Lawrence Berkeley National Laboratory

LBL Publications

Title

Comparison of the Electronic Structure of the Lanthanides and Actinides

Permalink https://escholarship.org/uc/item/2sn8q1jf

Author Edelstein, Norman M.

Publication Date 1994-09-20

Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

CHEMICAL SCIENCES DIVISION

Submitted to Journal of Alloys and Compounds

Comparison of the Electronic Structure of the Lanthanides and Actinides

N.M. Edelstein

August 1994

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

LBL-36124

Comparison of the Electronic Structure of the Lanthanides and Actinides

N.M. Edelstein

Chemical Sciences Division Lawrence Berkeley Laboratory University of California Berkeley, California 94720

August 1994

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

Comparison of the Electronic Structure of the Lanthanides and Actinides

N. M. Edelstein Chemical Sciences Division, Lawrence Berkeley Laboratory' Berkeley, CA 94720, U.S.A.

Abstract

This paper reviews the electronic structure of the 4f and 5f compounds. To this end the optical and magnetic analyses of similar compounds are compared. In most cases this entails comparing trivalent actinide with trivalent lanthanide compounds although the f¹ configuration (Ce³⁺ diluted in Cs₂NaYCl₆ and Pa⁴⁺ diluted in Cs₂ZrCl₆) will be treated in detail. In general the ground electronic states for lanthanide and actinide compounds with the same number (n) of f electrons (fⁿ) and the same coordination about the metal ions are similar, although the total crystal field splitting in the actinides is approximately twice as great as for the lanthanides. The half-filled shell, f⁷, is a special case with a relatively large ground state splitting in the 5f⁷ ground term caused by the effects of the much larger spin-orbit coupling.

Introduction

The lanthanide series consists of the fourteen elements following lanthanum in the periodic table and is formed by the successive addition of a 4f electron to the electronic configuration of lanthanum. Because the 4f shell is an inner shell, the chemistry of the lanthanide ions are in general very similar. Although the chemical properties of the early actinide ions are quite different

Key words: electronic structure, actinides, lanthanides, crystal field, optical spectra

from those of the later actinide ions and the lanthanide series, the actinide series, in analogy with the lanthanide series, is defined as the fourteen elements following actinium in the periodic table.

The 4f orbitals in the lanthanide series are inner orbitals and do not participate in chemical bonding. In the early actinides the 5f orbitals are more extended and very close in energy to the 6d orbitals. As the atomic number increases, the 5f orbitals become more localized and progressively lower in energy relative to the 6d configuration. The relative energies of the d orbitals (5d for the lanthanides and 6d for the actinides) relative to the f configuration for the trivalent ions are shown in Figure 1. The data are taken from Brewer[1]. It is instructive to plot the mean radius <r> of the lanthanide and actinide ions as a function of atomic number (Figure 2). Here the mean radius is defined as follows:

 $\langle \mathbf{r}^{k} \rangle = \int_{0}^{\infty} \mathbf{P}_{nl}^{*}(\mathbf{r}) \mathbf{r}^{k} \mathbf{P}_{nl}(\mathbf{r}) d\mathbf{r}$

where $P_{nl}(r)$ is the radial wavefunction with principal quantum number n, angular momentum quantum number l, and k=1. All quantities are in atomic units.

Ionic radii for the lanthanide and actinide ions [3] are also plotted in Figure 2. Note the mean radii are consistently larger for the actinide series than for the lanthanides although the ionic radii for the two series are much closer to one another. This is because the ionic radii are determined not only by the f wavefunctions but also by the closed $5s^2,5p^6$ ($6s^2,6p^6$) shells. Plots of the relevant wavefunctions for Nd³⁺ and U³⁺ are shown in Figure 3.

For the first half of the actinide series, a large number of compounds are known with formal oxidation states ranging from 2+ to 7+. Molecular compounds of actinide ions in higher oxidation states are well known. Some

examples include the AnF_6 (An = U, Np, and Pu), the transuranium borohydrides, An(BH₄)₄, (An = Np, Pu), and dimeric compounds such as $[U(OC_2H_5)_5]_2$. The lighter members of the borohydride series are polymeric (Th, Pa, and U), but the Np and Pu compounds are monomeric and their physical properties resemble monomeric $Zr(BH_4)_4$ much more than polymeric $U(BH_4)_4$. Organometallic compounds are known for both the lanthanide and actinide series. If the ligand is large enough so as to prevent further coordination of other ligands by its steric bulk, then monomeric molecular compounds can be formed in both series. The early tetravalent actinides form organometallic compounds rather readily, and a number of these compounds show remarkable stability. For compounds of the type $[C_8H_8]_2An$, (An = Th, Pa, U, Np, Pu) the stability of uranocene, $U[C_8H_8]_2$ has been attributed to covalent bonding between the e_{2u} orbitals of the cyclooctatetrane rings and the e_{2u} f orbital[5]. Variable energy photoelectron studies [6] as well as ab initio calculations [7] show that the 6d e_{2g} orbitals and the e_{2g} orbitals of the rings make a substantial contribution to the bonding.

The purpose of this paper is to compare the electronic structures of the 4f and 5f compounds. To this end the optical and magnetic analyses of similar compounds will be compared. In most cases this will entail comparing trivalent actinide with trivalent lanthanide compounds except for the f^1 configuration. First of all the standard parametric theory used in the analysis of optical and magnetic data for f^n ions will be reviewed.

Parametric Theory [8,9]

The energy levels of an f^n ion are obtained by simultaneous diagonalization of the free-ion (H_{FI}) and crystal-field (H_{CF}) Hamiltonians:

$$H_{FI} = \sum_{k=0,2,4,6} F^{k}(nf,nf)f_{k} + \varsigma_{f}\alpha_{s.o.} + \alpha L(L+1)$$

$$+\beta G(G_2) + \gamma(R_7) + \sum_{\substack{k=2,8\\k\neq 5}} T^k t_k$$

$$+\sum_{k=0,2,4}^{\sum} M^{k} m_{k} + \sum_{k=2,4,6}^{\sum} P^{k} p_{k}$$

and

$$H_{CF} = \sum_{k,q} B_q^k C_q^k$$

The F^k (nf,nf) and ζ_f parameters above represent the radial part of the electrostatic interaction between two f electrons, and the spin-orbit interaction, respectively, while f_k and $\alpha \alpha_{s.o.}$ are angular parts of these interactions. The parameters α, β, γ are associated with the two-body effective operators of the configuration interaction, and the T^ks are the corresponding parameters of the three-body configuration interaction operators. The M^k parameters represent the spin-spin and spin-orbit interactions, and the P^k parameters arise from electrostatic-spin-orbit interactions with higher configurations. The number of B_q^k parameters in the crystal-field Hamiltonian is determined by the site symmetry of the metal ion. The angular operators C_q^k are the usual Racah parameters and can be evaluated by standard techniques [10].

The parameters that have a major effect on the calculated spectra are the Slater parameters $F^k(nf,nf)$, the spin-orbit coupling constant ζ_f , and the crystal-field parameters. Assignments of the observed energy levels are made and then compared with those calculated with assumed parameters from the above

Hamiltonian. New assignments are then made and the parameters adjusted by a least squares routine to obtain the best fit between experiment and calculation. The "best" fit is obtained when the value of σ (in cm⁻¹) is at a minimum where

$$\sigma = [\sum (E_{obs.} - E_{calc.})^2 / (n-p)]^{1/2}$$

where $E_{obs.}$, $E_{calc.}$ are the observed and calculated energies, n the number of observed levels, and p the number of parameters varied.

The wavefunctions and energy splittings determined from the above Hamiltonian can be used to calculate magnetic susceptibility as a function of temperature, magnetic dipole transition strengths, and g values for crystal-field states. Some representative values for the parameters of the Hamiltonian for some trivalent lanthanide and actinide ions in LaCl₃ are given in Table 1.

For the f¹ case the Hamiltonian is considerably simplified as the only parameters in this case are the spin-orbit coupling constant and the crystal-field parameters. For the f² case all three-body operators are zero.

The f¹ ion in octahedral symmetry

The two systems, Ce³⁺/Cs₂NaYCl₆ and Pa⁴⁺/Cs₂ZrCl₆, have been thoroughly studied [11-14]. In both cases the 4f¹ or 5f¹ ion is surrounded by 6 Cl⁻ ions in an octahedral array. Both systems show fluorescence from the lowest level of the excited d configuration (at ~28,000 cm⁻¹ for Ce³⁺ and 20,000 cm⁻¹ for Pa⁴⁺) to the f configuration, and the energies of four of the five expected crystal field states of the f configuration are accurately determined. These energies may

be fit by diagonalizing the matrices obtained from an empirical Hamiltonian and adjusting the parameters to this Hamiltonian. In this simple case there are two crystal-field parameters and one spin-orbit coupling parameter. Since there are three energy differences and three parameters, the fit is perfect. However the fit may be checked by calculating the ground state g values and comparing them to the experimental values. The results are shown in Table 2.

Note that for Ce^{3+}/Cs_2NaYCl_6 the agreement is excellent, but for Pa^{4+}/Cs_2ZrCl_6 the calculated g value is quite a bit off from the experimental value. This is a general result when actinide and lanthanide fits are compared, the crystal-field model (the combination of the free-ion Hamiltonian with one-body crystal-field operators) works rather well for the 4f series, but shows much greater deviations for 5f ions. Of course, Pa^{4+} is tetravalent and is subject to a considerably larger crystal-field than Ce^{3+} . In addition the greater spatial extent of the 5f wavefunction could result in greater covalent bonding with the Cl-ligands. As expected the spin-orbit coupling constant for the 6d configuration in Pa^{4+} is much larger than for the 5d configuration in Ce^{3+} , although it appears that 10Dq (the crystal-field splitting of one d electron in an octahedral field, defined as the difference between the energies of the e_{2g} and t_{2g} orbitals in the absence of spin-orbit coupling) is larger for Ce^{3+}/Cs_2NaYCl_6 than for Pa^{4+}/Cs_2ZrCl_6 . However this latter number is uncertain and the differences in 10Dq do not appear to be significantly different.

Comparison of An³⁺ and Ln³⁺ in LaCl₃

Carnall [15] has recently published a compendium of the data for $An^{3+}/LaCl_3$ and his analysis of these data. He carried out a new energy level analysis for the entire series where data are available (from U³⁺ through Es³⁺).

The values of σ for the actinides (which are a measure of the quality of the fits) are between 20 - 22 cm⁻¹. This compares with values of σ for the lanthanides on the order of 10 cm⁻¹. Carnall was able to arrive at a consistent analysis by assuming the parameters of the principal interactions showed uniform trends as a function of atomic number. The exception to this trend occurred at the beginning of the series where the parameters for U³⁺ (free ion as well as crystal field) were not consistent with the data for the heavier ions. The crystal-field parameters for the actinides are approximately twice as large as those for the lanthanides, except for B_0^2 (not including U³⁺) where the values for the lighter actinides are of the ground terms of each member of the lanthanide and actinide series with the same number of f electrons. For most cases the ordering of the crystal field states (labeled by the quantum number μ where J_z = μ (mod q)[10]) is the same in both the lanthanide and actinide ions.

The total crystal-field strength has been defined by Auzel and Malta [16] as

$$N'_{v} = \frac{N_{v}}{2\pi} \left[\sum_{k,q} (B^{k}_{q})^{2} / (2k+1)\right]^{1/2}$$

with N_{v} in units of cm⁻¹.

A comparison of the values of N_v for the lanthanide and actinide series is given in Figure 4. It appears the strength of the crystal field in the actinides is about a factor of two larger than in the lanthanides. Note that in the lanthanides the crystal-field strength for the latter half of the series is less than in the first half of the series, but no trend is discernible in the actinides. Of course there are relatively sparse data for the actinides, so this generalization must be treated with caution.

f-Element Organometallic Compounds

Although actinide organometallic chemistry is a very active area of interest, only a few detailed optical or magnetic measurements have been reported on trivalent actinide organometallic compounds. For this review two sets of compounds have been chosen; Cp₃Th, Cp₃Ce and Cp₃U.L, Cp₃Nd.L where $L = CNC(CH_3)_3$ and Cp"= $\eta^5 - C_5H_3(SMe_3)_2$ [17-19]. Low temperature electron paramagnetic resonance (epr) and magnetic susceptibility data measured as a function of temperature are available for this series of compounds. The data for the Cp₃U.L, Cp₃Nd.L pair are given in Table 3. It is clear that the ground crystal-field states are similar for both the Nd and U compounds. The difference between the room temperature magnetic susceptibilities can be explained by a larger crystal-field splitting in the uranium compound as compared to the Nd compound.

For the Th³⁺ free ion, the ground configuration is 5f¹ with the 6d¹ configuration at ~10,000 cm⁻¹. In compounds however the 6d configuration is stabilized with respect to the 5f configuration, and in Cp₃Th it becomes the ground configuration [17]. For the Ce³⁺ free ion, the ground configuration is 4f¹ and the 5d¹ excited configuration is at ~ 50,000 cm⁻¹. In Cp₃Ce the start of the 5d configuration is at ~ 17,000 cm⁻¹. Table 4 shows the epr data for Cp₃Ce, Cp₃Th, Cp₃Zr, and (MeCp)₃Zr (Cp= η^5 -C₅H₅, MeCp= η^5 -C₅H₄CH₃)[18,19]. Clearly the g values for the ground state of Th Cp₃ match those of Cp₃Zr and (MeCp)₃Zr much more closely than those of Cp₃Ce which verifies the assignment of the ground state in the Th compound as the d₂2 orbital.

Comparison of Eu³⁺/ThO₂ and Am³⁺/ThO₂

Optical spectra for Eu³⁺/ThO₂ and Am³⁺/ThO₂ have recently been reported [20] and provide another host matrix in which to compare the effects of the crystal field on the f⁶ configuration. Table 5 shows the values of the parameters found from the analysis. The larger crystal field found for the actinides and especially for the ThO₂ matrix causes extensive J mixing in Am³⁺. This is in contrast to Eu³⁺ where the states show rather pure L-S coupling. Again the values of the parameter N'_v show that the total crystal field strength in Am³⁺/ThO₂ is 2.4 times greater than that in Eu³⁺/ThO₂.

The f⁷ configuration

The ground state wavefunction of $Gd^{3+} (4f^7)$ is an almost pure ${}^8S_{7/2}$ state which, because L = 0, should undergo no splitting in a crystalline field. However, for this ion and ions of the d transition metals, small splittings are observed. Much work has been done on various higher-order interactions which can cause these splittings but the mechanisms are still not well understood. For the Gd³⁺ ion in various hosts, the extent of the ground state splittings is on the order of 0.5 cm⁻¹ or less. For Cm³⁺ in various host crystals the ground state splittings are on the order of 10 cm⁻¹ [21]. Some data from epr measurements on Cm³⁺ in various crystals compared with Gd³⁺ are shown in Table 6. The reason for the rather large differences in the splittings of the ground term between Gd³⁺ and Cm³⁺ can be explained by the large spin-orbit coupling in Cm³⁺. Table 7 shows the free-ion wavefunctions for Gd³⁺ and Cm³⁺. The Cm³⁺ free-ion wavefunction consists of 50 L-S terms of which those with L>1 can split in a crystal field. It has been shown that by adding up all these terms the calculated splittings found for Cm³⁺ agree quite well with the measured values. This is not

true for Gd³⁺, as a large number of interactions of approximately the same magnitude contribute to the observed splittings.

Sytsma *et al* . [22] have recently completed an analysis of the optical spectra of Gd³⁺ and Cm³⁺ in the tetragonal host crystal LuPO₄. Earlier work on the epr of Cm³⁺/LuPO₄ had been analyzed in terms of a total ground term splitting of approximately 11 cm⁻¹. The optical analysis confirms this splitting and Sytsma *et al* . obtained crystal-field parameters for both Gd³⁺ and Cm³⁺ in LuPO₄. The parameters obtained from the optical analyses are shown in Table 8. Again we see that N'_{v} is about twice as large for Cm³⁺ as found for Gd³⁺.

Conclusion

The optical data available for f^n ions of the same oxidation state have been reviewed. Using the Auzel and Malta parameter N, as a measure of the strength of the crystal field, one finds the actinide crystal field is approximately twice that of the corresponding lanthanide ion. From an electrostatic model the crystal-field parameters B^k_q can be written as [24]

$$\mathbf{B}_{\mathbf{q}}^{\mathbf{k}} = \mathbf{A}_{\mathbf{q}}^{\mathbf{k}} < \mathbf{r}^{\mathbf{k}} >$$

where the value of A_q^k depends on the type of electrostatic model assumed. Since the ionic radii of the actinide and lanthanide ions are similar, it is expected that the values of A_q^k for ions of the lanthanide and actinide series should be similar. Thus qualitatively, one can attribute the larger crystal-field interactions in the actinide series to the more extended nature of the 5f wavefunctions as given by <rk>. However this is a gross oversimplification as this model does not include forbital covalency, whose effects are clearly observed in epr experiments. For example, a large superhyperfine structure has been reported for PuF8⁵⁻ (Pu³⁺ in

the cubic site of CaF_2 [25]. The incorporation of covalency effects into a ligand field model and its application to the actinides needs further implementation.

Acknowledgement

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

References

- 1. L. Brewer, J. Opt. Soc. Am. <u>61</u>, 1666 (1971).
- R.D. Cowan, "The Theory of Atomic Structure and Spectra," University of California Press, Berkeley, 1981, p. 72.
- 3. R.D. Shannon, Acta Crystal A. <u>32</u>, 751 (1976).
- 4. J.J. Katz, G.T. Seaborg, and L.R. Morss, Eds. "The Chemistry of the Actinide Elements," Chapman and Hall, London, 1986.
- 5. T.J. Marks and A. Streitwiser, Jr., "Organoactinide Chemistry: Properties of Compounds Having Metal-Carbon Bonds Only to ∏-bonded Ligands," in Reference 4, Chapter 22.
- J.G. Brennan, J.C. Green, and C.M. Redfern, J. Am. Chem. Soc. <u>111</u>, 2373 (1989).
- 7. A.H. Chang and R.M. Pitzer, J. Am. Chem. Soc. <u>111</u>, 2500 (1989).
- 8. H.M. Crosswhite and H. Crosswhite, J. Opt. Soc. Am. B 1, 246 (1984).
- W.T. Carnall, H. Crosswhite, H.M. Crosswhite, J.P. Hessler, N. Edelstein,
 J.G. Conway, G.V. Shalimoff, and R. Sarup, J. Chem. Phys. <u>72</u>, 5089 (1980).

10. B.G. Wybourne, "Spectroscopic Properties of Rare Earths," Wiley, New

York, 1965.

- 11. R.W. Schwartz and P.N. Schatz, Phys. Rev. B 8, 3229 (1973). 12. D. Piehler, W.K. Kot, and N. Edelstein, J. Chem. Phys. <u>94</u>, 942 (1991). 13. N. Edelstein, W.K. Kot, and J.C. Krupa, J. Chem. Phys. <u>96</u>, 1 (1992). 14. K. Murdoch, P. Tanner, and N. Edelstein, unpublished data. 15. W.T. Carnall, J. Chem. Phys. <u>96</u>, 8713 (1992). 16. F. Auzel and O.L. Malta, J. Phys. <u>44</u>, 201 (1983). 17. W.K. Kot, G.V. Shalimoff, N.M. Edelstein, M.A. Edelman, and M.F. Lappert, J. Am. Chem. Soc. 110, 986 (1988). 18. W. K. Kot, PhD. Thesis, 1991, LBL-30652. 19. W. Lukens and R.A. Andersen, unpublished data. 20. S. Hubert, P. Thouvenot, and N. Edelstein, Phys. Rev. B 48, 5751 (1993). 21. W.K. Kot, N.M. Edelstein, M.M. Abraham, and L.A. Boatner, Phys. Rev. B <u>48,</u> 12704 (1993).
- 22. J. Sytsma, N. Edelstein, M.M. Abraham, and L. Boatner, unpublished data.

- W. Kolbe, N. Edelstein, C.B. Finch, and M.M. Abraham, J. Chem. Phys. <u>58</u>, 820 (1973).
- 24. Reference 10, pp. 213-219.
- 25. W. Kolbe and N. Edelstein, Phys. Rev. B <u>4</u>, 2869 (1971).
- 26. W.T. Carnall, H. Crosswhite, and H.M. Crosswhite, Special Report 1977(Chemistry Division, Argonne National Laboratory, Argonne, IL).

Parameter	Nd ³⁺ (4f ³) ^a	${\rm Er}^{3+}(4f^{11})^{a}$	U ³⁺ (5f ³) ^b	Fm ^{3+(5f¹¹)^b}
 F ²	71866	98203	39611	65850
F ²	52132	69647	32960	52044
F ⁶	35473	49087	23084	37756
ζ	880	2370	1626	4326
α	22.1	15.9	29.26	30
β	650	-632	-824.6	-600
γ	1586	2017	1093	450
T ²	377	300	306	100
T3	40	48	42	45
T4	63	18	188	50
T6	-292	-342	-242	-300
T7	358	214	447	640
T ⁸	354	449	300	400
M ⁰	1.97	4.5	.672	1.587
M ²	1.1	2.52	.372	.878
M ⁴	.75	1.71	.258	.612
P ²	255	667	1216	600
P ⁴	191	500	608	300
P ⁶	128	334	121.6	60
B_0^2	107	216	287	306
B_0^4	-342	-271	-662	-1062
B_0^6	-677	-411	-1340	-1441
B_{6}^{6}	466	272	1070	941

^aFrom reference 15.

^bFrom reference 26.

TABLE 1:Energy level parameters for representative lanthanide and actinide
ions diluted in LaCl₃. All values in cm^{-1} .

Crystal field levels and g value	Pa ⁴⁺ Energy Levels ª (Exp)	Pa ⁴⁺ Energy Levels ª (Calc)	Ce ³⁺ Energy Levels ^b (Exp)	Ce ³⁺ Energy Levels ^b (Calc)
$5d \text{ or } 6d (\Gamma_{s_g}) (\text{cm}^{-1})$	40000	40000 ^c	>50000	50000 ^d
5d or 6d (Γ_{7g}) (cm ⁻¹)	23000	23000	29435	29435
5d or 6d (Γ_{s_g} (cm ⁻¹)	19954	19954	28196	28196
${}^{2}F_{7/2}(\Gamma_{6\mu})(cm^{-1})$	8173±3	8173 ^e	3085.6±2	3085.6 ^f
² F _{7/2} (Γ _{8μ})(cm ⁻¹)	7272±3	7272	2688.8±2	2688.8
${}^{2}F_{7/2}(\Gamma_{7u})(cm^{-1})$	5250±50	5539	2159±50	2160.1
${}^{2}F_{5/2} \Gamma_{s_{\mu}}(cm^{-1})$	2108±1	2108	598.5±2	598.5
${}^{2}F_{5/2} \Gamma_{7_{\mu}}(cm^{-1})$	0	0	0	0
8 _{Г74}	$-1.141 \pm .002$	953	-1.266	-1.255

^areferences 12 and 13

^breferences 11 and 14

 $^{c}10Dq = 18600 \text{ cm}^{-1}$, $\zeta_{6d} = 1856.5 \text{ cm}^{-1}$, $E_{ave} = 28582 \text{ cm}^{-1}$

^d10Dq = 21318 cm⁻¹, ζ_{5d} = 796.8 cm⁻¹, E_{ave} = 37165 cm⁻¹

 $^{e}B_{0}^{4}$ = 6945.3 cm⁻¹, B_{0}^{6} =-162.7 cm⁻¹, ζ_{5f} =1539.6 cm⁻¹

 ${}^{f}B_{0}^{4} = 2219.1 \text{ cm}^{-1}, \ B_{0}^{6} = -254.9 \text{ cm}^{-1}, \zeta_{4f} = 622.7 \text{ cm}^{-1}$

TABLE 2: Experimental and calculated energy levels and ground state g values for Ce³⁺/Cs₂NaYC₆ and Pa⁴⁺/Cs₂ZrC₆

Compound g_1^a	8 ^a 2	<i>8</i> ^{<i>a</i>} ₃	$g_{ave}(epr)^a$	g _{ave} (susc	$(ept.)^{b} \mu_{eff}(BM)^{c}$
Cp ₃ Nd.CNC(CH ₃) ₃	2.231	2.095	.856	1.73	1.66 3.85
Cp ₃ U.CNC(CH ₃) ₃ 2.463	1.739	<.7	1.39 <g<1.63< th=""><th>1.69</th><th>3.13</th></g<1.63<>	1.69	3.13
^a At ~ 10K					

^bTemp. range 5–10K, S=1/2

°Temp. range 200–300K

TABLE 3. Magnetic susceptibility and electron paramagnetic resonance data for $Cp_3^{-}M.CNC(CH_3)_3$ (M=Nd,U). The data are from reference 19.

	Config.	g_{ll}	₿⊥	8 _{ave}	Temp(K)	Ref.
Cn [°] Th in MCH ^a	6d ¹			1.910±.001	300	17
Cp_3 Th in MCH	6d ¹	1.9725±.001	1.879±.001	1.910 ^b	10-110	17
Cp₃Th powder	6d1	1.972±.001	1.878±.001	1.909 ^b	10-300	17
Cp ₃ Zr in 2-MeTHF ^c	$4d^1$	1.999	1.970	1.980 ^b	100	19
Cp ₃ Zr in 2-MeTHF	$4d^1$	Λ		1.977	298	19
(CH ₃ Cp) ₃ Zr in 2-MeTHF	$4d^1$	1.999	1.969	1.979 ^b	100	19
(CH ₃ Cp) ₃ Zr in 2-MeTHF	4d ¹			1.977	298	19
Cp₃Ce powder	4f ¹	2.77	2.39	2.52 ^b	5	18

^aMCH = methylcyclohexane

^bCalculated from $1/3 (g_{11}+2g_{\perp})$

^c2-MeThF = 2-methyltetrahydrofuran

TABLE 4. EPR Data for Various f^1 or d^1 Organometallic Compounds

Parameters (cm ⁻¹)	Eu ³⁺ /ThO ₂ ^a	Am ³⁺ /ThO ₂) ^b	
F ²	[80335.2] ^c	48038.0(140.2) ^d	
F ⁴	[58953.9]	39684.2(212.9)	
Fe	[41636.6]	29514.1(171.4)	
ζ	1337.3(7.1)	2511.1(27.0)	
α	[16.8]	33.2(8.6)	
β	[640]	[-660]	
γ	[1750]	[1000]	
T ²	[370]	[200]	
T ³	[40]	[50]	
T ⁴	[40]	[40]	
Te	[-330]	[-360]	
T ⁷	[380]	[390]	
T ⁸	[370]	[340]	
M ⁰	[2.38]	[.99]	
M ²	[1.33]	[.55]	
M^4	[.90]	[.38]	
P ²	[245]	[850]	
P4	[183.8]	[637.5]	
P6	[122.5]	[425]	
B_0^4	-2780.2(32.2)	-6731.3(96.0)	
B_0^6	266.0(26.3)	713.6(115)	
N,	1212	2945	

^a17 experimental levels, rms deviation 18.0 cm⁻¹.

^b17 experimental levels, rms deviation 47.3 cm⁻¹.

^cAll parameter values in [] held fixed in the fitting procedure.

^dNumber in () is the standard deviation of the parameter.

TABLE 5:Spectroscopic parameters for Eu^{3+} and Am^{3+} diluted in ThO2From Reference 20.

Host	Lattice Constant	Gd ³⁺	Cm ³⁺
CeO ₂	5.41Å	.0653 cm ⁻¹	17.8 cm ⁻¹
ThO ₂	5.60	.06645	15.5
CaF ₂	5.46	.0578	13.4
SrF ₂	5.80	.0501	11.2
SrCl ₂	7.00	.0198	5.13

TABLE 6. Comparison of the ground state crystal-field splittings of Gd^{3+} and Cm^{3+} in cubic crystals.

	G	d ³⁺	Cm ³⁺		
L–S Term	Component	Percentage	Component	Percentage	
⁸ S .	9857	97.16	.8859	78.48	
6P	1666	2.77	4232	17.91	
4D6	0146	.0213	1052	1.107	
4D1	-0.0144	.0207	1039	1.079	
6D	.0127	.0161	.0926	.857	
⁴ D4	.0031	.96x10 ⁻³	.0205	42.0×10 ⁻³	
4F4	.0020	.40x10 ⁻³	.0409	.167	
²F6	.0016	.26x10 ⁻³	.0322	.103	
6F	0011	.12x10 ⁻³	0227	51.5x10 ⁻³	
4D3	0011	.12x10 ⁻³	0226	51.1x10 ⁻³	

TABLE 7. Free-ion wavefunctions for Gd^{3+} and Cm^{3+} . Parameters from reference 22.

Parameter	Gd ^{3+^a}	Cm ^{3+b}	,
 F ²	84075	54669	
F ⁴	61411	44760	
F ⁶	44426	, 33021	
ζ	1494	2867.7	
α	[18.9] ^c	30.3	
β	[-600]	-982	
γ	[1575]	749	
T ²	[300]	[200]	,
T3 ·	[42]	[50]	
T4	[62]	[40]	
Te ·	[-295]	[-360]	
T ⁷	[350]	[390]	
T8	[310]	[340]	
M ⁰	[3.22]	[1.09]	
M ²	[1.80]	[.61]	
M4	[1.22]	[.41]	
P ²	[676]	[912]	
P ⁴	[507]	[684]	
P ⁶	[338]	[456]	•
B_0^2	168.6	442.7	
B_0^4	220.1	304.1	
B_4^4	-1034.2	-1980.3	
B_0^6	-733.4	-2880.1	
B_{4}^{6}	960.6	881.3	
N',	657.3	1295.6	

^a44 experimental levels, $\sigma = 15.1 \text{ cm}^{-1}$

^b60 experimental levels, $\sigma = 30.8 \text{ cm}^{-1}$

^cValues in [] held fixed

TABLE 8:Energy level parameters for Gd^{3+} and Cm^{3+} diluted in LuPO4. From Reference 22.All values are in cm^{-1} .

è

List of Figures

<u>Figure 1</u> Relative energies of the f⁽ⁿ⁻¹⁾d configuration compared to the energies of the fⁿ configuration for the trivalent ions of the lanthanides and actinides. Data from Reference 1.

<u>Figure 2</u> Plot of the calculated mean radii <r> of the trivalent ions (fⁿ where n = 1 to 14) of the lanthanides and actinides, and of the experimental ionic radii for these ions.

<u>Figure 3</u> Plot of the 4f, 5s, and 5p wavefunctions of Nd^{3+} , and the 5f, 6s, and 6p wavefunctions of U^{3+} .

<u>Figure 4</u> A comparison of the N_v values obtained from the crystal-field parameters for Ln^{3+} and An^{3+} in LaCl₃.

ð.

Fig. 3

.

Fig. 4

LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA TECHNICAL INFORMATION DEPARTMENT BERKELEY, CALIFORNIA 94720 -