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Binimetinib inhibits MEK and is effective
against neuroblastoma tumor cells with
low NF1 expression

Sarah E. Woodfield1, Linna Zhang1, Kathleen A. Scorsone1, Yin Liu2,3 and Peter E. Zage1,4*
Abstract

Background: Novel therapies are needed for children with high-risk and relapsed neuroblastoma. We hypothesized
that MAPK/ERK kinase (MEK) inhibition with the novel MEK1/2 inhibitor binimetinib would be effective in neuroblastoma
preclinical models.

Methods: Levels of total and phosphorylated MEK and extracellular signal-regulated kinase (ERK) were examined
in primary neuroblastoma tumor samples and in neuroblastoma cell lines by Western blot. A panel of established
neuroblastoma tumor cell lines was treated with increasing concentrations of binimetinib, and their viability was
determined using MTT assays. Western blot analyses were performed to examine changes in total and phosphorylated
MEK and ERK and to measure apoptosis in neuroblastoma tumor cells after binimetinib treatment. NF1 protein levels in
neuroblastoma cell lines were determined using Western blot assays. Gene expression of NF1 and MEK1 was examined
in relationship to neuroblastoma patient outcomes.

Results: Both primary neuroblastoma tumor samples and cell lines showed detectable levels of total and
phosphorylated MEK and ERK. IC50 values for cells sensitive to binimetinib ranged from 8 nM to 1.16 μM, while
resistant cells did not demonstrate any significant reduction in cell viability with doses exceeding 15 μM. Sensitive cells
showed higher endogenous expression of phosphorylated MEK and ERK. Gene expression of NF1, but not MEK1,
correlated with patient outcomes in neuroblastoma, and NF1 protein expression also correlated with responses to
binimetinib.

Conclusions: Neuroblastoma tumor cells show a range of sensitivities to the novel MEK inhibitor binimetinib. In
response to binimetinib, sensitive cells demonstrated complete loss of phosphorylated ERK, while resistant cells
demonstrated either incomplete loss of ERK phosphorylation or minimal effects on MEK phosphorylation, suggesting
alternative mechanisms of resistance. NF1 protein expression correlated with responses to binimetinib, supporting the
use of NF1 as a biomarker to identify patients that may respond to MEK inhibition. MEK inhibition therefore represents
a potential new therapeutic strategy for neuroblastoma.
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Background
Neuroblastoma is the most common extracranial solid
tumor in children, and patients with high-risk disease
have very poor outcomes, with long term disease-free sur-
vival rates between 35 and 45 % despite aggressive treat-
ment regimens [1–3]. High-risk cases are characterized by
frequent relapses and tumors resistant to established treat-
ment, and novel therapies are sorely needed for patients
with high-risk and relapsed neuroblastoma. Since aberrant
growth factor receptor expression and activity have been
shown to contribute to neuroblastoma pathogenesis, down-
stream intracellular signaling pathways, including the
RAS/mitogen-activated protein kinase (MAPK) pathway,
represent potential therapeutic targets.
The RAS/MAPK signaling pathway is one of the most

frequently dysregulated signaling cascades in human can-
cer. In the canonical pathway, activity of the small GTPase
RAS leads to sequential phosphorylation and activation of
three protein kinases, BRAF, MAPK/extracellular signal-
regulated kinase (ERK) kinase 1/2 (MEK1/2), and extra-
cellular signal-regulated kinase 1/2 (ERK1/2) [4, 5].
Physiological activation of MEK1/2 and ERK1/2 is re-
quired for multiple normal cellular processes; however,
overactivation of the pathway can lead to malignant
transformation. Both MEK1 and MEK2 represent poten-
tial targets for therapeutic development due to their hom-
ology, narrow substrate specificities, and unique structural
characteristics.
Targeting MEK1/2 to inhibit the oncogenic activity of

the RAS/MAPK signaling pathway has been shown to be
effective in in vitro and in vivo preclinical studies [6–11].
Inhibitor binding to the MEK1/2 proteins leads to con-
formational changes that lock unphosphorylated MEK1/2
into catalytically inactive states [12–14]. Since this inhibi-
tor binding site is separate from the ATP-binding site, the
mechanism of inhibition is independent of ATP and, thus,
off-target effects are largely avoided [14, 15]. Such studies
have led to the development of more than a dozen small-
molecule inhibitors of MEK. Binimetinib is an ATP-
noncompetitive inhibitor of both MEK1 and MEK2. Initial
in vitro kinase assays demonstrated MEK inhibition with
an IC50 of 12 nM without inhibition of other kinases at
doses up to 10 μM [16, 17], and the safety and pharmaco-
kinetics of binimetinib have been evaluated in adult
cancer patients in multiple phase I and II studies [18–26].
The role of the RAS/MAPK pathway in neuroblastoma

pathogenesis is poorly understood. Activating mutations
in the genes of members of the RAS-MAPK pathway
have been identified in a small subset of neuroblastoma
tumors at diagnosis [27] and in many neuroblastoma
tumors after relapse [28]. Furthermore, recent studies
have identified a potential role for the Ras-GTPase acti-
vating protein (RasGAP) NF1 as a mediator of CRA re-
sistance in neuroblastoma cells [29], suggesting key
roles for the RAS/MAPK pathway both in neuroblast-
oma differentiation and relapse. Based on the evidence for
a role of RAS/MAPK signaling in oncogenesis, we hypothe-
sized that binimetinib may show significant antitumor ac-
tivity in preclinical studies of neuroblastoma.

Methods
Cells and culture conditions
The neuroblastoma cell lines used in this study have
been previously described [30–38] and were generously
provided by Shahab Asgharzadeh (Children’s Hospital
Los Angeles, Los Angeles, CA), Susan Cohn (The Uni-
versity of Chicago Children’s Hospital, Chicago, IL), Jill
Lahti (St. Jude Children’s Research Hospital, Memphis,
TN), John Maris (Children’s Hospital of Philadelphia,
Philadelphia, PA), William Weiss (The University of
California, San Francisco, San Francisco, CA) or were
purchased from the American Type Culture Collection
(ATCC; Rockville, MD). Cell lines were grown at 37° in
5 % CO2 in appropriate media (Invitrogen, Carlsbad, CA)
supplemented with 10 % heat-inactivated fetal bovine
serum (FBS) (Life Technologies, Grand Island, NY), L-
glutamine, sodium pyruvate, and non-essential amino
acids [39]. All cell lines were authenticated by deoxy-
ribonucleic acid (DNA) profiling prior to use.

Patient-derived tumor samples
The patient tumor samples employed in these studies
were obtained from the Texas Children’s Hospital Research
Tissue Support Services tissue bank. Fresh, resected
neuroblastoma tumor samples were collected from pa-
tients after informed consent from either the patients or
their guardians was obtained via an Institutional Review
Board-approved tissue banking protocol. Samples were
placed in sterile human stem cell media at the time of col-
lection and flash frozen in liquid nitrogen for storage. All
experiments on patient tissue samples were performed in
compliance with the Helsinki Declaration and were
approved by the Baylor College of Medicine Institutional
Review Board (H-29553).

Therapeutic agents
Binimetinib was generously provided by Novartis, Inc..
A 10 mM stock solution was generated in dimethyl
sulfoxide (DMSO; Sigma-Aldrich, St. Louis, MO) and
stored at −20 °C. Binimetinib was diluted in PBS or
appropriate media immediately before use.

RAS/MAPK assays
Patient tumor samples were homogenized and incubated
for 30 min in radioimmunoprecipitation assay (RIPA) pro-
tein lysis buffer containing protease inhibitors (Sigma)
and phosphatase inhibitors (Roche, San Francisco, CA)
with homogenization every 10 min as previously described
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[39]. Lysates were centrifuged and supernatants were
collected. Neuroblastoma cells were plated in 100-mm
plates and allowed to adhere and proliferate for 48 h.
Media was replaced 24 h after plating. Cells from plates
at approximately 80 % confluency were then harvested
and lysed as above.
To measure the effects of binimetinib on MEK and

ERK phosphorylation, 2 × 106 neuroblastoma cells were
plated in 60-mm plates and allowed to adhere and prolif-
erate for 48 h. Media was replaced 24 h after plating. Cells
were treated with either 1 μM binimetinib or media alone
(vehicle treatment) for one hour. Cells were harvested and
lysed as above at the completion of each experiment.
Protein concentration in each sample lysate was mea-

sured using a protein assay dye reagent (Bio-Rad, Hercules,
CA). 30–50 μg total denatured protein from each cell line
or tumor sample lysate was separated by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
and transferred to nitrocellulose or polyvinylidene fluoride
(PVDF) membranes (Invitrogen, Carlsbad, CA) using
standard techniques. Membranes were blocked in Odyssey
blocking buffer (Li-Cor, Lincoln, NE) for two hours at room
temperature and then incubated overnight with primary
antibodies to total MEK (9126; 1:1000; Cell Signaling,
Danvers, MA), phosphorylated MEK (9154; 1:1000; Cell
Signaling), total ERK (4695; 1:1000; Cell Signaling), phos-
phorylated ERK (4370; 1:2000; Cell Signaling), NF1 (sc-67;
1:50; Santa Cruz Biotechnology), Actin (A5316 or A5441;
1:5000; Sigma), or Vinculin (1:10000; ab1290002; Abcam).
Bound primary antibodies were incubated for two
hours at room temperature with IRDye800 conjugated
affinity purified anti-rabbit or anti-mouse secondary
antibodies (1:5000; Rockland, Gilbertsville, PA), and
the signal was visualized using an Odyssey infrared
imaging system (Li-Cor). Immunoblot band densities
were determined with ImageJ (v1.46r, NIH) as previ-
ously described [39]. Relative intensity levels were de-
termined by dividing the band intensity of the total
protein by the intensity of the loading control protein
and by dividing the intensity of the phosphorylated
protein by the intensity of the total protein.

Cell viability assays
The viability of cells exposed to binimetinib was deter-
mined using a modified methyl tetrazolium (MTT; Sigma)
assay as previously described [39]. 0.35–0.9 × 105 cells/ml
of exponentially growing cells were plated in wells of
96-well plates. 24 h later, binimetinib was added to each
well at specified concentrations, and the plates were in-
cubated at 37 °C. 24, 48, 72, 96, or 120 h later, MTT
was added to each well and plates were incubated at
37 °C for four h to allow for reduction of MTT to its in-
soluble formazan by remaining viable cells. Medium was
aspirated and 150 μl of DMSO was added to each well to
solubilize precipitated MTT. The optical density (OD)
was immediately measured at 550 nm using a microplate
spectrophotometer (Molecular Devices, Sunnyvale, CA).
Relative cell viability was calculated by subtracting the
background OD of media alone and then dividing by the
OD of control wells. Replicates of six wells were used for
each drug concentration and assays were duplicated on
separate days. IC50 values were derived using best-fit
trendlines as previously described [39].
To determine cell appearance before and after treatment

with binimetinib, cells were plated as above and treated
with either 1 μM or 10 μM binimetinib for 72 h. Cells
were visualized using an inverted microscope (Nikon
Eclipse TE-300, Nikon, Tokyo, Japan) and images were
acquired on an RS Photometrics CoolSNAP color digital
camera (Roper Scientific) using RS Photometrics Image
Software Version 1.9.2 (Roper Scientific).

Apoptosis assays
For assays to measure induction of apoptosis, 2 × 106

neuroblastoma cells were plated in 60-mm plates and
allowed to adhere and proliferate for 24 h. Cells were then
treated with either 1 μM binimetinib, 10 μM binimetinib,
or media alone (vehicle treatment) for six or eight hours
(CHP-212 cells), 96 or 120 h (SJ-NB-10 cells), or 120 h
only (CHP-134, NGP cells). Cells were harvested and lysed
at the completion of each experiment as described above.
Thirty please use mg (with symbol for "micro") total
denatured protein from each cell line was separated by
SDS-PAGE and transferred to nitrocellulose membranes
(Invitrogen) as above. Western blots were performed as
described above using primary antibodies to Poly(ADP-ri-
bose) polymerase (PARP; 1:500, 9542, Cell Signaling) or
Vinculin (1:10000; ab1290002; Abcam), anti-rabbit sec-
ondary antibody (1:5000; Rockland, Gilbertsville, PA), and
the Odyssey infrared imaging system (Li-Cor).

Analysis of patient outcomes compared to NF1 and MEK1
expression
We obtained microarray analysis results of neuroblastoma
patient tumor samples from the National Cancer Institute
(NCI) Oncogenomics Data Center Section (available
at: http://pob.abcc.ncicrf.gov/cgi-bin/JK) from the databases
“Neuroblastoma Prognosis Database,” “Neuroblastoma
Prognosis Database-Oberthuer Lab,” and “Exon Array
Neuroblastoma Database” as previously described [40].
All available patient data from these databases was in-
cluded in our analysis. Using gene expression results
from these databases, patients were divided into high and
low NF1 and MEK1 gene expression groups by median-
centered log2 ratios as detailed on the NCI Oncogenomics
database website. Kaplan-Meier survival curves were
plotted using the open-source statistical packages in R
(R Foundation for Statistical Computing, Vienna, Austria;

http://pob.abcc.ncicrf.gov/cgi-bin/JK
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available at: http://www.r-project.org). We compared sur-
vival curves between the NF1 and MEK1 gene expression
groups using log-rank tests to examine the association be-
tween expression and patient survival outcomes in the
whole cohort and in patients with stage 4 neuroblastoma
and in those with stage 1, 2, 3, or 4S neuroblastoma.
We obtained additional microarray analysis results of

neuroblastoma patient tumor samples from the R2
Genomics Analysis and Visualization Platform (http://
r2.amc.nl) using the Versteeg database. MEK1 and MEK2
probesets in each database with the highest average signals
were selected for analysis. Kaplan-Meier analyses were
performed online and the resulting survival curves and
p values (obtained via the log-rank test) were downloaded
as previously described [41].

Results
Neuroblastoma patient samples and tumor cell lines
demonstrate RAS/MAPK pathway expression and activity
To examine the expression of components of the RAS/
MAPK signaling pathway in neuroblastoma tumors, a
MEK

ERK

p-MEK

p-ERK

Vinculin

A B

Vincu

Vincu

C D

Fig. 1 Neuroblastoma patient samples and cell lines show expression and acti
patient samples were lysed and Western blots for total MEK, phosphorylated M
Vinculin was used as a loading control. b A panel of nine neuroblastoma cell li
p-MEK, total ERK, and p-ERK were performed. Actin and vinculin were used as l
band intensities were determined and plotted for each tested tumor sample a
cohort of patient tumor samples was analyzed by Western
blot for total and phosphorylated MEK and ERK. Patient
tumor samples showed a range of expression of total and
phosphorylated components of this pathway (Fig. 1a, c).
Neuroblastoma cell lines also showed varying levels of
total and phosphorylated MEK and ERK (Fig. 1b, d).
Although there was no apparent correlation between
levels of phosphorylated MEK and phosphorylated ERK in
these samples and cell lines, detectable levels of both
phosphorylated MEK and ERK suggested activity of this
pathway in neuroblastoma tumor cells and also suggested
the potential efficacy of MEK inhibitors in neuroblastoma
preclinical models.

Neuroblastoma tumor cell responses to binimetinib
With the demonstrated activity of the RAS/MAPK path-
way in neuroblastoma tumor cells and tumors, we hy-
pothesized that MEK inhibition would lead to decreased
cell viability. To investigate this hypothesis, neuroblast-
oma tumor cell lines were tested for sensitivity in vitro
to the novel MEK1/2 inhibitor binimetinib. Four cell
lin

lin

vity of components of the RAS/MAPK signaling pathway. a Neuroblastoma
EK (p-MEK), total ERK, and phosphorylated ERK (p-ERK) were performed.
nes, HeLa cells and 293T cells were lysed and Western blots for total MEK,
oading controls. c, d Relative MEK, p-MEK, ERK, and p-ERK western blot
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(See figure on previous page.)
Fig. 2 Neuroblastoma cell lines show bimodal responses to treatment with the MEK1/2 inhibitor binimetinib. a-f Neuroblastoma cells were treated
with increasing concentrations of binimetinib for 24, 48, 72, 96, or 120 h and cell viability was determined by MTT assays. CHP-212 (log scale)
(a), SK-N-BE(2) (b), SK-N-AS (c), and SJ-NB-10 (d) cells are sensitive to binimetinib treatment; e CHP-134, Kelly, LAN-5, NGP, and SK-N-DZ cells
maintain resistance to binimetinib treatment after 120 h of drug exposure. f IC50 values (μM) were calculated for cells treated with binimetinib
for 120 h. g Densitometry analysis was performed on Western blots from Fig. 1b to quantify relative phospho-ERK (pERK/ERK) protein levels in
neuroblastoma tumor cell lines sensitive to binimetinib (“sensitive”) or resistant to binimetinib (“resistant”) h CHP-212 cells were treated with
1 μM binimetinib for 6 h (left two lanes) or 8 h (right two lanes) and SJ-NB-10 cells were treated with 1 μM binimetinib for 96 h (left two lanes) or
120 h (right two lanes). CHP-134 and NGP cells were treated with 1 μM or 10 μM binimetinib for 120 h. Cells were then lysed and Western blots for
total and cleaved PARP were performed. Vinculin was used as a loading control
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lines were sensitive to binimetinib and reached <50 %
viability after 24 to 120 h of treatment (Fig. 2a–d) while
five cell lines were resistant to the drug (Fig. 2e). Resist-
ant cell lines were largely unaffected by treatment with
binimetinib for up to five days with doses up to 15 μM
(Fig. 2e, Additional file 1), while IC50 values for the
sensitive cell lines ranged from 8 nM to 1.16 μM after
120 h of drug treatment (Fig. 2f ). Resistant cell lines
did not demonstrate any significant morphological changes
in response to binimetinib, while sensitive cell lines
demonstrated cell rounding and detachment from the
surface, consistent with cell death (Additional file 2).
Binimetinib

SJ-NB-10CHP-212 SK-

+ +- - -
A

B
Binimetinib

CHP-134

+-

Kelly
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LA

-

Fig. 3 Binimetinib inhibits RAS/MAPK pathway activity. Neuroblastoma cell
Western blots for total MEK, phospho-MEK (p-MEK), total ERK, and phospho
Responsiveness of cells to binimetinib correlated with
their levels of RAS/MAPK signaling pathway activity.
Cell lines more sensitive to binimetinib tended to show
higher levels of phosphorylated MEK and ERK proteins
(Fig. 2g), while cell lines least sensitive to binimetinib
showed lower levels of phosphorylated MEK and ERK
proteins (Fig. 2g).
In order to determine the mechanism of decreased

neuroblastoma tumor cell viability after treatment with
binimetinib, we analyzed cells for cleavage of PARP before
and after treatment with binimetinib. Treatment with bini-
metinib led to an increase in PARP cleavage in sensitive but
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not resistant cell lines (Fig. 2h), indicating that the reduc-
tion in viability from binimetinib treatment is at least par-
tially due to induction of apoptosis in sensitive cell lines.

Binimetinib inhibits RAS/MAPK pathway activity
In order to demonstrate inhibition of MEK and ERK in
neuroblastoma tumor cells, neuroblastoma tumor cell lines
were treated with binimetinib or media alone for 1 h.
Fig. 4 Outcomes of patients with neuroblastoma based on MEK1 and NF1
were evaluated for outcomes of patients with neuroblastoma and Kaplan-M
patients who have tumors with high NF1 gene expression (n = 177; gray) a
b Estimated overall survival for patients with stage 4 neuroblastoma who hav
and for patients with tumors of all other stages with high (n = 142; gray
overall survival for patients who have tumors with high MEK1 gene expr
(log-rank test; p = 0.44). d Estimated overall survival for patients with sta
dashed black) MEK1 gene expression and for patients with tumors of all
MEK1 gene expression
Treatment of sensitive cell lines with binimetinib led to in-
creased MEK phosphorylation and inhibition of ERK
phosphorylation without changes in total levels of MEK
and ERK protein (Fig. 3a, b). Resistant cell lines demon-
strated either less robust increases in phosphorylation
of MEK or incomplete inhibition of phosphorylated
ERK (Fig. 3b), suggesting multiple possible mechanisms
of resistance.
gene expression. The NCI Oncogenomics gene expression databases
eier survival curves were generated. a Estimated overall survival for

nd low NF1 gene expression (n = 176; black) (log-rank test; p = 1.88e-11).
e high (n = 35; black) and low (n = 90; dashed black) NF1 gene expression
) and low (n = 86; dashed gray) NF1 gene expression. c Estimated
ession (n = 154; gray) and low MEK1 gene expression (n = 153; black)
ge 4 neuroblastoma who have high (n = 44; black) and low (n = 54;
other stages with high (n = 110; gray) and low (n = 99; dashed gray)
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Fig. 5 Neuroblastoma cell lines sensitive to binimetinib show lower
levels of NF1 protein expression. a A panel of neuroblastoma cell
lines was analyzed by Western blot for NF1 protein expression levels.
Actin was used as a loading control. b Densitometry analysis was
performed to quantify relative NF1 protein levels in neuroblastoma
tumor cell lines sensitive or resistant to binimetinib
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NF1 expression correlates with responses of cells to
binimetinib
Expression of the RAS-GTPase activating protein (GAP)
protein NF1 is associated with activity of the RAS/
MAPK pathway, and mutations in or deletions of the
NF1 gene have been found in a number of cancers, in-
cluding neuroblastoma [29, 42]. To evaluate whether
gene expression of RAS/MAPK pathway members was
associated with neuroblastoma patient outcomes, we eval-
uated the associations of NF1 and MEK1/2 gene expres-
sion with neuroblastoma patient outcomes using results
from microarray analyses of neuroblastoma tumors. NF1
gene expression, but not MEK1 or MEK2 gene expression,
was strongly associated with patient outcomes in neuro-
blastoma and appeared to have prognostic effects inde-
pendent of tumor stage (Fig. 4; Additional file 3).
Loss of or reduced expression of NF1 leads to hyperac-

tivation of RAS and of its downstream signaling com-
ponents such as MEK and ERK [43–45]. Thus, we
hypothesized that NF1 expression in neuroblastoma
tumor cells might influence responses to binimetinib
treatment. To determine whether NF1 protein levels
correlated with responses to binimetinib, we examined
levels of NF1 protein in neuroblastoma cell lines. Cell
lines sensitive to binimetinib treatment had the lowest
NF1 protein levels, while resistant cell lines showed the
highest levels of NF1 protein (Fig. 5), suggesting that
NF1 levels may be useful as a biomarker to identify
neuroblastoma patients that would be more likely to re-
spond to MEK inhibitor therapy.

Discussion
New treatment strategies are sorely needed for patients
with high risk and relapsed neuroblastoma, and we have
shown that MEK inhibition with binimetinib may repre-
sent an effective therapy for these patients. We have
shown that neuroblastoma tumor cells and patient sam-
ples show expression and activity of components of the
RAS/MAPK signaling pathway, supporting a role for this
pathway in neuroblastoma pathogenesis. We have also
shown that multiple neuroblastoma tumor cell lines were
sensitive to treatment with the MEK inhibitor binimetinib,
with sensitivity to MEK inhibition linked to NF1 protein
expression and levels of phosphorylated MEK and ERK.
Furthermore, we have shown that NF1 gene expression is
associated with neuroblastoma patient outcomes, sug-
gesting that MEK inhibitors would be most effective in
patients with the worst outcomes and that NF1 expression
represents a potentially useful biomarker for response to
RAS/MAPK pathway inhibition.
GTPase-activating proteins (GAPs), including NF1,

function as negative regulators of RAS. RAS cycles
between an active, GTP-bound state and an inactive,
GDP-bound conformation. The interaction between
RAS and NF1 accelerates the conversion of RAS-GTP
to RAS-GDP, therefore downregulating the activity of
RAS, and loss of NF1 leads to hyperactivation of RAS
and of its downstream signaling components such as
MEK and ERK [43–45]. Previous work has identified
NF1 gene deletions in multiple neuroblastoma cell lines
[29], likely contributing to the lack of NF1 protein seen in
these cell lines and suggesting that neuroblastoma tumors
with reduced or absent NF1 expression are likely to be
sensitive to MEK inhibition.
Upon treatment with binimetinib, neuroblastoma tumor

cells show a bimodal response with some cells being very
sensitive and others being resistant. Our data indicates
that binimetinib strongly suppresses ERK activity in the
sensitive cell lines, leading to apoptosis. However, multiple
neuroblastoma tumor cells are resistant to inhibition of
MEK with binimetinib, with either incomplete inhibition
of ERK phosphorylation or reduced increases in MEK
phosphorylation after treatment. Therefore, mechanisms
of resistance could include alternative signaling pathways
or feedback loops activating ERK in the absence of MEK
activity, leading to resistance to binimetinib. Research is
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ongoing to identify these pathways mediating resistance to
MEK inhibitor therapy.
Binimetinib treatment in adult cancer patients was

generally well-tolerated but was associated with mild to
moderate central serous-like retinopathy, diarrhea and
acneiform dermatitis, similar to other MEK inhibitors
[25, 26, 46]. Currently, multiple clinical trials examining
the safety and efficacy of binimetinib alone and in con-
junction with other drugs for cancer therapy are on-
going. MEK inhibition with binimetinib also results in
the inhibition of other normal physiologic processes,
such as inflammation [16, 47]. Therefore, it will be cru-
cial to identify patient subpopulations most likely to
benefit from MEK inhibitor therapy to minimize the
risk:benefit ratio for patients.

Conclusions
Currently, more than a dozen inhibitors of MEK1 and
MEK2 are in clinical development, including binimeti-
nib. In clinical trials, such inhibitors have shown a range
of efficacy. Unfortunately, in many cases, patients fail to
initially respond to treatment; in other cases, patients re-
spond well at the onset of treatment but later develop
mechanisms of resistance to such drugs. Being able to
identify an appropriate patient population that will re-
spond to inhibition of MEK would facilitate the effective
development and use of such inhibitors. Our data has sup-
ported a model in which levels of NF1 and phosphorylated
MEK and ERK influence the sensitivity of cell lines to
MEK inhibition with binimetinib. However, levels of phos-
phorylated MEK and ERK would be difficult both to ob-
tain and quantify, and therefore our data identifying NF1
as a biomarker that predicts both patient outcomes and
responsiveness of neuroblastoma tumor cells to MEK
inhibition supports a potential role for readily available
genetic testing for NF1 mutations and deletions in tumor
samples. Thus, NF1 may not only function as an easily ob-
tainable prognostic marker to predict disease outcomes
but NF1 gene and protein expression levels may also
represent independent molecular markers for a subset
of neuroblastoma patients that is in need of additional
therapies and that may respond well to MEK inhibition.
Additional files

Additional file 1: CHP-134, Kelly, LAN-5, NGP, and SK-N-DZ cells remain
resistant to binimetinib at doses exceeding 15 μM. Neuroblastoma cells
were treated with increasing concentrations of binimetinib for 120 h and
cell viability was determined by MTT assays. (PPTX 60 kb)

Additional file 2: Effects of binimetinib on neuroblastoma tumor cell
morphology. Neuroblastoma tumor cells were photographed before
treatment and after treatment with 1 μM or 10 μM binimetinib for 72 h.
(PPTX 12467 kb)

Additional file 3: Using the neuroblastoma Versteeg patient data-sets in
the R2 Genomics Analysis and Visualization Platform (http://r2.amc.nl),
patients were divided into high (blue) and low (red) MEK1 (left) and
MEK2 (right) gene expression groups by median-centered Log2 ratios
and survival curves were generated. Overall survival curves are shown
with patient numbers in parentheses. (PPTX 144 kb)
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