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Abstract

Down syndrome (DS) is the most common genetic cause of intellectual disability and is primarily 

caused by the triplication of chromosome 21. The overexpression of APP may be sufficient to 

overexpression's disease (AD) neuropathology that is observed in virtually all individuals with DS 

by the age of 40 years. There is relatively little information about inflammation in the DS brain 

and how the genetics of DS may alter inflammatory responses and modify the course of AD 

pathogenesis in this disorder. Using the macrophage classification system of M1, M2a, M2b and 

M2c inflammatory phenotypes we have shown that the early stages of AD are associated with a 

bias toward an M1 or M2a phenotype. In later stages of AD, markers of M1, M2a and M2c are 

elevated. We now report the inflammatory phenotype in a DS autopsy series to compare this with 

the progression in sporadic AD. Tissue from young DS cases (under 40 years of age, pre-AD) 

show a bias toward M1 and M2b states with little M2a or M2c observed. Older DS cases (over 40 

with AD pathology) show a distinct bias toward an M2b phenotype. Importantly, this is distinct 

from sporadic AD where the M2b phenotype has been rarely, if ever observed in post-mortem 

studies. Stimulated by immune complex activation of microglial cells and toll-like receptor 

activation, the M2b phenotype represents a unique neuroinflammatory state in diseased brain and 

may have significant implications for therapeutic intervention for persons with DS.
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Introduction

Down syndrome (DS) is a genetic disorder resulting from the triplication of chromosome 21 

(Lejeune, et al., 1959). It is the most common chromosomal abnormality in humans and is 

characterized by both physical and neurological features (Lott, 1992). Improved education 

and health care have significantly increased both the life span and the quality of life for DS 

individuals. The amyloid precursor protein gene (APP) lies on chromosome 21, and thus is 

triplicated in DS (Korenberg, et al., 1990). The vast majority of DS individuals over the age 

of 40 will develop significant amyloid pathology that is indistinguishable from Alzheimer's 

disease (AD) including beta-amyloid (Aβ) plaques and neurofibrillary tangles (Leverenz and 

Raskind, 1998, Wisniewski, et al., 1985). By 50-60 years many, but not all, of these 

individuals will develop dementia (Johannsen, et al., 1996, Schupf and Sergievsky, 2002). 

With the emergence of anti-amyloid agents as potential preventative therapies for AD, there 

is excitement in the field regarding the translation of these approaches to people with DS. 

Our goal is to better understand the aging DS brain to inform the potential for translation of 

AD therapies to DS.

Neuroinflammation is thought to contribute to the progression and severity of AD. 

Originally described by Alois Alzheimer in 1907 (Alzheimer, et al., 1995) microglia have 

long been known to surround amyloid plaques in the AD brain. Later, mechanistic studies 

described the contribution of microglia to AD pathogenesis including clearance of Aβ via 

phagocytosis, neurotoxicity via pro-inflammatory cytokine production, and increased 

amyloid deposition via neuronal cytokine signaling (Colton and Wilcock, 2009, McGeer and 

McGeer, 1998, Streit, et al., 1988). More recently, clear phenotypes have been characterized 

for neuroinflammatory processes that are multifaceted (Mandrekar-Colucci and Landreth, 

2010). Work in our laboratory shows that the AD brain exhibits broad heterogeneity in its 

neuroinflammatory state (Sudduth, et al., 2013b). We use the markers of macrophage 

phenotypes M1, M2a, M2b and M2c to identify the bias of a given sample toward one state 

or another along a spectrum of possible responses (Edwards, et al., 2006, Mosser and 

Edwards, 2008). When we examine early stage AD brain, we find not only heterogeneity, 

but there was an apparent bias that distinguished two populations within the early AD group. 

One half of the early AD cases show a bias toward a pro-inflammatory, M1 phenotype, 

while the other half of the early AD cases show a bias toward a wound-repair, M2a 

phenotype (Sudduth, et al., 2013b). In contrast, late stage AD showed a more homogeneous 

neuroinflammatory state, with markers of M1, M2 and M2c being elevated. Interestingly, 

the M2b phenotype was never seen in the AD samples.

Examination of the inflammatory genes that are expressed on chromosome 21 led us to 

hypothesize that the brain in DS may show a bias toward an M1 phenotype (Wilcock, 2012). 

We examined neuroinflammatory markers in post-mortem DS frontal cortex, both in young 

individuals, prior to AD development, and older, with established AD neuropathology. We 

compared these to age-matched controls as well as sporadic AD samples.
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Materials and Methods

Tissue samples

Autopsy brain tissue was obtained from several sources including the University of 

California (UC) at Irvine Alzheimer's Disease Research Center, the Maryland 

Developmental Disorders Brain Bank and the University of Kentucky Alzheimer's Disease 

Center. Tissue characteristics are summarized in Table 1. Human tissue collection and 

handling conformed to University of Kentucky/UC Irvine Institutional Review Board 

guidelines. All cases selected ranged from 1 to 88 years based, in part, on the availability of 

frozen frontal cortex. Control cases were subsequently selected to match for age and PMI (as 

closely as possible) to the DS cases. AD cases were selected based on PMI only to match 

DSAD cases (DS cases that had sufficient neuropathology for a post-mortem diagnosis of 

AD; (Hyman, et al., 2012). Since individuals with DSAD typically come to autopsy at 

younger ages than sporadic AD cases, it was not possible to match for age at death. As a 

result, tissues from 6 autopsy groups were available: young controls (YC, age-matched to 

young DS; N=16), middle aged controls (MidC, age-matched to DSAD; N=27), old controls 

(OC, age-matched to sporadic AD; N=9), DS (N=7), DSAD (N=29), and sporadic AD 

(N=9). Both males and females were included in the study, but given the challenges of 

matching cases, we did not match for gender. The level of premorbid ID was not available 

for all of the DS cases, thus it was not possible to control for this variable in the analysis.

Quantitative real-time RT-PCR

Frozen brain tissue was pulverized using a mortar and pestle on dry ice with liquid nitrogen 

and the brain powder was stored at -80°C. RNA was extracted from approximately 80mg 

frozen pulverized tissue using the Trizol Plus RNA Purification System (Life Technologies, 

Grand Island NY) according to the manufacturer's instructions. RNA was quantified using 

the Biospec Nano spectrophotometer (Shimadzu, Columbia MD) and cDNA was reverse 

transcribed using the cDNA High Capacity kit (Applied Biosystems, Foster City CA) 

according to the manufacturer's instructions. Real-time PCR was performed using Taqman 

gene expression probes shown in Table 2 (Applied Biosystems, Foster City CA). All gene 

expression data were normalized to 18S rRNA expression. Fold-change was determined 

using the 2(–delta delta Ct) method (Livak and Schmittgen, 2001).

Aβ ELISAs

Aβ was extracted from tissue measured as previously described (Beckett, et al., 2010). 

Briefly, frozen cortical samples were extracted sequentially in ice cold phosphate buffered 

saline (PBS, pH 7.4) with a complete protease inhibitor cocktail (PIC; Amresco, Solon, OH) 

and centrifuged at 20, 800 × g for 30 min. at 4°C. Following centrifugation, the supernatant 

was collected and the pellets were sonicated (10 × 0.5 sec pulses at 100W, Sonic 

Dismembrator, Fisher Scientific, Pittsburgh, PA) in 2% sodium dodecyl sulfate (SDS) with 

complete protease inhibitor and centrifuged at 20, 800 × g for 30 min. at 14°C. The 

supernatant was again collected and the remaining pellets were sonicated in 70% formic acid 

(FA), followed by centrifugation at 20, 800 × g for 1 hour at 4°C. Samples were stored at 

-80°C until time of assay.
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FA-extracted material was initially neutralized by a 1:20 dilution in trisphosphate buffer (1 

M Tris base, 0.5 M Na2HPO4), followed by a further dilution as needed (1:5 to 1:20, for a 

final dilution of 1:100 to 1:400) in Antigen Capture (AC) buffer (20mM Na3PO4, 0.4% 

Block Ace (AbD Serotec, Raleigh, NC), 0.05% NaN3, 2mM EDTA, 0.4M NaCl, 0.2% BSA, 

0.05% CHAPS, pH 7). SDS soluble fractions were diluted as needed (1:20 to 1:50) in AC 

buffer alone. PBS fractions were diluted 1:4 in AC buffer alone.

Aβ×-40 and Aβ×-42 were measured using a standard, well-characterized two-site sandwich 

ELISA as described previously [47]. Briefly, an Immulon 4HBX plate was coated with 0.5 

μg antibody per well, incubated overnight at 4°C, and blocked with a solution of Synblock 

(AbD Serotec, as per the manufacturer's instructions). Antigen capture was performed using 

monoclonal antibody Ab9 (against Human Aβ 1-16). Antigen detection was performed using 

biotinylated antibodies 13.1.1 (end-specific for Aβ 1-40) and 12F4 (end-specific for Aβ 

1-42; Covance, Princeton, NJ), followed by NeutraVidin-HRP (Pierce Biotechnologies, 

Rockford, IL)

A synthetic Aβ peptide standard was run on the same plate for comparison, and standards 

and samples were run at least in duplicate; Aβ values were determined by interpolation 

relative to the standard curve. Plates were washed between steps with standard PBS 

containing 0.05% Tween-20 (2-4×) followed by PBS (2-4×). Plates were developed with 

TMB reagent (KPL, Inc., Gaithersburg, MD), stopped with 6% o-phosphoric acid, and read 

at 450 nm using a multiwell plate reader (BioTek, Winooski, VT).

Oligomeric Aβ from the SDS-soluble fraction was measured using a single-site sandwich 

ELISA similar to the one described above, except the same antibody (4G8; Covance, 

Princeton, NJ) was used for capture and detection. SDS samples were diluted 1:50 in AC 

buffer. Synthetic Aβ 42 oligomers were used to prepare a standard curve; oligomeric Aβ 

values were determined by interpolation relative to the standard curve.

Western blot

Protein was extracted from pulverized brain powder, prepared as described above, and 

quantified using the BCA protein assay kit (Thermo Scientific, Rockford, IL), according to 

manufacturer's instructions. 30μg protein samples from each lysate were run on a denaturing 

4-20% SDS-PAGE gel. The gel was transferred onto a nitrocellulose membrane using the 

iBlot dry transfer system (Invitrogen, Carlsbad, CA), and Western blots were performed for 

CD86 (mouse anti-human CD86, 1:3000, BD Biosciences, San Jose, CA) or CD64 / FcgR1 

(mouse anti-human CD64, 1:1000, BD Biosciences, San Jose, CA) as described previously 

(Wilcock, et al., 2008). The blots were stripped using Restore stripping buffer (Thermo 

Scientific, Rockford, IL) and re-probed using the above protocol for β-actin (Rabbit anti-β-

actin, 1:10, 000, Cell Signaling Technology, Danvers, MA). The blots were imaged on the 

Odyssey imager and semi-quantitative densitometry analysis was performed using the 

Odyssey Imaging Software (Licor, Lincoln, NE).
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Immunohistochemistry

Fixed tissue was available for 30 of 94 cases described in Table 1 that had frozen tissue. To 

increase our sample size, we acquired additional cases to provide sufficient cases with fixed 

tissue to measure HLA-DR by immunohistochemistry as described in Table 1. Tissue 

sections from the frontal cortex were sectioned by vibratome at 50 μm and stained by free-

floating immunohistochemistry for HLA-DR (MHC-II; Dako North America, Inc. 

Carpinteria, CA) using previously described methods (Sarsoza, et al., 2009). Briefly, the 

protocol consisted of overnight incubation with the primary antibody, incubation with anti-

mouse secondary antibody, amplification and detection with an ABC peroxidase kit and 

visualization with a DAB substrate kit (both from Vector Laboratories., Burlingame, CA). 

Sections were mounted on glass slides and coverslipped with Depex mounting media. The 

extent of immunolabeling was determined using “loads” as described previously (Head et 

al., 2008)

Statistical Analysis

Because matching was performed at the group level and not the individual level, paired 

analysis was not used for any endpoint. Student's t-test was used to compare age and PMI 

between each pathology group and its control. Similarly, two-group comparisons of SDS, 

PBS, and FA Aβ40 and 42 as well as oligomeric Aβ levels were performed using Wilcoxon's 

rank sum test. Reported p values for Wilcoxon tests are based on the normal approximation 

to the Z distribution. Group differences in HLA-DR immunoreactivity and 

neuroinflammatory gene expression were assessed between pathology groups and their 

controls, and between AD and DSAD, with Student's t-test on the log-transformed values. 

All analyses were performed using SAS/STAT 9.3® (SAS Institute, Inc., Cary, NC), with 

the exception of the densitometry analyses, which was performed as described above using 

Odyssey Imaging Software (Licor, Lincoln, NE).

Results

A total of 97 cases were analyzed (Table 1). Age-matching was successful for each 

pathology group and its control such that there were no statistically significant differences. 

PMI-matching was less successful in that although there were no differences between DS 

and YC or AD and OC, PMI was different between DSAD and MidC, with MidC have 

significantly longer PMI than DSAD (p<0.0001). PMI was not different between DSAD and 

AD.

As expected, Aβ levels were significantly increased relative to their controls in both the DS 

and DSAD brains as well as the sporadic AD brains (Figure 1). However, the DSAD brains 

showed significantly increased SDS soluble Aβ40 and FA soluble Aβ42, as well as higher 

levels of oligomeric Aβ (Figure 1). These data are consistent with previously shown DS and 

AD Aβ levels (Cenini, et al., 2012, Martin, et al., 2014). Overall, DSAD tended towards 

higher levels of Aβ40, Aβ42, and oligomeric Aβ relative to sporadic AD cases.

To assess microglial “activation”, immunohistochemistry for HLA-DR, a major 

histocompatibility complex (MHC) class II cell surface receptor, was used in a subset of 
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fixed frontal cortex autopsy cases. There was little to no HLA-DR immunoreactivity in any 

of the control tissue, regardless of age and regardless of gray or white matter sampling 

(Figure 2; all comparisons of pathology group to control were significant at p < 0.05). 

Further, despite the high levels of Aβ in the DS brains as shown in Figure 1, there was a 

very low or absent HLA-DR immunoreactivity associated with soluble or insoluble Aβ 

accumulation measured by ELISA in DS cases without AD pathology. In contrast, the 

DSAD group, which showed the highest levels of Aβ deposition, had significantly less 

HLA-DR immunoreactivity than the AD brains (Figure 2; p < 0.05 for both gray and white 

matter).

We next went on to characterize the neuroinflammatory state of the brains. We performed 

gene expression analysis of markers associated with the macrophage phenotypes M1, M2a, 

M2b and M2c. We found that the sporadic AD brain showed decreased expression of M1 

markers IL1β and M2b markers CD86 and FcgR1, as well as increased expression of M2a 

marker CHI3L1 and M2c marker TGFβ1 when compared to age-matched non-demented 

controls (Figure 3A). The young DS brains with pre-AD neuropathology and were less than 

40 years of age showed a heightened overall neuroinflammatory response relative to their 

age matched, non-DS controls: 8 of 11 markers showed a fold-change of at least 2 compared 

to control. Although only IL-12 was statistically significantly increased relative to control, 

we note that the young DS group comprised only 7 cases. Furthermore, CD86, FcgR1, IL1β, 

TGFβ1 and CHI3L3 were also significantly increased when compared to our sporadic AD 

cases. Interestingly, the DSAD samples showed significantly elevated levels of M2a 

(CHI3L3 and IL-1Ra), M2b (CD86), and M2c (TGFB) markers; 10 of 11 markers overall 

showed a fold-change of at least 3. Of particular interest is the elevation of M2b markers, 

CD86 and FcgR1 (Figure 3C). Even at the end stages of AD we have not observed 

elevations in M2b markers in human brain tissue, and in this study those markers are in fact 

significantly reduced in sporadic AD.

In order to confirm the elevations in M2b markers, a change we have not previously 

observed in human brain tissue, we performed Western blot analysis for both CD86 and 

FcgR1 (Figure 4). The CD86 Western blots produced one band, located at 56 KDa. 

Densitometry analysis of the band, normalized to the densitometry of the β-actin band on the 

same blot, showed a significantly increased density in the DSAD brains compared to DS, 

AD or any of the age-matched controls (Figure 4). In addition, the FcgR1 (CD64) Western 

blots produced one band, located at 76KDa, also showed a significantly increased density in 

the DSAD brains compared to DS, AD or any of the age-matched controls (Figure 4).

Discussion

Neuroinflammation plays a key role in the progression of AD in the general population. In 

DS, these pathways may be particularly important given the overexpression of multiple 

genes associated with pro- and anti-inflammatory processes (Wilcock, 2012, Wilcock and 

Griffin, 2013). We hypothesized that the DS brain may show a bias toward an M1 

phenotype similar to our previous reports in sporadic AD given the predicted pattern of 

inflammatory gene expression. We were surprised to observe a unique inflammatory 

phenotype in DS that has not been reported in sporadic AD, that of an M2b response. 
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Further, Aβ accumulation was higher in DS/AD and HLA-DR immunoreactivity for 

microglia was lower than sporadic AD, confirming existing studies and extending them to 

microglial activation (Cenini, et al., 2012). The implications of this unique phenotype for 

aging and disease progression in DS and response to interventions that may interact with the 

immune system may be critical to the design of therapeutic interventions.

Although neuroinflammation is thought to play a critical role in sporadic AD, there is very 

little known about the aging DS brain (reviewed in (Wilcock, 2012, Wilcock and Griffin, 

2013) with early studies by Griffin's and Lemere's groups strongly suggesting that 

inflammation is a key pathway in DS that should be more fully examined (Griffin and 

Barger, 2010, Griffin, 1989, Griffin, 1998, Mrak and Griffin, 2004, Stoltzner, 2000, Wilcock 

and Griffin, 2013). The scarcity of studies regarding the inflammatory changes in the DS 

brain is particularly surprising given that chromosome 21 contains genes that are involved in 

many different pro- and anti-inflammatory processes (Wilcock, 2012). We provide novel 

data showing that the extent of HLA-DR immunoreactivity on microglial cells in the frontal 

white and grey matter was lower than that predicted based on the levels of Aβ. It is unclear 

why this is the case, however, the literature is unclear on what expression of HLA-DR 

represents. Clearly, HLA-DR expression is increased under pro-inflammatory conditions 

(Gehrmann, et al., 1993, Schmitt, et al., 2000), but also HLA-DR is increased under repair / 

healing conditions (Gordon and Taylor, 2005, Taylor, et al., 2005). For these reasons, we 

examined expression levels of specific inflammatory markers that inform a phenotype of 

inflammation.

While we predicted an M1 response in the DS brain, we actually observed a robust M2b 

response that was apparent prior to AD neuropathology onset (<40 years) and further 

exacerbated after pathology was observed (>40 years). This would suggest that there might 

be over-riding factors beyond the genetics of DS that are driving this unique phenotype. An 

M2b response is typically associated with the presence of immune complexes (Edwards, et 

al., 2006, Mosser and Edwards, 2008, Sudduth, et al., 2013a). The M2b macrophage was 

described in the periphery by Mosser et al. several years ago (Edwards, et al., 2006). Called 

the type-II activated macrophage, the group elegantly showed that activation of the Fcγ 

receptors by immune complexes switches the macrophage phenotype to this unique state 

characterized by elevations in some M1 markers, particularly IL-1β, TNF-α, and IL-6, while 

there was increased IL-10 and no induction of IL-12 (Mantovani, et al., 2004, Mosser and 

Edwards, 2008).

There were also some markers that were identified to be more specific for an M2b 

phenotype, including CD86 (Edwards, et al., 2006). CD86 is expressed on antigen-

presenting cells and is a ligand for CD28 and CD152 on T-cells, leading to T-cell activation 

(Sansom, et al., 2003). We have shown that intracranial injection of pooled IgG into the 

brain parenchyma of amyloid depositing transgenic mice stimulates an M2b phenotype and 

promotes clearance of amyloid deposits (Sudduth, et al., 2013a), leading us to hypothesize 

that large amounts of IgG in the brain can promote an M2b phenotype through the formation 

of immune complexes. Therefore, we believe it is possible that the robust M2b phenotype 

observed in the DS brain is indicative of a cerebrovascular failure and extravasation of IgG 

into the brain promoting this phenotype.
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The literature pertaining to cerebrovascular abnormalities in DS is sparse, but several reports 

suggest that there are early cerebrovascular abnormalities that highlight a need for careful 

examination of such pathological processes. One such instance found that children with DS 

demonstrate reduced brain perfusion as measured by SPECT and MRI (Aydin, et al., 2007). 

Further, cerebral hypoperfusion was observed in adult DS individuals both with and without 

demonstrated clinical dementia (Deb, et al., 1992). There is little discussion of cerebral 

amyloid angiopathy and hemorrhagic events in DS individuals, but several intriguing case 

studies suggest that these may be prevalent in the DS population (Biskup, et al., 2005, 

Cabrejo, et al., 2006, Mendel, et al., 2010). We hypothesize that accumulation of CAA and 

subsequent vascular leakage results in extravasation of IgG into the brain, promoting the 

M2b phenotype. Future autopsy and longitudinal aging studies can test this hypothesis.

While the current study presents data from autopsy cases that have limited if no clinical data 

and so we cannot speak as to when and how inflammation contributes to dementia per se, 

our findings highlight distinct differences between the DS brain and AD brain that warrant 

further investigation. It is important to note that chromosome 21 contains over 200 genes, 

affecting multiple protein pathways and domains that have not been fully explored in 

relation to aging and could significantly and possibly, adversely, affect clinical trial 

outcomes. Our current studies strongly suggest that, neuroinflammation has unique features 

in the DS aging brain but studies are currently still limited (reviewed in (Wilcock and 

Griffin, 2013)). This suggests a disruption in the inflammatory milieu in DS that could 

directly modulate responses to interventions that include immunotherapy or anti-

inflammatories.
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• The article demonstrates that Down syndrome individuals, pre-dementia, have 

exacerbated neuroinflammation.

• Down syndrome individuals with Alzheimer's diease show a distinct 

neuroinflammatory profile compared to sporadic Alzheimer's disease.

• The neuroinflammation observed in Down syndrome with Alzheimer's disease 

is primarily an M2b state, which may be reflective of co-morbidities along with 

the Alzheimer's pathology, or a unique responsedue to the triplication of 

chromosome 21.
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Figure 1. 
Beta-amyloid levels are increased in Down syndrome and sporadic Alzheimer's disease 

brain. Graphs show PBS soluble, SDS soluble and formic acid soluble Aβ1-40 (AB 40), 

Aβ1-42 (AB 42) and oligomeric Aβ (oligomeric AB) measured by ELISA. * indicates 

P<0.05, ** indicates P<0.01 compared to the corresponding age matched control mean. # 

indicates P<0.05 significance compared to sporadic AD.
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Figure 2. 
HLA-DR immunoreactivity is increased in Down syndrome with Alzheimer's disease brain 

and sporadic Alzheimer's disease brain. Panels A-D show representative images from frontal 

cortex sections of old controls (A), young Down syndrome (B), Down syndrome with 

Alzheimer's disease (C) and sporadic Alzheimer's disease (D). Scale bar in A for A-D = 

50mm. Panel E shows percent area occupied by positive immunoreactivity for gray matter 

and white matter. ** indicates P<0.01 compared to the corresponding age-matched controls 

mean. # indicates significantly increased compared to Down syndrome with AD (DS/AD).
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Figure 3. 
Down syndrome brain shows a significantly different neuroinflammatory profile than 

sporadic Alzheimer's disease. Panels A – C show fold change in gene expression for M1, 

M2a, M2b and M2c specific genes for sporadic AD (A; AD> 67), young Down syndrome 

(B; DS Aged 0-40), and Down syndrome with AD (C; DS with AD>40). Fold change was 

calculated from the corresponding age-matched controls and these are indicated by the 

dashed line on each graph. * indicates P<0.05, ** indicates P<0.01 for a given gene 

compared to the corresponding age-matched controls.
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Figure 4. 
CD64 and CD86 markers of an M2b phenotype are increased significantly in brains of 

Down syndrome with Alzheimer's disease. Representative Western blots for CD64, CD86 

and our loading control, β-actin are shown for Down syndrome (DS), Down syndrome with 

Alzheimer's disease (DS/AD), sporadic Alzheimer's disease (AD), young controls (Young 

C), middle-aged controls (Mid C) and old controls (Old C). The graphs show band 

densitometry analysis where the band densitometry is normalized to the density of the β-

actin band for a given sample. ** indicates P<0.05 compared to all other experimental 

groups.
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Table 1

Group characteristics of samples used for the study.

Group N Age* PMI*

Young controls (frozen) 16 (12M, 4F) 20.5 (8.8) 17.8 (5.1)

Young controls (fixed) 9 (5M, 4F) 20.7 (3.8) 12.8 (2.1)

Middle aged controls (frozen) 26 (20M, 6F) 49.7 (10.1) 13.6 (4.9)

Middle aged controls (fixed) 13 (7M, 6F) 51.06 (2.4) 14.1 (1.9)

Old controls (frozen) 8 (2M, 6F) 81.6 (4.7) 3.3 (1.1)

Old controls (fixed) 9 (3M, 6F) 81.6 (4.7) 3.3 (1.1)

Young DS (frozen) 9 (7M, 2F) 26.4 (14.3) 17.7 (7.2)

Young DS (fixed) 7 (4M, 3F) 26.4 (14.3) 17.7 (7.2)

DS with AD (frozen) 29 (14M, 15F) 52.0 (6.9) 6.8 (6.2)

DS with AD (fixed) 11 (6M, 5F) 55.8 8.0 (2.0)

Sporadic AD (frozen) 10 (6M, 4F) 80.0 (7.1) 6.8 (6.2)

Sporadic AD (fixed) 8 (6M, 2F) 81.3 (2.8) 5.5 (1.0)

*
Note: results presented are mean (SD).

Neurobiol Aging. Author manuscript; available in PMC 2016 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wilcock et al. Page 18

Table 2

Taqman probes used to measure gene expression changes.

Gene of interest PMID Taqman ID

IL1β NM_000576.2 Hs00174097_m1

IL-6 NM_000600.3 Hs00174131_m1

TNFα NM_000594.2 Hs00174128_m1

IL-12 NM_000882.3 Hs99999036_m1

CHI3L1 NM_001276.2 Hs00609691_m1

IL-1Ra NM_173841.2 Hs00893626_m1

MRC1 NM_002438.2 Hs00267207_m1

IL-10 NM_000572.2 Hs99999035_m1

CD86 NM_175862.4 Hs01567025_m1

FCγR1B NM_000566.3 Hs00174081_m1

TGFβ NM_000660.4 Hs99999918_m1
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