

  QFT class 0.20 IU/mL–0.99 IU/mL 0.35 [−​0.11, 1.36] Beta

  QFT class ≥​1.00 IU/mL 2.68 [−​1.11, 7.32] Beta

  1.2 mL Blood Volume 19

  QFT class 0–0.19 IU/mL 0.01 [−​0.11, 0.59] Beta

  QFT class 0.20 IU/mL–0.99 IU/mL −​0.28 [−​0.42, −​0.05] Beta

  QFT class ≥​1.00 IU/mL −​0.97 [−​2.13, 0.09] Beta

  TST Boosting (excluded from base case) 8,22–24

  QFT class 0–0.19 IU/mL 0.04 [−​0.16, 7.46] Beta

  QFT class 0.20 IU/mL–0.99 IU/mL 1.13 [−​0.85, 9.22] Beta

  QFT class ≥​1.00 IU/mL 2.86 [−​1.56, 8.59] Beta

Table 1.   Parameter Distributions for a Markov Model of Serial QFT Testing. *​Gamma distributions show 
mode (standard deviation), each rounded to the nearest 0.01. Binomial distributions show probabilities. Beta 
distributions show mode (minimum, maximum), assuming an alpha (shape) value of 4. QFT: Quantiferon, TST: 
Tuberculin skin test, TB: tuberculosis.
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LTBI. Using the manufacturer’s recommended diagnostic cutoff as the cutoff for conversion, and without a con-
firmatory test, resulted in 24.6% of HCWs being diagnosed with false positive conversions over 10 years of serial 
testing. If this number of individuals were unnecessarily treated, adverse events and costs associated with treat-
ment, monitoring, and side effects would be substantial, given the millions of HCWs who undergo serial testing 
in North America. Based on the present analysis, serial testing in the absence of confirmatory tests or alternative 
conversion cutoffs should therefore be discouraged in low-incidence settings.

Using a higher cutoff for a QFT conversion, or confirming positive results with a second test (assuming low 
correlation between those tests) can substantially reduce the number of false-positive results, but at the conse-
quence of diagnosing fewer people within the first year after true infection. Furthermore, in settings with a low 
annual risk of TB infection (1 per 1,000 per year or less), the positive predictive value of serial QFT testing, even 

Figure 2.  Cumulative Outcomes of Serial QuantiFERON-TB (QFT) Testing After Ten Years. The three 
panels respectively display proportions of the initial cohort classified as true negatives, false positives, and true 
infections diagnosed in the first year of infection at the end of ten years for each correlation-cutoff scenario. 
Correlations represent the Pearson correlation between initial test and confirmatory test (given if initial test was 
positive).
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with high cutoffs and independent confirmatory testing, can be 60% or lower. For example, if preventive therapy 
costs $430 per treatment course26, and assuming that preventive therapy is taken as prescribed, a serial QFT strat-
egy using a single annual test with a cutoff of 0.35 IU/mL (29 false-positives for every true-positive LTBI case) 
could cost $13,000 per true-positive LTBI case treated, in treatment costs alone–a figure comparable to the cost of 
treating a case of active TB27. In a population of 10,000 individuals, if all (2350) individuals testing false-positive 
under this strategy were to take preventive therapy, 87–115 people (3.7–4.9%) would be expected to experience 
an adverse event sufficient to result in permanent drug discontinuation28. Using a confirmatory test with corre-
lation of 0.5 and a cutoff of 0.35 IU/mL could reduce the cost per true-positive LTBI case treated to $5,400, but at 
the expense of approximately two more cases of TB infection going undiagnosed (double the false negative rate 
of an annual single QFT serial screening strategy). Decisions of whether to adopt such higher cutoffs in the con-
text of serial testing must therefore consider the underlying risk of TB infection, weighing the benefits of fewer 
false-positive tests against the potential harm of failing to promptly diagnose individuals with true TB infection.

Confirmatory testing has been discussed before29 but, to date, no guidance exists regarding its appropriate 
implementation. Data to describe the true correlation between initial and confirmatory QFT test results and 
estimates of cost-effectiveness could be helpful in this regard. Despite this uncertainty, many hospitals have imple-
mented confirmatory testing as a method to reduce false positive results and avoid unnecessary treatment30,31. 
Our model demonstrates the wide range of clinical outcomes possible, depending on the true correlation of 
results between initial and confirmatory testing. Given that confirmatory QFT testing is widely employed, more 
accurately characterizing this correlation should be a high priority for future research.

As with any modeling study, we are limited by the accuracy and appropriateness of the model and parameter 
assumptions employed. While we performed sensitivity analyses around the sources of variability, distributions 
employed, cutoffs for the underlying QFT categories and other parameters, we cannot exclude the possibility of 
having not modeled or not modeled accurately a particular unknown source of variability. In the assignment of 
initial QFT values and the distribution of within-subject variability, our analysis relied heavily on data from the 
largest study of IGRAs in North American HCWs [8]; however, this study collated QFT measurements from lab-
oratories employing potentially diverse methodologies. Such pooling of data from different settings may increase 
uncertainty in the data underlying our results. In choosing categories and cutoffs we employed conservative esti-
mates likely to be favorable to QFT; to the extent that we have underestimated the probability of QFT conversions 
under each source of variability, our results may underestimate the number of false-positive results that could be 
expected under each serial QFT testing strategy. Furthermore, as the focus of this modeling work was on serial 

Figure 3.  Proportion of a Hypothetical Population of Healthcare Workers Testing False-Positive for 
Tuberculosis Infection Using QuantiFERON-TB. Lines show the cumulative proportion of healthcare workers 
expected to test false-positive for latent tuberculosis infection (LTBI) if tested serially with QuantiFERON-TB 
on an annual basis, using different cutoffs for a positive test (shown in different colors) and different testing 
strategies (independent confirmatory test on the left, confirmatory test with Pearson correlation of 0.9 in the 
middle, and no confirmatory testing on the right).

Annual Risk of TB infection (%) 0.10% 0.50% 1.00%

Outcomes at 10 Years (%)

  True Negative 98.4 (98.2, 98.7) 94.6 (94.1, 95.0) 89.9 (89.3, 90.5)

  False Negative 0.17 (0.09, 0.25) 0.82 (0.64, 0.98) 1.57 (1.35, 1.83)

  True Positive 0.82 (0.66, 1.01) 4.04 (3.66, 4.45) 7.95 (7.45, 8.49)

  False Positive 0.57 (0.44, 0.73) 0.56 (0.42, 0.72) 0.55 (0.4, 0.7)

Number of QFT Tests Performed*​ 99,800 (99,800, 99,900) 99,100 (98,900, 99,300) 98,100 (97,900, 98,300)

TB Infections Diagnosed in the First Year 36.8 (27.3, 45.6 ) 36.7 (32.3, 41.3 ) 36.7 (33.7, 39.8)

Table 2.   Outcomes of Serial QFT Testing Assuming Only Within-Subject Variability. ​Assuming a cutoff for 
conversion of 1.0 IU/mL and a confirmatory test with a Pearson correlation of 0.5. *Tests required to evaluate 
10,000 individuals, followed over 10 years.
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QFT testing, we did not consider serial TST or T-SPOT.TB algorithms; further work comparing serial QFT to 
serial TST or T-SPOT.TB testing–incorporating year-to-year variability in each test–could add further value.

This model demonstrates the potential pitfalls of blindly using cutoffs designed for single tests in the setting of 
serial testing, particularly in settings of low TB incidence (i.e., low positive predictive value of QFT conversions). 
Simulation can help us understand these consequences in the absence of large prospective cohort studies. In 
realistic settings of low risk of TB infection, even with high cutoffs and confirmation, the post-test probability of 
a positive QFT test on serial testing may still only approach 60%, while annual testing with a single QFT using the 
recommended diagnostic cutoff may cause over 25% of individuals to have a false-positive test over a span of ten 
years. The value of serial testing of HCWs should therefore be discouraged in the North American setting, where 
TB incidence is now at an all-time low.
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