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Abstract of the Dissertation

Spectral analysis of quasiperiodic Schrödinger operators

By

Shiwen Zhang

Doctor of Philosophy in Mathematics
University of California, Irvine, 2016

Professor Svetlana Jitomirskaya, Chair

We consider discrete quasiperiodic Schrödinger operators with analytic sampling

functions. The thesis has two main themes: first, to provide a sharp arithmetic cri-

terion of full spectral dimensionality for analytic quasiperiodic Schrödinger operators

in the positive Lyapunov exponent regime. Second, to provide a concrete example of

Schödinger operator with mixed spectral types.

For the first theme, we introduce a notion of β-almost periodicity and prove quan-

titative lower spectral/quantum dynamical bounds for general bounded β-almost pe-

riodic potentials. Applications include the sharp arithmetic criterion in the positive

Lyapunov exponent regime and arithmetic criteria for families with zero Lyapunov

exponents, with applications to Sturmian potentials and the critical almost Mathieu

operator.

For the second part, we consider a family of one frequency discrete analytic quasi-

periodic Schrödinger operators which appear in [18]. We show that this family pro-

vides an example of coexistence of absolutely continuous and point spectrum for some

parameters as well as coexistence of absolutely continuous and singular continuous

spectrum for some other parameters.
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Introduction

0.1 Discrete Schrödinger operators

Let Ω = RZ and T : Ω 7→ Ω is given by (Tθ)(n) = θ(n + 1). Let f(θ) := θ(0) and

Vθ(n) := θ(n) = f(T nθ). Consider the following 1-dimensional discrete Schrödinger

operator on l2(Z) given by

(1) (Hu)n = un+1 + un−1 + Vθ(n)un.

Our main interest is the following situation, when V is actually dynamically de-

fined with a certain underlying ergodic base dynamics (Ω, T, ν). In particularly, when

T is a rotation on the torus equipped with Lebesgue measure, (1) is called quasiperi-

odic Schrödinger operator.

0.2 Motivation and Background

Singular continuous spectral measures of Schrödinger operators, usually defined by

what they are not, are still not very well understood. The aim of direct spectral theory
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is to obtain properties of spectral measures/spectra and associated quantum dynamics

based on the properties of the potential. In the context of 1D operators this is most

often done via the study of solutions/transfer matrices/dynamics of transfer-matrix

cocycles. Indeed, there are many beautiful results linking the latter to either dimen-

sional properties of spectral measures (going back to [51]) or directly to quantum

dynamics (e.g. [61, 33]). There is also a long thread of results relating dimensional

properties of spectral measures to quantum dynamics (e.g. [13, 11] and references

therein) as well as results connecting spectral/dynamical properties to some further

aspects (e.g. [62, 20]). Many of those have been used to obtain dimensional/quantum

dynamical results (sometimes sharp) for several concrete families (e.g. [31]). Howev-

er, there were no results directly linking easily formulated properties of the potential

to dimensional/quantum dynamical results, other than for specific families or a few

that ensure either the mere singularity or continuity of spectral measures (and their

immediate consequences). In particular, we don’t know of any quantitative results of

this type. In [60], we consider discrete Schrödinger operator and prove quantitative

lower spectral/quantum dynamical bounds for general potentials. The result is the

first one with such direct link.

The study of one-dimensional one-frequency quasiperiodic operators with gener-

al analytic potentials has seen remarkable advances in the last two decades, from

the Eliasson’s KAM point spectrum proof for the general class [36], to Bourgain-

Goldstein’s non-perturbative method [16], to Avila’s global theory [4]. In particu-

lar, many results have been obtained in the regime of positive Lyapunov exponents

(dubbed supercritical in [4]). They can be divided into two classes

• Those that hold for all frequencies (e.g. [52, 17, 33, 55, 56, 57])

• Those that have arithmetic (small denominator type) obstructions preventing

their holding for all frequencies, thus requiring a Diophantine type condition

(e.g. [16, 46, 30]) 1

1Not all results can currently be classified this way, most notable example being the Cantor

structure of the spectrum [47], currently proved for a non-arithmetically-defined full measure set
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Results of the first kind often (but not always [17, 74]) do not require analyticity

and hold in higher generality. Results of the second kind describe phenomena where

there is a transition in the arithmetics of the frequency, thus an extremely interesting

question is to determine where does this transition happen and to understand the

neighborhood of the transition. However, even though some improvements on the

frequency range of some results above have been obtained (e.g. [75]), most existing

proofs often require a removal of a non-arithmetically defined measure zero set of

frequencies, thus cannot be expected to work up to the transition. There have been

remarkable recent advances in obtaining complete arithmetic criteria in presence of

transitions [10, 53, 54] or non-transitions [5] for explicit popular Hamiltonians: almost

Mathieu operator and Maryland model, but there have been no such results that

work for large families of potentials. In the first part of the thesis, we prove a sharp

arithmetic criterion of full spectral dimensionality in the positive Lyapunov exponent

regime for analytic quasiperiodic potential. The criterion links in a sharp way a purely

analytic property of the spectral measure to arithmetic property of the frequency.

Such transition in the arithmetics of the frequency is extremely interesting e.g. in

popular Hamiltonians: almost Mathieu operator.

The quasiperiodic Schrödinger operators with intermediate sized potentials are

less understood. Recent work of Avila [4] explains the structure of the spectrum for

typical potentials. But still there are very few concrete examples where one really

can say that there is a mixed spectrum. There are previous works of Bourgain [15],

Fedotov and Klopp [39] that provide such mixed spectra examples in other regimes.

Recently Bjerklöv and Krikorian [19] announced an example of this nature. In [78],

we consider a family of one frequency discrete analytic quasiperiodic Schrödinger op-

erators which appear in [18]. We show that this family provides an example of 1-d

discrete Schrödinger operator that has mixed spectral types: coexistence of p.p. spec-

of frequencies, while the statement has no known arithmetic obstructions. Theoretically there may

also be results such as [5] which formally should belong to the first group but the proof requires

argument that highly depends on the arithmetics, so they must be in the second group, in spirit. In

some sense [17] is a result of this type.
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trum and a.c. spectrum, as well as coexistence of s.c. spectrum and a.c. spectrum.

We consider the class of potentials introduced in [18]. By combining several recent

results on localization, reducibility and continuity, we provide such concrete examples

of mixed spectra.
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Chapter 1

Quantitative continuity of singular

continuous spectral measures and

arithmetic criteria.

1.1 Introduction

Consider Schrödinger operator on l2(Z) given by

(1.1) (Hu)n = un+1 + un−1 + V (n)un

For β > 0, we say a real sequence {V (n)}n∈Z has β-repetitions if there is a sequence

of positive integers qn →∞ such that

(1.2) max
1≤j≤qn

|V (j)− V (j ± qn)| ≤ e−βqn

We will say that {V (n)}n∈Z has ∞-repetitions if (1.2) holds for any β > 0. For

β <∞, we will say that {V (n)}n∈Z is β-almost periodic, if, for some ε > 0, V (·+kqn)

satisfies (1.2) for any |k| ≤ eεβqn/qn, i.e.,

(1.3) max
1≤j≤qn,|k|≤eεβqn/qn

|V (j + kqn)− V (j + (k ± 1)qn)| ≤ e−βqn

for any n. We will say that {V (n)}n∈Z is ∞-almost periodic, if it is β-almost periodic

for any β <∞. We note that β and even∞-almost periodicity does not imply almost
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periodicity in the usual sense. In particular, it is easily seen that there is an explicit

set of generic skew shift potentials that satisfy this condition.

We will prove

Theorem 1.1.1 Let H be given by (1.1) and V is bounded and β-almost periodic.

Then, for an explicit C = C(ε, V ) > 0, for any

(1.4) γ < 1− C/β

the spectral measure is γ-spectral continuous.

For the definition of spectral continuity (a property that also implies packing conti-

nuity and thus lower bounds on quantum dynamics) see Section 1.1.1. We formulate

a more precise (specifying the dependence of C on ε, V ) version in Theorem 1.1.6.

Our result can be viewed as a quantitative version simultaneously of two well

known statements

• Periodicity implies absolute continuity. Indeed, we prove that a quantitative

weakening (β-almost periodicity) implies quantitative continuity of the (fractal)

spectral measure.

• Gordon condition (a single/double almost repetition) implies continuity of the

spectral measure. Indeed, we prove that a quantitative strengthening (multiple

almost repetitions) implies quantitative continuity of the spectral measure.

Potentials with ∞-repetitions are known in the literature as Gordon potentials

1. This property has been used fruitfully in the spectral theory in various situation-

s, see reviews [25, 27] and references therein. In many cases those potentials were

automatically β or even ∞- almost periodic, so satisfied almost repetitions over suf-

ficiently many periods. However, even in such cases, what all those papers used was

the strength of the approximation over one-two (almost) periods based on Gordon

Lemma type arguments. Our main technical accomplishment here is that we find a

1While ∞-repetitions are usually used in the definition of Gordon potentials, typically β-

repetitions for sufficiently large β are enough for the applications
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new algebraic argument and develop technology that allows to obtain quantitative

corollaries from the fact that the approximation stays strong over many periods, thus

exploring this feature analytically for the first time.

Lower bounds on spectral dimension lead to lower bounds on packing dimension,

thus also for the packing/upper box counting dimensions of the spectrum as a set

and for the upper rate of quantum dynamics. Therefore we obtain corresponding

non-trivial results for all above quantities.

It is clear that our general result only goes in one direction, as even absolute

continuity of the spectral measures does not imply β-almost periodicity for β > 0.

However, in the important context of analytic quasiperiodic operators this leads

to a sharp if-and-only-if result.

Let H = Hθ,α,V be a Schrödinger operator on l2(Z) given by

(1.5) (Hu)n = un+1 + un−1 + V (θ + nα)un, n ∈ Z, θ ∈ T

where V is the potential, α ∈ R\Q is the frequency and θ ∈ T is the phase. Let

µ = µθ,α be the spectral measure associated with vectors δ0, δ1 ∈ l2(Z) in the usual

sense.

Given α ∈ (0, 1), let pn/qn be the continued fraction approximants to α. Define

(1.6) β(α) := lim sup
n

log qn+1

qn
∈ [0,∞].

Let S := {E ∈ σ(H) : L(E) > 0}, where σ(H) is the spectrum of H and L(E) is

the Lyapunov exponent, be the set of supercritical energies (or, equivalently, the set of

E such that the corresponding transfer-matrix cocycle is non-uniformly hyperbolic).

S depends on α and V but not on θ.

Our main application is

Theorem 1.1.2 For any analytic V and any θ, the spectral measure µ restricted to

S is of full spectral dimension if and only if β(α) =∞.

Full spectral dimensionality is defined through the boundary behavior of Borel

transform of the spectral measure (see details in Section 1.1.1). It implies a range

7



of properties, in particular, maximal packing dimension and quasiballistic quantum

dynamics. Thus our criterion links in a sharp way a purely analytic property of

the spectral measure to arithmetic property of the frequency. The result is local (so

works for any subset of the supercritical set, see Theorem 1.1.4 for more detail) and

quantitative (so we obtain separately quantitative spectral singularity and spectral

continuity statements for every finite value of β, see Theorems 1.1.5 and 1.1.6).

A natural way to distinguish between different singular continuous spectral mea-

sures is by their Hausdorf dimension. However Hausdorff dimension is a poor tool for

characterizing the singular continuous spectral measures arising in the regime of pos-

itive Lyapunov exponents, as it is always equal to zero (for a.e. phase for any ergodic

case [72], and for every phase for one frequency analytic potentials [52]2). Similarly,

the lower transport exponent is always zero for piecewise Lipshitz potentials [33, 57].

Thus those two quantities don’t even distinguish between pure point and singular

continuous situations. In contrast, our quantitative version of Theorem 1.1.2, con-

tained in Theorems 1.1.5 and 1.1.6, shows that spectral dimension is a good tool to

finely distinguish between different kinds of singular continuous spectra appearing in

the supercritical regime for analytic potentials.

The continuity part of Theorem 1.1.2 is robust and only requires some regularity

of V . Besides the mentioned criterion, Theorem 1.1.1 allows us to obtain new results

for other popular models, such as the critical almost Mathieu operator, Sturmian

potentials, and others.

Indeed, our lower bounds are effective for β > C supE∈σ(H) L(E) where L(E) is the

Lyapunov exponent (see Theorem 1.1.6) thus the range of β is increased for smaller

Lyapunov exponents, and in particular, we obtain full spectral dimensionality (and

therefore quasiballistic motion) as long as β(α) > 0, when Lyapunov exponents are

zero on the spectrum. This applies, in particular, to Sturmian potentials and the

critical almost Mathieu operator.

As an example, setting S0 = {E : L(E) = 0} we have

2The result of [52] is formulated for trigonometric polynomial v. However it extends to the

analytic case - and more - by the method of [57].

8



Theorem 1.1.3 For Lipshitz V , the quantum dynamics is quasiballistic

1. for any β(α) > 0, if S0 6= ∅

2. for β(α) =∞, otherwise

A similar statement also holds for full spectral dimensionality or packing/box

counting dimension one. The Lipshitz condition can be relaxed to piecewise Lipshitz

(or even Hölder), leading to part 1 also holding for Sturmian potentials. This in

turn leads to first explicit examples of operators whose integrated density of state has

different Hausdorff and packing dimensions, within both the critical almost Mathieu

and Sturmian families.

The fact that quantum motion can be quasiballistic for highly Liouville frequen-

cies was first realized by Last [64] who proved that almost Mathieu operator with

an appropriate (constructed step by step) Liouville frequency is quasiballistic. Qua-

siballistic property is a Gδ in any regular (a-la Simon’s Wonderland theorem [71])

space [42, 23], thus this was known for (unspecified) topologically generic frequencies.

Here we show a precise arithmetic condition on α depending on whether or not Lya-

punov exponent vanishes somewhere on the spectrum. Thus, in the regime of positive

Lyapunov exponents, the quantum motion is very interesting, with dynamics almost

bounded along some scales [57] (this property is sometimes called quasilocalization)

and almost ballistic along others. For finite values of β(α) in this regime our result

also yields power-law quantum dynamics along certain scales while bounded along

others.

1.1.1 Main application

Fractal properties of Borel measures on R are linked to the boundary behavior of

their Borel transforms [34]. Let

(1.7) M(E + iε) =

∫
dµ(E ′)

E ′ − (E + iε)

be the Borel transform of measure µ. Fix 0 < γ < 1. If for µ a.e. E,

(1.8) lim inf
ε↓0

ε1−γ|M(E + iε)| <∞,

9



we say measure µ is (upper) γ-spectral continuous. Note that spectral continuity

(and singularity) captures the lim inf power law behavior of M(E + iε), while the

corresponding lim sup behavior is linked to the Hausdorff dimension [34]. Define the

(upper) spectral dimension of µ to be

(1.9) s(µ) = sup
{
γ ∈ (0, 1) : µ is γ-spectral continuous

}
.

For a Borel subset S ⊂ R, let µS be the restriction of µ on S. A reformulation of

Theorem 1.1.2 is

Theorem 1.1.4 Suppose V is real analytic and L(E) > 0 for every E in some Borel

set S ⊂ R. Then for any θ ∈ T, s(µS) = 1 if and only if β(α) = +∞.

Remark 1 If for µ a.e. E,

(1.10) lim inf
ε↓0

ε1−γ|M(E + iε)| = +∞,

we say measure µ is (upper) γ-spectral singular. We can also consider

(1.11) s̃(µ) = inf
{
γ ∈ (0, 1) : µ is γ-spectral singular

}
.

Obviously, s(µ) ≤ s̃(µ). The main theorem also holds for s̃(µ).

1.1.2 Spectral singularity, continuity and proof of Theorem

1.1.4

We first study γ-spectral singularity of µ. We are going to show that under the

assumption of Theorem 1.1.4 we have:

Theorem 1.1.5 Assume L(E) > a > 0 for E ∈ S. There exists c = c(a) > 0 such

that for any α, θ, if

(1.12) γ >
1

1 + c
β(α)

,

then µS is γ-spectral singular.

10



Obviously, Theorem 1.1.5 implies that if β < +∞, then

(1.13) s(µS) ≤ s̃(µS) ≤ 1

1 + c/β
< 1.

The analyticity of potential and positivity of Lyapunov exponent are only needed

for spectral singularity. We now formulate a more precise version of the general

spectral continuity result, Theorem 1.1.1.

For S ⊂ σ(H) assume there are constants Λ > 0 and n0 ∈ N such that for any

k ∈ Z, E ∈ S and n ≥ n0

(1.14)
∥∥∥
 E − V (n+ k) −1

1 0

 · · ·
 E − V (k) −1

1 0

∥∥∥ ≤ eΛn

Clearly, such Λ always exists for bounded V, with n0 = 1.

As before we denote µS the spectral measure of H restricted to a Borel set S ⊂

σ(H).

Theorem 1.1.6 Let H be given by (1.1) and V satisfies (1.14) and is β-almost pe-

riodic with ε > 0. Then, for a C(ε) = C0(1 + 1/ε), with Λ given by (1.14) , if

(1.15) β > C(ε)
Λ

1− γ

then µS is γ-spectral continuous. Here C0 is a universal constant. Consequently, we

have

(1.16) s̃(µS) ≥ s(µS) ≥ 1− C(ε)
Λ

β
.

Proof of Theorem 1.1.4: Under the assumption of Theorem 1.1.4, if β < +∞,

Theorem 1.1.5 provides the upper bound (1.13) for the spectral dimension.

We will now get the lower bound using Theorem 1.1.6. Let Vθ(n) := V (θ + nα).

By boundedness of V and compactness of the spectrum, there is a constant ΛV <∞

such that (1.14) holds uniformly for E ∈ σ(Hθ), θ ∈ T. In order to apply Theorem

1.1.6, it is enough to show that for any β < β(α), V (θ+ jα) has β-repetitions for any

θ ∈ T, j ∈ Z. Indeed, by (1.6), there is a subsequence qnk such that

log qnk+1

/
qnk > β

11



Since V is analytic, for any θ, j and 1 ≤ n ≤ qnk

|V (θ + jα + nα)− V (θ + jα + nα± qnkα)| ≤ C‖qnkα‖ ≤ C
1

qnk+1

≤ Ce−βqnk

Thus if β(α) =∞, s̃(µS) = s(µS) = 1.

Property (1.14) naturally holds in a sharp way in the context of ergodic potentials

with uniquely ergodic underlying dynamics. Assume the potential V = Vθ is generated

by some homeomorphism T of a compact metric space Ω and a function f : Ω → R

by

(1.17) Vθ(n) = f(T nθ), θ ∈ Ω, n ∈ Z.

Assume (Ω, T ) is uniquely ergodic with an ergodic measure ν. It is known that the

spectral type of Hθ is ν-almost surely independent of θ (e.g [21]). In general, however,

the spectral type (locally) does depend on θ ([58]). If f is continuous then, by uniform

upper-semicontinuity (e.g. [38])

(1.18)

lim sup
n

sup
θ

1

n
log
∥∥∥
 E − Vθ(n) −1

1 0

 · · ·
 E − Vθ(1) −1

1 0

∥∥∥ ≤ L(E), ∀ E

This was recently extended in [57] to almost continuous f. Following [57], we will say

a function f is almost continuous if it is bounded and its set of discontinuities has

a closure of ν measure zero. By Corollary 3.2 in [57], if f is bounded and almost

continuous then (1.18) also holds for every E. Moreover, if the Lyapunov exponent

L(E) is continuous on some compact set S, then, by compactness and subadditivity,

the lim sup in (1.18) will be also uniform in E ∈ S. Since by upper semicontinuity

L(E) is continuous on the set where it is zero, as a consequence of Theorem 1.1.6, we

obtain

Corollary 1.1.1 Assume the function f in (1.17) is bounded and almost continuous

and L(E) = 0 on some Borel subset S of σ(Hθ). If Vθ(n) is β-almost periodic for

some β > 0, ε > 0, then s(µθS) = 1.
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Proof: For any 0 < γ < 1, set Λ′ = β(1 − γ)/2C where C = C(ε) is given in

Theorem 1.1.6.3 Since L(E) = 0 on S, by the arguments above, there is n0 = n0(Λ′)

independent of θ and E such that

∥∥∥
 E − Vθ(n) −1

1 0

 · · ·
 E − Vθ(1) −1

1 0

∥∥∥ ≤ eΛ′n, n ≥ n0, E ∈ S, θ ∈ Ω

Obviously, β > CΛ′/(1− γ), so Theorem 1.1.6 is applicable and (1.16) holds. There-

fore, s(µS,θ) ≥ 1− CΛ′

β
> γ. .

Let S0 = {E : L(E) = 0} and S+ = {E : L(E) > 0}.

As an immediate consequence we obtain

Theorem 1.1.7 If Vθ(n) is given by (1.17) with uniquely ergodic (Ω, T ) and almost

continuous f, then, for every θ we have

1. s(µS0) = 1, as long as V is β-almost periodic with β > 0.

2. s(µS+) = 1, as long as V is β-almost periodic with β =∞.

Remark 2 1. β > 0 is not a necessary condition in general for s(µS0) = 1, for

s(µac) = 1 even if V is not β-almost periodic for any β, and the support of the

absolutely continuous spectrum is contained in (and may coinside with) S0. It is

a very interesting question to specify a quantitative almost periodicity condition

for s(µsingS0
) = 1, in particular, find an arithmetic criterion for analytic one

frequency potentials for s(µScr) = 1 where Scr ⊂ S0 is the set of critical energies

in the sense of Avila’s global theory.

2. According to Theorem 1.1.4, β = ∞ is also necessary if f is analytic and T is

an irrational rotation of the circle (β will depend on T ). In case f has lower

regularity, it is an interesting question to determine optimal condition on β.

3If β =∞ take any finite β instead.
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1.1.3 Relation with other dimensions; Corollaries for the

AMO, Sturmian potentials, and Transport exponents.

If we replace the lim inf by lim sup in the definition of upper spectral dimension, we

will define correspondingly the lower spectral dimension which will coincide with the

Haurdorff dimension dimH(µ) of a measure µ.

Also one can consider the packing dimension of µ, denoted by dimP (µ). The pack-

ing dimension can be defined in a similar way as in (1.9) through the γ-dimensional

lower derivative Dγµ(E). It can be easily shown that Dγµ(E) ≤ lim infε↓0 ε
1−γ|M(E+

iε)|. Thus the relation between packing dimension and upper spectral dimension is

dimP (µ) ≥ s̃(µ).4 Therefore, the lower bound we get in Theorem 1.1.6 also holds for

the packing dimension.

Lower bounds on spectral dimension also have immediate applications to the lower

bounds on quantum dynamics. Denote by δj be the vector δj(n) = χj(n). For p > 0,

define

(1.19) 〈|X|pδ0〉(T ) =
2

T

∫ ∞
0

e−2t/T
∑
n

|n|p|〈e−itHδ0, δn〉|2

The growth rate of 〈|X|pδ0〉(T ) characterizes how fast does e−itHδ0 spread out. In

order to get the power law bounds for 〈|X|pδ0〉(T ), it is natural to define the following

upper β+
δ0

(p) and lower β−δ0(p) dynamical exponents as

(1.20) β+
δ0

(p) = lim sup
T→∞

log〈|X|pδ0〉(T )

p log T
, β−δ0(p) = lim inf

T→∞

log〈|X|pδ0〉(T )

p log T

The dynamics is called ballistic if β−δ0(p) = 1 for all p > 0, and quasiballistic if

β+
δ0

(p) = 1 for all p > 0. We will also say that the dynamics is quasilocalized if

β−δ0(p) = 0 for all p > 0.

In [48], it is shown that the upper and lower transport exponents of a discrete

Schrödinger operator (1.1) can be bounded from below by the packing and Hausdorff

dimension of its spectral measure respectively. Therefore, by [48] we have β+
δ0

(p) ≥

s(µ), ∀p. As a direct consequence of Theorem 1.1.6 we have

4In contrast with the Hausdorff dimension, the relation for the packing dimension only goes in

one direction, in general, unlike what is claimed in [22].
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Corollary 1.1.2 If V (n) is bounded and ∞-almost periodic, the upper dynamical

exponent β+
δ0

(p) of the operator (1.5) is one for any p > 0, and the associated dynamics

is quasiballistic.

This has nice immediate consequences. In particular, consider the almost Mathieu

operator:

(1.21) (Hλ,θ,αu)n = un+1 + un−1 + 2λ cos 2π(θ + nα)un, λ > 0.

As a consequence of the formula for the Lyapunov exponent and Theorem 1.1.4, one

has:

Corollary 1.1.3 The almost Mathieu operator (1.21) is quasiballistic5 for any (and

all) θ ∈ T

1. For λ < 1, for all α

2. For λ = 1, as long as β(α) > 0

3. For λ > 1, as long as β(α) =∞.

Statement 1 is a corollary of absolute continuity [62, 1] and is listed here for

completeness only. Statements 2,3 are direct corollaries of Theorem 1.1.7.

For λ > 1, Hausdorff dimension of the spectral measure of the almost Mathieu

operator is equal to zero [52] and β−(p) = 0 for all p > 0 [33]. Thus almost Mathieu

operators with λ > 1 and β(α) =∞ provide a family of explicit examples of operators

that are simultaneously quasilocalized and quasiballistic and whose spectral measures

satisfy

0 = dimH(µ) < dimP (µ) = 1.

The same holds of course for cos replaced with any almost continuous f as long as

Lyapunov exponent is positive everywhere on the spectrum, in particular for f = λg

where g is either bi-Lipshitz (as in [50]) or analytic, and λ > λ(g) is sufficiently large.

Let dN be the density states measure of the almsot Mathieu opeartor and Σ be

the spectrum. It is well known that in the critical case, λ = 1, Σ has Lebesgue

5And has spectral dimension one and packing dimension one of the spectral measure
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measure zero ([9, 63]). It is then interesting to consider the fractal dimension of the

spectrum (as a set). Since dN = E(dµθ) and supptop(dN) = Σ , by the discussion

above we have

Corollary 1.1.4 For the critical almost Mathieu operator, λ = 1, and β(α) > 0 we

have dimP (dN) = dimP (Σ) = 1.

Last and Shamis proved in [66] (see also [68]) that for a dense Gδ set of α (which

therefore has a generic intersection with the set {α : β(α) > 0}), the Hausdorff

dimension of the spectrum is equal to zero. Thus the spectrum of the critical almost

Mathieu operator with a topologically generic frequency is an example of a set such

that

0 = dimH(Σ) < dimP (Σ) = 1.

Moreover, Last [63] showed that if qn+1 > Cq3
n for all n, (which is the set containing

{α : β(α) > 0}) then dimH(Σ) ≤ 1/2. Thus critical almost Mathieu operators with

β(α) > 0 and any θ provide an explicit family of operators that all have spectra

satisfying dimH(Σ) ≤ 1/2 < dimP (Σ) = dimB(Σ) = 1.

We note that the question of fractal dimension of the critical almost Mathieu oper-

ator attracted a lot of attention in Physics literature, with many numerical and heuris-

tic results. In particular, Wilkinson-Austin [73] conjectured that dimB(Σ) < 1/2 for

all α and there were many results rigorously or numerically confirming this for certain

α. Our corollary 1.1.4 provides an explicit example disproving this conjecture.

Another well known family are Sturmian Hamiltonians given by

(1.22) (Hu)n = un+1 + un−1 + λχ[1−α,1)(nα + θ mod 1)un,

where λ > 0, α = R\Q. If α =
√

5−1
2

, it is called the Fibonacci Hamiltonian. The

spectral properties of the Fibonacci Hamiltonian have been thoroughly studied in a

series of papers in the past three decades, see [26, 28] for more references. Recently,

Damanik, Gorodetski, Yessen proved in [31] that for every λ > 0, the density of states
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measure dNλ is exact-dimensional (the Hausdorff and upper box counting dimension

are the same) and dimH(dNλ) < dimH(Σλ).

Our results show that the exact dimensionality properties of Sturmian Hamilto-

nians strongly rely on the arithmetic properties of α. It was shown in [12] that if

α is irrational, the Lyapunov exponent of Sturmian operator restricted to the spec-

trum is zero. Also the spectrum of Sturmian Hamiltonian Σλ,α is always a Cantor

set with Lebesgue measure zero. Moreover, for Sturmian potentials results similar to

thoses for the critical Mathieu operator in Corollary 1.1.4 also hold. Let µθ be the

spectral measure of Sturmian operator (1.22) and let dNλ,α be the density states of

measure and Σλ,α be the spectrum. We say that phase θ is α-Diophantine if there

exist γ <∞, τ > 1 such that ‖θ +mα‖R/Z ≥ γ
(|m|+1)τ

for all m ∈ Z. Clearly, this is a

full measure condition. We have

Theorem 1.1.8 For Sturmian operator Hθ,λ,α with β(α) > 0 and λ > 0, if θ is

α-Diophantine, the spectral dimension of µθ is one.

As a consequence, if β(α) > 0 and λ > 0, then the packing dimension of dNλ,α

and Σλ,α are both equal to one.

Previously, Liu, Qu and Wen [70, 69] studied the Hausdorff and upper box count-

ing dimension of Σλ,α of Sturmian operators. For large couplings, they gave a criterion

on α ∈ (0, 1) for the Hausdorff dimension of the spectrum to be equal to one. Com-

bining Theorem 1.1.8 with their results, we have

Corollary 1.1.5 Let Σλ,α be the spectrum of the Sturmian Hamiltonian with λ > 20.

There are explicit α such that for a.e. θ,

(1.23) dimH(µθλ,α) < s(µθλ,α) = dimP (µθλ,α) = 1

(1.24) dimH(dNλ,α) < s(dNλ,α) = dimP (dNλ,α) = 1

The proof for the Sturmian case is given in Section 1.4.
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The rest of this paper is organized in the following way. After giving the prelim-

inaries in Section 1.1.4 we proceed to the proof of the general continuity statement

in Section 1.2. First we quickly reduce Theorem 1.1.6 to Lemma 1.2.1 where we also

specify the constant C0 appearing in Theorem 1.1.6. We note that we do not aim to

optimize the constants here and many of our arguments have room for corresponding

improvement. Lemma 1.2.1 is further reduced to the estimate on the traces of the

transfer matrices over eventual almost periods, Theorem 1.2.1, through its corollaries,

Lemmas 1.2.2 and 1.2.3. Theorem 1.2.1 is the key element and the most technical

part of the proof. It is of interest in its own right as can be viewed as the quantitative

version of the fact that period length transfer matrices of periodic operators are el-

liptic: it provides quantitative bounds on the traces of transfer matrices over almost

periods based on quantitative almost periodicity, for spectrally a.e. energy. In section

1.2.2 we separate this statement into hyperbolic and almost parabolic parts, corre-

spondingly Lemmas 1.2.4 and 1.2.5. In section 1.2.3 we use the extended Schnol’s

Theorem to study the hyperbolic case and in section 1.2.4 we combine estimates on

level sets of the polynomials, power-law subordinacy bounds, and an elementary but

very useful algebraic representation of matrix powers (Lemma 1.2.9) to study the al-

most parabolic case. Lemmas 1.2.2 and 1.2.3 are proved in Section 1.2.5, completing

the continuity part. In Section 1.3 we focus on the analytic quasiperiodic potentials

and prove Theorem 1.1.5. The proof is based on a lemma about density of localized

blocks (Lemma 1.3.3). Finally, we discuss Sturmian potentials in Section 1.4, proving

Theorem 1.1.8 and then providing explicit examples for Corollary 1.1.5.

1.1.4 Preliminaries

m-function and subordinacy theory

In this part, we will briefly introduce the power-law extension of the Gilbert-Pearson

subordinacy theory [43, 44], developed in [51]. We will also list the necessary related

facts on the Weyl-Titchmarsh m-function. More details can be found, e.g., in [21].
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Let H be as in (1.5) and z = E + iε ∈ C. Consider equation

(1.25) Hu = zu.

with the family of normalized phase boundary conditions:

(1.26) uϕ0 cosϕ+ uϕ1 sinϕ = 0, −π/2 < ϕ < π/2, |uϕ0 |2 + |uϕ1 |2 = 1.

Let Z+ = {1, 2, 3 · · · } and Z− = {· · · ,−2,−1, 0}. Denote by uϕ = {uϕj }j≥0 the

right half line solution on Z+ of (1.25) with boundary condition (1.26) and by uϕ,− =

{uϕ,−j }j≤0 the left half line solution on Z− of the same equation. Also denote by vϕ

and vϕ,− the right and left half line solutions of (1.25) with the orthogonal boundary

conditions to uϕ and uϕ,−, i.e., vϕ = uϕ+π/2,vϕ,− = uϕ+π/2,−. For any function

u : Z+ → C we denote by ‖u‖l the norm of u over a lattice interval of length l; that

is

(1.27) ‖u‖l =
[ [l]∑
n=1

|u(n)|2 + (l − [l])|u([l] + 1)|2
]1/2

Similarly, for u : Z− → C, we define

(1.28) ‖u‖l =
[ [l]−1∑
n=1

|u(−n)|2 + (l − [l])|u(−[l])|2
]1/2

Now given any ε > 0, we define lengths l = l(ϕ, ε, E), by requiring the equality

(1.29) ‖uϕ‖l(ϕ,ε)‖vϕ‖l(ϕ,ε) =
1

2ε

We also define l−(ϕ) by uϕ,−, vϕ,− through the same equation. Direct computation

shows that

(1.30) ‖uϕ‖l · ‖vϕ‖l ≥
1

2
([l]− 1)

Denote by mϕ(z) : C+ 7→ C+ and m−ϕ (z) : C+ 7→ C+ the right and left Weyl-

Tichmarsh m-functions associated with the boundary condition (1.26). Let m = m0

and m− = m−0 be the half line m-functions corresponding to the Dirichlet boundary

conditions. The following key inequality [51] relates mϕ(E + iε) to the solutions uϕ

and vϕ given by (1.25),(1.26).
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Lemma 1.1.1 (J-L inequality, Theorem 1.1 in [51]) For E ∈ R and ε > 0, the

following inequality holds for any ϕ ∈ (−π
2
, π

2
]:

(1.31)
5−
√

24

|mϕ(E + iε)|
<
‖uϕ‖l(ϕ,ε)
‖vϕ‖l(ϕ,ε)

<
5 +
√

24

|mϕ(E + iε)|

We need to study the whole-line m-function which is given by the Borel transform

of the spectral measure µ of operator H (see e.g., [21]). The following relation between

whole line m-function M and half line m-function mϕ was first shown in [29] as a

corollary of the maximal modulus principle. One can also find a different proof based

on a direct computation in the hyperbolic plane in [7].

Proposition 1.1.1 (Corollary 21 in [29]) Fix E ∈ R and ε > 0,

(1.32) |M(E + iε)| ≤ sup
ϕ
|mϕ(E + iε)|

This proposition implies that in order to obtain an upper bound for the whole line

m-function, namely, the continuity of whole line spectrum, it is enough to obtain a

uniform upper bound of the half line m-function for any boundary condition.

On the other hand, consider a unitary operator U : l2(Z) → l2(Z), defined by

(Uψ)n = ψ−n+1, n ∈ Z. For any operator H on l2(Z), we define an operator H̃ on

l2(Z) by H̃ = UHU−1. Denote by m̃, m̃ϕ, ũ
ϕ and l̃(ϕ), correspondingly, m,mϕ, u

ϕ

and l(ϕ) of the operator H̃. We will need the following well known facts (see e.g.

Section 3, [52]). For any ϕ ∈ (−π/2, π/2] we have

(1.33) M(z) =
mϕ(z)m̃π/2−ϕ − 1

mϕ(z) + m̃π/2−ϕ

and

(1.34) l̃(π/2− ϕ) = l−(ϕ), ‖u‖l = ‖Uu‖l

Similar to Lemma 5 in [52], a direct consequence of relation (1.33) is the following

result.

Lemma 1.1.2 For any 0 < γ < 1, suppose that there exists a ϕ ∈ (−π/2, π/2]

such that for µ-a.e. E in some Borel set S, we have that lim infε→0 ε
1−γ|mϕ(E +
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iε)| = ∞ and lim infε→0 ε
1−γ|m̃π/2−ϕ(E + iε)| = ∞. Then for µ-a.e. E in S,

lim infε→0 ε
1−γ|M(E + iε)| = ∞, namely, the restriction µ(S

⋂
·) is γ-spectral sin-

gular.

Transfer matrices and Lyapunov exponents

Although Theorem 1.1.6 does not involve any further conditions on the potential, it

will be convenient in what follows to use the dynamical notations. Let Ω = RZ and

T : Ω 7→ Ω is given by (Tθ)(n) = θ(n + 1). Let f(θ) := θ(0). Then any potential

V can be written in the way (1.17), Vθ(n) := θ(n) = f(T nθ). Thus for a fixed

{Vn}n∈Z = θ ∈ Ω, we will rewrite the potential V as Vθ(n) = f(T nθ) as in (1.17). For

our general theorem we do not introduce any topology, etc; this is being done purely

for the notational convenience. Denote the n-step transfer-matrix by An(θ, E):

(1.35) An(θ, E) = A
(
T nθ, E

)
A
(
T n−1θ, E

)
· · ·A

(
Tθ,E

)
, n > 0

and

A0 = Id, An(θ, E) = A−1
−n(T nθ, E), n < 0,

where

(1.36) A(θ, E) =

 E − f(θ) −1

1 0

 .

The connection to Schrödinger operators is clear since a solution of Hu = Eu can

be reformulated as

(1.37) An(θ, E)

 u1

u0

 =

 un+1

un

 , n ∈ Z.

In other words, the spectral properties of Schrödinger operators H are closely related

to the dynamics of the family of skew product (T,A(θ, E)) over Ω×R2. We will often

suppress either θ or E or both from the notations if corresponding parameters are

fixed through the argument.
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If V is actually dynamically defined by (1.17) with a certain underlying ergodic

base dynamics (Ω, T, ν) then, by the general properties of subadditive ergodic cocy-

cles, we can define the Lyapunov exponent

(1.38) L(E, T ) = lim
n→+∞

1

n

∫
Ω

log ‖An(θ, E)‖dν = inf
n>0

1

n

∫
Ω

log ‖An(θ, E)‖dν

1.2 Spectral Continuity

1.2.1 Proof of Theorem 1.1.6

Throughout this section we assume (1.14) is satisfied uniformly for E ∈ S, θ ∈ Ω (see

Section 1.4.2). Assume V is β-almost periodic for some ε > 0. The proof of Theorem

1.1.6 is based on the following estimates on the growth of the l-norm of the half line

solutions. Let uϕ, vϕ be given as in (1.25)-(1.27).

Lemma 1.2.1 For 0 < γ < 1, assume β > 100(1 + 1/ε)Λ/(1 − γ). For µ-a.e. E,

there is a sequence of positive numbers ηk → 0 so that for any ϕ

(1.39) 1/16
(
Lk
)γ ≤ ‖vϕ‖2

Lk
≤
(
Lk
)2−γ

where Lk = `k(ϕ, ηk, E) is given as in (1.29).

Proof of Theorem 1.1.6: Fix 0 < γ < 1. Set C(ε) := 100(1 + 1/ε). Lemma 1.2.1

can be applied to any β > C(ε) Λ
1−γ . According to (1.39) and the J-L inequality (1.31),

for µ-a.e. E and any ϕ

η1−γ
k |mϕ(E + iηk)| ≤

1(
2‖uϕ‖Lk‖vϕ‖Lk

)1−γ · (5 +
√

24)
‖vϕ‖Lk
‖uϕ‖Lk

≤ Cγ ·
(
L

(2−γ)/2
k

)γ(
1/4L

γ/2
k

)2−γ = C <∞

Since ηk is independent of ϕ, for a fixed E and ηk, we can take the supremum

w.r.t. ϕ. By (1.32) in Proposition 1.1.1, we have for µ-a.e. E,

η1−γ
k |M(E + iηk)| < C

22



i.e.,

lim inf
ε↓0

ε1−γ|M(E + iε)| <∞, µ-a.e. E,

which proves the γ-spectral continuity of Theorem 1.1.6. The lower bound (1.16)

comes from the definition of spectral dimensionality.

The proof of Lemma 1.2.1 follows from the following estimates on the trace of the

transfer matrix. Let qk be the sequence given in (1.3).

Theorem 1.2.1 If

(1.40) β > (37 + 11/ε)Λ,

then for µ a.e. E, there is K(E) such that

(1.41) |TraceAqk(E)| < 2− e−10Λqk , k ≥ K(E).

This theorem is the key estimate of the spectral continuity. It can be viewed as

a quantitative version of the classical fact that period-length transfer matrices of

periodic operators are elliptic on the spectrum. Indeed, we prove that β-almost

periodicity implies quantitative bounds on ellipticity. The proof will be given in the

following two subsections. The direct consequence of Theorem 1.2.1 are the following

estimates on the norm of the transfer matrices. They show that if the trace of the

transfer matrix over an almost period is strictly less than 2, then the there is a sub-

linearly bounded subsequence. We will use this result to prove Lemma 1.2.1 first. The

proof of Lemma 1.2.2 will be left to Section 1.2.5. Let K(E) be given by Theorem

1.2.1.

Lemma 1.2.2 For any ξ > 0 set Nk = [eξqk ] and suppose that, in addition to the

conditions of Theorem 1.2.1

(1.42) β > 15Λ + (2 + 1/ε)ξ.

Then for µ-a.e. E, the following estimate holds:

(1.43)

Nk·qk∑
n=1

‖An(E)‖2 ≤ e(ξ+15Λ)qk , k ≥ K(E)
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Additionally,

Lemma 1.2.3 For 0 < γ < 1, assume that in addition to the conditions of Lemma

1.2.2

(1.44) ξ >
16Λ

1− γ
.

Then

(1.45)

Nk·qk∑
n=1

‖An(E)‖2 ≤ (Nk · qk)2−γ, k ≥ K(E).

Proof of Lemma 1.2.1: It is enough to prove r.h.s. of (1.39) since then the l.h.s.

of (1.39) follows from ‖uϕ‖Lk‖vϕ‖Lk ≥ 1/4Lk.

For any 0 < γ < 1, set β0 = 100(1 + 1/ε) Λ
1−γ , ξ = 17Λ

1−γ . Then (1.40),(1.42)

and (1.44) are satisfied for all β > β0. Therefore, (1.45) holds with above choice of

parameters. Let lk = [eξqk ] · qk. Rewrite (1.45) as
∑lk

n=1 ‖An(E)‖2 < l2−γk . Thus for

any ϕ, ‖vϕ‖2
lk
≤ 4l2−γk . By (1.30), we have

(1.46)
1

4
· lk ≤ ‖uϕ‖lk‖vϕ‖lk ≤ 4 · l2−γk

Set

(1.47) εk(ϕ) :=
1

2‖uϕ‖lk‖vϕ‖lk

Then,

(1.48) ηk = inf
ϕ

εk(ϕ) ≥ 1

8 · l2−γk

> 0

is well defined. Set Lk(ϕ) := `(ϕ, ηk, E), the length scale satisfies

(1.49) ηk =
1

2‖uϕ‖Lk(ϕ) · ‖vϕ‖Lk(ϕ)

By (1.48),

Lk(ϕ) ≤ 4‖uϕ‖Lk‖vϕ‖Lk =
2

ηk
≤ 16 · l2−γk
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Since ηk ≤ εk(ϕ) and ‖uϕ‖l‖vϕ‖l is monotone increasing in l, we obtain for any ϕ

(1.50) lk ≤ Lk(ϕ) ≤ 16 · l2−γk

By the definition of lk, for large k,

(1.51) e(ξ− Λ
200(1−γ)

qk · qk ≤ Lk(ϕ) ≤ e((2−γ)ξ+Λ/200)qk · qk

Write Lk(ϕ) = [Lk(ϕ)] + L̃k(ϕ) and

(1.52) [Lk(ϕ)] = (Nk(ϕ)− 1) · qk + rk(ϕ), Nk(ϕ) ∈ N, 0 ≤ rk(ϕ) < qk

where [Lk(ϕ)] is the integer part of Lk(ϕ). Define

(1.53) ξk(ϕ) =
logNk(ϕ)

qk

We have

(1.54) [Lk(ϕ)] = (eξk(ϕ)·qk − 1) · qk + rk(ϕ), eξk(ϕ)·qk ∈ N, 0 ≤ rk(ϕ) < qk

For large qk, it is easy to check

e(ξk(ϕ)−Λ/200)·qk · qk ≤ (eξk(ϕ)·qk − 1) · qk ≤ Lk(ϕ) ≤ eξk(ϕ)·qk · qk

Using (1.51), we have for any ϕ

(1.55) ξ − Λ/200 ≤ ξk(ϕ) ≤ (2− γ)ξ + Λ/100 ≤ 2ξ + Λ/100

Together with the choice of β and ξ, we have

β > β0 > 15Λ + (2 + 1/ε)ξk(ϕ)

Now we can again apply Lemma 1.2.2 with parameters β, ξk(ϕ) and the length scale

Nk(ϕ) = eξk(ϕ)·qk , to get

(1.56)

Nk(ϕ)·qk∑
n=1

‖An(E)‖2 ≤ e

(
ξk(ϕ)+15Λ

)
qk

Notice Lk(ϕ) ≥ e(ξk(ϕ)−Λ/200)·qk implies that

1

(Lk)2−γ

Nk(ϕ)·qk∑
n=1

‖An(E)‖2 ≤ e

(
−(1−γ)ξk+16Λ

)
qk
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By the l.h.s. of (1.55), we obtain

(1− γ)(ξk(ϕ) + Λ/200) > (1− γ)ξ = 17Λ

which implies

(1− γ)ξk(ϕ) > 17Λ− (1− γ)Λ/200 > 16.5Λ,

and

(1.57)
1

(Lk)2−γ

Nk·qk∑
n=1

‖An(E)‖2 ≤ e−Λqk/2 ≤ 1

Finally, by Lemma 1.2.3 we have

‖vϕ‖2
Lk
≤

[Lk]+1∑
n=1

|vϕn |2 ≤
Nk(ϕ)·qk∑
n=1

(
|vϕn |2 + |vϕn+1|2

)
≤

Nk(ϕ)·qk∑
n=1

‖An(E)‖2 ≤ (Lk)
2−γ

1.2.2 Proof of Theorem 1.2.1

The proof of Theorem 1.2.1 will be divided into two cases. We will first exclude the

energies where the trace is much greater than 2 infinitely many times using extended

Schnol’s Theorem (Lemma 1.2.6). Then we will estimate the measure of energies

where the trace is close to 2 through subordinacy theory. The conclusion consists of

the following two lemmas. Again let qk be the sequence given by (1.3) with certain

β, ε > 0.

Lemma 1.2.4 For any τ > 0, if

(1.58) β > (3 + 1/ε)τ + (7 + 1/ε)Λ,

then for spectrally a.e. E, there is K1(E) such that,

(1.59) |TraceAqk
(
E
)
| < 2 + e−τqk , ∀k ≥ K1(E)

Lemma 1.2.5 If

(1.60) β > (25 + 1/ε)Λ,

then for spectrally a.e. E, there is K2(E) such that

(1.61) |TraceAqk(E)± 2| > e−10Λqk , ∀k ≥ K2(E)
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With these two lemmas, we will first have the

Proof of Theorem 1.2.1:

Follows immediately by combining Lemma 1.2.4 with τ = 10Λ and Lemma 1.2.5.

Remark 3 It may be interesting to compare Theorem 1.2.1 with the technique Last

used in his proof of zero Hausdorff dimensionality of the spectral measures of super-

critical Liouville almost Mathieu operators [64]. An important step there was using

Schnol’s theorem to show that eventually spectrally almost every energy is in the union

of the spectral bands of the periodic approximants enlarged by a factor of q2
k. Here

we show that spectrally almost every energy is in the union of the shrinked spectral

bands of the periodic approximants, a much more delicate statement, technically, thus

with more powerful consequences.

1.2.3 The hyperbolic case: Proof of Lemma 1.2.4

We are going to show that if q is an ‘approximate’ period as in (1.3) with certain

β, ε > 0 and satisfies

(1.62) |TraceAq
(
E
)
| ≥ 2 + e−τq

then the trace of the transfer matrix at the scale eτq/2 will be very large and any

generalized eigenfunction of Hu = Eu will be bounded from below at the scale eτq/2.

If this happens for infinitely many q, then any generalized eigenfunction will have al

least a larger than 1/2 power law growth (in index) along some fixed subsequence.

By the extended Schnol’s Theorem, such E must belong to a set of spectral measure

zero.

Claim 1.2.1 Suppose q →∞ satisfy |TraceAq
(
E
)
| ≥ 2 + e−τq and

(1.63) max
1≤j≤q,|k|≤eεβq/q

|V (j + kq)− V (j + (k ± 1)q)| ≤ e−βq, ε > 0.

Assume further that

(1.64) β > (3 + 1/ε)τ + (7 + 1/ε)Λ

27



Then there is xiq ∈ Z, i = 1, ..., 4, independent of E, such that |xiq| → ∞ as q → ∞

and for any |u0|2 + |u1|2 = 1, maxi=1,...,4 |uExiq | > 1/16eq, where uEn is a solution with

boundary values (u0, u1).

Lemma 1.2.6 (Extended Schnol’s Theorem) Fix any y > 1/2. For any se-

quence |xk| → ∞(where the sequence is independent of E), for spectrally a.e. E,

there is a generalized eigenvector uE of Hu = Eu, such that

|uExk | < C(1 + |k|)y

We can now finish the proof of Lemma 1.2.4.

Proof of Lemma 1.2.4:

Let qk be given as in (1.3). Combining Claim 1.2.1 with Lemma 1.2.6 with {xk} =

∪i=4
i=1{xiqk} we obtain that the set of E such that there are infinitely many qkj with

|TraceAqkj
(
E,α

)
| ≥ 2 + e−τqkj has spectral measure zero.

Claim 1.2.1 is based on the following results. First, we need to estimate the norm

of the conjugation matrix for any hyperbolic SL(2,R) matrix w.r.t. the distance

between its trace and 2:

Lemma 1.2.7 Suppose G ∈ SL(2,R) with 2 < |TraceG| ≤ 6. The invertible matrix

B such that

(1.65) G = B

 ρ 0

0 ρ−1

B−1

where ρ±1 are the two conjugate real eigenvalues of G with |detB| = 1 satisfies

(1.66) ‖B‖ = ‖B−1‖ <
√
‖G‖√

|TraceG| − 2

If |TraceG| > 6, then ‖B‖ ≤ 2
√
‖G‖√

|TraceG|−2
.

The proof is based on a direct computation of the conjugate matrices. For the sake

of completeness, we present it in Appendix A.1.
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Fix τ > 0 and apply Lemma 1.2.7 to Aq satisfying

(1.67) |TraceAq| > 2 + e−τq.

We then have

Claim 1.2.2 For large q,

(1.68) Aq = B

 ρ 0

0 ρ−1

B−1

where ρ±1 are the two conjugate real eigenvalues of Aq with ρ > 1 and B satisfies

|detB| = 1 and

(1.69) ‖B‖ = ‖B−1‖ < e(τ/2+Λ+Λ/200)q

Second, we need to use the almost periodicity (1.63) of the potential to obtain ap-

proximation statements for the transfer matrices. Set

(1.70) N = [e(τ/2+Λ/100)q].

Under the assumption (1.63) and (1.64) on V as in Claim 1.2.1, we have for q large

enough (the largeness depend on Λ and n0),

Claim 1.2.3 Under the conditions of Claim 1.2.1,

(1.71) ‖ANq − ANq ‖ ≤ 2e−Λq|ρ|N ≤ 2e−Λq|TraceANq |

and

(1.72) ‖
[
ANq

]−1 − A−Nq‖ ≤ 4e−Λq|ρ|N ≤ 4e−Λq|TraceANq |

Let us now finish the proof of Claim 1.2.1.

Proof of Claim 1.2.1: Decomposing Aq as in (1.68), we obtain |ρ| > 1 + e−τq/2.

Obviously, |TraceANq | ≥ |ρ|N . By (1.70), N > 2eτq/2 · q, thus

|TraceANq | ≥ (1 + e−τq/2)2eτq/2·q ≥ eq.
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Assume q is large enough so that 2e−Λq ≤ 1/10. By (1.71), we have,

(1.73) |TraceANq| > (1− 2e−Λq)|TraceANq | ≥
9

10
eq.

Now consider solution u of Hu = Eu with normalized initial value

X =

 u1

u0

 , ‖X‖ = 1

Then by (1.37):

(1.74) ANq ·X =

 uNq+1

uNq

 , A−Nq ·X =

 u−Nq+1

u−Nq

 .

By the Cayley-Hamilton theorem combined with (1.72) and (1.73), we have

9

10
|TraceANq | · ‖X‖ ≤ ‖TraceANqX‖

= ‖ANq ·X +
[
ANq

]−1 ·X‖

≤ ‖ANq ·X‖+ ‖A−Nq ·X‖+
2

10
|TraceANq | · ‖X‖

Then

‖ANq ·X‖+ ‖A−Nq ·X‖ ≥
7

10
|TraceANq | · ‖X‖ ≥

1

2
|TraceANq |

which is equivalent to

max
{∥∥∥
 uNq+1

uNq

∥∥∥, ∥∥∥
 u−Nq+1

u−Nq

∥∥∥} ≥ 1/4|TraceANq |.

Therefore

max
{∣∣uNq+1

∣∣, ∣∣uNq∣∣, ∣∣u−Nq+1

∣∣, ∣∣u−Nq∣∣} ≥ 1/16eq.

Let xiq = (−1)iNq + 1 − [i/3], i = 1, ..., 4. Then for every q and one of i =

1, ..., 4, |uxiq | > 1/16eq.

It now remains to prove (1.71),(1.72) in Claim 1.2.3. Set

(1.75) ∆i = Aq(T
(i−1)qθ, E)− Aq(θ, E), i = −N + 1, · · · , N.
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Claim 1.2.4 Suppose (1.14) holds for n ≥ n0 and is uniform in E ∈ S. Fix E ∈

S, θ ∈ Ω. If Vθ satisfies (1.63) with ε > 0, then there is a constant Cn0 (depends only

on n0 and upper bound of ‖V ‖∞), such that

(1.76) ‖∆i(θ, E)‖ ≤ |i− 1|qCn0e
(Λ−β)q, |i| = 1, · · · , [eεβq/q]

Proof: The proof is quite standard. Suppose 1 ≤ i ≤ [eεβq/q]. Then for |k| < i,

|k|q < eεβq. Since VTkqθ(n) = Vθ(n+ kq), (1.63) implies that for |k| < i the following

holds:

|VTkqθ(j)− VT (k+1)qθ(j)| ≤ e−βq, 1 ≤ j ≤ q

which implies

‖A(T kq+jθ)− A(T (k+1)q+jθ)‖ ≤ e−βq, 1 ≤ j ≤ q, |k| < i

By a standard telescoping argument, for any θ′ = T kqθ, |k| < i,

‖Aq(T qθ′)− Aq(θ′)‖ ≤ qCn0
V e

(Λ−β)q = qCn0e
(Λ−β)q

where CV is such that ‖A(θ′, E)‖ ≤ CV ,∀θ′, E. In the above estimate, if n > n0, we

use the bound (1.14). When n ≤ n0, we use the trivial bound ‖An‖ ≤ Cn0
V , We have

Aiq
(
θ, E

)
= Aq

(
T (i−1)qθ

)
· · ·Aq

(
T qθ
)
Aq
(
θ
)
.

Therefore for 1 ≤ i ≤ [eεβq/q]

‖∆i‖ ≤
i−1∑
k=1

‖Aq
(
T kqθ

)
− Aq

(
T (k−1)qθ

)
)‖ ≤ (i− 1)qCn0e

(Λ−β)q

Since (1.63) is symmetric w.r.t. T → T−1, (1.76) for i ≤ 0 follows by takeing

T ′ = T−1.

Proof of Claim 1.2.3: Write for any i, Aiq = B−1

 ρi 0

0 ρ−i

B so ‖Aiq‖ ≤

‖B‖2|ρ|i. Set G(θ) = 1
ρ
Aq(θ) and Gj = G(T (j−1)qθ). By (1.69), we have ‖Gi‖ ≤

‖B‖2 ≤ e(τ+2Λ+Λ/100)q. Under the assumption (1.64), we have τ/2 + Λ/100 < εβ so

by (1.70), Nq < eεβq. Then Claim 1.2.4 implies, for j = −N, · · · , N and large q, that

‖Gj −G‖ =
1

ρ
‖∆j‖ ≤ NqCn0e

(Λ−β)q ≤ e(−β+τ/2+Λ+Λ/50)q
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Now we want to apply Lemma C.0.1 to these Gj, with M = e(τ+2Λ+Λ/100)q and

δ = e(−β+τ/2+Λ+Λ/50)q. Direct computation gives

NM2δ < e(−β+3τ+5Λ+Λ/20)q

By (1.64) we have β − (3τ + 5Λ + Λ/20) > Λ. Therefore, for q large enough (the

largeness only depends on n0), we have NMδ < NM2δ < e−Λq. Then Lemma C.0.1

implies that

‖
N∐
j=1

Gj −GN‖ ≤ 2NM2δ ≤ 2e−Λq

and

‖
N∐
j=1

G−N+j −GN‖ ≤ 2NM2δ ≤ 2e−Λq

Therefore

(1.77) ‖ANq − ANq ‖ = |ρ|N · ‖
N∐
j=1

Gj −GN‖ ≤ 2e−Λq|TraceANq |.

establishing (1.71) , and

(1.78) ‖ANq(T−Nqθ)− ANq (θ)‖ = |ρ|N · ‖
N∐
j=1

G−N+j −GN‖ ≤ 2e−Λq|TraceANq |.

Since

‖A−Nq(θ)−
[
A−1
q (θ)

]N‖ = ‖
[
ANq

]−1
(T−Nqθ)−

[
ANq (θ)

]−1‖ = ‖
[
ANq

]
(T−Nqθ)−

[
ANq (θ)

]
‖

this implies

‖A−Nq(θ)−
[
A−1
q (θ)

]N‖ ≤ 2e−Λq|TraceANq |.

Also,

(1.79) ‖
[
ANq

]−1 −
[
A−1
q

]N‖ = ‖
[
ANq

]
−
[
Aq
]N‖,

therefore, by (1.77), we obtain (1.72).

Lemma 1.2.6 is proved in the same way as the standard Schnol’s Lemma, however

the statement in this form, while very useful, does not seem to be in the literature

(we learned it from S. Molchanov, see the Acknowledgement). For the sake of com-

pleteness, we include a short proof in the Appendix.
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1.2.4 Energies with Trace close to 2: Proof of Lemma 1.2.5

All throughout this section, we will assume again that all q are large enough and

satisfy (1.3) with certain β, ε > 0, i.e.,

(1.80) max
1≤j≤q,|k|≤eεβq/q

|V (j + kq)− V (j + (k ± 1)q)| ≤ e−βq, ε > 0.

We are going to show that spectrally almost surely, there are only finitely many q

such that TraceAq is close to 2.

In fact, we are going to prove the following quantitative estimate on the measure

of energies where the trace of the associated transfer matrix is close to 2.

Lemma 1.2.8 Let Λ be given by (1.14) on some set S ⊂ σ(H). Let

(1.81) Sq =
{
E : 0 < |TraceAq ± 2| < e−10Λq

}
.

Assume (1.80) holds and

(1.82) β > (25 + 11/ε)Λ.

Then

(1.83) µ(Sq) < 4q · e−Λq/15 < e−Λq/20

where µ = µS is the spectral measure restricted to S.

Once we have Lemma 1.2.8, Borel Cantelli lemma immediately implies Lemma

1.2.5. So the main task is to prove (1.83).

In order to estimate the spectral measure of Sq, first we recall the following results

on the structure of Sq. Let Pn(R) denote the polynomials over R of exact degree n.

Let the class Pn;n(R) be elements in Pn(R) with n distinct real zeros.

Proposition 1.2.1 (Theorem 6.1,[55]) Let p ∈ Pn;n(R) with y1 < · · · < yn−1 the

local extrema of p. Let

(1.84) ζ(p) := min
1≤j≤n−1

|p(yj)|
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and 0 ≤ a < b. Then,

|p−1(a, b)| ≤ 2diam(z(p− a)) max
{ b− a
ζ(p) + a

,
( b− a
ζ(p) + a

) 1
2

}
(1.85)

where z(p) is the zero set of p and | · | denotes the Lebesgue measure.

Fix any τ > 0. We apply Proposition 1.2.1 to polynomial TraceAq(E) ∈ Pq;q(R), with

a = 2, b = 2 + e−τq. Clearly, diam(z(TraceAq − 2)) is bounded from above by some

constant that only depends on ‖V ‖∞. We also have |ζ(TraceAq)| ≥ 2. Since b−a < 1,

we have (TraceAq)
−1(a, b) ≤ CV

√
b− a = CV e

−τq/2 where CV is some constant that

only depends on ‖V ‖∞. Since (TraceAq)
−1(a, b) contains at most q bands, setting

Sq =
{
E : 2 < TraceAq < 2 + e−τq

}
, we have

(1.86) Sq =

q⋃
j=1

Ij, |Ij| ≤ |Sq| ≤ CV e
−τq/2.

The same analysis works for (a, b) = (2 − e−τq, 2), (−2 − e−τq,−2), (−2,−2 + e−τq).

Thus the structure (1.86) also holds for the other three cases.

Denote by

(1.87) εjq = |Ij| < e(−τ/2+Λ/200)q.

If Ij
⋂

Σ 6= ∅, pick Ej ∈ Ij
⋂

Σ where Σ = σ(H) is the spectrum. Set Ĩj =

(Ej − εjq, Ej + εjq). Then Ij ⊂ Ĩj, so it is enough to estimate the spectral measure of

∪Ĩj.

Set Nq = [e(τ/2−Λ/200)q]. For any εq > 0, define lq = l(ϕ, εq, E), uϕ, vϕ as in (1.29).

Write lq = [lq] + lq − [lq], and [lq] = Kq · q + rq, where 0 ≤ rq = [lq]mod q < q and

0 ≤ lq − [lq] < 1. We need the following power law estimate, which is the key part to

the proof of Lemma 1.2.8.

Claim 1.2.5 Suppose E ∈ Sq
⋂

Σ and 0 < εq < e(−τ/2+Λ/200)q. Suppose (1.80) holds.

Assume that β > (2+1/ε)τ+(5+1/ε)Λ and τ ≥ 10Λ. Then for every initial condition

ϕ,

(1.88) ‖uϕ‖2
lq ≥ e

1
10

Λq

34



Combining (1.88) with the subordinacy theory, we are ready to estimate the m-

function and the spectral measure.

Proof of Lemma 1.2.8: Take τ = 10Λ. Then β > (25 + 11/ε)Λ satisfies the

requirement in Claim 1.2.5. Let Ej ∈ Ij
⋂

Σ ⊂ Sq
⋂

Σ . For any ϕ, let uϕ,Ej , vϕ,Ej be

the right half line solution associated with the energy Ej. According to (1.87), Claim

1.2.5 can be applied to all uϕ,Ej .

We have for any ϕ,

‖uϕ,Ej‖2
lq(j) ≥ e

1
10

Λq, j = 1, · · · , q

where lq(j) = l(ϕ,Ej, ε
j
q).

Then by the J-L inequality (1.31) and the definition of lq(j), we have

εjq · |mϕ(Ej + iεjq)| <
5 +
√

24

2‖uϕ,Ej‖lq · ‖vϕ,Ej‖lq
·
‖vϕ,Ej‖lq
‖uϕ,Ej‖lq

<
5 +
√

24

2
· e−Λq/10

Notice that the interval Ij is independent of the boundary condition ϕ, and so is εjq.

Therefore, we can take the supremum w.r.t. ϕ on both sides of the above inequality.

By Proposition 1.1.1, we have

εjq · |M(Ej + iεjq)| ≤
5 +
√

24

2
· e−Λq/10

On the other hand, by the definition of M(z) in (1.7), we have

=M(E + iε) ≥ 1

2ε
µ(E − ε, E + ε), E ∈ R, ε > 0

Therefore,

µ(Ej − εjq, Ej + εjq) ≤ 2εjq · |M(Ej + iεjq)| ≤ (5 +
√

24)e−Λq/10

which implies

µ(Ij) ≤ µ(Ĩj) ≤ e−Λq/15

Since in (1.86) there are four cases for Sq and each of them satisfies the previous

estimates, the spectral measure of Sq will be bounded by 4qe−Λq/15 ≤ e−Λq/20.
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The proof of Claim 1.2.5 relies on the following estimates on the transfer matrices.

The first one is a formula for the power of a general SL(2,R) matrix. It is elementray

but turned out particularly useful and will be an important part of our quantitative

estimates in both hyperbolic and nearly parabolic cases. As we did not find it in the

literature, we will provide a proof of it as well as of the next Lemma, in the Appendix.

Lemma 1.2.9 Suppose A ∈ SL(2,R) has eigenvalues ρ±1. For any k ∈ N, if

TraceA 6= 2, then

(1.89) Ak =
ρk − ρ−k

ρ− ρ−1
·
(
A− TraceA

2
· I
)

+
ρk + ρ−k

2
· I

Otherwise, Ak = k(A− I) + I.

The key to the estimates in the nearly parabolic case is then the following simple

Lemma 1.2.10 There are universal constants 1 < C1 < ∞, c1 > 1/3 such that for

E ∈ Sq and 1 ≤ k ≤ Nq, we have

(1.90) c1 <
ρk + ρ−k

2
< C1 , c1k <

ρk − ρ−k

ρ− ρ−1
< C1k

Second, since Aq(θ) is almost periodic (with an exponential error), the iteration of

Aq(θ) along the orbit will be close to its power. The argument is similar to what we

used in the proof of (1.71) in the previous part.

Claim 1.2.6 Fix θ ∈ Ω, E ∈ Sq
⋂

Σ and τ > 0. Suppose (1.80) holds with β >

(2 + 1/ε)τ + (5 + 1/ε)Λ. Then for any 1 ≤ k ≤ Nq, we have

(1.91) ‖Akq − Akq‖ ≤ 2e−Λq.

Proof: Set ∆j = Aq(T
j−1θ)−Aq(θ). By the Claim 1.2.4, ‖∆j‖ ≤ jqCe(−β+Λ)q, j <

[eεβq/q]. Recall that Nq = [e(τ/2−Λ/200)q]. The condition on β guarantees Nq < [eεβq/q],

therefore we have ‖∆j‖ ≤ e(−β+τ/2+Λ+Λ/100)q for all j = 1, · · · , Nq. We need to check

the other requirements of Lemma C.0.1. According to Lemmas 1.2.9, 1.2.10,

‖Ajq‖ < C1j‖Aq −
TraceAq

2
· I‖+ C1 < 3C1Nq‖Aq‖ < e(τ/2+Λ+Λ/100)q.
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Now apply Lemma C.0.1 to the sequence Aq(θ), · · · , Aq(T j−1θ), · · · , Aq(T k−1θ),

withM = e(τ/2+Λ+Λ/100)q and δ = e(−β+τ/2+Λ+Λ/100)q. We haveNqM
2δ < e(−β+2τ+3Λ+Λ/40)q.

Since β > (2 + 1/ε)τ + (5 + 1/ε)Λ > 2τ + 5Λ we have β − (2τ + 3Λ + Λ/40) > Λ.

Therefore, for q large enough, NqMδ < NqM
2δ < e−Λq.Thus, by Lemma C.0.1, we

have ‖Akq − Akq‖ = ‖
∐k

j=1Aq(T
j−1θ)− Akq(θ)‖ ≤ 2e−Λq.

Now we are ready to finish the proof of the most technical part.

Proof of Claim 1.2.5: We first show the following lower bound for Kq = [ [`q ]

q
]:

(1.92) Kq > eΛq/6 > 18C1 · eΛq/8

Actually, if Kq ≥ Nq, (1.92) is automatically satisfied since τ ≥ 10Λ.

Now assume Kq < Nq. For any n ≤ [lq] + 1, write n = kq + r, where 0 ≤ k ≤

Kq, 0 ≤ r ≤ q. Set Xϕ =

 cosϕ

− sinϕ

. According to (1.89), (1.90), we have for any

ϕ, 1 ≤ k ≤ Kq < Nq,

‖Akq ·Xϕ‖ < C1k‖Aq −
TraceAq

2
· I‖+ C1 < C1k(‖Aq‖+ 3/2) + C1

and by (1.91),

‖Akq ·Xϕ‖ ≤ ‖Akq ·Xϕ‖+ ‖(Akq − Akq) ·Xϕ‖ ≤ C1k(‖Aq‖+ 3/2) + C1 + 1

For n0 < r ≤ q, and for any θ′ ∈ Ω, ‖Ar(θ′)‖ ≤ eΛq. For 1 ≤ r ≤ n0, we bound

‖Ar(θ′)‖ by Cn0 as in the proof of Claim 1.2.4. Therefore ‖Ar(θ′)‖ ≤ eΛq for all

1 ≤ r ≤ q with q large. Thus,

‖Akq+r(θ) ·Xϕ‖ ≤ ‖Ar(T kqθ)‖ · ‖Akq(θ) ·Xϕ‖

≤ eΛq
(
C1k(‖Aq‖+ 3/2) + C1 + 1

)
≤ eΛq ·

(
C1k(eΛq + 3/2) + C1 + 1

)
≤ k · e(2Λ+Λ/200)q
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Recall that

 uϕn+1

uϕn

 = An ·Xϕ, direct computation shows

‖uϕ‖2
lq ≤

[lq ]+1∑
n=1

‖An ·Xϕ‖2

≤
q∑
r=1

‖Ar ·Xϕ‖2 +

Kq∑
k=1

q∑
r=1

‖Akq+r ·Xϕ‖2

≤ q · e2Λq +

Kq∑
k=1

q∑
r=1

k2 · e(4Λ+Λ/100)q

≤ q · e2Λq +K3
q · q · e(4Λ+Λ/100)q

≤ K3
q · e(4Λ+Λ/20)q

Since ϕ is arbitrary, and

 vϕn+1

vϕn

 = An · Xϕ+π/2, ‖vϕ‖2
lq

has the same upper

bound. Therefore, ‖uϕ‖lq‖vϕ‖lq ≤ K3
q · e(4Λ+Λ/20)q. On the other hand, since εq <

e(−τ/2+Λ/200)q, we have

(1.93) ‖uϕ‖lq‖vϕ‖lq =
1

2εq
≥ e(τ/2−Λ/100)q

With τ ≥ 10Λ, this implies that K3
q ≥ eqΛ/2. Therefore,

(1.94) Kq > eΛq/6 > 18C1 · eΛq/8

as claimed.

In order to get the lower bound on ‖uϕ‖2
lq

in (1.88), we need to consider two cases.

case I: For ϕ such that

(1.95) ‖(Aq −
TraceAq

2
· I) ·Xϕ‖ ≥ e−Λq/8,

by (1.89),(1.90), for any 1 ≤ k ≤ 18C1 · eΛq/8 ≤ Nq, we have

‖Akq ·Xϕ‖ = ‖ρ
k − ρ−k

ρ− ρ−1
·
(
Aq −

TraceAq
2

· I
)
Xϕ +

ρk + ρ−k

2
·Xϕ‖

≥ ρk − ρ−k

ρ− ρ−1
· ‖
(
Aq −

TraceAq
2

· I
)
Xϕ‖ −

ρk + ρ−k

2
· ‖Xϕ‖

≥ 1

3
k · e−Λq/8 − C1
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Due to (1.91), we have then

‖Akq ·Xϕ‖ ≥ ‖Akq ·Xϕ‖ − ‖
(
Akq − Akq

)
·Xϕ‖ ≥

1

3
k · e−Λq/8 − 2C1.

Therefore, for 9C1 · eΛq/8 ≤ k ≤ 18C1 · eΛq/8, we have

(1.96) ‖Akq ·Xϕ‖ ≥ C1 > 1

By (1.94) and (1.96) we obtain

‖uϕ‖2
lq ≥

1

2

[lq ]−1∑
n=1

‖An ·Xϕ‖2 ≥ 1

2

[18C1·eΛq/8]∑
k=[9C1·eΛq/8]+1

‖Akq ·Xϕ‖2 ≥ eΛq/10

case II: For ϕ such that

(1.97) ‖(Aq −
TraceAq

2
I) ·Xϕ‖ < e−Λq/8,

by (1.89),(1.90), for any 1 ≤ k ≤ Nq we get

‖Akq ·Xϕ‖ = ‖ρ
k − ρ−k

ρ− ρ−1
·
(
Aq −

TraceAq
2

I
)
Xϕ +

ρk + ρ−k

2
·Xϕ‖

≥ ρk + ρ−k

2
· ‖Xϕ‖ −

ρk − ρ−k

ρ− ρ−1
· ‖
(
Aq −

TraceAq
2

I
)
Xϕ‖

≥ 1/2− C1k · e−Λq/8

Combining with (1.91), we have

‖Akq ·Xϕ‖ ≥ ‖Akq ·Xϕ‖ − ‖(Akq − Akq) ·Xϕ‖ ≥
1

4
− C1k · e−Λq/8

Then for 1 ≤ k ≤ 1
8C1
·eΛq/8 ≤ Kq ≤ Nq, we obtain ‖Akq ·Xϕ‖ ≥ 1

8
. This implies

‖uϕ‖2
lq ≥

1

2

[ 1
8C1
·eΛq/8]∑
k=1

‖Akq ·Xϕ‖2 ≥ eΛq/10.

1.2.5 Proof of Lemmas 1.2.2 and 1.2.3

Assume that |TraceAq| < 2 − e−τq < 2. Thus in the expression in Lemma 1.2.9,

ρ = eiψ, ψ ∈ (−π, π). We have for any j,

(1.98) Ajq =
sin jψ

sinψ
·
(
Aq −

TraceAq
2

· I
)

+
cos jψ

2
· I, ψ ∈ (−π, π)
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Then |2 cosψ| = |TraceAq| < 2−e−τq implies | sinψ| >
√

1− (1− 1
2
e−τq)2 > Ce−τq/2.

Therefore,

‖Ajq‖ ≤ C · eτq/2 ·
(
‖Aq‖+ 1

)
+ 1

(here q is large enough so that ‖Aq‖ ≤ eΛq.) If τ = 10Λ, we obtain

‖Ajq‖ ≤ e(6Λ+Λ/100)q.

Now let N = [eξq]. By the same argument as used for the proof of (1.71) and

(1.91) (based on Lemma C.0.1), if β > 15Λ + (2 + 1/ε)ξ, then for any j ≤ N ξ,

‖Ajq − Ajq‖ < e(−β+13Λ+2ξ+Λ/20)q < e−Λq.

As a consequence, we have ‖Ajq‖ ≤ e(6Λ+Λ/50)q, and ‖Ajq+r‖ ≤ e(7Λ+Λ/50)q for all

0 ≤ r ≤ q, 0 ≤ j ≤ N ξ. Therefore

Nq∑
n=1

‖An(E)‖2 ≤
Nξ∑
k=0

q∑
r=1

‖Akq+r(θ, E)‖2 ≤ Nq · e(14Λ+Λ/25)q ≤ e(ξ+15Λ)q

Proof of Lemma 1.2.3 Since N > e(ξ−Λ/200)q for q large, then for any γ < 1,

1

(Nq)2−γ

Nq∑
n=1

‖An(E)‖2 < e

(
−(1−γ)ξ+15Λ

)
q

If ξ > 16Λ
1−γ , then (1− γ)ξ − (15Λ) ≥ 1/2Λ. Therefore,

1

(Nq)2−γ

Nq∑
n=1

‖An(E)‖2 ≤ e−1/2Λq ≤ 1

1.3 Spectral Singularity

1.3.1 Power law estimates and proof of Theorem 1.1.5

Throughout this section, our potential will be given by Vθ(n) = V (θ + nα), n ∈ Z,

where V (θ) is a real analytic function defined on the torus with analytic extension to

the strip {z : |Imz| < ρ}.
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According to Lemma 1.1.2, it is enough to find a ϕ such that both mϕ and m̃π/2−ϕ

are γ-spectral singular. The main technical tool to estimate m-function is the sub-

ordinacy theory Lemma 1.1.1. We also need one more general statement about the

existence of generalized eigenfunctions with sub-linear growth in its l-norm (see [65]).

That is, for µθ-a.e. E, there exists ϕ ∈ (−π/2, π/2] such that uϕ and uϕ,− both obey

(1.99) lim sup
l→∞

‖u‖l
l1/2 log l

<∞

This inequality provides us an upper bound for the l-norm of the solution. To apply

subordinacy theory, we also need a lower bound for the l-norm. It will be derived

from the following lower bounds on the norm of the transfer matrices. Denote

(1.100) Ãn(θ, E, α) = An(θ − α,E,−α)

We have

Lemma 1.3.1 Fix α ∈ R\Q with β = β(α) < ∞. Assume that L(E) ≥ a > 0, E ∈

S. There is c = c(a, ρ) > 0 such that for l > l(E, β, ρ), and any θ ∈ T, the following

hold:

(1.101)
l∑

k=1

‖Ak(θ, E, α)‖2 ≥ l1+ 2c
β

and

(1.102)
l∑

k=1

‖Ãk(θ, E, α)‖2 ≥ l1+ 2c
β

Proof of Theorem 1.1.5: For any ϕ, we have

(1.103) ‖uϕ‖2
l + ‖vϕ‖2

l ≥
1

2

l∑
k=1

‖Ak(θ)‖2

and

(1.104) ‖uϕ,−‖2
l + ‖vϕ,−‖2

l ≥
1

2

l∑
k=1

‖Ãk(θ)‖2

Therefore, a direct consequence of (1.101) is the power law estimate for the left hand

side of (1.103), i.e., ‖uϕ‖2
l + ‖vϕ‖2

l ≥ l1+ 2c
β for l large.
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On the other hand, according to (1.99), for µθ-a.e. E, there exist ϕ(E) and

C = C(E) <∞, such that for large l,

(1.105) ‖uϕ‖l ≤ Cl1/2 log l, ‖uϕ,−‖l ≤ Cl1/2 log l

Let us consider the right half line estimates for uϕ,mϕ first. From (1.103) and (1.105),

we have

‖vϕ‖2
l ≥ l1+ 2c

β − Cl(log l)2

and then

(1.106) ‖vϕ‖l ≥ l1/2+c/β

provided β <∞ and l > l(β,E, ρ).

Applying subordinacy theory (1.31) to (1.105),(1.106), one has for any γ ∈ (0, 1),

any ε > 0

ε1−γ|mϕ(E + iε)| ≥ 1(
2‖uϕ‖l(ε)‖vϕ‖l(ε)

)1−γ · (5−
√

24)
‖vϕ‖l(ε)
‖uϕ‖l(ε)

≥ cγ
‖vϕ‖γl
‖uϕ‖2−γ

l

≥ cγl
(1+c/β)γ−1 · log−2 l

where cγ > 0 may denote different constants that only depend on γ. Set γ0 = γ0(β) =

1
1+c/β

< 1, since β <∞. We have for any γ > γ0,

ε1−γ|mϕ(E + iε)| ≥ cγl
γ/γ0−1 · log−2 l→∞

as ε→ 0.

Using (1.104) and (1.105), the same argument works for uϕ,−, vϕ,− and m−ϕ . There-

fore, for spectrally a.e. E lim infε→0 ε
1−γ|mϕ(E+iε)| =∞ and lim infε→0 ε

1−γ|m−ϕ (E+

iε)| = ∞. According to Lemma 1.1.2, µ is γ-spectral singular for any γ > γ0. The

conclusion for the spectral dimension follows from the definition directly.
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The proof of Lemma 1.3.1 depends on the following lemmas about the localization

density of the half line solution. The key observation is that in the regime of positive

Lyapunov exponents we can guarantee transfer matrix growth at scale qn somewhere

within any interval of length qn, giving a contribution to (1.101).

Lemma 1.3.2 Assume that L(E) ≥ a > 0, α ∈ R\Q. There are c2 = c2(a, ρ) > 0

and a positive integer d = d(ρ) such that for E ∈ S and n > n(E, ρ), there exists an

interval ∆n such that

(1.107) Leb(∆n) ≥ c2

4dn

and for any θ ∈ ∆n, we have 6

(1.108) ‖An(θ, E, α)‖2
HS > enL(E)/8

In the following, we will use ‖ · ‖ for the HS norm ‖ · ‖HS. Now let c2 and d be given

as in Lemma 1.3.2. Denote

(1.109) kn = [
c2qn
4d

]− 1

where, as before qn are the denominators of the continued fraction approximants to

α. Based on Lemma 1.3.2, one can show that

Lemma 1.3.3 Fix E ∈ S and α ∈ R\Q. Let kn be given as in (1.109). Suppose qn

is large enough so that (1.107) holds for ∆kn. Then for any θ, and any N ∈ N, there

is jN(θ) ∈ [2Nqn, 2(N + 1)qn) such that

(1.110) ‖AjN (θ, E, α)‖ > eknL(E)/16

We first use Lemma 1.3.2 and Lemma 1.3.3 to finish the proof of Lemma 1.3.1. The

proofs of these two lemmas are left to next section.

6We denote by ‖ · ‖HS the Hilbert-Smith norm of a SL(2,R) matrix

A =

 a b

c d

 , ‖A‖HS =
√
a2 + b2 + c2 + d2
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Proof of Lemma 1.3.1: For l sufficiently large, there is qn such that, l ∈ [2qn, 2qn+1).

Write l as

l = 2Nqn + r,

where 0 ≤ r < 2qn, 1 ≤ N < qn+1

qn
. Suppose qn is large enough so that (1.107) holds

for ∆kn . Then Lemma 1.3.3 is applicable. Fix θ. Consider An(θ, E, α) first. Let

jn(θ) ∈ [2nqn, 2(n+1)qn), n = 0, 1, · · · , N, be given as in (1.110). Direct computation

shows that

l∑
k=1

‖Ak(θ)‖2 ≥ ‖Aj0(θ)‖2 + ‖Aj1(θ)‖2 + · · ·+ ‖AjN−1
(θ)‖2

≥ NeknL(E)/16

We have l = 2Nqn + r < 4Nqn, i.e., N > l/(4qn). (1.109) implies c2qn/(5d) < kn <

c2qn/(4d) for qn large, so we have

l∑
k=1

‖Ak(θ)‖2 ≥ l

4qn
eknL(E)/16 ≥ l

4qn
e16cqn

where c = c(c2, d, a). Then for sufficiently large l, we have

l∑
k=1

‖Ak(θ)‖2 > le8cqn

We also assume l large enough (meaning qn large enough), so that log qn+1

qn
< 2β, i.e.,

eqn > q
1

2β

n+1. Then

l∑
k=1

‖Ak(θ)‖2 ≥ l · q
4c
β

n+1 ≥ l · ( l
2

)
4c
β ≥ l1+ 2c

β .

For the same θ, repeat the above procedure for An(θ − α,−α,E). Notice that

Ãn(θ, E, α) = An(θ − α,E,−α). Therefore, we have a sequence of positive integers

j̃N(θ − α) ∈ [2Nqn, 2(N + 1)qn) for any N ∈ N such that

(1.111) ‖Ãj̃N (θ, E, α)‖ > eknL(E)/16

The rest of the computations are exactly the same as for An(θ, E, α). Notice that the

constants c2 and d in Lemma 1.3.2 are independent of the choice of α or −α and θ.

So kn and c will be the same for An and Ãn
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1.3.2 Proof of the density lemmas

Proof of Lemma 1.3.2: Denote

(1.112) fn(θ) = ‖An(θ)‖2
HS

Obviously, fn(θ) is a real analytic function with analytic extension to the strip {z :

|Imz| < ρ}. For bounded S we have

(1.113) ‖fn‖ρ := sup
|Imz|<ρ

∣∣∣fn(z)
∣∣∣ < eC1n, E ∈ S

where C1 = C1(S, ‖V ‖ρ) can be taken uniform for all E ∈ S. Expand fn(θ) into its

Fourier series on T as

(1.114) fn(θ) =
∑
k∈Z

bn(k)e2πikθ

where bn(k) is the k-th Fourier coefficients of fn(θ) so satisfies

(1.115) |bn(k)| < ‖fn‖ρ · e−2πρ|k|, ∀k ∈ Z

We split fn(θ) into two parts, for some positive integer d which will be specified a

little bit later

fn(θ) = gn(θ) +Rn(θ), gn(θ) =
∑
|k|≤d·n

bn(k)e2πikθ, Rn(θ) =
∑
|k|>d·n

bn(k)e2πikθ

For any θ ∈ T

|Rn(θ)| ≤
∑
|k|>d·n

|bn(k)| ≤
∑
|k|>d·n

‖fn‖ρ · e−2πρ|k|

≤ 2

1− e−2πρ
eC1ne−2πρdn

Now pick

(1.116) d = [
C1

2πρ
] + 2

With this choice of d, we have 2πρd > C1 + 1, so for any θ ∈ T

(1.117) |Rn(θ)| ≤ 2

1− e−2πρ
e−n < 1, n > n0(ρ)
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Now we assume that the Lyapunov exponent L(E) of A(θ, E) is positive. Denote

Θ1
n = {θ : fn(θ) > enL(E)/8}

Θ2
n = {θ : gn(θ) > enL(E)/4}

Θ3
n = {θ : fn(θ) > enL(E)/2}

According to (1.117), we see that if fn(θ) > enL(E)/2, then

gn(θ) > fn(θ)− |Rn(θ)| > enL(E)/2 − 1 > enL(E)/4, n > n(E)

and if gn(θ) > enL(E)/4, then

fn(θ) > gn(θ)− |Rn(θ)| > enL(E)/8, n > n(E)

Therefore, we have for large n,

(1.118) Θ3
n ⊆ Θ2

n ⊆ Θ1
n

On the other hand,

2nL(E) ≤ 2

∫
T

log ‖An(θ)‖HSdθ =

∫
T

log fn(θ)dθ

≤ Leb(Θ3
n) log ‖fn‖ρ +

(
1− Leb(Θ3

n)
)

log enL(E)/2

≤ Leb(Θ3
n) · C1n+

(
1− Leb(Θ3

n)
)
· nL(E)/2

which implies Leb(Θ3
n) ≥ 3L(E)

2C1−L(E)
. Since L(E) ≥ a > 0, E ∈ S, we have

(1.119) Leb(Θ3
n) ≥ 3a

2C1 − a
:= c2(a, ρ) > 0

Thus

(1.120) Leb(Θ2
n) ≥ c2(a, ρ) > 0

Since gn(θ) is a trigonometric polynomial of degree 2dn, the set Θ2
n consists of no more

than 4dn intervals. Therefore, there exists a segment, ∆n ⊂ Θ2
n, with Leb(∆n) > c2

4dn
.

Obviously, ∆n is also contained in Θ1
n, i.e., for any θ ∈ ∆n,

‖An(θ)‖2
HS > enL(E)/8

and

Leb(∆n) >
c2

4dn
, n > n(E, ρ)

where d only depends on ρ and is independent of n.
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The following standard lemma is proved e.g. in [52]

Lemma 1.3.4 (Lemma 9, [52]) Let ∆ ⊂ [0, 1] be an arbitrary segment. If |∆| >
1
qn

. Then, for any θ; there exists a j in {0, 1, · · · , qn+qn−1−1} such that θ+ jα ∈ ∆.

Proof of Lemma 1.3.3: The case N = 0 is already covered by Lemma 1.3.4. The

proof for the case N > 0 follows the same strategy. Notice that (1.109) implies

|∆kn| > c2
4dkn

> 1
qn

for large qn. Applying Lemma 1.3.4 to θ + 2Nqn, we have that

there exists a j in {0, 1, · · · , qn + qn−1 − 1} such that θ + 2Nqnα + jα ∈ ∆kn , i.e.,

‖Akn(θ + 2Nqnα + jα)‖ > eknL(E)/32

Since

A2Nqn+j+kn(θ) = Akn(θ + 2Nqnα + jα)A2Nqn+j(θ)

and Ai is unimodular, we have that either

‖A2Nqn+j(θ)‖ ≥ eknL(E)/32 or ‖A2Nqn+j+kn(θ)‖ ≥ eknL(E)/32

Let jN be 2Nqn + j or 2Nqn + j + kn, so that jN satisfies (1.110). Clearly,

2Nqn ≤ 2Nqn + j < 2Nqn + j + kn < 2Nqn + 2qn

Therefore, jN ∈ [2Nqn, 2(N + 1)qn).

1.4 Sturmian Hamiltonian

Liu, Qu and Wen [70, 69] studied the Hausdorff and upper box counting dimension of

Σλ,α with general irrational frequencies. For any irrational α ∈ (0, 1) with continued

fraction expansion [0; a1, a2, · · · ], define

(1.121) K∗(α) = lim inf
k→∞

(
k∏
i=1

ai)
1/k and K∗(α) = lim sup

k→∞
(
k∏
i=1

ai)
1/k.

Then (Theorem 1 [70], Theorem 1.1 [69]) for large coupling constant λ, dimH Σα,λ = 1

iff K∗(α) =∞ and dimBΣα,λ = 1 iff K∗(α) =∞.
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The usual way to study Sturmian Hamiltonian is to decompose Sturmian po-

tentials into canonical words, which obey recursive relations. Here we present an

alternative approach to study spectral dimension properties of Sturmian Hamiltoni-

an based on the technics we developed in Theorem 1.1.6.

We will first prove Theorem 1.1.8. Set

(1.122) Vθ(n) = λχ[1−α,1)(θ + nα mod 1)

It is well known that for Sturmian Hθ, the restriction of Lyapunov exponent on the

spectrum is zero (see Theorem 1, [32]). By the discussion after (1.18) (see [57]) or

else, specifically for Sturmian potentials, by [67], for arbitrarily small Λ > 0 and

n ≥ n0(Λ), ‖An(θ, E)‖ ≤ eΛn uniformly in θ and E ∈ σ(Hθ). Here we will apply

Corollary 1.1.1 directly.

Let qk be the subsequence of denominators of the continued fraction approximants

of α such that ‖qkα‖ < e−βqk/2 . In order to apply Corollary 1.1.1, it is enough to

verify that Vθ(n) given by (1.122) is β(α)-almost periodic for α-Diophantine θ ∈ T.

Fix τ > 1. If θ is α-Diophantine there is γ > 0 such that ‖θ +mα‖R/Z ≥ γ
(|m|+1)τ

for

any m ∈ Z. Then for |m| ≤ q

dist(θ +mα, {Z, 1− α + Z}) ≥ min
|m|≤q+1

‖θ +mα‖R/Z.

Therefore,

min
|m|≤q

dist(θ +mα, {Z, 1− α + Z}) ≥ min
|m|≤q+1

γ

(|m|+ 1)τ
≥ γ

(q + 2)τ
.

Let N = [eβq/4]. Then for |j| ≤ N , q > q0(γ, β) and any |m| ≤ q, we have

‖jqα‖ ≤ |j| · ‖qα‖ ≤ e−βq/4 ≤ γ

10(q + 2)τ
≤ 1

10
dist(θ +mα, {Z, 1− α + Z})

Therefore, for any |m| ≤ q and |j| ≤ N , θ + mα mod 1 and θ + mα + jqα mod 1

belong to one of the same open intervals
{

(0, 1− α), (1− α, 1)
}

, which implies that

χ[1−α,1)(θ +mα mod 1) = χ[1−α,1)(θ +mα + jqα mod 1), |m| ≤ q, |j| ≤ N
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Therefore, for 0 ≤ m ≤ q,

Vθ(m) = Vθ(m+ q) = · · · = Vθ(m+Nq)

which immediately implies β(α)-almost periodicity for the sequence qk with ε = 1/4.

Since the set of α-Diophantine θ has full Lebesgue measure, the conclusion for the

density of states follows directly from dN = E(dµθ).

Next we will construct α to prove Corollary 1.1.5. We will define inductively the

continued fraction coefficients an, n ≥ 1, so α = [a1, · · · , an, · · · ]. Fix β > 0. Start

with some n0 large. For 1 ≤ i ≤ n0, set ai = 1. Set [a1, · · · , an] = pn/qn. Now, for

k = 1, · · · define nk = qn0 + qn1 + · · ·+ qnk−1
and an = {

eβqnk ; n = nk + 1,

1; nk + 2 ≤ n ≤ nk+1,

for k = 0, 1, · · ·

Set α = [a1, · · · , an, · · · ]. It is easy to check that

•

β +
log qnk
qnk

=
log ank+1qnk

qnk
<

log qnk+1

qnk
< β +

log 2qnk
qnk

=⇒ log qnk+1

qnk
→ β

•

(a1a2 · · · ank)1/nk = (an0+1an1+1 · · · ank−1+1)1/nk

= (eβqn0eβqn1 · · · eβqnk−1 )1/(qn0+qn1+···+qnk−1
)

= eβ <∞

Therefore, α constructed in the above way satisfies β(α) > 0 while K∗(α) < ∞.

Then Corollary 1.1.5 follows from [70] and Theorem 1.1.8.

On the other hand, if we take α = [0; 1, 2, 3, · · · , k, · · · ], then K∗(α) = ∞ while

β(α) = 0. By [70], for Sturmian Hamiltonian with frequencies α such that K∗(α) =

∞, dimH Σα,λ = dimP Σα,λ = 1.
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Chapter 2

Mixed spectral types for the one

frequency discrete quasi-periodic

Schrödinger operator

2.1 Introduction

In [18], Bjerklöv considers the following discrete quasi-periodic Schrödinger operator

on l2(Z)

(2.1) (HK,θ,ωu)n = −un+1 − un−1 + V (θ + nω)un, n ∈ Z

where

(2.2) V (θ) = exp
(
Kf(θ + ω)

)
+ exp

(
−Kf(θ)

)
θ, ω ∈ Tb, f : Tb → R, is assumed to be a non-constant real-analytic function with

zero mean,
∫
Tb f(θ)dθ = 0 and K ∈ R is any constant. Consider the Lyapunov

exponent L(E) defined as in (1.38). In this explicit example, Bjerklöv shows that

for large K we have a situation with mixed dynamics: zero Lyapunov exponent in a

region close to E = 0 and positive for larger E.

In this chapter, we are going to show that for one frequency case, in Bjerklöv’s

example (2.1), mixed dynamics actually lead to mixed spectra: for some parameters
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(θ, ω), HK,θ,ω has mixed absolutely continuous and point spectrum, and for some other

(θ, ω), HK,θ,ω has mixed absolutely continuous and singular continuous spectrum.

Without loss of generality, we assume that ‖f‖C1(T) = 1 and f has analytic ex-

tension to the strip |Imz| < h, where h >> K (e.g., f can be taken as any entire

function). It follows from [18] that min{E ∈ σ(HK,θ,ω)} = 0 for any K, θ, ω. And also

it is not hard to show that max{E ∈ σ(HK,θ,ω)} � eK‖f‖∞ . For any ε > 0 small (w.l.g.

we assume 0 < ε < 1), denote Iε,K = [ε, 4eK‖f‖∞ ]. We have Iε,K
⋂
σ(HK,θ,ω) 6= ∅. We

say the frequency ω ∈ T satisfies the Diophantine Condition (denote by ω ∈ DC(κ, τ))

if

‖ω · n‖ ≥ κ

|n|τ
, ∀n ∈ Z\{0}

for some κ > 0, τ > 0. And denote DC =
⋃
κDC(κ, τ) 1 for some fixed τ > 1. It is

well known that DC has full Lebesgue measure in any box.

The main results are as follows.

Theorem 2.1.1 Let V be given as in (2.2). Fix ω0 ∈ DC(κ, τ). For any ε > 0,

there are K = K(ω0, ε, f) > 0, δ = δ(ω0, ε,K) > 0, and for any ω ∈ Bδ(ω0) := {ω ∈

T : |ω − ω0| < δ}, there is 0 < ε0 = ε0(ω,K, h, ‖f‖h) < ε such that

(a) for a.e. ω ∈ Bδ(ω0) and a.e. θ ∈ T, HK,θ,ω has pure point spectrum in Iε,K

with exponentially decaying eigenvectors and has purely absolutely continuous

spectrum in [0, ε0].

(b) for a.e. ω ∈ Bδ(ω0), there is a dense Gδ set of θ, such that HK,θ,ω has purely sin-

gular continuous spectrum in Iε,K and has purely absolutely continuous spectrum

in [0, ε0].

(c) for ω in a dense subset of Bδ(ω0) and for any θ, HK,θ,ω has purely singular

continuous spectrum in Iε,K and has purely absolutely continuous spectrum in

1Here ‖ · ‖ means the distance to the closest integer. If

‖ω · n‖ ≥ κ

|n|(log(|n|+ 1))2
, ∀n ∈ Z\{0}

for some κ > 0, we say ω satisfies the Strong Diophantine Condition(denote by ω ∈ SDC(κ)).

Denote SDC =
⋃
κ SDC(κ) which also has full Lebesgue measure.
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[0, ε0].

Previously, Bourgain [15] constructed quasi-periodic operator with two frequen-

cies which has coexistence of absolutely continuous and point spectrum. While mixed

spectra are expected to occur for generic one-frequency operators, such examples for

the discrete case have been considered difficult to construct explicitly. Recently Bjerk-

löv and Krikorian [19] announced an example of this nature. For continuous model,

Fedotov and Klopp [39] showed coexistence of absolutely continuous and singular

spectrum for a family of quasi-periodic operators and also gave a criterion for the

existence of absolutely continuous and singular spectrum in the semi-classical regime.

Here we give a short proof which shows that operator (2.1) with potential (2.2)

has mixed spectral types. The mixed nature of spectrum follows from coexistence of

positive Lyapunov exponent and zero Lyapunov exponent which was obtained in [18]

and a combination of several recent results on localization, reducibility and continuity

of Lyapunov exponent..

2.2 Singular spectrum in the positive Lyapunov

exponent region

The transfer matrix An(θ, E) and the Lyapunov exponent L(E) are defined as usual

in (1.35),(1.38).

In the following, we would like to fix f and consider Lyapunov exponent L(E,ω,K)

as function of energy E, frequency ω, and parameter K. In [18], Bjerklöv proved that:

Theorem 2.2.1 ([18]) Assume that V is as in (2.2), and that ω ∈ DC(κ, τ). Then

for any ε > 0 there is a K0 = K0(ε, f, κ, τ) > 0 and c = c(f) > 0 such that for all

K > K0, we have

L(E,ω,K) ≥ cK, for all E 6∈ [0, ε].

The proof is based on Large Deviation Theorem (LDT)-Avalanche Principle(AvP)

scheme developed by Bourgain, Goldstein, Schlag [16, 45]. Due to some technical

52



reasons, the largeness of K depends on the Diophantine Conditions of ω in this

theorem, which means the positivity is not uniform for all ω. However, we can get

the following local non-perturbative positivity. Bourgain and Jitomirskaya showed

that Lyapunov exponent is jointly continuous in (ω,E) at any irrational frequency

(Theorem 1, [17]). The following result is obvious:

Proposition 2.2.1 Fix any ε > 0 and ω0 ∈ DC(κ, τ), let K0 = K0(ε, f, ω0) > 0 be

given as in Theorem 2.2.1, then for any K > K0, there is δ = δ(ω0, ε,K) > 0, such

that for any ω ∈ Bδ(ω0), L(E,ω,K) > 0 on Iε,K, where the lower bound only depends

on ω0, ε,K, f and is uniform in E and ω.

The absence of a.c. spectrum on Iε,K is therefore obvious due to Kotani theory.

What we want to claim is the pure point spectrum or purely singular continuous

spectrum in this region.

Anderson Localization (part (a)) Let Ω = SDC
⋂
Bδ(ω0), which is a full mea-

sure subset of Bδ(ω0). Notice that the positivity of L(E,ω,K) is uniform for

E ∈ Iε,K and ω ∈ Ω. Then according to the non-perturbative localization result

in [16], for any θ ∈ T, a.e. ω ∈ Ω , HK,θ,ω exhibits A.L. in Iε,K . Thus by Fubini’s

theorem, HK,f,θ,ω has A.L. for a.e. ω ∈ Ω and a.e. θ ∈ T.

Purely s.c. spectrum (part (b)) Let Ω be the same as in the previous part. Gold-

stein and Schlag [47] show that for a.e. ω ∈ Ω, the intersection σ(HK,f,θ,ω)
⋂
Iε,K

is a Cantor set. Then according to a theorem of Gordon [41], nowhere dense

structure of the spectrum implies the absence of point spectrum for a dense Gδ

set of θ (see Theorem 6 in [41]). Therefore, for a.e. ω ∈ Ω, there is a dense Gδ

set of θ such that HK,θ,ω has purely singular continuous spectrum in Iε,K .

Purely s.c. spectrum (part (c)) Absence of point spectrum in this part is based

on rational approximation. More precisely, denote by

β(ω) := lim sup
n

log qn+1

qn
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where pn
qn

is the nth rational approximation of ω. Notice that

sup
n

sup
(θ,ω)∈T2, E∈Iε,K

1

|n|
log ‖An(θ, E)‖ ≤ 10K.

Then by standard Gordon type argument (see e.g. [40, 24]), if β(ω) > 40K,

then for any θ, HK,θ,ω does not have any point spectrum. Combine with the

positivity of Lyapunov exponent in Iε,K , the proof for purely s.c. spectrum of

part (c) is completed. Notice that for any β0 ∈ [0,∞], the level set Ωβ0 := {ω :

β(ω) = β0} is a dense set. For later purpose, we would like to pick the dense

subset Ωβ0

⋂
Bδ(ω0) with 40K < β0 < h/2.

2.3 Absolutely continuous spectrum near the bot-

tom

Next we are going to show that for any ω ∈ T with finite β(ω), if the energy E is

sufficiently small (depends on ω), then the Schrödinger cocycle is almost reducible.

This will imply purely a.c. spectrum near the bottom of the spectrum for any phase.

To complete the proof of the main theorem, we first pick some ω near ω0 and some

θ which give us point spectrum or singular continuous spectrum as in the previous

part. Then for these pairs of (ω, θ), we apply the almost reducibility result to get the

coexistence of two types of spectrum.

The key step to find purely a.c. spectrum near the bottom is the following re-

ducibility result at E = 0, which generalizes Lemma 5.1 in [18] to the case 0 < β(ω) <

∞.

Proposition 2.3.1 For any frequency ω with β(ω) <∞, if h > 2β, then there exists

analytic transformation C : T→ SL(2,R) such that

C(θ + ω)A(θ, 0)C(θ)−1 = A0,

where

A0 =

 1 k̂

0 1

 , k̂ ∈ R
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Remark 4 If ω is Diophantine or β = 0, the proposition has been proved in Lemma

5.1 [18]. If β > 0, we can still find such a transformation C provided h is large.

The only loss is the decrease of the width of the analytic strip. Also the analytic

norm of the transformation and the constant could be very large. Actually, C has an

analytic extension to the strip |Imz| < h− 2β, with ‖C‖h−2β ∼ eK‖f‖h. We also have

|k̂| ∼ eK‖f‖h

Proof: Recall the main steps in the proof of Lemma 5.1 [18], if there are g, h :

T→ R satisfying the following equations

g(θ + ω)− g(θ) = f(θ + ω)(2.3)

k(θ) = −e−Kg(θ−ω)−Kg(θ) , k̂ =

∫
T
k(θ)dθ

h(θ + ω)− h(θ) = k̂ − k(θ)(2.4)

then set

C(θ) =

 1 h(θ)

0 1

 ·
 0 exp

(
−Kg(θ − ω)

)
− exp

(
Kg(θ − ω)

)
exp

(
Kg(θ)

)
 ∈ SL(2,R)

Direct computation shows that

C(θ + ω)A(θ, 0)C(θ)−1 =

 1 k̂

0 1


which is the desired form.

For real analytic f with zero average, if ω is Diophantine, equations (2.3),(2.4)

always have real analytic solutions g, h, which is the case in [18].

If β > 0, recall for f analytic in the strip |Imz| < h, the Fourier coefficients of

f satisfy |f̂k| ≤ ‖f‖he−h|k|, therefore, from Fourier series expansion, equation (2.3)

has an analytic solution g in the strip |Imz| < h − β provided h > β. From the

definition of k, k(θ) also has analytic extension to the strip |Imz| < h − β with

‖k‖h−β ∼ eK‖g‖h−β ∼ eK‖f‖h . Then for the same reason, equation (2.4) also has an

analytic solution h in the strip |Imz| < h− 2β provided h− β > β.
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Then it is easy to see that by applying C to A(θ, E), we have

C(θ + ω)A(θ, E)C(θ)−1 = A0 + C(θ + ω)

 −E 0

0 0

C(θ)−1

= A0 + EF (θ)(2.5)

:= G(θ, E) ∈ SL(2,R)(2.6)

where

F (θ) = C(θ + ω)

 −1 0

0 0

C(θ)−1.

From the proof of Proposition 2.3.1, we see that F has analytic extension to the strip

|Imz| < h− 2β and the largeness of ‖A0‖, ‖F‖h−2β depend on ω,K, ‖f‖h.

For Diophantine frequency, as Bjerklöv mentioned in Remark 2 in [18], one can

show purely absolutely continuous spectrum for sufficient small E based on KAM

approach as in [35]. Here since we also need to deal with Liouvillean frequency, we

want to prove all cases together with the almost reducibility concept.

We say the skew product system (ω,A) is almost reducible if there exist η > 0 and a

sequence of analytic maps B(n) : T → PSL(2;R), admitting holomorphic extensions

to the common strip |Imz| < η such that B(n)(z + ω)A(z)B(n)(z)−1 converges to

a constant uniformly in |Imz| < η. We need the following result about almost

reducibility:

Proposition 2.3.2 (Corollary 1.2, [2]) Any one-frequency analytic quasi-periodic

SL(2,R) cocycle close to constant is analytically almost reducible.

Proof of purely a.c. spectrum near the bottom. According to Proposition 2.3.2,

(ω,A0 + EF (θ)) is almost reducible for small E. More precisely, consider G in

(2.6) with form (2.5). There exists ε0 = ε0(ω, ‖A0‖, h, ‖F‖h−2β) < ε such that for

0 < E < ε0, (ω,G(θ, E)) is almost reducible. (Such a quantitative version can be

found in [49, 77].) Therefore, (ω,A(θ, E)) is also almost reducible for 0 < E < ε0. As
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a corollary of almost reducibility [2, 3], we have that for any θ, HK,f,θ,ω has purely

absolutely continuous spectrum in [0, ε0].

57



BIBLIOGRAPHY



Bibliography

[1] A. Avila, The absolutely continuous spectrum of the almost Mathieu operator.

arXiv:0810.2965

[2] A. Avila, Almost reducibility and absolute continuity I, preprint.

[3] A. Avila, Almost reducibility and absolute continuity II (in preparation).

[4] A. Avila, Global theory of one-frequency Schrödinger operators. Acta Math. 215,

1-54 (2015)

[5] A. Avila and S. Jitomirskaya, The ten martini problem. Ann. of Math. 170,

303-342 (2009)

[6] A. Avila and S. Jitomirskaya, Almost localization and almost reducibility. J. Eur.

Math. Soc. 12, 93-131 (2010)
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APPENDICES



Appendix A

Proof of Lemma 1.2.7:

Suppose that u, v are the two normalized eigenvectors of G such that

Gu = ρu, Gv = ρ−1v, ‖u‖ = ‖v‖ = 1

Denote the angle between u and v by θ. Without loss of generality we assume further

that |θ| < π/2. Set B̃ = (u, v), B = B̃√
|detB̃|

. Obviously, ‖B̃‖ ≤ 1, |detB| = 1, and

detB̃ = ‖u‖ · ‖v‖ · sin θ. Therefore,

‖B‖ ≤ 1√
| sin θ|

On the other hand, G(u− v) = ρu− ρ−1v, which implies that

ρ− ρ−1 = ρ‖u‖ − ρ−1‖v‖ ≤ ‖ρu− ρ−1v‖ = ‖G(u− v)‖ ≤ ‖G‖ · ‖u− v‖

By the law of cosines, ‖u− v‖ = 2 sin θ
2
. Then

2 sin
θ

2
≥ ρ− ρ−1

‖G‖
=

√
(|TraceG|+ 2)(|TraceG| − 2)

‖G‖

|TraceG| ≤ 6 implies that |TraceG|+2 ≥ 2(|TraceG|−2), then 2 sin θ
2
≥
√

2(|TraceG|−2)
‖G‖ .

Therefore,

sin θ ≥ 2 sin
θ

2
· 1√

2
≥ |TraceG| − 2

‖G‖
and

‖B‖ ≤
√
‖G‖√

|TraceG| − 2

It is also easy to see that if |TraceG| > 6, ‖B‖ ≤ 2
√
‖G‖√

|TraceG|−2
.
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Appendix B

Proof of Lemma 1.2.9 and Lemma

1.2.10

Proof of Lemma 1.2.9: Suppose A =

 a b

c d

 ∈ SL(2,R) has eigenvalues ρ and

ρ−1.

Case I: TraceA 6= 2. Obviously, ρ 6= 1 and

(B.1) A =

 a b

c d

 = B

 ρ 0

0 ρ−1

B−1

where B is the conjugation matrix. Suppose ρ 6= d. We can pick the conjugation

matrix as

(B.2) B =

 1 b
ρ−1−a

c
ρ−d 1

 , B−1 =
ρ− d
ρ− ρ−1

 1 − b
ρ−1−a

− c
ρ−d 1

 .

If ρ = d, it is easy to see that bc = 0. Without loss of generality, we assume

c = 0, b 6= 0. We can pick the conjugation matrix as

(B.3) B =

 1 1

d−d−1

b
0

 , B−1 =
b

d−1 − d

 0 −1

−d−d−1

b
1

 .

Direct computation using (B.1),(B.2),(B.3) shows that for any k ∈ N,

(B.4) Ak =
ρk − ρ−k

ρ− ρ−1
·
(
A− a+ d

2
· I
)

+
ρk + ρ−k

2
· I

Case II: TraceA = 2. Also follows by a (simpler) direct computation, considering

separately a = 1 and a 6= 1.
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Proof of Lemma 1.2.10: Now assume E ∈ Sq and 1 ≤ k ≤ Nq. Apply (B.4) to

Aq(E). First, suppose 2 < TraceAq(E) < 2 + e−τq. Then

1 < ρ =
TraceAq(E) +

√
(TraceAq(E))2 − 4

2
<

2 + e−τq +
√

(2 + e−τq)2 − 4

2
< 1+e(−τ/2+Λ/200)q

There is a universal constant C, such that for any 1 ≤ k ≤ Nq < e(τ/2−Λ/200)q,

1 < ρk < (1 + e(−τ/2+Λ/200)q)Nq < C.

Therefore,

(B.5) 1 <
ρk + ρ−k

2
< C.

On the other hand,

ρk − ρ−k

ρ− ρ−1
=

k∑
i=1

ρk−2i+1

therefore,

(B.6) k ≤ ρk − ρ−k

ρ− ρ−1
< C1k

Now assume 2−e−τq < TraceAq(E) < 2. Then ρ = eiψ and (B.4) can be expressed

as

(B.7) Akq =
sin kψ

sinψ
·
(
Aq −

TraceAq
2

· I
)

+
cos kψ

2
· I

We have 1− 1
2
e−τq < cosψ < 1. Then | sinψ| < e−τq/2, and |ψ| < π

2
| sinψ| < 2e−τq/2.

As in the hyperbolic case, we set Nq = [e(τ/2−Λ/200)q]. For k ≤ Nq,

|kψ| < 2e−Λq/200

Then for q large enough, we have 2
π
|kψ| ≤ | sin kψ| ≤ |kψ| ≤

√
3/2. Therefore

2
π
k ≤

∣∣∣ sin kψsinψ

∣∣∣ < π
2
k and 1 ≥ cos kψ > 1/2.

Exactly the same argument works for the case
{
E : −2 < TraceAq < −2 + e−τq

}
and

{
E : −2− e−τq < TraceAq < −2

}
.
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Appendix C

Some estimates on matrix products

Lemma C.0.1 Suppose G is a two by two matrix satisfying

(C.1) ‖Gj‖ ≤M <∞, for all 0 < j ≤ N,

where M ≥ 1 only depends on N . Let Gj = G + ∆j, j = 1, · · · , N, be a sequence of

two by two matrices with

(C.2) δ = max
1≤j≤N

‖∆j‖.

If

(C.3) NMδ < 1/2,

then for any n ≤ N

(C.4) ‖
n∐
j=1

Gj −Gn‖ ≤ 2NM2δ

Proof of Lemma C.0.1: Denote by

D = max
1≤k1,k2≤N

‖
k2∐
j=k1

Gj‖.

Then a simple perturbation argument, as in e.g. [59], one can show that D ≤

M(δDN + 1). Thus D ≤ M
1−MδN

. Direct computation shows that for any 1 ≤ n ≤ N ,

n∐
j=1

Gj −Gn =
n−1∑
k=0

( n∐
j=k+2

Gj

)
∆k+1G

k
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Therefore,

‖
n∐
j=1

Gj −Gn‖ ≤ NDδM ≤ M2δN

1−MδN

Clearly, if MδN < 1/2, then ‖
∐n

j=1 Gj −Gn‖ ≤ 2NM2δ.
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Appendix D

Extended Schnol’s Theorem

(Lemma 1.2.6)

Let y > 1/2 and xkbe any sequence such that |xk| → ∞ as k → ∞. For a Borel set

B ∈ R, denote

µn,m(B) =< δn, χB(H)δm >

and

ρ(B) =
∑
n

an(µn,n(B) + µn+1,n+1(B))

where

an =

 c(1 + |k|)−2y, n = xk

c(1 + |n|)−2y, else

with c > 0 chosen so that
∑

n an = 1/2.

Then, ρ is a Borel probability measure with ρ(B) = 0 if and only if µ(B) = 0, i.e.,

ρ and µ are mutually absolutely continuous. By the Cauchy-Schwarz inequality,

|µn,m(B)| ≤ µn,n(B)
1
2µm,m(B)

1
2 .

therefore µn,m is absolutely continuous with respect to ρ. By the Radon-Nikodym

Theorem, there exists a measurable density

Fn,m(E) =
[dµn,m

dρ

]
(E), ρ− a.e. E
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with

µn,m(B) =

∫
χB(E)Fn,m(E)dρ(E).

Then for every bounded measurable function f , we have that

< δn, f(H)δm >=

∫
f(E)Fn,m(E)dρ(E)

In particular, if g is compactly supported and bounded, we may set f(E) = Eg(E)

and have∫
g(E)

(
EFn,m(E)

)
dρ(E)

= < δn, Hg(H)δm >

= < δn+1 + δn−1 + Vnδn, g(H)δm >

=

∫
g(E)Fn+1,m(E)dρ(E) +

∫
g(E)Fn−1,m(E)dρ(E) +

∫
g(E)VnFn,m(E)dρ(E)

=

∫
g(E)

[
Fn+1,m(E) + Fn−1,m(E) + VnFn,m(E)

]
dρ(E)

For any fixed m ∈ Z, let uE(n) = Fn,m(E). Thus we have for any g∫
g(E)

(
(H − E)uE

)
(n)dρ(E) = 0

i.e., {uE(n)}n∈Z is a generalized eigenfunction of Hu = Eu for ρ a.e. E.

On the other hand, let

Bn = {E : Fn,n ≥
1

an
}

Then

ρ(Bn) =
∑
k

akµk,k(Bn) ≥ anµn,n(Bn) = an

∫
Bn

Fn,n(E)dρ(E)

While ∫
Bn

Fn,n(E)dρ(E) ≥ 1

an
ρ(Bn)

Therefore, ∫
Bn

(
anFn,n(E)− 1

)
dρ(E) ≤ 0

Therefore, ρ(Bn) = 0, i.e., for ρ-a.e. E, Fn,n(E) ≤ 1
an

, thus

|Fn,m| ≤ a
− 1

2
n a

− 1
2

m
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Fix m = 0, and let uE(n) = Fn,0, then according to the previous proof, ρ − a.e. E,

uE is generalized eigenfunction of Hu = Eu and obey the estimate

|uE(n)| ≤ a
− 1

2
0 a

− 1
2

n

By the choice of an, we have

|uE(xk)| ≤ (1 + |k|)y.
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