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ABSTRACT  

The role of microbiomes in host ecology is increasingly recognized as a potentially 

important force driving the ecology and dynamics of a broad range of ecosystems. However, 

these communities are often so complex that determining the factors (environment, dispersal, 

host-interactions) driving these assembled communities can be difficult. In my dissertation, I 

explored various factors might be driving the assembly surface microbiome of Zostera marina, 

eelgrass. Eelgrass is a marine angiosperm found in coastal waters across the Northern 

Hemisphere and provides a variety of ecosystem services including sedimentation, habitat 

creation and carbon sequestration. I have investigated patterns of surface communities of 

bacteria on both leaves that are largely surrounded by seawater and roots that grow in anoxic, 

highly sulfidic sediments to understand how these communities connect and modulate eelgrass’s 

interactions with its environment. 

 In Chapter 1, I begin by identifying and exploring what the unique components of the 

eelgrass microbiome are by using artificial mimics. I deployed above and belowground mimics 

and found roots and leaves, but especially roots, host unique microbial communities compared to 

mimics. Based on differences in taxa between mimics and plant tissue, I suggest that leaf-

associated microbiomes may have key roles in mediating plant-microalgal-pathogen interactions 

and that root-associated taxa with enhanced associations with sulfur and nitrogen cycling may 

ameliorate environmental stress. Furthermore, in this chapter, I identify future candidates for 

manipulation to further identify their specific roles on eelgrass. 

 In Chapter 2, I examined the role of host vs. environment in structure and assembly of 

eelgrass microbial communities. Through a reciprocal transplant experiment, I found that even 

on a fine scale, microbial communities quickly resemble where they are transplanted to rather 
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than where they are transplanted from. Additionally, I found that degree of phylogenetic 

community clustering varied by site suggesting environmental differences drove different 

community processes across these sites.  

 Finally, in Chapter 3, I take these associations into the lab to experiment with reduced 

diversity environments. Through manipulations of source microbial pools via autoclaving 

sediments and host specific associates via bleaching root surfaces, I identify that most microbial 

communities are sourced from their adjacent sediments. In this reduced diversity environment in 

autoclaved sediments, I also identify that communities are more variable than in normal source 

environments and that genotype of plant has a role in determining the microbial community 

present. This suggests that while source and environment are critical in determining microbial 

community structure, there is also a role in plant-microbe feedbacks that structures assembly of 

host-associated microbial communities in seagrass. 

Through these experiments, I determine that environment plays a predominant role in the 

assembly of these microbial communities on both leaves and roots. I suggest that there are also 

smaller, but important roles of interactions with host plant and dispersal in structuring these 

communities. Continuing work will focus on disentangling how different plant traits influence 

microbial communities within different and variable environments. 

 

  



 

 1 

More than a stick in the mud: Eelgrass leaf and root bacterial communities are distinct 

from those on physical mimics 

 

Authors: Melissa R. Kardish, John. J. Stachowicz 
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Originality-Significance Statement 

We show that eelgrass establishes a distinct microbial community from a physical mimic on both 

its leaves and roots. This is, to our knowledge, the first comparison of seagrass to a mimicked 

physical environment. Insights from our study establish bacterial targets for future functional 

studies of seagrass-microbiome interactions. 

 

Summary 

We examine the role of physical structure vs. biotic interactions in structuring host-associated 

microbial communities on a marine angiosperm, Zostera marina, eelgrass. Across several 

months and sites, we compared microbiomes on physical mimics of eelgrass roots and leaves to 

those on intact plants. We find large, consistent differences in the microbiome of mimics and 

plants, especially on roots, but also on leaves. Key taxa that are more abundant on leaves have 

been associated with microalgal and macroalgal disease and merit further investigation to 

determine their role in mediating plant-microalgal-pathogen interactions. Root associated taxa 

were associated with sulfur and nitrogen cycling, potentially ameliorating environmental stresses 

for the plant. Our work identifies targets for future work on the functional role of the seagrass 

microbiome in promoting the success of these angiosperms in the sea. 

 

Introduction 

The role of microbiomes in host ecology is increasingly recognized as a potentially 

important force driving the ecology and dynamics of a broad range of ecosystems. Host-microbe 
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interactions range in strength and direction (McFall-Ngai et al., 2013; Hammer et al., 2019) with 

microbes providing net benefits to their hosts in some cases, parasitizing hosts or other members 

of the microbial community in others, and participating in many symbiotic relationships in 

between these extremes (Trivedi et al., 2020). Yet hundreds or thousands of microbial taxa 

associate with any given host, and we generally know little about the extent to which most 

associations rely on specific host traits such as morphology, physiology or metabolites. In most 

cases, our knowledge is limited to comparing host-associated microbes with a larger 

environmental pool, such as soils, and identifying taxa over-represented on hosts compared to 

the environment (Knights et al., 2011; Fahimipour et al., 2017; Xiong et al., 2021). These 

approaches often identify hundreds of taxa positively associated with hosts, still leaving a major 

challenge for developing an understanding of the extent to which particular microbes interact 

closely with, and impact, hosts. However, this approach does not distinguish the role of the 

provision of physical structure vs. host-specific biology; incorporating this level of distinction 

would identify taxa that require not just the structure but the presence of a living host and 

therefore a greater potential for reciprocal interactions with the host. One way to distinguish the 

relative importance of physical structure from living organisms is to use physical mimics to 

assess how microbial communities develop differently in the absence of biotic interactions with 

the host.  

Mimicking environments to learn more about host-microbe interactions -- whether 

through simple physical models, reconstituting biochemical environments, or even using germ-

free organisms -- has been used across a diversity of taxa to assess critical members microbial 

communities as well as to assess how the overall structure of their communities vary under 

stress. For example, in terrestrial plants, finely mimicked leaf surfaces have led to insights on 
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where E. coli resides on spinach leaves based on water retention on structural mimics (Zhang et 

al., 2014) and an artificial human gut has been used to demonstrate interactions between anti-

inflammatory bacteria and epithelial cells (Zhang et al., 2021). While often used to understand 

how an organism interacts with the microbes, these mimics can also be used to describe 

community shifts that would occur without the host, identify key partners, and consider 

differences in assembly (e.g., Lee et al., 2019). 

Host-associated microbial communities have been identified across organisms to 

assemble in distinct non-random ways though the degree of specificity varies (Taylor et al., 

2004; Ambika Manirajan et al., 2016). Microbial associates can be highly specific (e.g., the 

bobtail squid and Vibrio fisherii, McFall-Ngai and Ruby, 1991) or might be 

transitory/happenstance associations (e.g., high numbers of soil bacteria in Lycaenid butterfly gut 

microbiomes; (Whitaker et al., 2016). In addition a host can interact with a microbiome with 

different levels of restrictiveness: a host might harbor a highly restricted environment potentially 

heavily modified by a host (e.g., a gut microbiome; Garland et al., 1982; Rinninella et al., 2019) 

or a less restrictive environment where even with environmental modification from the host 

many microbes could enter the community (e.g., skin microbiome; Byrd et al., 2018). 

Distinguishing among these types of microbial communities may offer insight into the intensity 

of interactions with a host. For instance, if we distinguish that a less restrictive surface had a 

microbiome unassociated specifically with a host, we might infer limited direct unique 

interactions with that host. 

We investigate the role of physical structure vs. biotic interactions in structuring the 

surface microbiomes of seagrass, specifically, the eelgrass, Zostera marina. Eelgrass is a marine 

flowering plant; its roots and rhizomes grow in highly sulfidic sediment and its leaves, while 
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primarily exposed to seawater, can be periodically exposed to air at low tides (Jørgensen, 1982). 

Seagrass leaves are distinct from terrestrial angiosperms in several ways, including absence of 

stomata as well as primary exposure to seawater rather than air (Olsen et al., 2016). Our previous 

work showed broad overlap in the composition of leaf and water microbiomes (Fahimipour et 

al., 2017), but did find some microbes preferentially associated with leaves. Comparison of 

microbiomes among species of seagrass that grow in the same environment show that some 

harbor distinct microbial communities on their leaves from other species (Garcias-Bonet et al., 

2020) while some seagrass species have broad overlap in their microbiomes (Ugarelli et al., 

2017; Kaimenyi et al., 2018). At least some taxa are disproportionately found on seagrass 

compared to water, though it is not clear the extent to which leaf microbiomes differ from those 

that accumulate on inert surfaces in marine systems, where biofilms develop on surfaces at a fast 

rate (Fischer et al., 2014). Mimicked seagrass leaves have long been used to investigate 

community structures and show similar macroinvertebrate (Healey and Hovel, 2004), fish (Bell 

et al., 1985) and microalgal communities (Horner, 1987; Pinckney and Micheli, 1998) to natural 

seagrass and provide an obvious approach for distinguishing substrate generalists from seagrass-

specific associates. We adopt this approach to narrow the functionally important microbiome of 

seagrass leaves from the pool of over a hundred of taxa known to be enriched on leaves relative 

to surrounding seawater. 

Similarly, root surfaces have bacterial communities distinct from adjacent sediments 

(Fahimipour et al 2017), but it is not yet clear again how much physical structure vs host biology 

influences this. Roots inhabit anoxic and highly sulfidic sediments that without mitigation can 

lead to sulfide intrusion decreasing plant growth and health (Hasler-Sheetal and Holmer, 2015). 

Various mechanisms exist to mitigate this environment and reduce sulfide intrusion into the plant 
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including radial oxygen loss (ROL) from growing roots (Pedersen et al., 2004), direct 

partnerships with sulfide-oxidizing bacteria (Smith et al., 2004), and three-way symbiosis with 

lucinid clams hosting sulfide-oxidizing bacteria (van der Heide et al., 2012; de Fouw et al., 

2018). However direct association of seagrass with sulfur oxidizers is known (Fahimipour et al., 

2017) and given the leak of oxygen and sugars out of the roots (Sogin et al., 2021), it seems 

likely that the plant plays an important role in root microbe assembly. Examining mimicked root 

environments is less common in seagrass than use of seagrass leaves and has focused on 

sediment stabilization processes (Temmink et al., 2020) rather than influence on biotic 

community structure. 

Here, we explicitly test whether seagrass roots and leaves assemble microbiomes that are 

distinct from physical mimics at a range of sites and seasons with a harbor. By comparing live 

plants with biologically inactive surfaces mimicking some physical aspects of their environment, 

we test explicitly whether seagrass cultivates a unique microbiome on its leaves and/or roots. 

Differences in the bacterial communities between physically mimicked environments and plants 

could indicate bacteria that might be either attracted by specific biological aspects of a plant or 

that might be selected by plants for biologically important roles. Thus, such an approach can 

identify the role of the plant in microbial assembly and hint at specific key processes, while also 

potentially identifying microbial partners that may play key functional roles in the seagrass 

microbiome for future experimentation. 

 

Results 
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The bacterial assemblages associated with leaves and roots differed from those on their 

corresponding physical mimics in alpha diversity and/or community composition. However, the 

extent of this differentiation of eelgrass microbiomes from passive substrates was stronger in 

roots than leaves, and there were still many amplicon sequence variants (ASVs) shared between 

mimics and live plants (Figures 1.1 and 1.2). These differences among substrates were highly 

consistent across four sites and three time points (see results below), despite previously identified 

seasonal and site-specific microbial components at these sites (Chapter 2), indicating a strong 

impact of live plants on the microbiome. Thus, we focus our presentation of results on the 

consistent effects of substrate across sites and time (each of which is controlled for in our 

statistical models). 

Leaves 

Leaf mimics had greater ASV richness than leaves (negative binomial glm with crossed 

random effects for month and site, estimate = 0.19738, standard error = 0.05802, z-value 3.402, 

p = 0.0007; Figure 1.1A). The ASV composition of the leaf and mimic communities was 

different (PERMANOVA, F = 12.09, p = 0.001, r2 = 0.13, Figure 1.2A), though there was no 

difference in variance among-leaf vs. among-mimic communities (betadisper ANOVA, p = 

0.73). When examining core ASVs (present in at least 50% of samples of a type at at least 1% 

detection rate), we found that roughly half the ASVs found on leaves were not found on any 

other substrate (77 of 168 ASVs; 46%) while most of the remaining were shared with those on 

leaf mimics (88 of 168, 52%). (Figure 1.1B). This degree of overlap in core taxa was the greatest 

of any pairwise comparison among sample types; The same patterns were present when we 

examined all ASVs rather than just the core (Supplemental Figure 1.S1). Predicted Metacyc 

pathways, based on a cross-domain database of metabolic pathways and enzymes (Caspi et al., 
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2014), also differed between leaves and mimics (PERMANOVA, r2 = 0.05488, F = 4.7035, p = 

0.001), though this effect was weaker than for the sequence based compositional differences 

(Figure 1.2B).  

Through analysis of specific ASVs that varied between leaves and leaf mimics via 

DESEQ2, we found 92 ASVs were relatively more abundant on leaves and 49 were relatively 

more abundant on mimics. Only three families contained more than ten ASVs that varied 

between mimics and leaves (Table 1.1): Flavobacteriaceae (eight higher on leaves, eight higher 

on mimics), Rhodobacteraceae (23 higher on leaves, 13 higher on mimics), and Saprospiraceae 

(16 higher on leaves, none higher on mimics). Within these families several genera were 

represented by multiple ASVs. These included Kordia (three ASVs higher on leaves, none on 

mimics), Ulvibacter (two higher on leaves, two higher on mimics), Octadecabacter (one higher 

on leaves, one higher on mimics), Sedimentitalea (one higher on leaves, one on mimics), 

Tateyamaria (one higher on leaves, one on mimics), Yoonia-Loktanella (two higher on leaves), 

Lewinella (three higher on leaves) and Rubidimonas (two higher on leaves). Many other families 

contained fewer than 3 ASVs that varied between leaves and mimics (Table 1.1, Supplemental 

Table 1.S1), and within these nine genera contained multiple ASVs that varied between leaves 

and mimics (Supplemental Table 1.S2). All taxa that varied can be found in Supplemental Table 

1.S3.  

When we examined predicted pathways that changed between the leaf and leaf mimic 

microbiomes, we identified 53 pathways that changed, 16 upregulated in leaf microbiomes and 

37 upregulated on mimic microbiomes (Supplemental Table 1.4). These predicted pathways 

included differences in amino acid degradation, starch degradation, and denitrification; however, 

these predicted pathways did not always indicate expected differences among plants and mimic 
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communities or produce clear candidate predicted pathways, likely at least in part due to limits in 

prediction of environmental microbial pathways, so we have focused on taxonomic differences. 

Roots 

Despite strong compositional differences between roots and root mimics 

(PERMANOVA, F = 31.511, p = 0.001, r2 = 0.307; Figure 1.3A), these substrates did not differ 

in ASV richness (negative binomial glm with crossed random effects for site and month, p = 

0.28, Figure 1.1A) or variance (betadisper ANOVA, p = 0.29). When including sediments in the 

comparisons, richness did not differ among the three groups in richness (negative binomial glm 

with crossed random effects for site and month, p = 0.31) but microbiome variance among 

samples was less among sediment samples than either of the other two groups (betadisper 

ANOVA, p < 0.001, Tukey’s HSD sediment vs mimic p = 0.0001, vs roots p = 0.004); ASV 

composition on roots, mimics and sediment were compositionally distinct (PERMANOVA r2 = 

0.3480348, F = 37.90152, p = 0.001, see Supplemental Table 1.S5 for pairwise comparisons). 

When we examine overlap in predicted Metacyc pathways, we found that there was a significant 

difference between roots, sediments and mimics (PERMANOVA, r2 = 0.18903, F = 12.534, p = 

0.001), though this effect was weaker than for the sequence based compositional differences 

(Figure 1.3B, See Supplemental Table 1.S5 for pairwise differences).  

When examining core ASVs (present in at least 50% of samples of a given type at at least 

1% detection rate), we found that roots and sediments largely harbored distinct bacterial 

communities, by ASV (Figure 1.1B), though root mimics had few ASVs unique to its core 

microbiome (only 2 ASVs unique to root mimics); again, we saw the same patterns when 

including all ASVs in these analyses, and not just the core (Supplemental Figure 1.S1). Of 256 

ASVs in the core root microbiome, 111 or 43% were found only on roots and 181 (71%) were 
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found only on roots and in sediments. Only 52 core root ASVs (20%) were shared between roots 

and root mimics. When we examined all ASVs (without core restrictions), root mimics had more 

taxa unique to their sample type, indicating considerable variability in communities assembled 

on root mimics and a large contribution of rare ASVs (Supplemental Figure 1.S1).  

We found many ASVs varied in abundance between these groups (457 between 

sediments and mimics, 505 between roots and sediments, and 486 between roots and mimics). Of 

these, the majority were at higher relative abundances on roots or sediments compared to mimics 

(comparing roots to mimics, 437 were higher on roots, and 49 were higher on mimics; 

comparing sediment to mimics, 359 were higher in sediments, 98 were higher on mimics; 

comparing roots to sediments 265 were higher on roots, 240 were higher in sediments; see Table 

1.1 for families with the most representatives, Supplemental Table 1.S6 for more details and 

Supplemental Table 1.S7 for all ASVs that varied). The families that had the largest number of 

taxa vary among sample types included Spirochaetaceae (71 ASVs), Bactoroidetes BD2-2 (87 

ASVs), Desulfosarcinaceae (103 ASVs), Desusulfocapsaceae (109 ASVs), and 

Flavobacteriaceae (114 ASVs). Within the families Spirochaetaceae, Bactoroidetes, and 

Desulfosarcinaceae most ASV were at greater relative abundance on roots than mimics (Table 

1.1). In Flavobacteriaceae, roughly equal numbers of ASVs were more abundant in roots vs 

mimics vs. sediment. A few families showed an abundance of ASVs on roots compared to both 

sediments and mimics including: Desulfobacteraceae, Lachnospiraceae, Marinilabiliaceae, 

Moduliflexaceae, and Prolixibacteraceae (Supplemental Table 1.S6). 

While the predicted pathways that varied were numerous and not particularly remarkable 

(as indicated in Supplemental Table 1.S8), we found that indicated pathways were generally 

indicated to be upregulated on mimics in pairwise comparisons (133 predicted pathways higher 
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in mimics compared to 32 in sediments, and 137 higher on mimics compared to 35 on roots). 

Again we anticipate that due to limits in prediction of environmental microbial pathways these 

may be limited (especially seeing lower numbers of predicted pathways enriched where we saw 

more taxa enriched), so we have focused on the taxonomic differences we identified. 

 

Discussion 

We found large and consistent differences in the microbiome between seagrass and 

structural mimics both on above- and belowground surfaces. This builds on previous work that 

showed distinction between microbiomes on water and leaf surfaces and sediment and root 

surfaces (Fahimipour et al., 2017), showing definitively that microbiomes respond not just to 

plant physical structure but also the biological activity associated with the host. Previous work 

also showed strong geographic variation in the microbiome of seagrasses at medium and large 

scales (Fahimipour et al., 2017; Hurtado-McCormick et al., 2019) yet, we find consistent 

differences between mimics and plants across four close sites and three time periods from early 

to late summer. These findings were consistent for both roots and leaves. This confirms a need 

for understanding of how these communities are cultivated/built, their interactions with the 

plants, and ultimate influence on plant fitness.  

Leaves are differentiated from passive mimics 

While we saw a >50% overlap in core taxa between the mimics and leaves, we found that 

they were compositionally distinct (both taxonomically and functionally) and even showed 

differences in alpha diversity (more ASVs were found on the average mimic than the average 

leaf). Epiphytic algae also have higher alpha diversity on mimicked compared to natural seagrass 
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and differences in the relative abundance of major microalgal groups between mimic and leaves 

(Pinckney and Micheli, 1998). These differences in communities between leaves and mimics 

likely represent either microbial preferences for different surfaces or selection by plants. The 

reduced alpha diversity on real leaves suggests that there may be some selection by leaves, but 

also some bacterial preferences as the leaf microbiome is not simply a subset of that on mimics 

(Figure 1.1B). While these mimics were not perfect physical mimics, we did find they captured a 

large portion of the eelgrass leaf community. 

This contrasts with mimicked environments from other marine organismal phyllospheres. 

Recent work in kelp indicated an enrichment of common seawater taxa on artificial substrate 

(agar infused with and without kelp), no difference in taxonomic diversity on artificial substrates 

compared to kelp, and increases in aerobic taxa on the surface of kelp blades (Weigel and Pfister, 

2021). We found none of these patterns on seagrass and seagrass mimics, instead finding no 

enrichment for common taxa on seagrass compared to mimics, higher taxonomic diversity on 

mimics, and no compelling evidence that compositional differences we observed were due to 

differences in aerobic conditions. The distinction from our study could be driven by the 

accumulation of epiphytic algal communities on both seagrass leaves and mimics that could 

render the mimic surfaces highly aerobic; there also is less carbon released by seagrasses than 

macroalgae (Barrón et al., 2014) which likely further distinguishes microbe-host interactions in 

seagrass from those in kelp. 

Terrestrial work mimicking plants has largely focused on even more precisely recreating 

leaf environments when using artificial surfaces in comparisons (Doan and Leveau, 2015). Use 

of mimics to test the effect of terrestrial plant leaf morphology on microbiota has indicated that 

the physical structure plays an important role in influencing the microbiome via moisture 
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retention (Doan et al., 2020), a mechanism that is irrelevant to the submerged microbiome of 

aquatic plant leaves. Like leaves of terrestrial plants, seagrass leaves exude amino acids 

(Jørgensen et al., 1981) and dissolved organic carbon (Wetzel and Penhale, 1979) which create a 

uniquely rich environment potentially shaping their microbial communities including some 

predicted amino acid degradation pathways we identified (Supplemental Table 1.S4). These and 

other potentially seagrass-curated microbial partners could allow us to identify mechanisms in 

the future that have allowed seagrasses to persist in these extreme environments with a host of 

new biotic interactions as well ranging from microalgae to marine microbial communities. 

Future experiments could also investigate interactions involving microbial attachment and 

facilitation or deterrence by plant exudates as has been explored in terrestrial systems (Zhang et 

al., 2014; Doan and Leveau, 2015; Warning and Datta, 2017) to compare differences that have 

arisen with transitions to sea.  

Finally, while our limited functional evidence does not indicate clear functional 

differences, the specific taxa that we observe on leaves may have speculatively important roles 

that are worthy of further investigation. The repeated enrichment of certain ASVs on leaves 

versus mimics suggests that they might be good targets for experimentation. Some — such as 

Kordia spp. — are likely algicidal bacteria that has been isolated during red tides (Sohn et al., 

2004) and could be cultivated by seagrass to manage epiphyte loads; we have also previously 

identified different Kordia ASVs at higher relative abundance under warmed and cooled 

temperature treatments (Schenck et al. submitted). The two Saprospiraceae that we saw multiple 

representatives within a genera only present on leaves (Lewinella spp. and Rubidimonas spp.) are 

both genera comprised of aerobic heterotrophs previously isolated from marine environments 

that can metabolize complex starches (McIlroy and Nielsen, 2014) and have previously been 
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associated higher levels in macroalgal diseases (Zozaya-Valdés et al., 2017). While these 

bacteria are associated more strongly with seagrass, further investigation is needed to determine 

how they interact with seagrass, seagrass diseases and seagrass epiphytes -- as they may be 

cultivated partners in removing unwanted epiphytes or could be negatively affecting eelgrass as 

well.  

Root microbes are vastly different from those in sediment and on root mimics 

That root microbiomes differed from mimics was not surprising given that roots exude 

both organic (e.g., sugars) and inorganic (e.g., oxygen) compounds that have major influences on 

microbiota. In fact, sugar concentrations associated with seagrass roots can be exceedingly high 

yet may not metabolized by bacteria due to the presence of inhibitory phenolic compounds 

(Sogin et al., 2021). Similarly, the combination of oxygen leakage from root tips and 

surrounding sulfidic sediments promotes sulfur oxidizing bacteria (Brodersen et al., 2018; 

Martin et al., 2019). Given these plant-caused environmental differences from surrounding 

sediments, it does not seem surprising that root mimics microbiomes did not resemble those on 

roots. However, as in leaves, we captured the surface microbiome of a physical structure buried 

in sediment. There was no clear “core” of root mimic communities and while there was no 

evidence of a difference in alpha diversity, our taxonomic analyses showed that taxa that varied 

between mimics and sediments or roots were generally higher in relative abundance on root 

surfaces or in sediments than on the mimics. Given the lower abundances, we were surprised to 

see the opposite result in functional predictions where predicted pathways were generally 

upregulated on mimics. However, given the more limited functional predictions (including the 

lack of upregulation sulfate reduction related predicted pathways on roots and sediments 

compared to mimics despite increases in taxonomic relative abundance of sulfate reducing 
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bacteria) and rapidly changing taxonomy of some of these groups (Waite et al., 2020), the 

bacteria on mimics might be better described than other groups. However, based on taxonomy 

we have identified several families containing ASVs worthy of further investigation including 

Desulfobacteraceae and Prolixibacteraceae, both of which were overrepresented on roots 

compared to mimics and sediments and involved in sulfate-reduction and nitrogen cycling 

respectively. 

Terrestrial experiments investigating rhizosphere microbial communities through creation 

of artificial environments have added root exudates through capillaries (e.g., addition of oxalic 

acid into soils frees carbon; Keiluweit et al., 2015), and similar experiments could test the roles 

of exudates and oxygen extrusion independently and in combination to further determine the 

mechanisms by which microbial communities on the surfaces of roots are assembled, particularly 

how they sustain these plants in highly anoxic sediments. Based on the taxa we identified, it is 

likely that seagrass root bacterial communities, like those of terrestrial plants, are structured by a 

resource exchange between hosts and microbes. While there are many differences in what these 

resources are and partnerships look like (e.g., eelgrass do not have associations with arbuscular 

mycorrhizal fungi (Nielsen et al., 1999; Ettinger and Eisen, 2019) and land plants live in well 

oxygenated soils instead of sulfidic anoxic sediments), aquatic and land angiosperms participate 

in a resource exchange that drives microbial community structures in the rhizosphere (for review 

of land plants see Jacoby et al., 2017). This suggests that it is likely that root microbes are not 

only affected by the eelgrass, but affect eelgrass itself, perhaps through sulfur metabolism 

(Fahimipour et al., 2017). While no studies have directly tested the effect of root microbiome on 

seagrass growth, the oxidation of sulfides by lucinid bivalve - bacterial symbiosis has been 

implicated as a major influence on seagrass success in anoxic sediments (van der Heide et al., 
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2012). Direct tests implicating changing rhizosphere microbial communities with changes in 

plant performance would be necessary to explicitly test these roles but starting with isolates from 

many of the families we saw preferentially on seagrass roots compared to mimics and sediments 

seem likely candidates to have specific adaptations that might deal with both potential phenolic 

challenges.  

Overall conclusions 

We found robust evidence of differences between mimics and plant tissues in various 

environments in seagrass. These large differences suggest that there is a unique environment 

created by the plant that creates these distinct communities either as part of active partnerships or 

through inhibition of certain microbes or unique characteristics of that environment preferred by 

some microbes. Unlike in terrestrial plant surfaces, water retention is unlikely to play a role in 

driving microbe assembly in aquatic leaves. Seagrass leaf microbiomes may be structured more 

like microbiomes in terrestrial and marine root microbiomes, by exudates of plants and their 

influence on the environment. Further experiments with more detailed or realistic mimics could 

isolate the mechanisms by which these microbiomes are structured and function.  

Finally, despite the differences emphasized here, there is vast overlap between these 

communities even on simple substrates, especially on leaves and their mimics. This designates a 

manageable number of taxa to further examine to see what factors are driving their unique 

assemblies. With a continued and rising interest in microbial communities in general and the role 

of microbial communities associated with seagrasses specifically, extensions of this work point 

towards associations that should be further explored for understanding holobiont dynamics 

across species ranges. 
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Experimental Procedures 

Field methods 

In July 2015, we deployed artificial substrates to characterize the microbiome of a leaf 

and root mimics compared with those on live plants (see Supplemental Figure 1.S2 for site 

locations). We conducted this experiment at four eelgrass beds within Bodega Harbor within 2 

km of each other yet vary in distance from the mouth of the harbor, which sets up a gradient of 

increasing temperature (2˚ C mean temperature difference among sites), decreasing water flow, 

and progressively finer sediment grain size that result in each site harboring distinct eelgrass 

microbial communities on seagrass that vary among seasons (Kardish and Stachowicz 

unpublished data). We used 0.75 m long, 4 mm wide green polypropylene ribbons attached to a 

vexar mesh anchored into sediments to mimic artificial leaf substrates, a standard technique that 

has been used for over 40 years to mimic the physical habitat provided by eelgrass to isolate the 

role of physical structure in structuring the epiphytic, epifaunal and fish communities that inhabit 

eelgrass (Barber et al., 1979). These ribbons mimic the physical structure of seagrass leaves in a 

bed with a similar length, width and accumulation of epiphytes. We also deployed artificial root 

substrates (4 in. twist ties twisted around the same vexar mesh as ribbons) that went to the depth 

where most root biomass is found at these sites (approximately 2-5 cm) to examine the 

community that accumulates on a physical structure at a similar depth in sediment. Neither 

artificial substrate was preinoculated with microbial communities though they were planted 

(attached to a vexar mesh) inside a seagrass bed immediately adjacent to live plants. We sampled 

undisturbed plants near the mimics for comparison. We also sampled plants that had been taken 

from these sites, taken back to the Bodega Marine lab, attached to the same vexar screens as the 
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mimics and planted back into the field. These results parallel the results presented in the main 

text comparing mimics and undisturbed plants; parallel analyses can be found in Appendix 1.A. 

We sampled after one, two and three months after deployment, which is sufficient time for 

transplanted eelgrass to take on microbial characteristics of a new site (Kardish and Stachowicz 

unpublished data). For leaves and leaf mimics, we took a 2 cm clip of leaf or ribbon at 

approximately 15 cm above the sediment surface. For the root mimics, we took a 2 cm clip from 

the bottom of the twist tie (at approximately the same depth as root samples). For roots, we 

detached ~10 roots from the rhizome. For sediment samples, we took a small sediment sample 

from approximately 2 cm under the sediment surface (a similar depth to roots sampled). Samples 

were immediately placed on dry ice and were frozen at -80˚ C within a few hours of sampling 

until extraction, and all instruments were alcohol sterilized in between samples. At each of the 

four sites, across three timepoints, we sampled three sediment samples, three mimic samples (for 

each of leaf and root mimics), and four plant samples (leaf and root). Due to the identifiable 

nature of these sample types, we were unable to blind ourselves to sample type during sampling 

or extraction. 

Molecular Methods and Bioinformatic analysis 

We extracted DNA with the MoBio PowerSoil DNA kit from leaves, roots, and 

sediments. To get the surface of the leaves and roots only, we vortexed each frozen sample with 

500ul of MilliQ water and then added that liquid to the bead tubes and proceeded with the 

standard extraction protocol (full protocol available at 

github.mkardish/Transplants/Lab_Protocols). For sediments, we added a small amount of 

sediment (approximately 0.25 mg) directly to the bead tube. We amplified and sequenced the 

V4-V5 region of the 16S rRNA gene on an Illumina MiSeq to identify bacteria present at the 
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Integrated Microbiome Resource at Dalhousie University with primers 515F and 926R (Walters 

et al., 2016; Comeau et al., 2017). 

Bioinformatic Analysis 

We ran all bioinformatic and statistical analyses in R (version 4.0.3). We used a standard 

dada2 pipeline to error check our reads and to identify amplicon sequence variants (Callahan et 

al., 2016). We used only forward reads in our subsequent analyses (280 base pairs). We 

identified ASV taxonomy based on the SILVA database (Quast et al., 2013) and built a 

phylogeny of ASVs using alignments built with DECIPHER (Wright, 2015) then a tree built 

with FastTree2 (Price et al., 2010) then converted to ultrametric (Britton et al., 2007). We then 

rooted the bacterial tree with an archaeal outgroup (Callahan et al., 2016). 

We also examined the functional potential of the metagenomes of our samples using 

PICRUSt2 (Douglas et al., 2020). While these predictions come with major caveats for 

environmental samples due to underrepresentation in the database, we used this approach to infer 

potential metabolic pathways based on similarities to known metabolisms and compare these 

among tissue types.  

Sampling and sequencing success 

We identified 7,696 bacterial ASVs across 192 leaf, root, mimic and sediment samples 

after quality filtering samples to 3,752,142 reads. Root samples contained between 390 and 

1,013 bacterial ASVs on their surface (we measured 47 root samples with read depth between 

11,522 and 49,735 reads), Root mimics samples contained between 81 and 790 bacterial ASVs 

on their surface (we measured 26 root mimic samples with read depth between 2,037 and 37,793 

reads), Sediment samples contained between 270 and 843 bacterial ASVs on their surface (we 
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measured 36 sediment root samples with read depth between 10,771 and 40,343 reads), leaf 

samples contained between 191 and 841 bacterial ASVs on their surface (we measured 48 leaf 

samples with read depth between 5,961 and 61,896 reads) and leaf mimic samples which 

contained between 195 and 717 bacterial ASVs (35 leaf mimic samples with between 4,587 and 

31,648 reads per sample) 

Statistics 

We analyzed the compositional changes in our dataset based on phylogenetic similarity 

among samples by normalizing samples via a phylogenetic isometric log transform described in 

(Silverman et al., 2017) and implemented in the R-package “philr”. This allows a compositional 

transformation of the phylogenetic data -- comparing differential weights at nodes throughout the 

bacterial tree as opposed to just ASVs. We then calculated the Euclidean distance among 

samples before using PERMANOVA to determine differences among sample types controlling 

for month and site by constraining permutations. We tested homogeneity of group dispersions 

with the betadispr function in ‘vegan’.  

To measure bacterial richness, we rarified all samples to 2950 reads samples which we 

repeated 200 times (McMurdie and Holmes, 2014) and used each sample’s average “Observed 

ASVs” in our analysis as our measure of bacterial richness in a sample. We tested differences in 

Observed ASVs using the negative binomial mixed model with crossed random effects 

implemented in lme4 : Observed ASVs ~ Sample Type + (Sample Type | Site)+(Sample Type | 

Month) (Bates et al., 2015). We also visualized overlap in these observed ASVs using upSet 

which allowed us to identify the numbers of overlapping and non-overlapping ASVs across 

sample types (Conway et al., 2017). 
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To identify which ASVs varied between samples we performed a likelihood ratio test in 

DESeq2 comparing models of ~ Site + Month + Sample Type with ~ Site + Month (separately 

for above and belowground samples) after geometric mean centering raw ASV abundances 

(Love et al., 2014). We then examined the contrast between sample types to identify which 

ASVs varied in each compartment. 

We treated functional data compositionally as well, using PERMANOVA to analyze 

differences in pathway composition among samples after a centered log-ratio transformation. We 

then used DESeq2 with the same models as for taxonomic differences to test for predicted 

pathway differences among sample types. 

 

Data Accessibility 

All scripts used to analyze this data are available at www.github.com/mkardish/Mimics 

and sequences have been deposited under the NCBI BioProject ID PRJNA731931. 
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Figures and Tables 

Figure 1.1: (A) Mean amplicon sequence variant (ASV) richness found in each type of sample 

we measured. Raw data as well as means and standard errors are presented. Leaf mimic bacterial 

communities had a higher mean richness than leaf bacterial communities (p < 0.001); root 

mimic, root, and sediment bacterial communities did not differ in mean community richness. (B) 

Overlap among core bacterial communities showing shared ASVs present in each sample type in 

at least 50% of samples at a 1% detection rate. Diagram is a barplot of shared community 

memberships, equivalent to a Venn diagram. 
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Figure 1.2: (A) Ordination of bacterial community structure based on principal coordinate 

analysis of phylogenetic-isometric log-ratio transformed distances. (B) Ordination of predicted 

Metacyc pathways structure based on principal coordinate analysis of centered log-ratio 

transformed distances. Bright green points are communities on leaf mimics and dark green points 

are communities on leaves. Leaf and leaf mimic communities in both analyses are distinct from 

each other (PERMANOVA p < 0.001). 
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Figure 1.3: (A) Ordination of bacterial community structure based on principal coordinate 

analysis of phylogenetic-isometric log-ratio transformed distances. (B) Ordination of predicted 

Metacyc pathways structure based on principal coordinate analysis of centered log-ratio 

transformed distances. Red-orange points are communities on root mimics, dark brown points 

are communities on roots, and grey points are communities in sediments. All communities are 

distinct from each other in each analysis (PERMANOVA p < 0.001). 
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Table 1.1: For both leaves and root communities, the five families that had the most ASVs vary 

between mimics and seagrass substrate. See Supplemental Tables 1.1 and 1.6 for complete lists 

for leaves and roots respectively. 

Leaves   
 

   

Family 
Higher on 

leaves 
Higher on 

mimics 

 

   
Rhodobacteraceae 23 13     
Flavobacteriaceae 8 8     
Saprospiraceae 16 0     
Granulosicoccaceae 4 2     
Alteromonadaceae 5 0     
       

Roots       

Family 
Higher on 

roots 
Higher on 

mimics 
Higher on 

mimics 

Higher 
in 

sediment 
Higher on 

roots 

Higher 
in 

sediment 
Desulfocapsaceae 40 0 8 25 27 9 
Flavobacteriaceae 24 13 19 20 21 17 
Desulfosarcinaceae 34 0 0 35 8 26 
Bacteroidetes_BD2-
2 31 1 0 25 16 14 
Spirochaetaceae 23 0 1 21 15 11 
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Supplemental Figures and Tables 

Supplemental Figure 1.S1: Overlap among all ASVs present in each sample type. Diagram is a 
barplot of shared community memberships, equivalent to a Venn diagram. 
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Supplemental Figure 1.S2: Map of sampling sites in Bodega Harbor, Bodega Bay, CA, USA. 
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Supplemental Table 1.S1: For leaf bacterial communities, the family-level identification of 

ASVs that varied significantly between mimics and seagrass substrate determined by DESeq2. 

Family Higher on leaves Higher on mimics 
Alteromonadaceae 5 0 
Arenicellaceae 1 1 
Blastocatellaceae 0 1 
Cellvibrionaceae 1 0 
Colwelliaceae 2 0 
Crocinitomicaceae 5 0 
Cryomorphaceae 3 0 
Desulfocapsaceae 0 1 
DEV007 0 2 
Flavobacteriaceae 8 8 
Fokiniaceae 1 0 
Gimesiaceae 0 1 
Granulosicoccaceae 4 2 
Hyphomicrobiaceae 0 1 
Hyphomonadaceae 2 1 
Kangiellaceae 1 0 
Marinomonadaceae 1 0 
Methylophagaceae 1 0 
Methylophilaceae 3 1 
Micavibrionaceae 0 2 
Microtrichaceae 0 1 
Nitrincolaceae 2 0 
NS9_marine_group 1 0 
Oleiphilaceae 1 0 
Phormidesmiaceae 0 1 
Pirellulaceae 4 1 
Rhizobiaceae 1 2 
Rhodobacteraceae 23 13 
Rhodothermaceae 1 0 
Rickettsiaceae 1 0 
Rubinisphaeraceae 0 2 
Rubritaleaceae 0 1 
Saprospiraceae 16 0 
Sphingomonadaceae 0 2 
Spirosomaceae 1 0 
Spongiibacteraceae 1 0 
Sulfurovaceae 0 2 
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Terasakiellaceae 1 0 
Thiomicrospiraceae 1 0 
Trueperaceae 0 1 
Unknown_Family 0 1 
Woeseiaceae 0 1 
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Supplemental Table 1.S2: For leaf bacterial communities, the genus-level identification of ASVs 

that varied significantly between mimics and seagrass substrate determined by DESeq2. 

Family Genus Higher on leaves Higher on mimics 
Alteromonadaceae Glaciecola 4 0 
Alteromonadaceae Salinimonas 1 0 
Arenicellaceae Arenicella 1 1 
Blastocatellaceae Blastocatella 0 1 
Cellvibrionaceae Agaribacterium 1 0 
Colwelliaceae Colwellia 2 0 
Crocinitomicaceae Crocinitomix 1 0 
Crocinitomicaceae Fluviicola 3 0 
Cryomorphaceae Vicingus 1 0 
Flavobacteriaceae Aquibacter 0 1 
Flavobacteriaceae Aurantivirga 1 0 
Flavobacteriaceae Changchengzhania 1 0 
Flavobacteriaceae Kordia 3 0 
Flavobacteriaceae Maribacter 0 1 
Flavobacteriaceae Polaribacter 1 0 
Flavobacteriaceae Psychroserpens 0 1 
Flavobacteriaceae Ulvibacter 2 2 
Fokiniaceae MD3-55 1 0 
Granulosicoccaceae Granulosicoccus 4 2 
Hyphomicrobiaceae Filomicrobium 0 1 
Hyphomonadaceae Hellea 1 0 
Hyphomonadaceae Hyphomonas 0 1 
Hyphomonadaceae Litorimonas 1 0 
Marinomonadaceae Marinomonas 1 0 
Methylophilaceae Methylotenera 3 1 
Microtrichaceae Sva0996_marine_group 0 1 
Oleiphilaceae Oleiphilus 1 0 
Phormidesmiaceae Phormidesmis_ANT.LACV5.1 0 1 
Pirellulaceae Blastopirellula 3 1 
Pirellulaceae Rhodopirellula 1 0 
Rhizobiaceae Pseudahrensia 1 2 
Rhodobacteraceae Celeribacter 0 1 
Rhodobacteraceae Jannaschia 0 1 
Rhodobacteraceae Octadecabacter 1 1 
Rhodobacteraceae Phaeobacter 0 1 
Rhodobacteraceae Roseovarius 0 1 
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Rhodobacteraceae Sedimentitalea 1 1 
Rhodobacteraceae Sulfitobacter 0 1 
Rhodobacteraceae Tateyamaria 1 1 
Rhodobacteraceae Thiobacimonas 0 1 
Rhodobacteraceae Yoonia-Loktanella 2 0 
Rickettsiaceae Candidatus_Megaira 1 0 
Rubinisphaeraceae Planctomicrobium 0 1 
Rubritaleaceae Persicirhabdus 0 1 
Saprospiraceae Lewinella 3 0 
Saprospiraceae Phaeodactylibacter 1 0 
Saprospiraceae Portibacter 1 0 
Saprospiraceae Rubidimonas 2 0 
Sphingomonadaceae Parasphingopyxis 0 1 
Spirosomaceae Taeseokella 1 0 
Sulfurovaceae Sulfurovum 0 2 
Thiomicrospiraceae endosymbionts 1 0 
Trueperaceae Truepera 0 1 
Woeseiaceae Woeseia 0 1 
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Supplemental Table 1.S3: For leaf bacterial communities, all ASVs that varied significantly 

between mimics and seagrass substrate determined by DESeq2, including magnitude of 

differences. See Supplemental File SupplementalTable1.S3.csv. 
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Supplemental Table 1.S4: For leaf bacterial communities, all Metacyc predicted pathways that 

varied significantly between mimics and seagrass substrate determined by DESeq2, including 

magnitude of differences. 

Pathway 
log2-fold 
Change 

nitrifier denitrification 3.57517042 
superpathway of polyamine biosynthesis III 2.81827993 
CMP-pseudaminate biosynthesis 2.62893542 
nylon-6 oligomer degradation 1.64149213 
formaldehyde oxidation I 1.19448623 
formaldehyde assimilation II (RuMP Cycle) 1.18703389 
thiazole biosynthesis II (Bacillus) 1.17319111 
coenzyme M biosynthesis I 1.06840996 
superpathway of thiamin diphosphate biosynthesis II 0.98492463 
methyl ketone biosynthesis 0.93025842 
L-arginine degradation II (AST pathway) 0.87076592 
glucose and glucose-1-phosphate degradation 0.71012766 
ectoine biosynthesis 0.68464435 
norspermidine biosynthesis 0.59741725 
ADP-L-glycero-&beta;-D-manno-heptose biosynthesis 0.59480138 
superpathway of polyamine biosynthesis I 0.50117322 
catechol degradation II (meta-cleavage pathway) -0.5051274 
L-tryptophan degradation XII (Geobacillus) -0.5311326 
catechol degradation I (meta-cleavage pathway) -0.5785306 
acetylene degradation -0.599038 
2-aminophenol degradation -0.6086563 
catechol degradation to &beta;-ketoadipate -0.6123384 
superpathway of pyridoxal 5'-phosphate biosynthesis and salvage -0.6160838 
superpathway of sulfur oxidation (Acidianus ambivalens) -0.7083875 
reductive acetyl coenzyme A pathway -0.8598703 
meta cleavage pathway of aromatic compounds -0.8753625 
adenosylcobalamin biosynthesis II (late cobalt incorporation) -0.9123838 
androstenedione degradation -0.9491612 
superpathway of salicylate degradation -0.9500477 
methanogenesis from acetate -0.9597901 
catechol degradation III (ortho-cleavage pathway) -0.968522 
aromatic compounds degradation via &beta;-ketoadipate -0.968522 
formaldehyde assimilation I (serine pathway) -0.9774884 
superpathway of 2,3-butanediol biosynthesis -0.9804931 
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D-galactarate degradation I -1.0428591 
superpathway of D-glucarate and D-galactarate degradation -1.0428591 
pyruvate fermentation to acetone -1.0446446 
isopropanol biosynthesis -1.0943399 
superpathway of (R,R)-butanediol biosynthesis -1.1560577 
superpathway of L-aspartate and L-asparagine biosynthesis -1.2056707 
glycerol degradation to butanol -1.2387094 
superpathway of N-acetylneuraminate degradation -1.2987337 
superpathway of N-acetylglucosamine, N-acetylmannosamine and N-
acetylneuraminate degradation -1.407782 
creatinine degradation II -1.4875672 
D-glucarate degradation I -1.4888527 
1,5-anhydrofructose degradation -1.5852009 
allantoin degradation to glyoxylate III -1.6402326 
mono-trans, poly-cis decaprenyl phosphate biosynthesis -1.6413193 
cob(II)yrinate a,c-diamide biosynthesis I (early cobalt insertion) -2.4457325 
methylaspartate cycle -2.4547742 
coenzyme B biosynthesis -2.718622 
chondroitin sulfate degradation I (bacterial) -3.8564041 
starch degradation III -5.3764083 
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Supplemental Table 1.S5: Results of pairwise PERMANOVA tests distinguishing compositional 

differences among roots, root mimics, and sediments in both ASV composition and composition 

of predicted Metacyc pathways. 

  
 df 

Sum Of 
Squares R2 F-Statistic Pr(>F) 

Based on 
taxonomy 

Root vs. 
Mimic 

Sample Type 1 4716.5 0.307 31.511 0.001 

Residual 71 10627.2 0.693   

Total 72 15343.7 1   

Mimic vs. 
Sediment 

Sample Type 1 5659.8 0.424 44.22 0.001 

Residual 60 7679.5 0.576   

Total 61 13339.3 1   

Root vs. 
Sediment 

Sample Type 1 3234.5 0.248 26.722 0.001 

Residual 81 9804.5 0.752   

Total 82 13039.1 1   

Based on 
predicted 
function 

Root vs. 
Mimic 

Sample Type 1 4991 0.114 9.1228 0.001 

Residual 71 38841 0.886   

Total 72 43831 1   

Mimic vs. 
Sediment 

Sample Type 1 8250 0.196 14.592 0.001 

Residual 60 33924 0.804   

Total 61 42174 1   

Root vs. 
Sediment 

Sample Type 1 4865 0.148 14.093 0.001 

Residual 81 27963 0.852   

Total 82 32829 1   
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Supplemental Table 1.S6: For belowground bacterial communities, the family-level 

identification of ASVs that varied significantly among mimics, seagrass and sediment 

determined by DESeq2. 

Family 
Higher 
on roots 

Higher on 
mimics 

Higher on 
mimics 

Higher on 
sediment 

Higher 
on roots 

Higher on 
sediment 

4572-13 3 0 0 2 1 2 
Acanthopleuribacteraceae 2 0 0 1 1 1 
Anaerolineaceae 12 0 1 11 3 10 
Arcobacteraceae 2 0 1 0 2 0 
Arenicellaceae 0 1 0 1 0 1 
Bacteroidetes_BD2-2 31 1 0 25 16 14 
Calditrichaceae 10 1 0 11 1 10 
Cellvibrionaceae 1 0 1 0 1 0 
Christensenellaceae 3 0 0 3 2 1 
Chromatiaceae 4 0 0 4 0 4 
Crocinitomicaceae 1 0 2 0 2 0 
Cyclobacteriaceae 3 0 0 3 0 3 
Desulfatiglandaceae 4 0 0 4 0 4 
Desulfobacteraceae 9 0 0 5 7 2 
Desulfobulbaceae 8 0 1 7 4 5 
Desulfocapsaceae 40 0 8 25 27 9 
Desulfococcaceae 1 0 0 1 1 0 
Desulfolunaceae 1 0 0 1 0 1 
Desulfomonilaceae 0 1 0 1 0 1 
Desulfosarcinaceae 34 0 0 35 8 26 
Desulfovibrionaceae 3 0 0 1 3 0 
Ectothiorhodospiraceae 1 1 0 2 0 2 
Fermentibacteraceae 3 0 0 3 1 2 
Fibrobacteraceae 1 0 0 1 1 0 
Flavobacteriaceae 24 13 19 20 21 17 
Fusibacteraceae 1 0 0 1 1 0 
Gemmatimonadaceae 1 0 0 1 0 1 
Geopsychrobacteraceae 2 0 1 0 2 0 
Halieaceae 9 0 1 9 1 9 
Halomonadaceae 0 2 2 0 2 0 
Hungateiclostridiaceae 3 0 0 3 1 2 
Hyphomonadaceae 0 2 2 0 2 0 
Ignavibacteriaceae 1 0 0 1 0 1 
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Kiritimatiellaceae 3 1 0 3 2 1 
Lachnospiraceae 8 0 3 3 8 0 
Latescibacteraceae 1 0 0 3 0 3 
Lentimicrobiaceae 7 0 0 7 1 3 
Leptospiraceae 1 0 0 1 1 0 
Marinifilaceae 6 0 0 2 6 0 
Marinilabiliaceae 9 0 0 8 6 3 
Marinomonadaceae 1 0 1 0 1 0 
Melioribacteraceae 7 0 0 6 3 4 
Methylophagaceae 2 0 1 1 2 0 
Methylophilaceae 1 0 2 0 2 0 
Moduliflexaceae 19 0 0 14 16 3 
MSBL8 5 0 1 4 2 2 
Nitrincolaceae 1 0 0 1 1 0 
NS11-12_marine_group 0 1 1 0 1 0 
Pedosphaeraceae 1 0 0 1 0 1 
PHOS-HE36 2 0 0 3 0 3 
Pirellulaceae 9 1 2 10 2 9 
Prolixibacteraceae 16 0 1 11 10 3 
Puniceicoccaceae 2 0 1 0 2 0 
Rhizobiaceae 4 0 3 0 5 0 
Rhodobacteraceae 5 4 17 0 17 0 
Rickettsiaceae 1 0 1 0 1 0 
Rubinisphaeraceae 0 1 2 0 2 0 
S15A-MN91 1 0 0 1 1 0 
Sandaracinaceae 1 0 0 1 0 1 
Saprospiraceae 5 5 6 5 6 3 
SB-5 11 0 0 8 6 5 
Sedimenticolaceae 8 2 1 9 4 6 
SG8-4 3 0 0 2 1 2 
Shewanellaceae 0 1 1 0 1 0 
Spirochaetaceae 23 0 1 21 15 11 
Spirosomaceae 0 1 1 0 1 0 
Spongiibacteraceae 2 1 2 1 2 1 
Sulfurimonadaceae 6 1 1 1 6 1 
Sulfurovaceae 1 0 1 0 1 0 
Syntrophotaleaceae 1 0 0 1 1 0 
Thermoanaerobaculaceae 13 0 0 14 0 14 
Thioalkalispiraceae 1 1 0 4 0 4 
Thiohalorhabdaceae 1 0 0 1 0 1 
Thiomicrospiraceae 7 2 0 9 1 8 
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Thiotrichaceae 2 5 5 4 5 4 
Unknown_Family 9 0 1 10 1 10 
Vibrionaceae 1 0 1 0 1 0 
Woeseiaceae 3 0 0 3 0 3 
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Supplemental Table 1.S7: For belowground bacterial communities, all ASVs that varied 

significantly among mimics, seagrass and sediment determined by DESeq2, including magnitude 

of differences. See Supplemental Files SupplementalTable1.S7.xlsx. 
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Supplemental Table 1.S8: For belowground bacterial communities, all Metacyc predicted 

pathways that varied significantly among mimics, seagrass and sediment determined by DESeq2, 

including magnitude of differences. 

Pathway 
Root vs. 
Mimic 

Mimic vs. 
Sediment 

Root vs. 
Sediment 

&beta;-alanine biosynthesis II -2.707 6.111 3.404 
1,4-dihydroxy-2-naphthoate biosynthesis I -0.734 NA NA 
1,4-dihydroxy-6-naphthoate biosynthesis I 0.895 -0.833 NA 
1,4-dihydroxy-6-naphthoate biosynthesis II 0.936 -0.922 NA 
2-amino-3-carboxymuconate semialdehyde degradation 
to 2-oxopentenoate -1.392 2.038 0.646 
2-aminophenol degradation -2.279 1.971 NA 
2-methylcitrate cycle I -1.101 NA -0.666 
2-methylcitrate cycle II -0.814 NA -0.5 
2-nitrobenzoate degradation I -1.351 1.919 0.568 
3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate 
degradation -1.066 3.175 2.11 
3-phenylpropanoate degradation -2.55 7.214 4.664 
4-coumarate degradation (anaerobic) NA 0.894 0.511 
4-deoxy-L-threo-hex-4-enopyranuronate degradation NA NA 0.568 
4-hydroxyphenylacetate degradation -0.697 1.697 1 
4-methylcatechol degradation (ortho cleavage) -2.808 2.565 NA 
acetylene degradation NA NA 0.599 
adenosylcobalamin biosynthesis I (early cobalt insertion) -0.714 2.256 1.542 
adenosylcobalamin biosynthesis II (late cobalt 
incorporation) -0.868 2.381 1.512 
ADP-L-glycero-&beta;-D-manno-heptose biosynthesis 0.625 -1.079 NA 
aerobactin biosynthesis -0.913 2.622 1.709 
allantoin degradation IV (anaerobic) -5.19 12.389 7.199 
allantoin degradation to glyoxylate III -1.345 1.089 NA 
androstenedione degradation NA -1.1 -1.165 
arginine, ornithine and proline interconversion 0.831 NA 0.59 
aromatic biogenic amine degradation (bacteria) -0.658 0.859 NA 
aromatic compounds degradation via &beta;-ketoadipate -2.45 2.489 NA 
benzoyl-CoA degradation II (anaerobic) 2.335 -2.511 NA 
Bifidobacterium shunt -1.207 1.348 NA 
biotin biosynthesis II -1.18 5.052 3.871 
catechol degradation I (meta-cleavage pathway) NA NA -0.548 
catechol degradation III (ortho-cleavage pathway) -2.45 2.489 NA 
catechol degradation to &beta;-ketoadipate -1.833 2.268 NA 
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catechol degradation to 2-oxopent-4-enoate II -0.686 1.26 0.574 
chitin derivatives degradation NA 0.947 1.405 
chlorophyllide a biosynthesis I (aerobic, light-
dependent) -0.72 1.652 0.932 
chlorophyllide a biosynthesis II (anaerobic) -0.768 1.592 0.823 
chlorophyllide a biosynthesis III (aerobic, light 
independent) -0.768 1.592 0.823 
chlorosalicylate degradation -3.061 5.32 2.259 
chondroitin sulfate degradation I (bacterial) -1.706 2.696 0.99 
CMP-legionaminate biosynthesis I 0.934 -1.577 -0.643 
CMP-pseudaminate biosynthesis 2.677 3.179 5.856 
cob(II)yrinate a,c-diamide biosynthesis I (early cobalt 
insertion) NA 1.762 1.522 
cob(II)yrinate a,c-diamide biosynthesis II (late cobalt 
incorporation) -0.532 1.015 NA 
coenzyme B biosynthesis -3.071 6.334 3.263 
coenzyme M biosynthesis I -0.653 NA NA 
creatinine degradation I -0.731 1.411 0.68 
creatinine degradation II -1.043 1.966 0.923 
D-fructuronate degradation -0.69 0.755 NA 
D-galactarate degradation I -1.061 0.528 -0.533 
D-galacturonate degradation I NA 0.635 NA 
D-glucarate degradation I -1.669 NA -1.318 
dTDP-N-acetylthomosamine biosynthesis -1.002 0.717 NA 
ectoine biosynthesis -0.56 0.587 NA 
enterobacterial common antigen biosynthesis -6.585 6.736 NA 
enterobactin biosynthesis -2.12 1.54 -0.58 
ergothioneine biosynthesis I (bacteria) -5.705 4.133 -1.572 
ethylmalonyl-CoA pathway NA 1.609 1.126 
factor 420 biosynthesis -3.584 7.65 4.066 
formaldehyde assimilation I (serine pathway) -1.108 NA -1.106 
formaldehyde assimilation II (RuMP Cycle) -0.539 1.394 0.855 
formaldehyde oxidation I -0.531 1.373 0.843 
galactose degradation I (Leloir pathway) 0.553 NA NA 
gallate degradation I -1.414 2.933 1.519 
gallate degradation II -1.449 2.968 1.52 
GDP-D-glycero-&alpha;-D-manno-heptose biosynthesis 1.444 -2.19 -0.746 
glucose and glucose-1-phosphate degradation -0.788 0.798 NA 
glucose degradation (oxidative) -2.795 1.294 -1.501 
glutaryl-CoA degradation 0.7 -1.314 -0.614 
glycerol degradation to butanol -1.06 1.965 0.905 
glycine betaine degradation I NA 1.479 1.012 
glycogen degradation I (bacterial) 0.541 -0.531 NA 
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glycogen degradation II (eukaryotic) -0.826 1.763 0.937 
glyoxylate cycle -0.581 0.505 NA 
heterolactic fermentation -1.206 1.333 NA 
hexitol fermentation to lactate, formate, ethanol and 
acetate -3.151 3.158 NA 
incomplete reductive TCA cycle 0.575 -0.655 NA 
isoprene biosynthesis II (engineered) 1.375 -1.53 NA 
isopropanol biosynthesis NA -0.788 -1.081 
ketogluconate metabolism -2.08 2.904 0.823 
L-1,2-propanediol degradation -3.483 7.5 4.017 
L-arabinose degradation IV -1.091 10.119 9.027 
L-arginine degradation II (AST pathway) -2.36 2.826 NA 
L-glutamate degradation V (via hydroxyglutarate) 0.929 -1.452 -0.522 
L-histidine degradation II -0.905 1.758 0.853 
L-isoleucine biosynthesis IV 0.648 -0.637 NA 
L-lysine biosynthesis II -3.403 5.364 1.961 
L-lysine fermentation to acetate and butanoate 0.561 1.344 1.905 
L-methionine biosynthesis I NA 0.651 NA 
L-methionine salvage cycle III -6.548 9.365 2.817 
L-rhamnose degradation I -0.601 0.575 NA 
L-tryptophan degradation IX -0.755 0.943 NA 
L-tryptophan degradation to 2-amino-3-
carboxymuconate semialdehyde -1.013 0.945 NA 
L-tryptophan degradation XII (Geobacillus) -1.826 1.525 NA 
L-tyrosine degradation I -0.69 0.791 NA 
L-valine degradation I -2.825 6.469 3.644 
lactose and galactose degradation I -5.366 8.296 2.93 
mannan degradation NA 0.979 0.8 
meta cleavage pathway of aromatic compounds -2.222 2.442 NA 
methanogenesis from acetate 1.383 -1.405 NA 
methanol oxidation to carbon dioxide -1.267 1.652 NA 
methyl ketone biosynthesis -0.595 NA -0.695 
methylaspartate cycle NA NA 0.622 
methylgallate degradation -1.426 2.944 1.518 
methylphosphonate degradation I NA 1.155 0.657 
mevalonate pathway I 0.62 -0.789 NA 
mevalonate pathway II (archaea) 2.767 -2.41 NA 
mono-trans, poly-cis decaprenyl phosphate biosynthesis -4.413 7.054 2.641 
mycothiol biosynthesis -1.242 0.619 -0.623 
myo-, chiro- and scillo-inositol degradation -1.407 2.468 1.061 
myo-inositol degradation I -1.294 2.424 1.13 
NAD biosynthesis II (from tryptophan) -0.799 0.725 NA 
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NAD salvage pathway II -3.019 2.894 NA 
nicotinate degradation I -5.063 8.194 3.131 
nitrate reduction VI (assimilatory) -1.019 1.286 NA 
nitrifier denitrification -2.899 1.945 -0.954 
norspermidine biosynthesis -0.953 1.536 0.583 
nylon-6 oligomer degradation -0.85 0.947 NA 
octane oxidation -0.822 0.989 NA 
palmitate biosynthesis II (bacteria and plants) NA -0.905 -1.09 
peptidoglycan biosynthesis II (staphylococci) -5.146 11.401 6.254 
peptidoglycan biosynthesis IV (Enterococcus faecium) -3.081 3.053 NA 
peptidoglycan biosynthesis V (&beta;-lactam resistance) -3.874 6.005 2.131 
phenylacetate degradation I (aerobic) -2.362 2.021 NA 
phospholipases -1.595 1.442 NA 
polymyxin resistance -3.01 1.664 -1.346 
ppGpp biosynthesis -0.775 1.179 NA 
protocatechuate degradation I (meta-cleavage pathway) -1.35 3.374 2.025 
protocatechuate degradation II (ortho-cleavage pathway) -0.963 1.364 NA 
purine nucleotides degradation II (aerobic) NA 0.761 0.626 
purine ribonucleosides degradation NA 0.974 1.037 
pyrimidine deoxyribonucleotides biosynthesis from CTP 1.42 -2.896 -1.476 
pyrimidine deoxyribonucleotides de novo biosynthesis 
III 0.531 NA NA 
pyrimidine deoxyribonucleotides de novo biosynthesis 
IV 1.396 -2.894 -1.498 
pyruvate fermentation to acetate and lactate II 0.607 NA NA 
pyruvate fermentation to acetone -1.116 NA -0.677 
pyruvate fermentation to butanoate 1.011 -0.849 NA 
reductive acetyl coenzyme A pathway 1.077 -1.026 NA 
S-adenosyl-L-methionine cycle I NA 1.435 1.331 
S-methyl-5-thio-&alpha;-D-ribose 1-phosphate 
degradation -6.882 9.53 2.648 
spirilloxanthin and 2,2'-diketo-spirilloxanthin 
biosynthesis -0.97 2.188 1.218 
sucrose degradation II (sucrose synthase) 0.736 -2.09 -1.354 
sucrose degradation III (sucrose invertase) -1.619 2.032 NA 
superpathway of (Kdo)2-lipid A biosynthesis -0.563 -0.78 -1.344 
superpathway of (R,R)-butanediol biosynthesis -0.822 NA -1.035 
superpathway of &beta;-D-glucuronide and D-
glucuronate degradation -0.856 0.788 NA 
superpathway of 2,3-butanediol biosynthesis -0.542 NA -0.89 
superpathway of aerobic toluene degradation -1.618 1.714 NA 
superpathway of bacteriochlorophyll a biosynthesis -0.717 1.655 0.938 
superpathway of C1 compounds oxidation to CO2 NA 3.717 3.424 



 

 53 

superpathway of chorismate metabolism -1.082 NA -0.77 
superpathway of Clostridium acetobutylicum acidogenic 
fermentation 0.964 -0.791 NA 
superpathway of D-glucarate and D-galactarate 
degradation -1.061 0.528 -0.533 
superpathway of demethylmenaquinol-6 biosynthesis I -0.559 NA NA 
superpathway of demethylmenaquinol-6 biosynthesis II 1.413 0.828 2.241 
superpathway of demethylmenaquinol-8 biosynthesis -0.555 NA NA 
superpathway of demethylmenaquinol-9 biosynthesis -0.559 NA NA 
superpathway of fucose and rhamnose degradation -1.558 3.619 2.061 
superpathway of geranylgeranyldiphosphate 
biosynthesis I (via mevalonate) 0.629 -0.792 NA 
superpathway of glycerol degradation to 1,3-propanediol -0.507 3.473 2.966 
superpathway of glycol metabolism and degradation -1.911 4.578 2.667 
superpathway of glyoxylate bypass and TCA -0.568 NA NA 
superpathway of hexitol degradation (bacteria) -1.444 1.087 NA 
superpathway of hexuronide and hexuronate degradation -0.937 1.092 NA 
superpathway of L-arginine and L-ornithine degradation -5.65 7.165 1.516 
superpathway of L-arginine, putrescine, and 4-
aminobutanoate degradation -5.65 7.165 1.516 
superpathway of L-aspartate and L-asparagine 
biosynthesis 0.576 NA 0.74 
superpathway of L-threonine metabolism -6.335 9.146 2.811 
superpathway of menaquinol-10 biosynthesis -0.508 NA NA 
superpathway of menaquinol-11 biosynthesis -0.52 NA NA 
superpathway of menaquinol-12 biosynthesis -0.52 NA NA 
superpathway of menaquinol-13 biosynthesis -0.52 NA NA 
superpathway of menaquinol-6 biosynthesis I -0.508 NA NA 
superpathway of menaquinol-8 biosynthesis II 1.413 -0.787 0.626 
superpathway of menaquinol-9 biosynthesis -0.508 NA NA 
superpathway of methylglyoxal degradation -2.183 3.746 1.563 
superpathway of N-acetylglucosamine, N-
acetylmannosamine and N-acetylneuraminate 
degradation -0.896 NA -0.715 
superpathway of N-acetylneuraminate degradation -0.663 NA -0.566 
superpathway of phenylethylamine degradation -2.206 4.726 2.52 
superpathway of phylloquinol biosynthesis -0.712 NA NA 
superpathway of purine deoxyribonucleosides 
degradation NA 0.937 0.905 
superpathway of pyridoxal 5'-phosphate biosynthesis 
and salvage NA 2.341 2.37 
superpathway of pyrimidine deoxyribonucleosides 
degradation NA 0.648 0.768 
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superpathway of salicylate degradation -2.333 2.405 NA 
superpathway of sulfolactate degradation NA 1.819 1.324 
superpathway of sulfur oxidation (Acidianus 
ambivalens) 1.533 -1.735 NA 
superpathway of thiamin diphosphate biosynthesis II 1.049 -1.069 NA 
superpathway of UDP-glucose-derived O-antigen 
building blocks biosynthesis -0.577 1.115 0.537 
superpathway of vanillin and vanillate degradation -1.328 3.437 2.11 
TCA cycle VII (acetate-producers) NA 0.716 NA 
teichoic acid (poly-glycerol) biosynthesis -1.136 4.14 3.004 
thiazole biosynthesis II (Bacillus) 1.319 -1.274 NA 
toluene degradation III (aerobic) (via p-cresol) -2.388 2.255 NA 
toluene degradation IV (aerobic) (via catechol) -2.366 2.877 0.511 
tRNA processing NA -0.591 NA 
UDP-2,3-diacetamido-2,3-dideoxy-&alpha;-D-
mannuronate biosynthesis 0.615 -0.585 NA 
vanillin and vanillate degradation I -1.328 3.437 2.11 
vanillin and vanillate degradation II -1.325 3.426 2.101 
vitamin E biosynthesis (tocopherols) -2.895 7.085 4.19 
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Appendix 1.A 

We also had controls that we transplanted back to sites with mimics (in addition to control plants 

taken from nearby where mimics were placed). Appendix 1.A repeats the analyses in the main 

text and produces very similar results in terms of degrees of differences compared to the 

transplants in the main text. This suggests that these results are robust to our manipulations. 

 

Sampling and sequencing success 

We identified 43,118 bacterial ASVs across 247 leaf, root, mimic, and sediment samples 

after quality filtering samples to 5,165,712 reads. Root samples contained between 328 and 

1,026 bacterial ASVs on their surface (we measured 75 root samples with read depth between 

7,501 and 79,940 reads), Root mimics samples contained between 85 and 797 bacterial ASVs on 

their surface (we measured 26 root mimic samples with read depth between 2,056 and 37,853 

reads), Sediment samples contained between 271 and 843 bacterial ASVs on their surface (we 

measured 36 sediment root samples with read depth between 10,775 and 40,346 reads), leaf 

samples contained between 261 and 716 bacterial ASVs on their surface (we measured 75 leaf 

samples with read depth between 5,770 and 50,564 reads) and leaf mimic samples which 

contained between 196 and 724 bacterial ASVs (35 leaf mimic samples with between 4,591 and 

31,702 reads per sample). 

Results 

Leaf mimics have a higher number of ASVs than leaves (negative binomial glm, 

ANOVA, p = 0.048; Appendix Figure 1.A1A). When examining core ASVs (present in at least 

50% of samples of a type at at least a 1% detection rate), we found that leaves and leaf mimics 
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largely harbored distinct bacterial communities, by ASV, while also sharing substantial overlap 

(Appendix Figure 1.A1B) and more so than other sample types. Of the 212 ASVS in the core 

leaf microbiome, 107 or 50% were found only on leaves and 97 of the remaining (56% of core 

leaf ASVs) overlapped with leaf mimic ASVs. While there was not a difference in variance 

within each sample type (betadisper ANOVA, p = 0.71), the composition of the two groups was 

different (PERMANOVA, F = 19.61, p = 0.001, r2 = 0.15, Appendix Figure 1.A2A). When we 

examine overlap in predicted Metacyc pathways, we found that there was a significant difference 

between leaves and mimics (PERMANOVA, r2 = 0.05411, F = 6.1787, p = 0.001), though this 

effect was weaker than for the sequence based compositional differences (Appendix Figure 

1.A2B).  

Through analysis of specific ASVs that varied between leaves and leaf mimics via 

DESEQ2, we found 209 ASV that showed higher relative abundance on leaves and 101 that 

showed higher relative abundance on mimics. Only four families contained more than ten ASVs 

that varied between mimics and leaves: Flavobacteriaceae (15 higher on leaves, 17 higher on 

mimics), Pirellulaceae (eight higher on leaves, four higher on mimics), Rhodobacteraceae (40 

higher on leaves, 25 higher on mimics), and Saprospiraceae (39 higher on leaves, one higher on 

mimics); most families contained fewer than 3 ASVs that varied between leaves and 

mimics (Appendix Table 1.A1&A2). Within these families several genera were represented by 

multiple ASVs. These included Kordia (three ASVs higher on leaves), Maribacter (one higher 

on leaves, two higher on mimics) Ulvibacter (two higher on leaves, two higher on mimics), 

Winogradskyella (one higher on leaves, two higher on mimics), Blastopirellula (5 higher on 

leaves, 2 higher on mimics), Rhodopirellula (two higher on leaves), Octadecabacter (one higher 

on leaves, one higher on mimics), Roseobacter (one higher on leaves, two higher on mimics), 



 

 57 

Sedimentitalea (one higher on leaves, one on mimics), Sulfitobacter (three higher on leaves, 

three higher on mimics), Tateyamaria (one higher on leaves, one on mimics), Yoonia-Loktanella 

(four higher on leaves), Lewinella (five higher on leaves), Portibacter (four higher on mimics), 

and Rubidimonas (three higher on leaves). Six other genera (not in these families) contained 

multiple ASVs that varied between leaves and mimics (Appendix Table 1.A3). For all ASVs that 

varied significantly between seagrass leaves and mimics see Appendix Table 1.A4. 

When we examined pathways that changed between the leaf and leaf mimic 

microbiomes, we identified 82 pathways that changed, 16 upregulated in leaf microbiomes and 

66 upregulated on mimic microbiomes (Appendix Table 1.A5). These pathways were generally 

unremarkable (likely at least in part due to limits in prediction of environmental microbial 

pathways), though did indicate that aerobic environments might not solely limited to leaf 

microbiomes with an upregulation of the superpathway of sulfur oxidation on mimic leaf 

surfaces compared to leaf surfaces.  

In roots, less surprisingly, we also found differences between the mimic and root 

communities. We found that despite fewer ASVs found summed across samples in mimics 

(Appendix Figure 1.A1B), there were generally the same number of ASVs on roots and root 

mimics (Appendix Figure 1.A1A, negative binomial glm ANOVA, p = 0.093, p = 0.32 when 

comparing sediments as well). We found that there was no difference in variance among roots 

and root mimics (betadisper ANOVA p = 0.87), however sediments showed less variance than 

either of the other two groups (betadisper ANOVA, p < 0.001, Tukey’s HSD sediment vs mimic 

p < 0.001, vs roots p < 0.001). When examining core ASVs (present in at least 50% of samples 

of a given type at at least 1% detection rate), we found that roots and sediments largely harbored 

distinct bacterial communities, by ASV (Appendix Figure 1.A1B), though root mimics had fewer 
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unique core microbiome (only 2 ASVs unique to root mimics). Of 266 ASVS in the core root 

microbiome, 82 or 31% were found only on roots and 131 (49%) were found only on roots and 

in sediments. Only 38 core root ASVs (14%) were shared between roots and root mimics. When 

we examined all ASVs (without core restrictions), root mimics had more taxa unique to their 

sample type, indicating considerable variability in communities assembled on root mimics 

(Appendix Figure 1.A3). ASV composition on roots, mimics and sediment were compositionally 

distinct (PERMANOVA r2 = 0.151 F = 17.672 p = 0.001, see Appendix Table 1.A6 for pairwise 

comparisons, Appendix Figure 1.A4).  

We found many ASVs varied in abundance between these groups (417 between 

sediments and mimics, 454 between roots and sediments, and 385 between roots and mimics). Of 

these, the majority were at higher abundances on roots or sediments compared to mimics 

(comparing roots to mimics, 437 were higher on roots, and 49 were higher on mimics; 

comparing sediment to mimics, 359 were higher in sediments, 98 were higher on mimics; 

comparing roots to sediments 265 were higher on roots, 240 were higher in sediments; see 

Appendix Table 1.A7&8 for more details). The families that had the largest number of taxa vary 

among sample types included Spirochaetaceae (32 ASVs), Thiotrichaceae (33 ASVs), 

Bactoroidetes BD2-2 (47 ASVs), Pirellulaceae (56 ASVs), Desulfosarcinaceae (63 ASVs), 

Desusulfocapsaceae (69 ASVs), Saprospiraceae (73 ASVs), Rhodobacteraceae (125 ASVs) and 

Flavobacteriaceae (130 ASVs). Number of ASVs at higher or lower relative abundances in these 

different treatments can be found in Appendix Table 1.A7.While the pathways that varied were 

numerous and not particularly remarkable (as indicated in Appendix Table 1.A9), we found that 

indicated pathways were generally indicated to be upregulated on mimics in pairwise 
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comparisons (141 pathways higher in mimics compared to 32 in sediments, and 69 higher on 

mimics compared to 11 on roots). 
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Appendix 1.A Figures and Tables: 

Appendix Figure 1.A1: (A) Mean amplicon sequence variant (ASV) richness found in each type 

of sample we measured. Raw data as well as means and standard errors are presented. Leaf 

mimic bacterial communities had a higher mean richness than leaf bacterial communities (p < 

0.001); root mimic, root, and sediment bacterial communities did not differ in mean community 

richness. (B) Overlap among core bacterial communities showing shared ASVs present in each 

sample type in at least 50% of samples at a 1% detection rate. Diagram is a barplot of shared 

community memberships, equivalent to a Venn diagram. 
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Appendix Figure 1.A2: (A) Ordination of bacterial community structure based on principal 

coordinate analysis of phylogenetic-isometric log-ratio transformed distances. (B) Ordination of 

predicted Metacyc pathways structure based on principal coordinate analysis of centered log-

ratio transformed distances. Bright green points are communities on leaf mimics and dark green 

points are communities on leaves. Leaf and leaf mimic communities in both analyses are distinct 

from each other (PERMANOVA p < 0.001). 
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Appendix Figure 1.A3 Overlap among all ASVs present in each sample type. Diagram is a 
barplot of shared community memberships, equivalent to a Venn diagram. 
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Appendix Figure 1.A4: (A) Ordination of bacterial community structure based on principal 

coordinate analysis of phylogenetic-isometric log-ratio transformed distances. (B) Ordination of 

predicted Metacyc pathways structure based on principal coordinate analysis of centered log-

ratio transformed distances. Red-orange points are communities on root mimics, dark brown 

points are communities on roots, and grey points are communities in sediments. All communities 

are distinct from each other in each analysis (PERMANOVA p < 0.001). 
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Appendix Table 1.A1: For both leaves and root communities, the five families that had the most 

ASVs vary between mimics and seagrass substrate. See Appendix Tables 1.A2 and 1.A7 for 

complete lists for leaves and roots respectively. 

Family 
Higher on 
leaves Higher on mimics    

Rhodobacteraceae 40 25     
Saprospiraceae 39 1     
Flavobacteriaceae 15 17     
Pirellulaceae 8 4     
Rhizobiaceae 1 8     
       

Family 
Higher on 
roots 

Higher on 
mimics 

Higher on 
mimics 

Higher on 
sediment 

Higher on 
roots 

Higher on 
sediment 

Flavobacteriaceae 38 3 32 12 37 8 
Rhodobacteraceae 36 3 41 0 45 0 
Desulfocapsaceae 24 0 6 15 14 10 
Saprospiraceae 19 3 21 4 23 3 
Desulfosarcinaceae 14 3 0 23 0 23 
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Appendix Table 1.A2: For leaf bacterial communities, the family-level identification of ASVs 

that varied significantly between mimics and seagrass substrate determined by DESeq2. 

Family Higher on leaves Higher on mimics 
37-13 1 0 
A4b 1 0 
Alteromonadaceae 8 0 
Arenicellaceae 1 0 
Bdellovibrionaceae 2 0 
Bernardetiaceae 1 0 
Blastocatellaceae 0 1 
Caldilineaceae 2 0 
Cellvibrionaceae 3 0 
Chromatiaceae 2 1 
Colwelliaceae 4 0 
Crocinitomicaceae 8 0 
Cryomorphaceae 8 0 
Cyanobiaceae 0 1 
Cyclobacteriaceae 2 0 
Desulfobulbaceae 0 1 
Desulfocapsaceae 1 5 
DEV007 3 3 
Flammeovirgaceae 1 0 
Flavobacteriaceae 15 17 
Fokiniaceae 1 0 
Francisellaceae 1 0 
Gimesiaceae 0 1 
Granulosicoccaceae 5 2 
Halieaceae 3 1 
Halomonadaceae 0 1 
Hyphomicrobiaceae 0 1 
Hyphomonadaceae 3 2 
Ilumatobacteraceae 0 1 
Kangiellaceae 1 0 
KD3-93 1 0 
Legionellaceae 0 1 
Magnetospiraceae 1 0 
Marinomonadaceae 1 0 
Methylophagaceae 2 0 
Methylophilaceae 5 1 
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Micavibrionaceae 0 2 
Microtrichaceae 2 2 
Nitrincolaceae 2 0 
Nitrosococcaceae 1 0 
NS11-12_marine_group 1 0 
NS9_marine_group 1 0 
Oleiphilaceae 1 0 
Opitutaceae 1 0 
Phormidesmiaceae 0 1 
Phycisphaeraceae 3 0 
Pirellulaceae 8 4 
Porticoccaceae 1 0 
Prolixibacteraceae 2 0 
Pseudohongiellaceae 2 0 
Rhizobiaceae 1 8 
Rhizobiales_Incertae_Sedis 0 1 
Rhodobacteraceae 40 25 
Rhodothermaceae 1 0 
Rickettsiaceae 2 0 
Rubinisphaeraceae 1 3 
Rubritaleaceae 1 2 
Saprospiraceae 39 1 
Schleiferiaceae 1 0 
Shewanellaceae 0 1 
Sphingomonadaceae 3 3 
Spirosomaceae 1 0 
Spongiibacteraceae 2 0 
Sulfurimonadaceae 1 0 
Sulfurovaceae 0 3 
Tenderiaceae 1 0 
Terasakiellaceae 1 0 
Thioglobaceae 1 0 
Thiotrichaceae 1 1 
Unknown_Family 0 2 
Woeseiaceae 0 2 
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Appendix Table 1.A3: For leaf bacterial communities, the genus-level identification of ASVs 

that varied significantly between mimics and seagrass substrate determined by DESeq2. 

Family Genus 
Higher on 

leaves 
Higher on 

mimics 
Alteromonadaceae Glaciecola 6 0 
Alteromonadaceae Paraglaciecola 1 0 
Alteromonadaceae Salinimonas 1 0 
Arenicellaceae Arenicella 1 0 
Bdellovibrionaceae Bdellovibrio 1 0 
Bdellovibrionaceae OM27_clade 1 0 
Bernardetiaceae Garritya 1 0 
Blastocatellaceae Blastocatella 0 1 
Cellvibrionaceae Agaribacterium 1 0 
Cellvibrionaceae Candidatus_Endobugula 1 0 
Chromatiaceae Candidatus_Thiobios 2 0 
Chromatiaceae Halochromatium 0 1 
Colwelliaceae Colwellia 3 0 
Colwelliaceae Thalassotalea 1 0 
Crocinitomicaceae Crocinitomix 4 0 
Crocinitomicaceae Fluviicola 3 0 
Cryomorphaceae Vicingus 3 0 
Cyanobiaceae Synechococcus_CC9902 0 1 
Cyclobacteriaceae Ekhidna 1 0 
Cyclobacteriaceae Fabibacter 1 0 
Desulfobulbaceae Desulfobulbus 0 1 
Flavobacteriaceae Actibacter 0 1 
Flavobacteriaceae Aquibacter 0 2 
Flavobacteriaceae Aurantivirga 2 0 
Flavobacteriaceae Changchengzhania 1 0 
Flavobacteriaceae Formosa 1 0 
Flavobacteriaceae Jejudonia 0 1 
Flavobacteriaceae Kordia 3 0 
Flavobacteriaceae Lutibacter 0 1 
Flavobacteriaceae Maribacter 1 2 
Flavobacteriaceae NS2b_marine_group 1 0 
Flavobacteriaceae NS3a_marine_group 1 0 
Flavobacteriaceae Polaribacter 1 0 
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Flavobacteriaceae Psychroserpens 0 1 
Flavobacteriaceae Robiginitalea 0 1 
Flavobacteriaceae Ulvibacter 2 2 
Flavobacteriaceae Wenyingzhuangia 1 0 
Flavobacteriaceae Winogradskyella 1 2 
Fokiniaceae MD3-55 1 0 
Granulosicoccaceae Granulosicoccus 5 2 
Halieaceae Halioglobus 0 1 
Halieaceae OM60(NOR5)_clade 2 0 
Halieaceae Pseudohaliea 1 0 
Halomonadaceae Halomonas 0 1 
Hyphomicrobiaceae Filomicrobium 0 1 
Hyphomonadaceae Hellea 1 0 
Hyphomonadaceae Hyphomonas 0 1 
Hyphomonadaceae Litorimonas 1 0 
Hyphomonadaceae Robiginitomaculum 1 0 
Ilumatobacteraceae Ilumatobacter 0 1 
Magnetospiraceae Magnetospira 1 0 
Marinomonadaceae Marinomonas 1 0 
Methylophagaceae Marine_Methylotrophic_Group_3 1 0 
Methylophilaceae Methylotenera 5 1 
Microtrichaceae Sva0996_marine_group 1 2 
Nitrosococcaceae Cm1-21 1 0 
Oleiphilaceae Oleiphilus 1 0 
Opitutaceae Diplosphaera 1 0 
Phormidesmiaceae Phormidesmis_ANT.LACV5.1 0 1 
Phycisphaeraceae Phycisphaera 1 0 
Phycisphaeraceae SM1A02 2 0 
Pirellulaceae Blastopirellula 5 2 
Pirellulaceae Pir4_lineage 0 1 
Pirellulaceae Pirellula 0 1 
Pirellulaceae Rhodopirellula 2 0 
Pirellulaceae Rubripirellula 1 0 
Porticoccaceae C1-B045 1 0 
Prolixibacteraceae Draconibacterium 2 0 
Pseudohongiellaceae Pseudohongiella 2 0 
Rhizobiaceae Ahrensia 0 1 
Rhizobiaceae Hoeflea 0 1 
Rhizobiaceae Pseudahrensia 1 4 
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Rhizobiales_Incertae_Sedis Anderseniella 0 1 
Rhodobacteraceae Aliiroseovarius 1 0 
Rhodobacteraceae Celeribacter 0 1 
Rhodobacteraceae Jannaschia 0 1 
Rhodobacteraceae Leisingera 0 1 
Rhodobacteraceae Limibaculum 1 0 
Rhodobacteraceae Octadecabacter 1 1 
Rhodobacteraceae Phaeobacter 0 1 
Rhodobacteraceae Planktomarina 0 1 
Rhodobacteraceae Planktotalea 1 0 
Rhodobacteraceae Roseobacter 1 2 
Rhodobacteraceae Roseovarius 0 1 
Rhodobacteraceae Sedimentitalea 1 1 
Rhodobacteraceae Sulfitobacter 3 3 
Rhodobacteraceae Tateyamaria 1 1 
Rhodobacteraceae Thiobacimonas 0 1 
Rhodobacteraceae Tropicimonas 0 1 
Rhodobacteraceae Yoonia-Loktanella 4 0 
Rickettsiaceae Candidatus_Megaira 2 0 
Rubinisphaeraceae Fuerstia 1 0 
Rubinisphaeraceae Planctomicrobium 0 2 
Rubritaleaceae Haloferula 0 1 
Rubritaleaceae Persicirhabdus 0 1 
Rubritaleaceae Roseibacillus 1 0 
Saprospiraceae Aureispira 1 0 
Saprospiraceae Lewinella 5 0 
Saprospiraceae Phaeodactylibacter 1 0 
Saprospiraceae Portibacter 4 0 
Saprospiraceae Rubidimonas 3 0 
Schleiferiaceae Schleiferia 1 0 
Shewanellaceae Shewanella 0 1 
Sphingomonadaceae Altererythrobacter 0 1 
Sphingomonadaceae Erythrobacter 2 0 
Sphingomonadaceae Parasphingopyxis 0 1 
Sphingomonadaceae Sphingorhabdus 1 0 
Spirosomaceae Taeseokella 1 0 
Spongiibacteraceae Dasania 1 0 
Sulfurimonadaceae Sulfurimonas 1 0 
Sulfurovaceae Sulfurovum 0 3 



 

 70 

Tenderiaceae Candidatus_Tenderia 1 0 
Thioglobaceae SUP05_cluster 1 0 
Thiotrichaceae Cocleimonas 0 1 
Thiotrichaceae Leucothrix 1 0 
Unknown_Family Marinicella 0 1 
Woeseiaceae Woeseia 0 2 
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Appendix Table 1.A4: For leaf bacterial communities, all ASVs that varied significantly between 

mimics and seagrass substrate determined by DESeq2, including magnitude of differences. See 

Supplemental Files AppendixATable1.A4.csv 
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Appendix Table 1.A5: For leaf bacterial communities, all Metacyc predicted pathways that 

varied significantly between mimics and seagrass substrate determined by DESeq2, including 

magnitude of differences. 

Pathway 
log2-fold 
Change 

nitrifier denitrification 3.23766261 
superpathway of polyamine biosynthesis III 2.50832917 
CMP-pseudaminate biosynthesis 2.38533794 
nylon-6 oligomer degradation 1.78133925 
thiazole biosynthesis II (Bacillus) 1.10325976 
coenzyme M biosynthesis I 1.04456344 
formaldehyde oxidation I 0.9590049 
formaldehyde assimilation II (RuMP Cycle) 0.9562312 
methyl ketone biosynthesis 0.9450924 
superpathway of thiamin diphosphate biosynthesis II 0.92452883 
ectoine biosynthesis 0.70480998 
ADP-L-glycero-&beta;-D-manno-heptose biosynthesis 0.65819635 
L-arginine degradation II (AST pathway) 0.63231738 
glucose and glucose-1-phosphate degradation 0.60402905 
norspermidine biosynthesis 0.57577995 
superpathway of polyamine biosynthesis I 0.56942389 
superpathway of histidine, purine, and pyrimidine biosynthesis -0.5242397 
thiazole biosynthesis I (E. coli) -0.5275914 
fucose degradation -0.5326074 
catechol degradation to &beta;-ketoadipate -0.5359885 
2-aminophenol degradation -0.543549 
acetylene degradation -0.5581539 
superpathway of Clostridium acetobutylicum acidogenic fermentation -0.5613171 
mannan degradation -0.5810783 
pyruvate fermentation to butanoate -0.5920957 
pyrimidine deoxyribonucleotides de novo biosynthesis II -0.6078529 
nitrate reduction VI (assimilatory) -0.6120458 
superpathway of pyridoxal 5'-phosphate biosynthesis and salvage -0.6644642 
superpathway of purine nucleotides de novo biosynthesis II -0.6876697 
aerobactin biosynthesis -0.6890469 
superpathway of sulfur oxidation (Acidianus ambivalens) -0.7026774 
superpathway of salicylate degradation -0.8300772 
reductive acetyl coenzyme A pathway -0.8371843 
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teichoic acid (poly-glycerol) biosynthesis -0.8410264 
catechol degradation III (ortho-cleavage pathway) -0.8454332 
aromatic compounds degradation via &beta;-ketoadipate -0.8454332 
meta cleavage pathway of aromatic compounds -0.8789704 
succinate fermentation to butanoate -0.8998533 
adenosylcobalamin biosynthesis II (late cobalt incorporation) -0.9365552 
androstenedione degradation -0.9391163 
superpathway of 2,3-butanediol biosynthesis -0.9661671 
superpathway of (Kdo)2-lipid A biosynthesis -0.9733811 
methanogenesis from acetate -0.9792468 
superpathway of demethylmenaquinol-6 biosynthesis II -1.0619267 
isopropanol biosynthesis -1.0728644 
superpathway of hexitol degradation (bacteria) -1.0874184 
L-glutamate degradation V (via hydroxyglutarate) -1.1359106 
D-galactarate degradation I -1.1440026 
superpathway of D-glucarate and D-galactarate degradation -1.1440026 
superpathway of (R,R)-butanediol biosynthesis -1.1442403 
pyruvate fermentation to acetone -1.1605646 
formaldehyde assimilation I (serine pathway) -1.1923269 
factor 420 biosynthesis -1.2158772 
isoprene biosynthesis II (engineered) -1.2826466 
glycerol degradation to butanol -1.3412872 
superpathway of N-acetylneuraminate degradation -1.3670503 
superpathway of L-aspartate and L-asparagine biosynthesis -1.4278134 
1,5-anhydrofructose degradation -1.4325517 
superpathway of N-acetylglucosamine, N-acetylmannosamine and N-
acetylneuraminate degradation -1.4891301 
coenzyme B biosynthesis -1.6276845 
allantoin degradation to glyoxylate III -1.6391955 
D-glucarate degradation I -1.6718886 
glutaryl-CoA degradation -1.7367827 
L-lysine fermentation to acetate and butanoate -1.7522809 
creatinine degradation II -1.7894301 
glucose degradation (oxidative) -2.1076198 
mono-trans, poly-cis decaprenyl phosphate biosynthesis -2.2966947 
methylaspartate cycle -2.3760429 
L-lysine biosynthesis II -2.4960889 
NAD salvage pathway II -2.5786537 
cob(II)yrinate a,c-diamide biosynthesis I (early cobalt insertion) -2.7391815 
chondroitin sulfate degradation I (bacterial) -2.8135174 
L-glutamate degradation VIII (to propanoate) -2.8832619 
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peptidoglycan biosynthesis IV (Enterococcus faecium) -2.9437995 
3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation to 2-
oxopent-4-enoate -3.0650628 
cinnamate and 3-hydroxycinnamate degradation to 2-oxopent-4-enoate -3.0650628 
allantoin degradation IV (anaerobic) -3.3360909 
superpathway of L-arginine, putrescine, and 4-aminobutanoate degradation -3.5753343 
superpathway of L-arginine and L-ornithine degradation -3.5753343 
nicotinate degradation I -3.8065081 
starch degradation III -5.1566723 
peptidoglycan biosynthesis V (&beta;-lactam resistance) -8.1998858 
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Appendix Table 1.A6: Results of pairwise PERMANOVA tests distinguishing compositional 

differences among roots, root mimics, and sediments in both ASV composition and composition 

of predicted Metacyc pathways. 

  
 df 

Sum Of 
Squares R2 F-Statistic Pr(>F) 

Based on 
taxonomy 

Root vs. Mimic 

Sample Type 1 2854.7 0.14 16.116 0.001 

Residual 99 17536.1 0.86   

Total 100 20390.8 1   

Mimic vs. Sediment 

Sample Type 1 4684.5 0.371 35.362 0.001 

Residual 60 7948.3 0.629   

Total 61 12632.8 1   

Root vs. Sediment 

Sample Type 1 6239.1 0.275 41.447 0.001 

Residual 109 16408 0.725   

Total 110 22647.1 1   

Based on 
predicted 
function 

Root vs. Mimic 

Sample Type 1 3038 0.051 5.3312 0.001 

Residual 99 56417 0.949   

Total 100 59455 1   

Mimic vs. Sediment 

Sample Type 1 8870 0.193 14.323 0.001 

Residual 60 37157 0.807   

Total 61 46028 1   

Root vs. Sediment 

Sample Type 1 12146 0.212 29.289 0.001 

Residual 109 45201 0.788   

Total 110 57347 1   
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Appendix Table 1.A7: For belowground bacterial communities, the family-level identification of 

ASVs that varied significantly among mimics, seagrass and sediment determined by DESeq2. 

Family 
Higher 
on roots 

Higher on 
mimics 

Higher on 
mimics 

Higher on 
sediment 

Higher 
on roots 

Higher on 
sediment 

Acanthopleuribacteraceae 1 0 0 1 0 1 
Anaerolineaceae 3 0 1 5 1 5 
Arenicellaceae 3 1 2 1 3 1 
Bacteroidetes_BD2-2 14 1 0 16 3 13 
Calditrichaceae 5 3 0 9 0 9 
Cellulomonadaceae 1 0 1 0 1 0 
Cellvibrionaceae 3 0 2 0 3 0 
Chitinophagaceae 1 0 1 0 1 0 
Christensenellaceae 2 0 0 1 1 1 
Chromatiaceae 3 0 0 4 0 4 
Crocinitomicaceae 4 0 5 0 5 0 
Cyclobacteriaceae 5 0 1 3 2 3 
Desulfobacteraceae 3 0 0 2 1 2 
Desulfobulbaceae 2 0 0 4 1 3 
Desulfocapsaceae 24 0 6 15 14 10 
Desulfosarcinaceae 14 3 0 23 0 23 
Desulfovibrionaceae 5 0 0 1 5 0 
DEV007 3 0 3 1 4 0 
Devosiaceae 1 0 1 0 1 0 
Ectothiorhodospiraceae 1 1 0 2 0 2 
Flavobacteriaceae 38 3 32 12 37 8 
Fusibacteraceae 2 0 0 1 2 0 
Gemmatimonadaceae 1 0 0 1 0 1 
Gimesiaceae 1 0 1 0 1 0 
Granulosicoccaceae 2 1 5 0 5 0 
Halieaceae 4 0 1 4 1 4 
Halomonadaceae 0 2 2 0 2 0 
Hungateiclostridiaceae 3 0 0 3 1 2 
Hyphomonadaceae 1 0 4 0 4 0 
Kiritimatiellaceae 1 0 0 1 0 1 
Kordiimonadaceae 1 0 1 0 1 0 
Lachnospiraceae 6 0 2 1 6 0 
Latescibacteraceae 0 2 0 3 0 3 
Lentimicrobiaceae 3 0 0 3 0 3 
Magnetospiraceae 1 0 1 0 1 0 
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Marinifilaceae 2 0 0 1 2 0 
Marinilabiliaceae 5 1 0 6 3 2 
Marinomonadaceae 1 0 1 0 1 0 
Melioribacteraceae 6 0 1 4 3 3 
Methyloligellaceae 1 0 0 1 0 1 
Methylophagaceae 2 0 2 0 2 0 
Methylophilaceae 4 0 4 0 4 0 
Microtrichaceae 2 0 2 0 2 0 
MSBL8 1 0 0 2 0 2 
Nitrincolaceae 2 0 1 1 2 0 
Parvibaculaceae 1 0 1 0 1 0 
PHOS-HE36 2 0 0 3 0 3 
Pirellulaceae 16 1 13 7 13 6 
Prolixibacteraceae 7 0 2 4 6 2 
Psychromonadaceae 1 0 1 0 1 0 
Puniceicoccaceae 2 0 1 0 2 0 
Rhizobiaceae 6 0 6 0 7 0 
Rhodobacteraceae 36 3 41 0 45 0 
Rubinisphaeraceae 5 0 5 0 5 0 
Rubritaleaceae 3 0 3 0 3 0 
Sandaracinaceae 1 0 0 1 0 1 
Saprospiraceae 19 3 21 4 23 3 
SB-5 6 0 0 6 2 4 
Schleiferiaceae 1 0 1 0 1 0 
Sedimenticolaceae 2 2 1 5 1 5 
SG8-4 1 0 0 1 0 1 
Shewanellaceae 0 1 1 0 1 0 
Sphingomonadaceae 2 0 2 0 3 0 
Spirochaetaceae 9 1 0 10 7 5 
Spirosomaceae 1 0 2 0 2 0 
Spongiibacteraceae 2 0 2 1 2 1 
Sulfurovaceae 1 0 1 0 1 0 
Syntrophotaleaceae 1 0 0 1 1 0 
Thermoanaerobaculaceae 7 0 0 11 0 11 
Thioalkalispiraceae 1 2 0 3 0 3 
Thiomicrospiraceae 4 1 1 6 1 6 
Thiotrichaceae 8 1 9 3 9 3 
Trueperaceae 1 0 1 0 1 0 
Unknown_Family 5 1 1 6 1 5 
Vibrionaceae 1 0 1 0 1 0 
Woeseiaceae 2 0 0 2 0 2 
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Appendix Table 1.A8: For belowground bacterial communities, all ASVs that varied 

significantly among mimics, seagrass and sediment determined by DESeq2, including magnitude 

of differences. See Supplemental File AppendixATable1.A8. 

  



 

 79 

Appendix Table 1.A9: For belowground bacterial communities, all Metacyc predicted pathways 

that varied significantly among mimics, seagrass and sediment determined by DESeq2, including 

magnitude of differences. 

Pathway 
Root vs. 
Mimic 

Mimic vs. 
Sediment 

Root vs. 
Sediment 

&beta;-alanine biosynthesis II NA 5.98028867 6.17916013 
1,4-dihydroxy-6-naphthoate biosynthesis I 0.52453186 -0.8382554 NA 
1,4-dihydroxy-6-naphthoate biosynthesis II NA -0.9208415 NA 
1,5-anhydrofructose degradation NA 0.5822825 0.91678643 
2-amino-3-carboxymuconate semialdehyde 
degradation to 2-oxopentenoate -0.5324918 2.10192706 1.56943525 
2-aminophenol degradation -1.0096637 2.07887674 1.06921309 
2-methylcitrate cycle I -0.9007436 0.59329576 NA 
2-methylcitrate cycle II -0.7081516 NA NA 
2-nitrobenzoate degradation I -0.5048366 1.98333606 1.47849943 
3-phenylpropanoate and 3-(3-
hydroxyphenyl)propanoate degradation to 2-
oxopent-4-enoate -1.3020418 4.07512185 2.77308003 
3-phenylpropanoate degradation -1.3795198 7.21839716 5.83887733 
4-coumarate degradation (anaerobic) NA 0.90868496 1.0680199 
4-hydroxyphenylacetate degradation -0.6235443 1.70481364 1.0812693 
4-methylcatechol degradation (ortho cleavage) -2.1204126 2.63553665 0.51512402 
adenosylcobalamin biosynthesis I (early cobalt 
insertion) -0.5278635 2.38312108 1.85525759 
adenosylcobalamin biosynthesis II (late cobalt 
incorporation) NA 2.45438795 2.19260435 
ADP-L-glycero-&beta;-D-manno-heptose 
biosynthesis NA -1.0379013 -1.0447171 
aerobactin biosynthesis NA 2.67822173 2.97740096 
allantoin degradation IV (anaerobic) -3.8790422 11.6679446 7.78890236 
allantoin degradation to glyoxylate III -1.0948528 1.20012867 NA 
androstenedione degradation NA -1.0590578 -0.7936352 
aromatic biogenic amine degradation (bacteria) NA 0.97177605 0.64651199 
aromatic compounds degradation via &beta;-
ketoadipate -1.7048087 2.56052172 0.85571297 
benzoyl-CoA degradation I (aerobic) -5.3493261 8.43200767 3.08268157 
benzoyl-CoA degradation II (anaerobic) 0.81885539 -3.1649666 -2.3461112 
Bifidobacterium shunt NA 1.36268466 0.9583059 
biotin biosynthesis II -2.2801293 5.1067305 2.82660117 
catechol degradation III (ortho-cleavage pathway) -1.7048087 2.56052172 0.85571297 



 

 80 

catechol degradation to &beta;-ketoadipate -0.8640468 2.3152049 1.4511581 
catechol degradation to 2-oxopent-4-enoate II NA 1.29739008 1.0656568 
chitin derivatives degradation 0.83765223 1.23367148 2.07132371 
chlorophyllide a biosynthesis I (aerobic, light-
dependent) NA 1.66916567 1.65806178 
chlorophyllide a biosynthesis II (anaerobic) NA 1.63793953 1.6191585 
chlorophyllide a biosynthesis III (aerobic, light 
independent) NA 1.63793953 1.6191585 
chlorosalicylate degradation -1.5806965 5.29068882 3.70999227 
chondroitin sulfate degradation I (bacterial) -3.5706214 2.1288075 -1.4418139 
cinnamate and 3-hydroxycinnamate degradation to 
2-oxopent-4-enoate -1.3020418 4.07512185 2.77308003 
CMP-legionaminate biosynthesis I NA -1.7170811 -1.7560234 
CMP-pseudaminate biosynthesis 0.96889146 2.61729121 3.58618266 
cob(II)yrinate a,c-diamide biosynthesis I (early 
cobalt insertion) NA 1.95843292 1.70820751 
cob(II)yrinate a,c-diamide biosynthesis II (late 
cobalt incorporation) NA 1.06300152 1.22997949 
coenzyme B biosynthesis NA 6.33172398 5.84288679 
coenzyme M biosynthesis I NA 0.55913072 NA 
creatinine degradation I NA 1.47125265 1.73472301 
creatinine degradation II NA 2.02886451 2.48406197 
D-fructuronate degradation NA 0.84183251 0.54886057 
D-galactarate degradation I NA 0.5502454 NA 
D-galacturonate degradation I NA 0.68804147 0.60597012 
D-glucarate degradation I -0.7791992 NA NA 
dTDP-N-acetylthomosamine biosynthesis NA 0.82091307 NA 
ectoine biosynthesis NA 0.6063511 0.7610108 
enterobacterial common antigen biosynthesis -3.9398588 8.08370873 4.1438499 
enterobactin biosynthesis -1.6985363 1.81330954 NA 
ergothioneine biosynthesis I (bacteria) -4.5808794 3.71990392 -0.8609754 
ethylmalonyl-CoA pathway NA 1.63626912 1.93902201 
factor 420 biosynthesis -3.6181246 7.7968298 4.17870521 
formaldehyde assimilation II (RuMP Cycle) NA 1.36498138 1.62215714 
formaldehyde oxidation I NA 1.34472111 1.60981698 
gallate degradation I NA 2.96335443 2.60732399 
gallate degradation II NA 2.9931866 2.60959275 
GDP-D-glycero-&alpha;-D-manno-heptose 
biosynthesis NA -2.336863 -2.3533359 
glucose and glucose-1-phosphate degradation -0.6154652 0.87514308 NA 
glucose degradation (oxidative) -3.5634038 1.31205774 -2.251346 
glutaryl-CoA degradation -0.8744803 -1.4823571 -2.3568374 
glycerol degradation to butanol -1.2138411 2.11371278 0.89987173 
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glycine betaine degradation I NA 1.52630641 1.77967665 
glycogen degradation I (bacterial) NA -0.5022613 NA 
glycogen degradation II (eukaryotic) NA 1.92811354 1.48703839 
glyoxylate cycle NA 0.59545961 NA 
heterolactic fermentation NA 1.35594303 0.9030291 
hexitol fermentation to lactate, formate, ethanol and 
acetate -2.3564217 2.93058383 0.57416213 
incomplete reductive TCA cycle NA -0.6320642 NA 
isoprene biosynthesis II (engineered) NA -1.596346 -1.2874942 
isopropanol biosynthesis NA -0.7395089 -0.6601573 
ketogluconate metabolism -1.1100443 2.96513108 1.85508681 
L-arabinose degradation IV NA 9.80122018 9.49234434 
L-arginine degradation II (AST pathway) -2.0305001 2.94130845 0.91080839 
L-glutamate degradation V (via hydroxyglutarate) NA -1.5896498 -1.8924772 
L-histidine degradation II NA 1.82293122 1.87999775 
L-isoleucine biosynthesis IV NA -0.6183816 NA 
L-lysine biosynthesis II -2.7233821 5.1544283 2.43104615 
L-lysine fermentation to acetate and butanoate NA 1.47736849 1.57053027 
L-methionine biosynthesis I NA 0.71356601 0.64118985 
L-methionine salvage cycle III -5.7266642 7.85970156 2.1330374 
L-rhamnose degradation I -0.5624761 0.61263037 NA 
L-tryptophan degradation IX NA 1.00068122 0.80181412 
L-tryptophan degradation to 2-amino-3-
carboxymuconate semialdehyde NA 1.00325492 0.74569097 
L-tryptophan degradation XII (Geobacillus) -0.7230692 1.62974146 0.90667225 
L-tyrosine degradation I NA 0.85425311 0.81798341 
L-valine degradation I NA 6.3388524 6.49180761 
lactose and galactose degradation I -5.062184 8.28938471 3.22720075 
mannan degradation NA 0.97400331 0.60637761 
meta cleavage pathway of aromatic compounds -1.0709935 2.48553208 1.41453861 
methanogenesis from acetate 0.66802212 -1.5177292 -0.8497071 
methanol oxidation to carbon dioxide -0.6092689 1.67128139 1.06201246 
methylaspartate cycle NA NA 0.72955726 
methylgallate degradation NA 2.96817215 2.59940031 
methylphosphonate degradation I NA 1.21248246 1.44671709 
mevalonate pathway I NA -0.6973192 NA 
mevalonate pathway II (archaea) 1.19113556 -2.5647924 -1.3736568 
mono-trans, poly-cis decaprenyl phosphate 
biosynthesis -2.1669721 6.66242923 4.49545717 
mycothiol biosynthesis -0.5798133 0.57033211 NA 
myo-, chiro- and scillo-inositol degradation NA 2.56222211 2.29443289 
myo-inositol degradation I NA 2.51159939 2.38726902 
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NAD biosynthesis II (from tryptophan) NA 0.7850773 0.59630288 
NAD salvage pathway II -3.216504 3.1998056 NA 
nicotinate degradation I -5.9100989 8.01022674 2.1001278 
nitrate reduction VI (assimilatory) NA 1.33504703 0.94737502 
norspermidine biosynthesis NA 1.58842222 1.33114879 
nylon-6 oligomer degradation NA 0.99787962 0.80549182 
octane oxidation NA 1.03817344 1.15439139 
palmitate biosynthesis II (bacteria and plants) -0.872762 -0.8440889 -1.716851 
peptidoglycan biosynthesis II (staphylococci) -5.788931 12.6352847 6.84635369 
peptidoglycan biosynthesis IV (Enterococcus 
faecium) -2.3037652 3.02148026 0.71771506 
peptidoglycan biosynthesis V (&beta;-lactam 
resistance) -3.1421431 5.05225645 1.91011332 
phenylacetate degradation I (aerobic) -1.5928447 2.04828109 NA 
phospholipases -0.7007483 1.74447062 1.04372228 
polymyxin resistance -2.9570821 1.86688576 -1.0901963 
ppGpp biosynthesis NA 1.3237357 0.94719959 
protocatechuate degradation I (meta-cleavage 
pathway) NA 3.31323514 3.04051865 
protocatechuate degradation II (ortho-cleavage 
pathway) NA 1.43269458 1.45955473 
purine nucleotides degradation II (aerobic) NA 0.84745319 0.95184059 
purine ribonucleosides degradation NA 1.02596312 1.33210895 
pyrimidine deoxyribonucleotides biosynthesis from 
CTP NA -3.2387427 -3.0061164 
pyrimidine deoxyribonucleotides de novo 
biosynthesis IV NA -3.2464337 -3.0353371 
pyruvate fermentation to acetone -0.7989368 0.58953572 NA 
pyruvate fermentation to butanoate NA -0.8480954 -0.6834175 
reductive acetyl coenzyme A pathway 0.56299075 -1.0712442 -0.5082534 
S-adenosyl-L-methionine cycle I -0.5730782 1.49674887 0.92367066 
S-methyl-5-thio-&alpha;-D-ribose 1-phosphate 
degradation -6.0971955 7.92182186 1.82462635 
spirilloxanthin and 2,2'-diketo-spirilloxanthin 
biosynthesis NA 2.2330273 2.28217566 
starch degradation III NA 7.32377146 7.21603178 
sucrose degradation II (sucrose synthase) NA -2.0756477 -1.9117441 
sucrose degradation III (sucrose invertase) -1.0811735 2.13489002 1.05371654 
superpathway of (Kdo)2-lipid A biosynthesis NA -0.7054507 -1.1461552 
superpathway of &beta;-D-glucuronide and D-
glucuronate degradation NA 0.85148319 0.6319071 
superpathway of aerobic toluene degradation -0.7444703 1.79585096 1.05138063 
superpathway of bacteriochlorophyll a biosynthesis NA 1.67435543 1.69358424 
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superpathway of C1 compounds oxidation to CO2 0.79775953 4.93409574 5.73185526 
superpathway of Clostridium acetobutylicum 
acidogenic fermentation NA -0.7857639 -0.6260313 
superpathway of D-glucarate and D-galactarate 
degradation NA 0.5502454 NA 
superpathway of demethylmenaquinol-6 
biosynthesis II NA 0.81685025 1.18219199 
superpathway of fucose and rhamnose degradation -0.8033356 3.780394 2.97705835 
superpathway of geranylgeranyldiphosphate 
biosynthesis I (via mevalonate) NA -0.7049968 NA 
superpathway of glycerol degradation to 1,3-
propanediol NA 2.71236968 2.61185182 
superpathway of glycol metabolism and degradation -1.048886 4.77755709 3.72867113 
superpathway of hexitol degradation (bacteria) -1.4325053 1.10451066 NA 
superpathway of hexuronide and hexuronate 
degradation NA 1.1797743 0.68847957 
superpathway of L-arginine and L-ornithine 
degradation -4.2622312 7.80495629 3.54272513 
superpathway of L-arginine, putrescine, and 4-
aminobutanoate degradation -4.2622312 7.80495629 3.54272513 
superpathway of L-threonine metabolism -5.2246486 8.59332633 3.36867768 
superpathway of menaquinol-8 biosynthesis II 0.67518966 -0.7613806 NA 
superpathway of methylglyoxal degradation -1.1952535 3.88225935 2.6870059 
superpathway of phenylethylamine degradation -1.3717238 4.68127965 3.30955587 
superpathway of polyamine biosynthesis III 1.12820444 NA 1.40574398 
superpathway of purine deoxyribonucleosides 
degradation NA 0.99995122 1.24937609 
superpathway of pyridoxal 5'-phosphate 
biosynthesis and salvage -0.6116537 2.45674032 1.84508665 
superpathway of pyrimidine deoxyribonucleosides 
degradation NA 0.70003531 1.00034021 
superpathway of S-adenosyl-L-methionine 
biosynthesis NA 0.51696413 NA 
superpathway of salicylate degradation -1.5799859 2.48032888 0.90034295 
superpathway of sulfolactate degradation NA 1.89159187 2.27801115 
superpathway of sulfur oxidation (Acidianus 
ambivalens) 0.76011508 -1.8921344 -1.1320193 
superpathway of thiamin diphosphate biosynthesis 
II NA -1.1289035 -0.8492926 
superpathway of UDP-glucose-derived O-antigen 
building blocks biosynthesis NA 1.16390318 0.98925039 
superpathway of vanillin and vanillate degradation NA 3.40551039 2.99074115 
TCA cycle VII (acetate-producers) NA 0.78551358 NA 
teichoic acid (poly-glycerol) biosynthesis NA 4.22846527 3.957639 
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thiazole biosynthesis II (Bacillus) NA -1.4247689 -1.0254904 
toluene degradation III (aerobic) (via p-cresol) -1.5757307 2.32241598 0.74668526 
toluene degradation IV (aerobic) (via catechol) -1.3085971 2.94089177 1.63229471 
tRNA processing NA -0.5698891 NA 
UDP-2,3-diacetamido-2,3-dideoxy-&alpha;-D-
mannuronate biosynthesis NA -0.5764018 NA 
urea cycle NA 0.52908568 0.76921194 
vanillin and vanillate degradation I NA 3.40551039 2.99074115 
vanillin and vanillate degradation II NA 3.39293769 2.98479856 
vitamin B6 degradation -4.8624169 6.32522899 1.46281206 
vitamin E biosynthesis (tocopherols) -2.7550338 7.24500287 4.48996911 
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Introduction 

Host-associated microbial communities are increasingly identified to have important 

effects on their host (McFall-Ngai et al. 2013, Hammer et al. 2019). The composition and 

structure of host-associated microbial communities vary by geographic region (Coleman-Derr et 

al. 2016, Griffiths et al. 2019), host health (Marzinelli et al. 2015), successional stage (Shade et 

al. 2013, Copeland et al. 2015, Shi et al. 2015, Wang et al. 2020) and environmental conditions 

(Avena et al. 2016, Rothschild et al. 2018), but the extent to which the host is a cause of, or faces 

consequences from, this variation is often unclear (Glasl et al. 2019). Making progress on this 

question requires an understanding of the forces structuring these communities. Such an 

understanding will be key toward manipulating the microbes in the interest of enhancing 

functionality and predicting microbiome composition and function under environmental change. 

This requires experimental and observational work to disentangle the roles of temporal and 

environmental variation in driving community structure at different scales. 

Microbial communities, like many ecological communities, vary predictably with 

seasonal and interannual variation in environmental drivers and host characteristics (Copeland et 

al. 2015, Fuhrman et al. 2015, Weigel and Erwin 2017). Microbial communities often shift 

composition as environmental conditions change, but whether these changes are due to direct 

environmental changes or changes in the host is often unclear. For example, coral bacterial 

communities resemble their new sites when hosts were transplanted among sites for 21 months 

(Ziegler et al. 2019). Similarly, temporal/seasonal variation was the dominant driver of sponge 

microbiome composition among nearby sites, despite differences in tidal depth (Weigel and 

Erwin 2017). Some terrestrial plant common garden studies looking at microbial communities 

that have run for at least two years (e.g., Wagner et al. 2016) also find a dominance of local 
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environmental over host characteristics in driving microbial assemblages. However, the coarse 

temporal resolution of these studies limits the ability to assess how quickly a change in local 

environment changes microbiomes. Thus, the speed of microbiomes matching novel 

environments is often unknown, yet is critical for assessing the capacity of the microbiome to 

buffer the host against a changing environment.  

Community composition is determined by the source pool of potential inhabitants in 

conjunction with numerous abiotic and biotic filters restricting certain members (Weiher and 

Keddy 1995, Kraft et al. 2015). In order to assess the various roles of different filters, community 

ecologists have used functional similarity to describe likely niche overlap between members of a 

guild: using the observed patterns in communities to infer the process of assembly (Cavender-

Bares et al. 2004b). When good functional data is not available, as is the case for many 

uncultured members of metagenomic sequenced communities, phylogenetic similarity can be 

used, with the assumption that conservation of key traits is held within clades (Webb 2000, 

Webb et al. 2002, Cavender-Bares et al. 2004a, Kembel et al. 2014). Given these assumptions, if 

microbial communities are phylogenetically clustered (i.e., more phylogenetically similar than 

expected by chance), local environmental filtering may exert a dominant influence on 

microbiomes. Alternatively, if microbiomes are phylogenetically overdispersed (less similar than 

expected by chance) resource partitioning or inter-taxon facilitation (i.e., cross-feeding, 

environmental buffering) could be the dominant driver of assembly. Furthermore, comparing 

phylogenetic clustering (or overdispersion) among sites can allow insights into the contingent 

nature of community assembly. For example, if at one site there is increased evidence of 

phylogenetic clustering compared to other sites we might expect that there is either a different 

environmental filter at that site or a reduction of competition in the microbial community there.  
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Microbial communities associated with the marine angiosperm eelgrass (Zostera marina) 

are of increasing interest for their role in host ecology and ecosystem functioning. Eelgrass is a 

foundation species that provides food and habitat for a diversity of animals (Duarte 2002), 

stabilizes sediment (Fonseca et al. 1982a, 1982b), and mediates nutrient cycling (Moore and 

Short 2006), and the potential role of the microbiome in mediating these effects will clarify how 

to best conserve and restore the important functions of eelgrass. Both leaves and roots differ in 

composition from source pools in water and sediments, but roots are more differentiated from 

sediment than leaves are from water (Fahimipour et al. 2017). Additionally, there seems to be an 

enhanced abundance of potentially functionally important sulfide oxidizing bacteria in 

communities collected from roots (Cúcio et al. 2016). Leaf microbial communities are locally 

and regionally variable (Fahimipour et al. 2017, Bengtsson et al. 2017) and may reflect other 

environmental patterns and guild structures (Bengtsson et al. 2017), whereas root microbiomes 

seem to vary less geographically (Fahimipour et al. 2017). No work in eelgrass to date has tested 

the role of host versus environment in microbial community structure but we know that there are 

strong differences in host genotypic composition, genetically-based traits, and environment on 

spatial scales less than 1km (Hughes et al. 2009, Hughes and Stachowicz 2010, Kamel et al. 

2012, Abbott et al. 2018).  

To understand the assembly processes of seagrass microbiomes, we performed a 

reciprocal transplant experiment among four sites within a single 5 km2 embayment in Bodega 

Harbor, California, USA, along a gradient from the mouth of the harbor (most oceanic) to the 

head (most estuarine). This gradient (see Figure 2.1) consists of increasing temperature, 

decreasing flow, and changing sediment grain size and organic content, all of which potentially 

influence the root and leaf microbiomes; local adaptation of plants to these differences could also 
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moderate microbiome assembly. We tracked changes in the bacterial assemblages associated 

with eelgrass roots and leaves across a time course of three months (July to September) to 

examine the relative importance of host factors vs environment in determining microbiome 

composition. We then applied community phylogenetic approaches to assess the role of 

environmental filtering vs. other processes in structuring bacterial assemblages. 

 

Results  

On both roots and leaves, plants strongly resembled destination and not origin site after one 

month 

Leaf bacterial community composition based on phylogenetic isometric log-ratio 

transformed data from samples transplanted among our four sites quickly resembled destination 

site (the site to which shoots were transplanted) and not origin site (the site of collection) across 

our four sites (Figure 2.2, Table 2.1), suggesting that eelgrass microbiomes rapidly change as a 

function of local conditions. After 1 month, there was also an effect of origin site and its 

interaction with destination site, though these effects were weaker than the effect of destination 

site (Figure 2.2A, PERMANOVA results in Table 2.1). After two and three months, there was 

still a strong effect of destination site, but no effect of origin site or its interaction with 

destination site (2 months: Figure 2.2B, Table 2.1; 3 months: Figure 2.2C, Table 2.1). There was 

strong differentiation by destination site across all three time points (Figure 2.2A-C, Table 2.1). 

This suggests that destination environment, and/or plant changes that happen as a result of the 

destination environment, were the primary drivers of leaf microbiome and these overwhelmed 

any residual effect of origin site within 2 months at most. These differences were associated with 

differences in variance among sites within time points (betadisper, ANOVA p1 = 0.0016, p2 = 
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0.0003, p3 = 0.05127): after one month, Mason’s Marina (MM) had higher within-site variance 

than all other sites, and after two months was still greater than Doran Beach (DB) and Westside 

Park (WP) but not Campbell Cove (CC). 

As there was a significant interaction between destination and origin sites after one 

month, we compared all possible combinations of origin and destination sites. Regardless of 

origin site, bacterial communities differed between all pairwise destination sites after one month 

(Supplemental Table 2.S1A & 2.S1B for p and R2 values). After one month, leaves of plants 

transplanted to DB from MM were distinct from those transplanted from CC or DB. Leaf 

bacterial communities of plants transplanted to MM from CC and MM were also still distinct 

from each other (Supplemental Table 2.S2 A & 2.S2 B for pairwise p and R2 values). All 

pairwise combinations of leaf bacterial communities after two and three months were distinct 

from each other by destination site only. 

Alpha diversity also varied as a function of destination site, although these differences 

only emerged after 2 months. After one month, there were no significant differences in amplicon 

sequence variant (ASV) richness among destination or origin sites (negative binomial GLM, p > 

0.05, Figure 2.2D). After two months, plants at CC had a higher number of ASVs than those at 

DB and plants at WP had a higher number of ASVs observed than MM and DB (negative 

binomial GLM, p < 0.001, all significant pairwise comparisons also p < 0.001 ; Figure 2.2E). 

Finally after three months, WP had a higher number of ASVs than DB and MM (pvsDB < 0.001, 

pvsMM < 0.001) and CC had more ASVs than DB (p < 0.001, Figure 2.2F). After two months, 

there was also a small effect of origin site on richness due to differences between plants from CC 

and MM (p = 0.040). Considering all time points, fewer ASVs were present on leaves when at 

DB as destination site and more bacterial ASVs on leaves when at WP.  



 

 91 

 Root bacterial communities followed similar patterns as leaves. After one month, 

destination site had the strongest effect on microbiome composition, but there was also an effect 

of origin site and an interaction between origin and destination site (Figure 2.3A, PERMANOVA 

statistics in Table 2.2), but this was absent after two months (Figure 2.3b, Table 2.2) and three 

months (Figure 2.3C, Table 2.2). After two and three months, microbiomes still showed 

differences among all destination sites (Figure 2.3). There was no difference in within-site 

variance among sites at any time point (betadisper ANOVA, p1 = 0.0912, p2 = 0.6264, p3 = 

0.3975). 

We explored the interaction between destination and origin site on root microbiome after 

one month, by comparing microbiomes in all possible combinations of origin and destination site 

at this time point. Regardless of origin site, bacterial communities differed between all pairwise 

destination sites after one month (all pairwise results (p-values and R2) can be found in 

Supplemental Table 2.S3). However, origin site only influenced community composition for 

some origins at some destinations and only after one month. On roots of plants transplanted to 

MM, bacterial communities varied when comparing plants from MM vs. any other site while 

communities on roots of other sites did not differ from each other. The same pattern occurred at 

WP, where all plants transplanted from WP were distinct from all other sites and all other sites 

could not be distinguished from each other. At CC, bacterial communities roughly formed two 

groups with root bacterial communities -- plants from CC and DB hosted similar communities 

and plants from MM and WP hosted a different distinct community. At DB, we saw no effect of 

origin site (all pairwise results p-values and R2s can be found in Supplemental Table 2.S4). 

There were no differences in alpha diversity among roots by destination after one or three 

months (negative binomial GLM, p1, p3 > 0.05), but after two months plants planted at WP had 
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more ASVs (Figure 2.3D-F; negative binomial GLM, pdestination = 0.007, porigin = 0.023, 

pdestination:origin = 0.447; significant pairwise differences: pdestination CCvsWP = 0.011, pdestination MMvs WP, 

porigin MMvsWP = 0.023).  

Most sites show phylogenetic clustering, degree of clustering varies by destination site 

Given that all sites are within a few kilometers, and the high degree of tidal exchange 

within Bodega Harbor, all sites are likely exposed to a very similar pool of colonizing microbes; 

therefore we expect that the compositional differences among sites we observed are driven by 

local factors rather than dispersal limitation. From our compositional analyses, we found that 

sites differed by destination site, indicating that destination environment exerted a dominant 

influence on community composition (Figure 2.2). This leaves the question open whether 

environments favor different bacterial communities, interactions are different at different sites or 

if different members of bacterial communities are better competitors, at different sites. To assess 

these impacts, we compared the phylogenetic composition of microbiomes using Nearest 

Relative Index (NRI) which calculates the average phylogenetic distance among all pairs of taxa 

to give a sense of overall clustering on a tree. We also compared values from different sites, to 

assess if the degree of clustering vs. dispersion varied among sites with different environmental 

characteristics. 

When we examined leaf and root bacterial communities across sites, we found that these 

communities were largely phylogenetically clustered; no community showed evidence of 

phylogenetic overdispersion in NRI (Figures 2.4 and 2.5, Supplemental Table 2.S5). Leaf 

microbiomes varied in the degree of clustering by site, with communities at the most oceanic 

sites being least clustered and those at sites that were warmer or with less water flow were most 

clustered (Figure 2.4). After one month, leaf bacterial communities were more clustered at DB 
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than CC or WP; DB is the site furthest from the mouth of the harbor (Figure 2.4A). After two 

months, we observed that communities at MM were the most clustered followed by DB and WP 

followed by CC which was neither clustered nor overdispersed; MM is the site with the least 

flow and CC is the site closest to the mouth of the harbor and the coolest site (Figure 2.4B). 

There was no evidence of differences in phylogenetic clustering among sites after three months 

(Figure 2.4C). These changes in clustering across months suggests temporal variation in 

ecological filtering, perhaps due to low tides being less extreme and more nocturnal during 

September than earlier in the summer. This could have reduced environmental differences due to 

exposure differences among sites.  

Root bacterial communities also showed differences in degree of phylogenetic clustering 

among sites via NRI (Figure 2.5). Bacterial communities on roots at MM were less clustered 

than CC or DB sites after one month, after two and three months WP was more clustered than 

DB or MM. These differences may be associated with temperature differences across sites (DB 

and MM are warmer than CC and WP) or by sediment grain size (MM has a finer grain size than 

other sites). Additionally, these results suggest that the differences we saw among root bacterial 

communities are driven by larger environmental patterns rather than seasonal or tidal differences 

as there were no differences in clustering over time.  

Individual phylogenetic balances reveal variable clades among sites; more in roots than leaves 

To determine which ASVs drove the differences among destination sites and identify 

where these differences might occur, we employed a phylogenetic balance approach to identify 

where in a phylogenetic tree there are differences among samples. This means we identify which 

nodes in a phylogenetic tree of ASV 16S sequences are more abundant on one branch of the 

node at some sites compared to others. Especially as clustering was a common observation, this 
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allows us to identify the clades that varied among sites rather than just listing variable ASVs, 

including if differences are at a higher taxonomic level. 

These balances ranged in phylogenetic position from the tips of trees containing only 2 

ASVs (~0.02% of the ASVs in the pool), to near the base of the tree containing over 96% of 

ASVs in the case of a leaf node after both one and two months. However, the median balance 

across samples was relatively small containing 3-4 ASVs within a node for leaf samples 

(depending on time point) and 5 ASVs per node in root samples (across time points). When we 

examined placement of nodes that defined differential balances, the phylogenetic placement of 

nodes was not different from a null distribution except for root bacterial communities after two 

and three months where nodes that differed were less basal (closer to tips) than expected 

(Supplemental Table 2.S6). Overall, we found between 5 and 35 balances that identified each 

site from others within a time point. See Supplemental Figures 2.S2-S7 for specific balances that 

distinguished specific sites from others within a plant compartment and time point, and 

Supplemental Figure 2.S1 for interpretive guidance.  

As most of these nodes were at the level of differentiating among or within families 

(>97% did not contain a node that was not best identified to family or lower), we examined 

which differentiating families were in each plant compartment. We found the families that 

differed in leaves were different than those that varied in roots (Fisher’s Exact Test p<0.001, 

Figure 2.6). The families most representative of differences in root microbiomes among sites 

include those likely involved in sulfate reduction (including Desulfocapsaceae), sulfur oxidation 

(Sulfurvaceae) and nitrogen cycling (Prolixbacteraceae); but there were no consistent patterns of 

certain ASVs distinguishing certain sites across timepoints. While we ran similar analyses in 

leaves, we did not identify families indicating processes that might differ among sites as we did 
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in roots for sulfur and nitrogen cycling. We suggest that these families are important in root 

microbial communities and individual taxa may vary between environments and therefore 

functions -- however further efforts in culturing members of these communities to allow for 

better differentiation among members would be required. 

Transplant effect present in roots, but not leaves 

 Finally, we assessed the extent to which the experimental procedure: the process of 

uprooting, handling, transport and lab processing affected root and leaf microbiomes by 

comparing the bacterial communities from plants transplanted back to their origin site with 

undisturbed plants. This allowed us to examine the effect of transplantation as well as investigate 

differences among sites.  

We found that leaf microbiomes were indistinguishable between transplant controls and 

undisturbed plants at any time point (Table 2.3, Figure 2.7 A-C), and retained the among-site 

differences described in Figure 2.2. There were no differences in alpha diversity or variance 

among transplanted plant leaf bacterial communities and untransplanted controls at any 

timepoint, except after 3 months, when transplanted plants had slightly higher bacterial richness 

than controls (ANOVA negative binomial GLM, p1 = 0.942, p2 = 0.942, p3 = 0.036; 

Supplemental Figure 2.S8 A-C). 

 In contrast, we found persistent differences between root bacterial communities from 

transplanted and control plants across all three months we sampled (PERMANOVA, Table 2.4, 

Figure 2.7 D-F). Variance within transplanted plants was only higher than untransplanted control 

plants at three months (ANOVA, p = 0.164, p2 = 0.108, p3 = 0.0009). There were no differences 

in ASV richness among control and transplanted roots (ANOVA negative binomial GLM, p1 = 

0.071, p2 = 0.572, p3 = 0.984) (Supplemental Figures 2.S8 D-E).  
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As transplanted roots differed from control roots and leaves did not, we confirmed that 

leaf and root microbial communities on transplants were in fact different from controls due to the 

transplantation process and that it was not that transplanted root microbial communities 

resembled like leaves due to removal from sediment during transplantation. We found leaf and 

root communities of transplanted plants were distinct and transplanted plant root microbiomes 

more closely resemble control roots microbiomes than transplanted leaf microbiomes. Thus, 

though there is a transplantation effect in root microbiome, this was not due to them changing to 

resemble leaves (Supplemental Figure 2.S9, PERMANOVA, prootvsleaf = 0.001), which may just 

indicate different preferred microbial associations when transplanted. 

 

Discussion 

Seagrass beds within a harbor varied in their leaf and root microbiomes, and plants 

transplanted among these beds rapidly assumed the microbiome of the destination site, usually 

within a month. Root and leaf microbiomes were phylogenetically clustered within a site, but the 

degree of clustering varied with sites more stressful for seagrass (warmer, lower water flow, 

farther from the open ocean) showing a greater degree of clustering. Our balance analysis 

allowed us to further identify that many of the differences in communities among sites were at 

shallow nodes indicating fine scale differences in communities. In conjunction with the shifts to 

match new environments and assuming that traits relevant to environmental tolerances are 

conserved, we conclude that direct effects of environmental differences among sites drive these 

differences in microbial community assembly, though we cannot, as yet, conclusively identify 

the specific factors responsible. Furthermore, we highlight the differences in microbial 

community composition that can occur on small scales among seagrass beds within the same 5 
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km2 embayment.  

Terrestrial leaf phyllosphere microbial communities are more phylogenetically clustered 

on faster growing trees, potentially due to stronger ecological filters or decreased time for 

microbial succession to play out (Kembel et al. 2014). With this in mind, our evidence of 

clustering in leaves is not surprising in eelgrass given the very quick turnover of leaf tissue (new 

leaves produced roughly every 14 days (Sand-Jensen 1975)) which would reduce the amount of 

time that competition would have to play out on leaf surfaces before the leaf senesces. However, 

this indicates that there are potentially limited interactions among bacteria on the eelgrass leaf 

surface and suggests that the environment of the leaf surface and is critical. Recent work in 

terrestrial phyllospheres emphasizes establishing the patterns of assembly in phyllosphere, but 

provides little insight into the dominant mechanisms and requires more experimentation (Vacher 

et al. 2016). Bacterial competition has been suggested as the major driver of community 

assembly given the low nutrient environments and likely competition for shared resources 

(Schlechter et al. 2019), though low nutrient environments often produce clustering for traits 

(Miazaki et al. 2015). While seagrass leaves may be more nutrient rich environments than 

terrestrial plants due to the abundance of epiphytic algae growing on surfaces that exude excess 

DOC, the rapid turnover likely reduces the influence of competitive interaction. We suggest that 

processes of assembly need to take into account the ephemeral nature of these environments and 

that leaf microbiomes likely adapt rapidly to seasonal and among site variation in environmental 

conditions. This also could partially explain lower levels of clustering we observed at CC -- more 

random assembly assembly could be driven by increased exposure time due to slower growth 

related to cooler temperatures at CC compared to other sites (in July and August DB and MM 

were more clustered than CC and WP and also both have warmer water temperatures). 
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Unpublished growth data indicates that plants from CC grew slower than plants at DB (Kardish 

and Stachowicz unpublished data). 

Additionally, there seem to be seasonal differences in leaf bacterial community assembly 

mechanisms. Our samples were taken at a standard position along the blade. Leaves grew more 

slowly are turning over slower in September compared to growth in July and August (Kardish 

and Stachowicz unpublished data), the standardized-sized leaf tissue we sampled would have 

been exposed for a slightly longer time and provide a more allowing more time for recruitment 

and biotic interactions to play out resulting in environment being less important, and biotic 

interactions among bacteria to becoming more important (and therefore NRI indicate more 

random rather than clustered assembly in September). However, this could also be driven by 

shallower, shorter, more nocturnal tides in September decreasing variability within environments 

among these intertidal beds, speeding succession in these communities. Further work would be 

needed to disentangle which seasonal effects are changing community assembly mechanisms. 

Seasonal differences are critical to understanding differences in community assembled 

differences across seasons are understudied in community phylogenetics even in non-microbial 

systems (see (Fitzgerald et al. 2017) for an example in tropical fish communities) and should be 

particularly prominent in systems like this where changing plant environment changes the 

microbiome in less than a month-- a similar time scale to that of seasonal environmental change. 

Studies of rhizospheric microbial communities are dominated by comparisons to bulk soil 

communities or across different environments (Whitman et al. 2018, Vieira et al. 2020, Rüger et 

al. 2021). However, there is some evidence of predictable seasonal changes (Shi et al. 2015), 

deterministic processes in root development (Rüger et al. 2021), and differences based on 

diversity of plant host species (Fitzpatrick et al. 2018). We have similarly established that 
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seagrasses host distinct communities from their surrounding sediments (Fahimipour et al. 2017, 

Kardish and Stachowicz 2021). We found different amounts of phylogenetic clustering at DB 

and MM than at WP or CC (the opposite pattern as seen in the first couple months in leaves 

where DB and MM were more clustered). Unlike in leaves, we were unable to control for 

approximate amount of environmental exposure or age in roots which limits the conclusions we 

can draw; however, these clustering differences suggest that root environments may be more 

distinct than leaf environments among sites. 

Finally, we considered which phylogenetic balances drove differences in community 

structures in both leaves and roots. While we identified many balances that we used to identify 

different sites within time points, they varied by time point and site (i.e., we did not consistently 

identify the same balances differentiating certain sites). We found that the nodes that 

distinguished sites were not consistently shallow or deep within the tree (and generally were not 

differently placed than expected by chance). When we examined the families that distinguished 

leaf and root bacterial communities we found several differences, but perhaps most notably were 

differences within the family Desulfocapsaceae in roots. Desulfocapsaceae is a family 

containing known sulfate reducers associated with the top layers of marine sediments was found 

almost exclusively as an identifying balance in root bacterial community samples (Galushko and 

Kuever 2021). This bacterial family distinguished roots at CC, MM, and DB from other sites 

after one month and multiple balances distinguished DB from other sites at time points two and 

three. This potentially indicates that sulfur cycling at DB requires different members of 

Desulfocapsaceae or a difference in tolerance to an environmental parameter (e.g., the warmer 

temperatures at DB). This could potentially be explored through further metagenomic work 

exploring different roles and abilities of members of Desulfocapsaceae at these different sites. 
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Our previous work has identified many bacteria related to sulfur cycling enriched on seagrass 

roots, and especially noted the presence of sulfur oxidizers enhanced compared to sediments 

(Fahimipour et al. 2017). The presence of differences among sites in which members of this 

family are present may indicate differences in sulfide reduction rates immediately near sites or 

simply community structuring of different members of the community. More direct experimental 

work at this family in conjunction with different members of this family would be necessary to 

tease apart any different functions or differences in sulfur reducing abilities, they might have to 

determine if these are functionally redundant or if they result in differences to functional 

potential as well. 

While previous studies have not considered the effects of transplantation itself on 

changes in microbial communities, we show a significant effect of transplantation on root 

microbial communities highlighting that comparing un-transplanted controls is an important 

consideration in future reciprocal transplant studies of microbiomes. In conjunction with the 

differences among destination sites and the quick acquisition of bacterial communities from a 

site, we concluded that these leaf bacterial communities are (1) relatively unaffected by 

transplantation stress and (2) likely acquire bacteria primarily from their local environment. Root 

communities, however, differed between control un-transplanted plants and plants transplanted 

back to their initial site. These differences were initially driven by more variable communities in 

transplanted vs control plants and higher alpha diversity in transplanted plants. However, these 

differences in richness and variance disappeared over time, while the effect of transplantation 

remained. We conclude that root surfaces also acquire bacteria from their local environment but 

are dramatically affected by transplantation stress in ways that do not vary by site. This could be 

caused by our methods of transplantation (which involved attachment to vexar to track shoots 
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and a several day period in seawater (with roots out of sediment)) being more stressful to root 

bacterial communities than leaf communities resulting in selection for different microbial 

communities upon transplantation. Regardless, our work emphasizes the importance of 

measuring undisturbed controls when drawing conclusions about how microbiomes alter in new 

environments which has not been done in previous microbiome reciprocal transplant 

experiments, especially in communities that may select for unique communities. To keep these 

communities more intact, moving plants with their previously-associated sediments may be 

important to the success in transplantation efforts. However, eelgrass transplantation with or 

without sediment has shown similar trajectories and convergence of root and rhizosphere 

microbial communities within 4 weeks (Wang et al. 2020). As this did not include unmoved 

controls, further investigation would be needed to determine the overall role of transplantation 

stress on root microbial community structure. As transplanting individual plants is an important 

mechanism of eelgrass restoration (Zhou et al. 2014, Eriander et al. 2016), understanding the 

microbiome of transplanting plants, particularly among even similar environments is important, 

but is relevant to other studies examining microbial shifts under transplantation that also are 

involved in high levels of habitat restoration (e.g., corals).  

Changes in microbiomes potentially buffer hosts against stressful environments 

(Christian et al. 2015, Trevelline et al. 2019), but understanding the pace of these shifts is critical 

for assessing whether the host can survive the period of mismatch. We found that eelgrass 

microbiomes rapidly shift (< 1 month) in response to novel environments, and that these 

microbiomes, especially in roots, are distinguishable among sites based on taxa associated with 

key functions of nitrogen and sulfur metabolism. This suggests the potential for the microbiome 

to buffer the host against a changing environment through rapid community re-assembly. Using 
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manipulative experiments to assess microbiome functionality in field settings remains a 

challenging and important goal, and metagenomics studies, while powerful, can be limited in 

sample size due to costs. In this context, our approach of host transplantation combined with 

community phylogenetic and phylogenetic balance approaches has suggested some testable 

functional hypotheses and provides a viable approach for making progress on the functionality of 

microbiomes in non-model systems in field situations. 

 

Methods  

Reciprocal Transplant and Field Methods 

We collected plants and reciprocally transplanted them among four seagrass beds within 

Bodega Harbor (California) at Campbell Cove (“CC”, 38˚18’36”N, 123˚3’33”W), Mason’s 

Marina (“MM”, 38˚20’10”N, 123˚3’31”W ), Westside Park (“WP”, 38˚19’7”N, 123˚3’12”W), 

and Doran Beach (“DB”, 38˚19’21”N, 123˚2’38”W). The sites represent discrete seagrass beds, 

but range in distance from each other from 0.9 km to 3.0 km. Plants at these sites have different 

phenotypic characteristics (e.g., nutrient uptake, morphological traits, growth traits, 

photosynthetic traits, and phenolics) when grown in common gardens (Abbott et al. 2018) and 

show a small degree of genetic differentiation using microsatellite loci (Kamel et al. 2012, 

Abbott et al. 2018).MM is the most distinct genetically and environmentally, potentially driven 

by finer sediment with higher organics as well as reduced water flow. CC is closest to the harbor 

mouth with high flow and sandy sediment and (along with WP) has the coolest water 

temperature of these sites. DB is our warmest site about 2˚C warmer in mean temperature than 

CC and WP and is also the site least impacted by human presence (all other sites are routinely 

visited by recreation clam fishers. In the summer of 2015, the mean temperature of these sites 
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ranged from 15.9˚C to 18.1˚C (instantaneous temperature across sites temperature ranged from 

12.4˚C to 21.8˚C by HOBO loggers) (See Supplemental Table 2.S7 for temperature data by 

site).  

We took collected plants to Bodega Marine lab, standardized shoot and rhizome length, 

and attached plants to vexar mesh blind to site of origin. Then we planted twelve vexar mesh 

screens with 16 plants at each of the four sites within an existing eelgrass bed with 1m in 

between screens (plants growing immediately below screens were removed). Two weeks before 

sampling for microbial samples, we marked plants to standardize the age of microbial samples.  

We sampled plants destructively every month for three months during a pre-dawn low 

tide. When sampling, we randomly selected 3 screens at each site and measured and sampled 

from every (remaining, non-flowering) plant on those screens. Plants were rinsed in seawater on 

site before sampling to remove loose epiphytes and sediment. We collected approximately 10 

roots along with a 2-3cm section of leaf from immediately distal to the marks made two weeks 

before punches from the oldest non-senescent leaf (resulting in all leaf tissue sampled being 

approximately the same age) from each plant and tissue that had not been exposed to the external 

environment at the time of transplant. We immediately froze all microbe samples on dry ice and 

stored at - 80˚C. Additionally, from each plot we took parallel microbial samples from four 

control plants (leaves and roots) of similar size that had not been transplanted from around the 

perimeter of the experimental plots.  

Molecular Methods 

We extracted DNA with the MoBio PowerSoil DNA kit from the surface of the leaves 

and roots and from scaled samples of samples. To get the surface of the leaves and roots only, we 

vortexed each frozen sample with 500ul of MilliQ water and then added that liquid to the bead 
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tubes and proceeded with the standard extraction protocol (full protocol available at 

github.mkardish/Transplants/Lab_Protocols). We lost DNA extractions for leaf samples 

transplanted to CC from MM and WP and have therefore not been included in further analyses 

that follow. At the Integrated Microbiome Resource at Dalhousie University, we amplified and 

sequenced the V4-V5 region of the 16S rRNA gene on an Illumina MiSeq on an Illumina MiSeq 

to identify bacteria present with primers 515F and 926R (Walters et al. 2016, Comeau et al. 

2017). 

Bioinformatic Analysis 

We ran all bioinformatic and statistical analyses in R (version 3.6.1). We used a standard 

dada2 pipeline to error check our reads and to identify amplicon sequence variants (Callahan et 

al. 2016). We used only forward reads in our subsequent analyses (280 base pairs). We identified 

ASV taxonomy based on the SILVA database (Quast et al. 2013) and built a phylogeny of ASVs 

using alignments built with DECIPHER (Wright 2015) then a tree built with FastTree2 (Price et 

al. 2010) then converted to ultrametric (Britton et al. 2007). We then rooted the bacterial tree 

with an archeal outgroup (McMurdie and Holmes 2013, Paradis and Schliep 2019). 

Sampling and sequencing success and results 

We identified 43,118 bacterial ASVs across 681 leaf, root, sediment and water samples 

after quality filtering samples to 15,102,767 reads. Root samples contained between 239 and 

1167 bacterial ASVs on their surface (we measured 330 root samples with read depth between 

5,981 and 80,762 reads), and leaf samples between 118 and 1,010 bacterial ASVs (307 leaf 

samples with between 1,980 reads and 65,621 per sample).  

Statistics  

We determined differences among groups of samples based on euclidean distances after 
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phylogenetic isometric log transform described in (Silverman et al. 2017) in the R-package 

“philr” order to analyze the compositional changes in our dataset based on phylogenetic 

similarity. This analysis tests the differences in weighting of various regions of a phylogenetic 

tree rather than considering each ASV independently. We used PERMANOVA to determine 

differences among sample types (among sample types, sample timepoint, sample origin site and 

destination site) on ASVs present in at least 2 samples. We tested homogeneity of group 

dispersions with the betadispr function in ‘vegan’. To measure bacterial richness, we rarified all 

samples to 1980 reads, calculated the number of “Observed ASVs”, repeated this 200 times, and 

then used the average as our measure of bacterial richness in a sample (McMurdie and Holmes 

2014). Pairwise-posthoc analyses were run to determine differences observed among groups. 

We examined compositional differences among sites and treatments, by assessing 

phylogenetic clustering and overdispersion of groups relative to random draws from regional and 

local pools. We assume that many bacterial traits, especially those associated with major 

metabolic processes, are phylogenetically conserved, and thus conclude that phylogenetic 

clustering is associated with environmental filtering and dispersion with competitive forces, 

resource partitioning, or cross-feeding. We also examined the individual balances driving the 

differences in the communities we observed by identifying balances that made communities 

distinct from others. 

We present data on the net relatedness index (NRI) of a community which is the negative 

of the standardized effect size of the calculated mean pairwise distance (MPD) compared to a 

null distribution. The NRI thus represents the average phylogenetic distance between all 

members of a community relative to an expected null value (Webb et al. 2008). We did this 

through the R package MicEco which implements a parallelized version of picante (Kembel et 
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al. 2010, Russel 2021). We used an independent swap null model in order to maintain sample 

richness and species occurrence frequency and compared MPD from our samples to 999 random 

draws. We only show data from abundance weighted models, but non-abundance weighted 

models show the same patterns. We tested for differences in clustering and dispersal among sites 

using ANOVAs or Kruskal Wallis tests when the residuals were not normal.  

In addition to the clustering analysis, we also assessed which phylogenetic balances 

differed between groups of interest. This analysis uses multinomial logistic regression 

implemented in glmnet in order to identify which branches of the phylogeny differ in their 

representation among groups (Supplemental Figure 2.S1) (Friedman et al. 2010, Silverman et al. 

2017). To select significant balances, we repeated cross validation procedures selecting the 

minimum lambda 100 times for each comparison to establish balances that best represented sites. 

We report how many iterations we found any balance shown across these trials. Finally, we 

summarized these balances, examining which families differed in leaves and roots across all time 

points. We also used a t-test to examine whether the placement of distinguishing nodes on the 

phylogenetic tree were different than we would have expected due to chance alone. 

All data and code can be found at https://github.com/mkardish/Transplants and sequences 

have been deposited under the NCBI BioProject ID PRJNA731931. 
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Figures and Tables 

Figure 2.1: Map of reciprocal transplant sites in Bodega Harbor, Bodega Bay, CA. All 

experimental eelgrass were transplanted existing eelgrass beds. Campbell Cove (CC) is the site 

closest to the mouth of the harbor and a mean temperature of 15.8˚C during our experiment. 

Doran Beach (DB) is the least impacted by human activities in the harbor (farther from 

clamming) and had a mean temperature of 15.9˚C during our experiment. Mason’s Marina (MM) 

has finer grained sediment than other sites and is a restored site with patchier seagrass growth; in 

other experiments its temperature profile has been intermediate between the cooler sites and DB 

(HOBO logger at this site was lost). Westside Park (WP) had a mean temperature of 16.3˚C 

during our experiment and is used for many seagrass experiments within Bodega Harbor. 
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Figure 2.2: Here we show differences in leaf microbial communities among destination sites. 

Destination sites are indicated by different colors and ellipses; from darkest to lightest, they are 

Mason’s Marina (MM), Campbell Cove (CC), Doran Beach (DB), and Westside Park (WP). (A-

C) Ordination of leaf bacterial community structure based on principal coordinate analysis of 

phylogenetic-isometric log-ratio transformed distances. (A) shows differences among sites by 

destination site after one month, (B) after two months, and (C) after 3 months. All destination 

sites were distinct from others at all three timepoints (see Table 2.1). (D-F) Mean amplicon 

sequence variant (ASV) richness on leaves at each site by time point. Here, we plot means and 

standard errors. After one month (D), there were no differences in richness among destination 

sites, after two months (E), WP had the highest richness and DB the lowest, and after three 

months (F), WP had a higher richness than plants at each other destination site.  
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Figure 2.3: Here, we show differences in root microbial communities among destination sites. 

Destination sites are indicated by different colors and ellipses; from darkest to lightest, they are 

Mason’s Marina (MM), Campbell Cove (CC), Doran Beach (DB), and Westside Park (WP). (A-

C) 3-D ordination of root bacterial community structure based on principal coordinate analysis of 

phylogenetic-isometric log-ratio transformed distances. (A) shows differences among sites by 

destination site after one month, (B) after two months, and (C) after 3 months. All destination 

sites were distinct from others at all three timepoints (see Table 2.2). (D-F) Mean amplicon 

sequence variant (ASV) richness on roots at each site by time point. Here, we plot means and 

standard errors. After one month and three months (D & F), there were no differences in richness 

among destination sites, and after two months (E), WP had the highest richness, CC and MM the 

lowest, and DB was intermediate.  
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Figure 2.4: Across different months, we found different levels of leaf microbial community 

clustering by destination site across one (A), two (B), and three (C) months. Here, we plot the 

mean and standard error of the Net Relatedness Index (NRI) from each site. Destination sites are 

indicated by different colors and ellipses; from darkest to lightest, they are Mason’s Marina 

(MM), Campbell Cove (CC), Doran Beach (DB), and Westside Park (WP).  A positive NRI 

indicates that communities at a site are phylogenetically clustered, a negative NRI indicates that 

a community is phylogenetically overdispersed. If a communities NRI is significantly different 

from zero, we placed a box around the site name (see Supplemental Table 2.S5 for more detailed 

statistics). We found that different sites had different degrees of clustering in leaf microbial 

communities and that that varied across time. 

 

 

  



 

 119 

Figure 2.5: Across different months, we found similar patterns of community clustering in root 

microbial communities by destination site across one (A), two (B), and three (C) months. Here, 

we plot the mean and standard error of the Net Relatedness Index (NRI) from each site. 

Destination sites are indicated by different colors and ellipses; from darkest to lightest, they are 

Mason’s Marina (MM), Campbell Cove (CC), Doran Beach (DB), and Westside Park (WP).  A 

positive NRI indicates that communities at a site are phylogenetically clustered, a negative NRI 

indicates that a community is phylogenetically overdispersed. If a communities NRI is 

significantly different from zero, we placed a box around the site name (see Supplemental Table 

2.S5 for more detailed statistics). 
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Figure 2.6: As our results indicated that microbial communities varied primarily at a family level 

or finer, we examined which families varied within plant compartments among sites. We then 

compared families that varied in leaves among sites to those among roots. We found the families 

that differed in leaves were different than those that varied in roots (Fisher’s Exact Test p<0.001, 

Figure 2.6).  There were a few families that varied among sites in both compartments, but most 

families that varied among sites were specific to leaves or roots. 
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Figure 2.7: Leaf microbiomes were indistinguishable between transplant controls and 

undisturbed plants at any time point and retained the among-site differences described in Figure 

2.2. Root microbiomes were distinct between transplant controls and undisturbed plants at all 

time points, while both transplanted and undisturbed root microbiomes demonstrated differences 

among sites. Undisturbed microbial communities are in light gray and transplanted microbial 

communities are in dark gray. Circles are microbial communities from Campbell Cove (CC), 

squares are microbial communities from Doran Beach (DB), triangles are microbial communities 

from Westside Park (WP), and diamonds are microbial communities from Mason’s Marina 

(MM). (A-C) Ordination of leaf bacterial community structure based on principal coordinate 

analysis of phylogenetic-isometric log-ratio transformed distances. (A) shows differences among 

disturbed and undisturbed after one month, (B) after two months, and (C) after 3 months. (D-F) 

Ordination of root bacterial community structure based on principal coordinate analysis of 

phylogenetic-isometric log-ratio transformed distances. (D) shows differences among disturbed 

and undisturbed after one month, (E) after two months, and (F) after 3 months.  
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Table 2.1: Results of PERMANOVA indicating differences among transplanted leaf microbial 

communities. 

  df Sum Of Squares R2 F-Statistic Pr(>F) 

Timepoint 1 

      

Destination Site 3 9433.009 0.312 20.302 0.001 
Origin Site 3 1050.953 0.035 2.262 0.009 

Destination : Origin 7 1760.358 0.058 1.624 0.015 
Residual 116 17966.060 0.595 NA NA 

Total 129 30210.379 1 NA NA 

Timepoint 2 

      

Destination Site 3 6100.417 0.371 14.782 0.001 
Origin Site 3 511.728 0.031 1.240 0.174 

Destination : Origin 9 1157.904 0.070 0.935 0.66 
Residual 63 8666.808 0.527 NA NA 

Total 78 16436.857 1 NA NA 

Timepoint 3 

      

Destination Site 3 3759.551 0.289 6.242 0.001 
Origin Site 3 652.923 0.050 1.084 0.301 

Destination : Origin 8 1573.425 0.121 0.980 0.547 
Residual 35 7026.486 0.540 NA NA 

Total 49 13012.385 1 NA NA 
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Table 2.2: Results of PERMANOVA showing differences among transplanted root microbial 

communities. 

  df Sum Of Squares R2 F-Statistic Pr(>F) 

Timepoint 1 

      
Destination Site 3 12417.762 0.259 18.196 0.001 

Origin Site 3 1235.735 0.026 1.811 0.036 
Destination : Origin 9 3086.977 0.064 1.508 0.016 

Residual 137 31164.382 0.651 NA NA 
Total 152 47904.856 1 NA NA 

Timepoint 2 

      
Destination Site 3 11414.239 0.371 14.552 0.001 

Origin Site 3 600.808 0.020 0.766 0.704 
Destination : Origin 9 2295.097 0.075 0.975 0.49 

Residual 63 16472.277 0.535 NA NA 
Total 78 30782.421 1 NA NA 

Timepoint 3 

      
Destination Site 3 8991.433 0.360 8.760 0.001 

Origin Site 3 838.248 0.034 0.817 0.601 
Destination : Origin 8 2854.077 0.114 1.043 0.4 

Residual 36 12317.357 0.493 NA NA 
Total 50 25001.115 1 NA NA 
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Table 2.3: Results of PERMANOVA showing differences among based on variation in 

transplant status. 

  df Sum Of Squares R2 F-Statistic Pr(>F) 

Timepoint 1 

      
Site 3 10979.408 0.511 18.072 0.001 

Transplant Status 1 370.765 0.017 1.831 0.091 
Destination Site:Transplant Status 3 819.616 0.038 1.349 0.145 

Residual 46 9315.596 0.434 NA NA 
Total 53 21485.385 1 NA NA 

Timepoint 2 

      
Site 3 4093.618 0.349 6.359 0.001 

Transplant Status 1 282.124 0.024 1.315 0.158 
Site:Transplant Status 3 930.523 0.079 1.446 0.052 

Residual 30 6437.063 0.548 NA NA 
Total 37 11743.328 1 NA NA 

Timepoint 3 

      
Site 3 2938.888 0.279 3.559 0.001 

Transplant Status 1 413.074 0.039 1.501 0.08 
Site:Transplant Status 3 848.899 0.081 1.028 0.407 

Residual 23 6331.219 0.601 NA NA 
Total 30 10532.080 1 NA NA 
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Table 2.4: Results of PERMANOVA showing differences among based on variation in 

transplant status in roots. 

  df Sum Of Squares R2 F-Statistic Pr(>F) 

Timepoint 1 

      
Site 3 7249.876 0.261 7.602 0.001 

Transplant Status 1 4336.789 0.156 13.643 0.001 
Site : Transplant Status 3 1605.829 0.058 1.684 0.056 

Residual 46 14622.473 0.526 NA NA 
Total 53 27814.967 1 NA NA 

Timepoint 2 

      
Site 3 4772.688 0.245 4.608 0.001 

Transplant Status 1 2723.638 0.140 7.888 0.001 
Site : Transplant Status 3 1596.102 0.082 1.541 0.081 

Residual 30 10358.056 0.533 NA NA 
Total 37 19450.484 1 NA NA 

Timepoint 3 

      
Site 3 3191.330 0.183 2.797 0.003 

Transplant Status 1 4062.769 0.233 10.682 0.001 
Site : Transplant Status 3 1788.470 0.103 1.567 0.08 

Residual 22 8367.592 0.481 NA NA 
Total 29 17410.161 1 NA NA 
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Supplemental Table 2.S1A: P-values from pairwise PERMANOVA of leaf samples at T1 testing 

the effects of destination site at particular destination sites. All values are fdr-correct and bold 

values are significant at 0.05 after a correction. 

 from CC from DB from MM from WP 
CC and DB 0.0018 0.0018 NA NA 
CC and MM 0.0018 0.0018 NA NA 
CC and WP 0.0018 0.0018 NA NA 
DB and MM 0.0018 0.0018 0.0018 0.0245  
DB and WP 0.0018 0.0018 0.0018 0.0018 
MM and WP 0.0018 0.0018 0.026 0.0267 
 

 

Supplemental Table 2.S1B: R2 from pairwise PERMANOVA of leaf samples at T1 testing the 

effects of destination site at particular origin sites. Bold values were significant after fdr-

correction (see Supplemental Table 2.S1A for p-values) 

 from CC from DB from MM from WP 
CC and DB 0.607 0.452 NA NA 
CC and MM 0.521 0.406 NA NA 
CC and WP 0.339 0.215 NA NA 
DB and MM 0.214 0.231 0.278 0.123 
DB and WP 0.484 0.334 0.201 0.348 
MM and WP 0.416 0.31 0.174 0.139 
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Supplemental Table 2.S2A: P-values from pairwise PERMANOVA of leaf samples at T1 testing 

the effects of origin site at particular destination sites. All values are fdr-correct and bold values 

are significant at 0.05 after a correction. 

 to CC to DB to MM to WP 
CC and DB 0.0944 0.1356 0.4216 0.3628 
CC and MM NA 0.0035 0.026 0.0519 
CC and WP NA 0.2027 0.0829 0.2493 
DB and MM NA 0.0068 0.0546 0.0931 
DB and WP NA 0.856 0.0735 0.1003 
MM and WP NA 0.22 0.0787 0.0768 
 

Supplemental Table 2.S2B: R2 from pairwise PERMANOVA of leaf samples at T1 testing the 

effects of origin site at particular destination sites. Bold values were significant after fdr-

correction (see Supplemental Table 2.S1A for p-values) 

 to CC to DB to MM to WP 
CC and DB 0.083 0.067 0.051 0.06 
CC and MM NA 0.131 0.097 0.163 
CC and WP NA 0.07 0.102 0.066 
DB and MM NA 0.098 0.137 0.122 
DB and WP NA 0.038 0.129 0.078 
MM and WP NA 0.067 0.107 0.139 
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Supplemental Table 2.S3A: P-values from pairwise PERMANOVA of root samples at T1 testing 

the effects of destination site at particular origin sites. All values are fdr-correct and bold values 

are significant at 0.05 after a correction. 

 from CC from DB from MM from WP 
CC and DB 0.0027 0.0027 0.0094 0.006 
CC and MM 0.0027 0.0027 0.0027 0.0027 
CC and WP 0.006 0.006 0.0048 0.0162 
DB and MM 0.0027 0.0027 0.0048 0.0103 
DB and WP 0.0048 0.0027 0.0103 0.0027 
MM and WP 0.0027 0.0103 0.0027 0.0027 
 

Supplemental Table 2.S3B: R2 from pairwise PERMANOVA of root samples at T1 testing the 

effects of destination site at particular origin sites. Bold values were significant after fdr-

correction (see Supplemental Table 2.S3A for p-values) 

 from CC from DB from MM from WP 
CC and DB 0.287 0.208 0.175 0.254 
CC and MM 0.42 0.295 0.43 0.376 
CC and WP 0.187 0.172 0.135 0.137 
DB and MM 0.352 0.26 0.291 0.218 
DB and WP 0.213 0.195 0.188 0.282 
MM and WP 0.213 0.173 0.418 0.375 
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Supplemental Table 2.S4A: P-values from pairwise PERMANOVA of root samples at T1 testing 

the effects of origin site at particular destination sites. All values are fdr-correct and bold values 

are significant at 0.05 after a correction. 

 to CC to DB to MM to WP 
CC and DB 0.4189 0.3727 0.5369 0.456 
CC and MM 0.0747 0.2437 0.0385 0.1404 
CC and WP 0.0189 0.3826 0.2808 0.042 
DB and MM 0.046 0.759 0.046 0.2175 
DB and WP 0.0518 0.6071 0.3353 0.015 
MM and WP 0.4757 0.5126 0.0077 0.046 
 

* Note: Many of the p-values varied slightly between different permutations of data. We’ve 

highlighted sets here that were close to significance after correction as their variance allows us to 

best understand the community patterns. 

 

Supplemental Table 2.S4B: R2 from pairwise PERMANOVA of root samples at T1 testing the 

effects of origin site at particular destination sites. Bold values were significant after fdr-

correction (see Supplemental Table 4A for p-values) 

 to CC to DB to MM to WP 
CC and DB 0.287 0.208 0.175 0.254 
CC and MM 0.42 0.295 0.43 0.376 
CC and WP 0.187 0.172 0.135 0.137 
DB and MM 0.352 0.26 0.291 0.218 
DB and WP 0.213 0.195 0.188 0.282 
MM and WP 0.213 0.173 0.418 0.375 
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Supplemental Table 2.S5: Do the calculated Net Relatedness Index (NRI) values differ from zero 

by time point and site? Here a significant p-value indicates that a site has an NRI are 

significantly different from zero. In our case, all of these indicate clustered communities at a site 

(see Figures 2.4 and 2.5). 

Sample Type Time Site p-value NRI 

Leaf  

1 

CC 0.762 
DB <0.001 
MM 0.001 
WP 0.028 

2 

CC 0.135 
DB <0.001 
MM <0.001 
WP 0.003 

3 

CC 0.544 
DB 0.174 
MM 0.142 
WP 0.006 

Root  

1 

CC <0.001 
DB <0.001 
MM 0.001 
WP <0.001 

2 

CC <0.001 
DB 0.001 
MM 0.024 
WP <0.001 

3 

CC 0.038** 
DB 0.984 
MM 0.186 
WP <0.001 

** ns after fdr correction 
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Supplemental Table 2.S7: Temperature and other notes about site characteristics. 

 
Campbell 

Cove  
(CC) 

Westside  
Park 
(WP) 

Mason’s 
Marina 
(MM) 

Doran  
Beach 
(DB) 

Temperature summer 
2015 (7/8 -9/23) ˚C 
 
mean +/- SD 
range 
 
Measured in this study 

15.86 +/- 1.21 
12.5 - 19.66 

16.27 +/- 1.24 
12.4 - 20.62 

N/A  
(HOBO data 
collector lost) 

18.07 +/- 1.38 
14.42 - 21.76 

Temperature summer 
2019 (7/17 - 8/30) ˚C 
 
mean +/- SD 
range 
 
Stachowicz 
unpublished data 

14.86 +/- 1.57 
10.59 - 18.83 

15.34 +/- 1.56 
10.34 - 21.11 

15.81 +/- 1.48 
12.44 - 18.83 

N/A  
(not measured 
in this study) 

Other site notes Closest to 
mouth of the 
harbor, high 
flow, sandy 

sediment 

Site of many 
eelgrass 

experiments at 
Bodega Bay 

Restored site, 
finer sediment 

grain size 

Furthest from 
clamming 
activity 
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Supplemental Table 2.S6: Are nodes that are significantly different among sites more or less 

phylogenetically shallow than expected by chance? Red is the observed distribution of tip 

placement as shown in Figures 2.S2-2.S7, black is the null distribution based on all nodes present 

in samples at those time points. Only roots at T2 and T3 show slightly less than expected. All 

distances are log-normalized. 

Sample Type Time  t-test 

Leaf  

1 

 

t = - 0.81862,  
df = 88.148,  

p-value = 0.415 

 
 

 

2 

 

t = 1.2126,  
df = 39.488,  

p-value = 0.2325 

 
 
 

 

3 

 

t = 1.1535,  
df = 46.008,  

p-value = 0.2547 

 
 
 

 

Root  1 

 

t = 0.18297,  
df = 68.81,  

p-value = 0.8554 
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2 

 

t = 2.2451,  
df = 54.835,  

p-value = 0.02881 

 
 
 

 

3 

 

t = 2.3334,  
df = 45.165,  

p-value = 0.02414 
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Supplemental information on balances  

Leaf microbial balances contained between 2 and 9241 ASVs; Root balances contained between 

2 and 478 ASVs. 

 

Supplemental Figure 2.S1 Each balance identified here is a single node in the tree of microbial 

communities where one site was differentially weighted compared to all other sites. Here for this 

node within the bacterial family Cyclobacteriaceae, CC has two ASVs in this family upweighted 

compared to the seven ASVs on the other side of the node. All other sites had higher relative 

abundance of the ASVs on the other side of the node. 
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Supplemental Figure 2.S2: After one month, we identified 14 balances distinguishing leaf 

bacterial communities at CC, 15 balances at DB, 35 at MM and 27 at WP.  
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Supplemental Figure 2.S3: After two months, we identified 9 balances distinguishing leaf 
bacterial communities at CC, 11 balances at DB, 11 at MM and 9 at WP. 
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Supplemental Figure 2.S4: After three months, we identified 8 balances distinguishing leaf 

bacterial communities at CC, 11 balances at DB, 16 at MM and 11 at WP. 
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Supplemental Figure 2.S5: In roots, after one month, we identified 17 balances distinguishing 

root bacterial communities at CC, 10 balances at DB, 23 at MM and 20 at WP. 
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Supplemental Figure 2.S6: After two months, we identified 21 balances distinguishing leaf 

bacterial communities at CC, 10 balances at DB, 18 at MM and 6 at WP.  
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Supplemental Figure 2.S7: After three months, we identified 12 balances distinguishing leaf 

bacterial communities at CC, 5 balances at DB, 15 at MM and 13 at WP. 
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Supplemental Figure 2.S8: Mean amplicon sequence variant (ASV) richness on leaves (left 

column) and roots (right column by transplant status. Here, we plot means and standard errors by 

time point; the first row is after one month, the second after two, and the third after three months. 

Only leaves at T3 showed a significant difference in microbial community richness. 
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Supplemental Figure 2.S9: Ordination of leaf bacterial community structure based on principal 

coordinate analysis of phylogenetic-isometric log-ratio transformed distances. Though there is a 

transplantation effect in root microbiome, this was not due to them changing to resemble leaves. 

Here brown/yellow points are root communities and green points are leaf communities. Brighter 

triangles indicate undisturbed controls and darker circles are transplanted plants. While 

transplanted microbial communities were distinct from undisturbed microbial communities in 

roots, they still strongly resemble control root microbial communities rather than leaf microbial 

communities. 
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Seagrass root microbial communities are dependent on environmental inputs and not 

initial community 

 

Authors: Melissa R. Kardish, Mackenzie A. Kawahara, Elizabeth A. Allen, and John. J. 

Stachowicz 
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Introduction 

With increasing emphasis on both the ubiquity and variability in the importance of host-

associated microbial communities, understanding how these communities assemble is key to 

understanding their operation and function (Christian et al. 2015, Coyte et al. 2015, 2021, 

Trivedi et al. 2020). Especially when on the surfaces of hosts, microbial communities influence 

interactions with other organisms and the environment (Laforest-Lapointe and Whitaker 2019). 

With a fuller understanding of how communities assemble, we can assess how microbes mediate 

interactions between environments and hosts (Kembel et al. 2014, Wagner et al. 2016, Aleman 

and Valenzano 2019, Kim and Benayoun 2020). 

Environmental manipulations have been widely shown to alter host microbiomes 

(Greenspan et al. 2020, Ahn and Hayes 2021), but are limited in their ability to attribute change 

in host performance directly to microbial shifts. Deletion or addition of particular taxa of interest 

remain challenging with the high-diversity microbiomes typical of many non-model hosts. 

Associational and metagenomic studies can help in this regard (Antwis et al. 2017, Leray et al. 

2021), but supplementing these approaches with direct manipulations is needed to advance our 

understanding of microbiome assembly and function. As a step toward deepening understanding 

of host-microbe interactions, experiments that create reduced-diversity environments have 

enabled better understanding of specific interactions, effects of probiotics, and even population 

metrics like increasing crop yields (Kutschera and Khanna 2016, Uzbay 2019). This approach 

has been applied to select communities as a whole (Mueller et al. 2016) or to help identify key 

taxa that may be altered in a dysbiotic setting (Tudela et al. 2021). These coarse level 

manipulations of plant microbiomes can involve either removing the extant microbiome or 

altering the source pool from which microbiomes are drawn, and the relative size of these effects 
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can inform us about the importance of different processes in microbiome assembly such as 

priority effects, host, and environmental control. 

Seagrass root microbial communities occur in unusual environments for vascular plants: 

on the surface of angiosperm roots in fully water-logged and largely or hypoxic or even anoxic 

sediments (Hasler-Sheetal and Holmer 2015). Anoxic sediments play host to a distinct 

community of bacteria relying on energy sources capitalizing on sulfur metabolism (Hasler-

Sheetal and Holmer 2015, Fahimipour et al. 2017). However, seagrass roots exude oxygen 

(Terrados et al. 1999) which can result in microzones of oxic environments around the roots, 

although the extent and stability of these zones may depend on conditions in the surrounding 

sediments. Seagrass has a diversity of mechanisms across species to deal with these anoxic 

sediments and the toxic sulfides generated within them, including this radial oxygen loss 

(Pedersen et al. 2004), partnership with lucinid clams hosting sulfur oxidizing bacteria (van der 

Heide et al. 2012, De Fouw et al. 2016), and direct partnerships with sulfur-oxidizing bacteria 

(Smith et al. 2004). Previously, we have found evidence that although seagrass root microbiomes 

consistently associate with taxa likely involved in sulfate and sulfide metabolism (Fahimipour et 

al. 2017, Chapter 1, 2). However we also have shown that the microbiome on these roots does 

vary as a function of local environmental conditions (Chapter 2). In a transplant experiment, 

despite initial differences among local sites, plants reflected microbial communities from the site 

they were transplanted within one to two months (Chapter 2), showing some adaptability and 

suggesting the potential for relatively rapid turnover.  

In this study, we ask how seagrasses and their microbiomes are affected by direct 

removal of microbes vs altering the source pool in the sediments. In a laboratory setting, we 

grew plants from known genotypes in autoclaved and non-sterile field-collected sediments to 
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assess the effects of a reduced pool on bacterial community assembly. Additionally, we 

investigate the role of priority effects in driving seagrass bacterial community structure by 

assessing the relative importance of source pool vs direct removal of resident microbiota in 

determining microbiome composition. We also evaluate the effects of these changes on plant 

growth.  

 

Methods: 

Experiment 1: Manipulating source pool of microbes via autoclaving sediments 

In January 2018, we collected eelgrass shoots for planting from known genotypes grown 

in outdoor culture (Hughes et al. 2009). We used the eight genotypes from (Hughes et al. 2009) 

that have been growing in outdoor tanks at Bodega Marine Lab since 2004, plus a single 

additional genotype described in (Abbott et al. 2018) (MMS08, here MM) that had been 

propagated since 2012. We then planted individual plants in treated sediment that sat in pots 

between 2 and 3 days before planting. We collected 12 terminal shoots from each genotype, 

standardized shoots to 5cm of rhizome length and 30cm of leaf length and marked shoots for 

growth. The next day, we collected 5 roots from each replicate for microbial sequencing. 

We then planted plants in autoclaved and not-autoclaved sediments that had acclimated 

for 2 days in 82L aquaria in a cold room at 18˚C at University of California, Davis. These tanks 

had been bleached-sterilized and then filled with filtered seawater before adding plants. We 

placed an airstone in each tank for oxygenation and lit tanks with fluorescent bulbs (Gribben et 

al. 2017). All sediments for this experiment were collected from Westside Park, Bodega Bay, 

California, USA (38˚19’7”N, 123˚3’12”W). Sediments were collected from the top ~5cm of field 
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sediment from gaps within seagrass beds, homogenized, passed through a 1cm sieve to remove 

large particles and infauna, and transported to University of California, Davis. Sediment was 

autoclaved in a one-hour liquid cycle in 500ml volumes. We then filled 90mL autoclaved glass 

jars with either autoclaved or not-autoclaved sediment and submerged jars in seawater.  

To confirm that autoclave treatment substantially altered microbial community 

composition we measured community composition immediately after autoclaving compared to a 

control in November 2017. We took 15 ~50 mg samples of sediments that had been autoclaved 

and compared to 15 samples that had not and were not to establish the effect of autoclaving on 

treatment. These samples were preserved at -80˚C until extraction. We verified that autoclaving 

changed neither the grain size or the organic content in the sediments. While we assess and 

analyze the community present in these autoclaved sediments, these are not a measure of 

surviving bacteria, but of surviving DNA of bacteria. 

We measured plant growth every other week using the standard hole-punch method 

(Zieman 1980, Dennison 1990). After 7.5 weeks, we ended the experiment, and we took 

microbial samples by selecting ~10 roots and ~0.25g adjacent sediments from each replicate and 

freezing at -80˚C promptly after collection until extraction. We froze remaining plant tissue at -

20˚C and measured growth in the final period from cut frozen plant samples. During the 

experiment, we were blind to the experimental treatment and genotype of each plant. 

 

Experiment 2: Manipulating host microbiome directly via bleaching surface tissues 

To investigate the role of initial root microbiome on final community structure, we 

compared microbiomes on plants that had extant microbiomes removed via bleaching versus 



 

 149 

those on control plants after four weeks of growth. We collected 56 eelgrass terminal shoots and 

associated rhizome and root material from Westside Park in October 2019. We did not control 

for genotype, but the distance among plants was > 2m suggesting that each plant was likely a 

unique genotype (Kamel et al. 2012, Abbott et al. 2018). We cut leaves to a standardized length 

of 30 cm and rhizomes to 3 cm then individually submerged the roots and rhizomes of half the 

plants in a 1% bleach solution for 1 minute, and then twice in deionized water for one minute. 

We submerged the roots and rhizomes of the other 28 plants in two deionized water rinses. We 

collected ~10 roots from each of 8 plants from each treatment and froze at -80˚C until extraction 

to quantify community composition by bacterial 16S rRNA sequencing (see below). We also 

verified that bleach treatment reduced the abundance of microbes on the surfaces of roots by 

DAPI staining surfaces (revealing fewer microbes on root surfaces on bleach vs. unbleached 

surfaces and by comparing DNA concentrations from extracted root surfaces measured by Qubit. 

We then potted plants with bleached and non-bleached roots into autoclaved and non-autoclaved 

sediments prepared as described in Experiment 1 (see Supplemental Table 3.1 for replication 

numbers). After four weeks, we sampled root and sediment microbiomes as in Experiment 1. We 

blinded ourselves to experimental treatment immediately after bleaching plants. 

Molecular Methods and Bioinformatic analysis 

We extracted DNA with the MoBio PowerSoil DNA kit from roots and sediments. To get 

the surface of roots only, we vortexed each frozen sample of ~10 roots with 500ul of MilliQ 

water and then added that liquid to the bead tubes and proceeded with the standard extraction 

protocol (full protocol available at github.mkardish/Transplants/Lab_Protocols). For sediments, 

we added a small amount of sediment (approximately 0.25 mg) directly to the bead tube. We 

amplified and sequenced the V4-V5 region of the 16S rRNA gene on an Illumina MiSeq to 
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identify bacteria present at the Integrated Microbiome Resource at Dalhousie University with 

primers 515F and 926R (Walters et al. 2016, Comeau et al. 2017). 

Bioinformatic Analysis  

We ran all bioinformatic and statistical analyses in R (version 4.0.5). We trimmed primer 

sequences with cutadapt (Martin 2011). We used a standard dada2 pipeline to error check our 

reads and to identify amplicon sequence variants of merged sequences (Callahan et al. 2016). We 

identified ASV taxonomy based on the SILVA database (Quast et al. 2013) and built a 

phylogeny of ASVs using alignments built with DECIPHER (Wright 2015) then a tree built with 

FastTree2 (Price et al. 2010) then converted to ultrametric (Britton et al. 2007). We then rooted 

the bacterial tree with an archaeal outgroup (Callahan et al. 2016). 

Sampling and sequencing success 

For information on sequencing depth, ASVs per sample, and sample numbers split by 

experiment and sample type, see Supplemental Table 3.S1. 

Statistical analysis 

For plant growth data, we analyzed data using a mixed effect model in generalized linear 

model : Plant Growth ~ Treatment + Days since planting + Treatment:Days since planting.  

We analyzed the compositional changes in our microbial dataset based on phylogenetic 

similarity among samples by normalizing samples via a phylogenetic isometric log transform 

described in (Silverman et al. 2017) and implemented in the R-package “philr”. This allows a 

compositional transformation of the phylogenetic data -- comparing differential weights at nodes 

throughout the bacterial tree as opposed to just ASVs. We then calculated the Euclidean distance 
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among samples before using PERMANOVA to determine differences among treatments and 

genotypes (when applicable) controlling for tank by constraining permutations. We tested 

homogeneity of group dispersions with the betadispr function in ‘vegan’.  

To measure bacterial richness, we rarified all samples to 6542 reads samples which we 

repeated 200 times (McMurdie and Holmes 2014) and used each sample’s average “Observed 

ASVs” in our analysis as our measure of bacterial richness in a sample. We separately rarefied to 

1384 reads in comparisons of initially autoclaved sediments or initially bleached roots as some of 

these samples had very low read counts due to bacterial removal. We tested differences in 

Observed ASVs using the negative binomial mixed model with random effects implemented in 

lme4 : Observed ASVs ~ Treatment + Genotype + Genotype:Treatment + ( 1 | Tank) (Bates et al. 

2015). We also visualized overlap in observed ASVs to identify the numbers of overlapping and 

non-overlapping ASVs between autoclaved and non-sterile treatments (Conway et al. 2017). 

To identify which ASVs significantly varied between treatments we used the Wald test in 

DESeq2 to contrast autoclaved and not autoclaved sequences after geometric mean centering raw 

ASV abundances (Love et al. 2014). We also contrasted individual genotypes versus other 

genotypes to determine specific ASVs that were specifically variable in their relative abundance 

on certain genotypes. 

 

Results 

Experiment 1: Manipulation of source pools via autoclaving results in bacterial community 

differences on roots and sediments 

Plants in autoclaved sediments showed reduced growth over time 
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Initially, plants in autoclaved sediments showed equivalent growth to plants in non-sterile 

sediments (GLM p10 days = 0.649, p24 days = 0.199) , however by 38 days after planting, plant 

growth in autoclaved sediments began to diverge from plant growth in autoclaved sediments and 

(Figure 3.1, p38 days = 0.046, p51 days = 0.009, for full generalized linear model results see 

Supplemental Table 3.S2). This indicated potential important roles in bacterial or other microbial 

or meiofaunal communities in affecting plant growth. 

Root microbial communities in autoclaved sediments were more variable and more diverse than 

in non-sterile sediments 

After 7.5 weeks, we found compositional differences among root microbial communities 

in autoclaved and not-autoclaved sediments that grew in (Figure 3.2A, for PERMANOVA 

blocked by tank see Table 3.1), greater dispersion in samples from roots in autoclaved sediments 

(Figure 3.2A, ANOVA betadisper p < 0.001), higher ASV richness in roots in autoclaved 

sediments (Figure 3.2B, ANOVA negative binomial glm ptreatment = 0.033, pgenotype = 0.236, 

pgenotype:treatment = 0.629), and fewer shared ASVs across samples (~30% of core ASVs shared, 

~50% of all ASVs shared). Roots growth in autoclaved sediments contained relatively fewer 

bacteria in Deltaproteobacteria, Bacteroidiia, Spirochaetes, and Clostridia, and relatively more 

bacteria in Gammaproteobacteria, Flavobacteria, and Sphingobacteriia. A full list of individual 

root microbial taxa that varied by treatment can be found in Supplemental Table 3.S3. 

Additionally, we confirmed that initially there had been no differences in richness, identity, or 

community structure between roots planted when they were planted in autoclaved and non-

autoclaved sediments (Appendix 3.A; Figure 3.A2), while there was still an effect of genotype, 

so these resulting differences are due to differences in the source community plants had been 

exposed to over the course of the experiment.  
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We were further interested in how communities on individual plants changed over the 

course of the experiment by assessing the distance between initial and final communities. Final 

bacterial communities in autoclaved sediments were more distinct from the starting community 

than root communities in not-autoclaved sediments (Figure 3.3A, LMER ~ treatment + genotype 

+ treatment:genotype+(1|tank) ANOVA treatment p < 0.001, Genotype p = 0.015, 

genotype:treatment p = 0.808). There was no difference between the change in richness from the 

start to the end of the experiment in either treatment (Figure 3.3B, p > 0.05). Communities on 

roots in sediments that were less microbially rich were more distinct from their initial 

composition than those in more microbially complex sediment. We also compared community 

structure among sediments and the roots in them and found that roots from sediments in 

autoclaved were not more similar to adjacent sediments than and roots in non-autoclaved 

sediments and the adjacent sediment (Figure 3.3C). For an ordination and other direct 

comparisons of plant samples before and after Experiment 1 see Supplemental Figure 3.S1. 

Autoclaving sediment reduces sediment microbial diversity and richness and alters sediment 

microbial composition 

Autoclaving sediment caused dramatically reduced alpha and gamma diversity of bacteria 

in sediments (Appendix 3.A, Figure 3.A1) at the start of the experiment as measured by relative 

abundance in DNA extraction. Importantly is not a measure of surviving bacteria but of 

surviving DNA of bacteria. Two thirds of ASVs autoclaved sediments were 

Gammaproteobacteria.  

 In sediments at the end of the experiment, we found that differences among sediment 

treatments persisted (Figure 3.4). Autoclaved sediments were distinct from (PERMANOVA, F = 

69.35, p = 0.001, r = 0.77) and more variable than (betadisper, permtest, p = 0.001) not-
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autoclaved sediments (Figure 3.4A). There was still lower ASV richness in autoclaved sediments 

(mean = 194) vs. not-autoclaved sediments (mean = 637) (negative binomial glm, estimate = 

1.18675, standard error = 0.08139, z-value 14.58, p < 0.001). When we examined overlapping 

ASVs, we found that there were 6 shared core ASVs (shared by by at least 50% of samples at at 

least a 1% detection rate) between autoclaved and non autoclaved sediments (autoclaved 

sediments had 53 core ASVs and not-autoclaved had 272). When we compared all ASVs in 

autoclaved and not-autoclaved sediments, we found 53 shared ASVs, 392 ASVs unique to 

autoclaved sediments, and 1074 ASVs unique to not-autoclaved sediments. When we examined 

which ASVs were at significantly higher or lower abundance, we found 559 ASVs at higher 

abundance in not-autoclaved sediments and 114 ASVs were higher in autoclaved sediments. 

Autoclaved sediments showed relatively higher abundance of Gammaproteobacteria though less 

than they had immediately after treatment (Figure 3.4E). A full list of individual taxa that 

significantly varied by treatment can be found in Supplemental Table 3.S4. 

Different genotypes harbored different microbial communities 

In addition to the effects of growing in treated or untreated sediments, we found small 

effects of genotypic differences among plants that did not interact with autoclave treatment 

(Figure 3.5 for samples after 7.5 weeks, Appendix 3.A Figure 3.A3 for initial samples). Upon 

closer investigation, we found that initially all genotypes were distinct from each other except 

Orange & Yellow and White & MM (each pair was indistinguishable) (pairwise PERMANOVA 

with fdr corrected p-values < 0.05). At the end of the experiment, most genotypes looked similar 

(pairwise PERMANOVA with fdr correct p-values > 0.05) except Red & Green (p = 0.036), 

Purple & Blue (p = 0.018) and Grey and White (p = 0.018) which remained distinct.  
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We again tested with DESeq2 to identify specific ASVs that distinguished genotypes. We 

summarize these results in Figure 3.6 to highlight the genotypes that are most distinct from each 

other. Supplemental Figures S2-S10 show ASVs that varied before the experiment by genotype 

including the log2-fold change ratio of each significant comparison. Appendix 3.A Figures 3.A4-

A12 show ASVs that varied by genotype before our experiment compared to each other 

genotype. 

 

Experiment 2: Direct manipulation of root microbiota.  

Changing initial root bacterial composition by bleaching did not alter final community structure 

We confirmed that bleaching eliminated most bacteria on the surface of roots via 

microscopy and through reduction in bacterial DNA concentration (mean 1.43 ng/μl in bleached 

samples (max 2.96ng/μl)), mean on rinsed roots 19.46 ng/μl (min 6.77 ng/μl). Immediately after 

bleaching, compared to control roots, bleached roots had different composition (Figure 3.7A, 

PERMANOVA : r2 = 0.151, F = 6.743, p = 0.001), lower ASV richness (Figure 3.7B, mean of 

61.68 vs 506.79 in non-autoclaved sediments, negative binomial glm, estimate = 2.106, standard 

error = 0.062, z-value = 33.87, p < 0.001), and equivalent variance (ANOVA betadisper p = 

0.626).  

However, after 4 weeks of growth, there was no effect of initial bleaching treatment on 

root microbiome (Figure 3.7). There were compositional differences among roots grown in 

different sediment treatments (autoclaving) but not root treatments (bleaching) (Figure 3.7 C & 

D, Table 3.2 for results from PERMANOVA). We found lower ASV richness on roots in 

autoclaved sediments, but no difference among bleached vs unbleached roots (Figure 3.7B, 
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ANOVA negative binomial glm pautoclaved < 0.001, pbleached = 0.731, pautoclaved:bleached = 0.630) and 

no difference in dispersion among treatments (Figure 3.7C&D, ANOVA betadisper p = 0.639). 

Additionally, when we examined composition, there were few differences among bleached and 

not-bleached roots at the end of the experiment, though there were a few bacterial ASVs that 

significantly varied among bleached and not-bleached roots (Supplemental Table 3.S5). Thus 

although bleaching treatment did alter root microbiomes, effects of sediment microbiota rapidly 

overwhelmed these effects and was the dominant driver of host root microbiome composition.  

 

Discussion 

We demonstrate reducing the diversity and abundance of the bacterial source pool in 

sediments results in eelgrass root microbial communities that were more varied, more rich, and 

distinct from those in control sediments. Disruption of the sediment microbiome results in root 

assemblages that are less consistent and with a higher richness highlighting the role of dominant 

community members in structuring stable communities in eelgrass root microbiomes. 

Additionally, this disruption to the bacterial community is associated with reduced plant growth. 

Further, we show that effects of direct manipulation of microbiome on roots by bleaching are 

rapidly overwhelmed by sediment source effects. This suggests that source pools play a 

dominant role in determining seagrass microbiome composition, consistent with prior results 

from field transplants that showed that transplanted eelgrass rapidly assumed a microbiome 

indistinguishable from other plants at that site (Chapter 2). However, we did find that eelgrass 

genotypes vary in their microbiome even when placed in common sediment types, suggesting 

that plant traits mediate the final community assembled from the environment. 
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Zaneveld et al. 2017 proposed that animal microbiomes follow the Anna Karenina 

hypothesis: “all happy microbiomes are alike and each unhappy microbiome is unhappy in its 

own way” (Zaneveld et al. 2017), where when faced with disease or stress, a host associated 

microbiome will reach a state of dysbiosis where microbiomes diverge from a ‘normal’ state 

when faced with disease. This hypothesis has generated mixed support depending on the 

dynamics of the disease and host system involved. For example, studies show no support in slow 

spreading coral disease (Sweet et al. 2019), no evidence in voles after radioactive exposure 

(Lavrinienko et al. 2020), mixed results depending on pathogen in rice (Bez et al. 2021), and 

suggestions that domestications may lead to similarly dysbiotic communities (Özkurt et al. 

2020). We extend this investigation of divergence under stress here by placing hosts dependent 

on their environments for microbial communities in reduced microbial environments (the first 

explicit test of the Anna Karenina microbiome hypothesis in reduced diversity environments to 

our knowledge). Not only did we find less consistent core microbiome community membership, 

more variable communities on roots in autoclaved sediments, these communities had higher 

microbial richness although we found decreased community richness in Experiment 2. This 

suggests to us that assembly on seagrass roots may be dependent on a competitive lottery system 

from surrounding sediments (Sale 1979); in this environment, as recruitment from the 

environment is limited, the microbial community assembled appears more random. We suggest 

that manipulation of these bacterial communities is best done by changing the membership and 

composition of the sediment communities rather than by direct removal and manipulation which 

can lead to variable outcomes. 

When considering increased variability in a community, instead of indications that these 

microbial communities have assembled unique “stress” communities, it could indicate that the 
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community is in an interim state and eventually will assemble a more stable community losing 

some of the faster colonizers (Zaneveld et al. 2017). This could be supported by the increased 

richness in these communities compared to natural communities. Regardless, these communities 

are more divergent so if in an interim state to a similar climax community are following different 

paths. We think that this is less likely, however, because we saw when we eliminated eelgrass 

microbial communities, they followed the same assembly patterns as bleached and not-bleached 

communities; this indicates that there do not seem to be priority effects in these communities, or 

rather that any priority effects are based on current environmental inputs and matching rather 

than anything that may be directly grown on plants. It could, however, be that the sediment 

communities are reassembling their own structure following the autoclaving disturbance and the 

roots themselves are reflecting a source community in transition. Incremental measurements over 

time would be needed to test this pattern and the pace of reassembly of these communities 

directly, though our best indications are that this takes between 4 and 6 weeks (Chapter 2). 

In terrestrial plant microbiomes, rhizosphere microbiomes have been shown to generally 

have less genotype-specific community membership than parallel phyllosphere microbiomes 

(Wagner et al. 2016). When there are effects of genotype on microbiome, there is often an 

interaction between soil and genotype (Wagner et al. 2016, Brown et al. 2020), and soil is often 

the sole or dominant driver of rhizosphere microbiome structure (Hartman et al. 2018, Prudence 

et al. 2021). Here we found support that there are some genotypic differences in root 

microbiomes (both before and after our experimental manipulation) and consistent with 

terrestrial plants these effects are smaller than dominant drivers of source community structure. 

This suggests that these aquatic angiosperm rhizosphere microbiomes assemble similarly, with 

the microbial community surrounding the roots responding to specific environmental 
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modifications by the plant (Bulgarelli et al. 2015, Edwards et al. 2015), and more specific 

endophytic differences may vary by plant genotype. Given preliminary evidence of some 

genotypic differences we suggest future work investigate if there are endophytic differences in 

bacterial communities that vary by genotype. These genotypes were harvested from different 

mesocosms that may have harbored distinct microbiomes, which could explain initial differences 

among microbiomes. However, at the end of this experiment we saw a continued genotype effect 

among several genotype pairs. This suggests that there are specific effects of some genotypes in 

how they affect the structure of their rhizosphere communities. As these genotypes are known to 

have a diversity of phenotypic characteristics and responses including differences in growth, 

shoot production, nutrient uptake rates, and photosynthetic rates (Hughes et al. 2009), we suspect 

that these microbial assemblages may be capitalizing on subtle genotype-based differences in the 

rhizosphere communities; though as there are no clear indications comparing genotypes with 

distinct traits to those with distinct microbial communities, we suspect these are results of 

measured and unmeasured phenotype interactions.  

Understanding the assembly of host microbiomes is critical to understanding the 

importance of these relationships and their ability to respond to novel environments. An 

important consideration in understanding microbial assembly involves employing reduced 

diversity environments to better understand specific interactions or suites of interactions among 

hosts, microbiomes, and their environments (Gould et al. 2018, Steven et al. 2021). We 

demonstrate here that these interactions may function differently both among genetically 

different individuals, but, more importantly, that these communities may structure in more 

divergent ways under reduced diversity conditions, a critical link to consider when connecting 

natural and experimental microbial experiments. 
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Figures and Tables 

Figure 3.1: After planting in autoclaved and non-autoclaved sediment, we saw that over the 

course of 7.5 weeks, plant growth rate diverged between plants in autoclaved and not-autoclaved 

sediments. Autoclaved and not-autoclaved sediments were significantly different after 38 & 51 

days. Here we plot the average growth area per day for the previous week measured through the 

hole-punch method. Means and standard errors are plotted in light purple for plants in autoclaved 

sediments and dark purple for not-autoclaved sediments. Model coefficients can be found in 

Supplemental Table 3.S2. 
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Figure 3.2: After 7.5 weeks, roots in autoclaved (light purple) and not autoclaved sediments 

(dark purple) developed distinct bacterial profiles. A) Principal coordinate representation of 

phylogenetic isometric log-ratio transformed abundances show differences between microbial 

communities on roots in autoclaved and not-autoclaved sediments. (B) Per sample community 

richness by sample type. All samples are shown in jittered and means and standard errors are 

plotted in light purple for roots in autoclaved sediments and dark purple for not-autoclaved 

sediments. Roots in autoclaved sediments had a slightly higher number of observed ASVs. (C) 

Pooled community richness by sample type. Here all bacteria that occurred in at least 50% of 

samples at at least a 0.5% detection rate pooled by sample type. Hashed bars indicate ASVs that 

were shared across sample types. (D) Pooled community richness including all bacteria in a 

sample type. Hashed bars indicate ASVs that were shared across sample types. (E) On a rough 

class level, the composition of root microbial communities in autoclaved vs. not autoclaved 

sediments varied substantially. This bar graph represents the mean abundance of different 

bacterial classes within sample types. See Supplemental Table 3.S3 for individual ASVs that 

significantly varied among treatments. 
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Figure 3.3: Root microbial communities in autoclaved sediments were less similar to the 

community they started with than root microbial communities in not-autoclaved sediments. (A) 

The distance between the initial microbial community and the final microbial community by 

sample type (light purple for roots in autoclaved sediments and dark purple for roots in not 

autoclaved sediment). (B) There was no difference in change community richness on roots 

between the two treatments, (C) nor was there a difference in how distinct they were from 

adjacent sediments at the end of the experiment. 
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Figure 3.4: After 7.5 weeks, autoclaved and not-autoclaved sediments maintained distinct 

bacterial profiles. (A) Principal coordinate representation of phylogenetic isometric log-ratio 

transformed abundances show differences among autoclaved (light purple) and not-autoclaved 

(dark purple) sediments. (B) Per sample community richness by sample type. All samples are 

shown in jittered and means and standard errors are plotted in light purple for autoclaved 

sediments and dark purple for not-autoclaved sediments. Autoclaved sediments had 3-fold lower 

numbers of observed ASVs. (C) Pooled community richness by sample type. Here all bacteria 

that occurred in at least 50% of samples at at least a 0.5% detection rate pooled by sample type. 

Hashed bars indicate ASVs that were shared across sample types. There were more core ASVs in 

not-autoclaved sediments than non-autoclaved sediments (and no overlapping core ASVs). (D) 

Pooled community richness including all bacteria in a sample type. Hashed bars indicate ASVs 

that were shared across sample types. Comparing all ASVs present across samples, there were 

more ASVs found in not autoclaved sediments compared to autoclaved sediments. (E) Even on a 

rough class level, the composition of communities in autoclaved vs. not autoclaved sediments 

varied substantially across time. This bar graph represents the mean abundance of various 

bacterial classes within sample types. Autoclaved sediments contained relatively fewer bacteria 

in Deltaproteobacteria, Bacteroidiia, Spirochaetes, and Clostridia, and more bacteria in 

Gammaproteobacteria, Flavobacteria, and Sphingobacteriia. See Supplemental Table 3.S4 for 

individual ASVs that varied among treatments. 
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Figure 3.5: While there was a strong effect of autoclaving, different genotypes also harbored 

different communities after 7.5 weeks. (A) Principal coordinate representation of phylogenetic 

isometric log-ratio transformed abundances show differences among different genotypes. Each 

genotype is show in its own color. Red & Green (p = 0.036), Purple & Blue (p = 0.018) and Grey 

and White (p = 0.018) are all distinct from each other. (B) Per sample community richness by 

sample type. All samples are shown in jittered and means and standard errors are plotted by 

genotype. (E) Community composition by genotype by class. The composition of communities 

in autoclaved vs. not autoclaved sediments varied substantially across time. This bar graph 

represents the mean abundance of various bacterial classes within sample types. On a course 

level we see that some classes were relatively more or less abundant in different genotypes. For 

detailed descriptions of taxa that varied among genotypes see Supplemental Figures 3.S2-S10. 
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Figure 3.6: A summary of significant differences in ASVs by genotype. We tested with DESeq2 

to identify specific ASVs that distinguished genotypes. All genotypes had between 60 and 96 

significantly different ASVs compared to the other eight genotypes. Perhaps notably, the green 

genotype had the most differences and the relative abundance of ASVs that differed were 

generally lower on the green genotype compared to other genotypes. Darker colors highlight a 

greater number of ASVs. 
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Figure 3.7: The final community composition on roots reflected the environments they were in 

more so than individual structure. In Experiment, 2 we tested the importance of the microbial 

community already intact on root microbial communites. (A) Principal coordinate representation 

of phylogenetic isometric log-ratio transformed abundances show differences among different 

bleach treatments before our experiment. Bleaching roots dramatically reduced ASVs present on 

roots, and resulted in variable communities initially. Bleached roots microbial communities are 

shown in yellow and not-bleached communities are shown in blue. (B) Per sample community 

richness by sample type. All samples are shown in jittered and means and standard errors are 

plotted by genotype. Bleached roots microbial communities are shown in yellow and not-

bleached communities are shown in blue. While there were differences in richness due to 

autoclaving at the end of experiment, there was no difference in community richness based on 

bleaching at the end of the experiment. Initially bleaching dramatically reduced community 

richness. (C&D) Principal coordinate representation of phylogenetic isometric log-ratio 

transformed abundances show differences among different bleach treatments in (C) not 

autoclaved and (D) autoclaved sediments. (E) Community composition by sample type in 

experiment 2. The relative abundance of different classes of bacteria, while different before and 

after the experiment, did not show dramatic changes due to bleaching. See Supplemental Table 

3.S5 for individual ASVs that varied among treatments. 
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Table 3.1: Results of PERMANOVA showing differences among root microbial communities 

based on different plant genotypes and sediment treatments. 

 df Sum Of Squares R2 F-Statistic Pr(>F) 
      

Treatment 1 6632.187 0.212 29.650 0.004 
Genotype 8 3254.209 0.104 1.819 0.001 

Treatment : Genotype 8 2189.684 0.070 1.224 0.057 
Residual 86 19236.908 0.614 NA NA 

Total 103 31312.988 1 NA NA 
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Table 3.2: Results of PERMANOVA showing differences among root microbial communities 

based on different root surface sterilization and sediment treatments. 

 df Sum Of Squares R2 F-Statistic Pr(>F) 
      

Autoclaved sediment 1 4930.652 0.151 6.743 0.001 
Bleached roots 1 818.487 0.025 1.119 0.304 

Autoclaved sediment : Bleached roots 1 644.913 0.020 0.882 0.456 
Residual 36 26324.465 0.804 NA NA 

Total 39 32718.517 1 NA NA 
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Supplemental Figures 

Figure 3.S1: After 7.5 weeks, roots in autoclaved (light purple) and not autoclaved sediments 

(dark purple) had distinct bacterial profiles, and were distinct from their initial communities as 

well (teal). A) Principal coordinate representation of phylogenetic isometric log-ratio 

transformed abundances show differences between microbial communities on roots in autoclaved 

and not-autoclaved sediments. (B) Per sample community richness by sample type. All samples 

are shown in jittered and means and standard errors are plotted in light purple for roots in 

autoclaved sediments and dark purple for not-autoclaved sediments. Roots in autoclaved 

sediments had a slightly higher number of observed ASVs than not autoclaved sediments, but 

neither was different from initial conditions. (C) Pooled community richness by sample type. 

Here all bacteria that occurred in at least 50% of samples at at least a 0.5% detection rate pooled 

by sample type. Hashed bars indicate ASVs that were shared across sample types. (D) Pooled 

community richness including all bacteria in a sample type. Hashed bars indicate ASVs that were 

shared across sample types. (E) On a rough class level, the composition of communities in roots 

in autoclaved vs. not autoclaved sediments varied substantially. This bar graph represents the 

mean abundance of various bacterial classes within sample types.  

 



 

 183 

 

 

  

DC

A B

E



 

 184 

Figure 3.S2: Bacterial taxa that distinguish the Red genotype from other genotypes after 7.5 

weeks. All other genotypes that are being compared to the Red genotype are colored. A positive 

value indicates higher in the Red genotype, a lower value indicates higher in the other genotype.  
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Figure 3.S3: Bacterial taxa that distinguish the Purple genotype from other genotypes after 7.5 

weeks. All other genotypes that are being compared to the Purple genotype are colored. A 

positive value indicates higher in the Purple genotype, a lower value indicates higher in the other 

genotype.  
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Figure 3.S4: Bacterial taxa that distinguish the Green genotype from other genotypes after 7.5 

weeks. All other genotypes that are being compared to the Green genotype are colored. A 

positive value indicates higher in the Green genotype, a lower value indicates higher in the other 

genotype. 
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Figure 3.S5: Bacterial taxa that distinguish the Gray genotype from other genotypes after 7.5 

weeks. All other genotypes that are being compared to the Gray genotype are colored. A positive 

value indicates higher in the Gray genotype, a lower value indicates higher in the other genotype. 
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Figure 3.S6: Bacterial taxa that distinguish the Blue genotype from other genotypes after 7.5 

weeks. All other genotypes that are being compared to the Blue genotype are colored. A positive 

value indicates higher in the Blue genotype, a lower value indicates higher in the other genotype. 
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Figure 3.S7: Bacterial taxa that distinguish the White genotype from other genotypes after 7.5 

weeks. All other genotypes that are being compared to the White genotype are colored. A 

positive value indicates higher in the White genotype, a lower value indicates higher in the other 

genotype. 
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Figure 3.S8: Bacterial taxa that distinguish the Orange genotype from other genotypes after 7.5 

weeks. All other genotypes that are being compared to the Orange genotype are colored. A 

positive value indicates higher in the Orange genotype, a lower value indicates higher in the 

other genotype. 
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Figure 3.S9: Bacterial taxa that distinguish the Yellow genotype from other genotypes after 7.5 

weeks. All other genotypes that are being compared to the Yellow genotype are colored. A 

positive value indicates higher in the Yellow genotype, a lower value indicates higher in the 

other genotype.  
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Figure 3.S10: Bacterial taxa that distinguish the MM genotype from other genotypes after 7.5 

weeks. All other genotypes that are being compared to the MM genotype are colored. A positive 

value indicates higher in the MM genotype, a lower value indicates higher in the other genotype.  
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Supplemental Tables: 

Supplemental Table 3.S1: Summary of sample replicates and sequencing depth for microbial 

communities. 

Sample Type Number of 
samples 

Sequencing 
depth 

ASVs per sample 

Initial sediment samples 
Autoclaved sediment 13 1,384 - 38,505  

(mean: 21,117.92) 
50 - 186 

(mean: 125.0769) 
Not autoclaved sediment 15 8,512 - 21,915  

(mean: 15,853.33) 
430 - 830  

(mean : 658.6) 
At end of experiment 
Roots in autoclaved sediment 53 9665 - 40588  

(mean: 24436.91) 
112 - 800  

(mean: 574.0377) 
Roots in not autoclaved sediment 51 6542 - 41422  

(mean : 21551.96) 
292 - 966  

(mean: 519.098) 
Autoclaved sediment 13 17,403 - 63,122 

 (mean: 32808.85) 
155 - 769  

(mean: 331.3077) 
Not autoclaved sediment 10 13,895 - 49,758  

(mean: 23053.6) 
217 - 888  

(mean: 595.5) 
In bleach experiment 
Bleached roots right after treatment 8 1,993 - 16,625 

(mean: 5,496.625) 
41 - 92 

(mean: 63.5) 
Non-bleached roots right after rinse 8 18,869 - 36,333 

(mean: 26,767.62) 
484 - 678 

(mean: 568.875) 
Bleached roots in autoclaved 
sediments 

9 23,275 - 49,562 
(mean: 36,299.44) 

300 - 800 
(mean: 507.7778) 

Non-bleached roots in autoclaved 
sediments 

10 22,626 - 47,526 
(mean: 32,870.1) 

332 - 753 
(mean: 509.3) 

Bleached roots in not autoclaved 
sediments 

11 17,784 - 44,152 
(mean: 32,437.09) 

383 - 933 
(mean: 692.3636) 

Non-bleached roots in not autoclaved 
sediments 

10 16,938 - 50,343 
(mean: 27,616) 

303 - 895 
(mean: 630.1) 
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Supplemental Table 3.S2: Coefficients from the generalized linear model Plant growth ~ 

days*autoclaving. 

Coefficients Estimates Std. errors t Pr(>|t|) 
(Intercept) 1.294 0.079 16.301 <0.001 
days24 0.073 0.113 0.643 0.520 
days38 -0.579 0.113 -5.112 <0.001 
days51 -0.360 0.116 -3.098 0.002 
autoclave not autoclaved -0.051 0.113 -0.456 0.649 
days24 : autoclave not autoclaved 0.207 0.161 1.288 0.199 
days38 : autoclave not autoclaved 0.324 0.161 2.005 0.046 
days51 : autoclave not autoclaved 0.428 0.164 2.614 0.009 
    df = 409 
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Supplemental Table 3.S3: ASVs significantly different among roots in autoclaved and not 

autoclaved sediments after 7.5 weeks. A negative log2Fold change indicates higher in autoclaved 

sediments, a positive indicates higher in not-autoclaved sediments. Supplemental File 

SuppTab3.S3.csv 
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Supplemental Table 3.S4: ASVs significantly different among autoclaved and not autoclaved 

sediments after 7.5 weeks. A negative log2Fold change indicates higher in autoclaved sediments, 

a positive indicates higher in not-autoclaved sediments. Supplemental File SuppTab3.S4.csv 
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Supplemental Table 3.S5: ASVs significantly different initially among bleached and not 

bleached roots at the end of our experiment. A negative log2Fold change indicates higher on 

bleached roots, a positive indicates higher in not-bleached roots. Supplemental File 

SuppTab3.S5.csv 
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Appendix 3.A 

This appendix describes the initial conditions of both root and sediment communities at the 

outset of Experiment 1. It contains information on (1) the immediate effect of autoclaving on 

sediments, (2) the initial community composition of root microbial communities by future 

treatment (to show no differences, and (3) the initial community composition of root microbial 

communities split by genotype 

Immediate effect of autoclaving on sediments 

 In autoclaved sediments, total ASV richness was lower (mean of 92.65 vs 431.8 in non-

autoclaved sediments, negative binomial glm, estimate = 1.540, standard error = 0.109, z-value = 

14.18, p < 0.001) and most of the compositional differences among samples was driven by 

sediment treatment (PERMANOVA, F = 34.55, p = 0.001, r = 0.57). There was no difference in 

the variance of the communities in autoclaved vs control sediment (betadisper, ANOVA, p = 

0.26).  

When we examined overlapping ASVs, we found that there were no shared core ASVs 

(shared by by at least 50% of samples at at least a 1% detection rate) between autoclaved and 

non autoclaved sediments (autoclaved sediments had 21 core ASVs and not-autoclaved had 361). 

When we compared all ASVs in autoclaved and not-autoclaved sediments, we found 122 shared 

ASVs, 149 ASVs unique to autoclaved sediments, and 1182 ASVs unique to not-autoclaved 

sediments. When we examined which ASVs were at significantly higher or lower abundance, we 

found 412 ASVs at higher abundance in not-autoclaved sediments and 35 ASVs were higher in 

autoclaved sediments. Two thirds of ASVs higher in autoclaved sediments were 

Gammaproteobacteria.  
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Appendix Figure 3.A1: After autoclaving sediment, we saw a distinct shift in the bacterial 

community sequenced from sediments. These sediments had reduced per-sample alpha diversity 

and an overall reduction in the number of ASVs found in a sample type. A) Principal coordinate 

representation of phylogenetic isometric log-ratio transformed abundances show differences 

between microbial communities on in autoclaved and not-autoclaved sediments immediately 

after treatment. (B) Per sample community richness by sample type. All samples are shown in 

jittered and means and standard errors are plotted in light purple for autoclaved sediments and 

dark purple for not-autoclaved sediments. (C) Pooled community richness by sample type. Here 

all bacteria that occurred in at least 50% of samples at at least a 0.5% detection rate pooled by 

sample type. Hashed bars indicate ASVs that were shared across sample types. (D) Pooled 

community richness including all bacteria in a sample type. Hashed bars indicate ASVs that were 

shared across sample types. (E) On a rough class level, the composition of communities in 

autoclaved vs. not autoclaved sediments varied substantially. This bar graph represents the mean 

abundance of various different bacterial classes within sample types.  
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Initial composition of root microbial communities by future treatment 

Before planting, we confirmed that there was no effect of future treatment on any aspect of 

community structure. 

 

Appendix Figure 3.A2: (A) Overall community composition based on phylogenetic isometric 

log-transform ratios. (B) Per sample community richness by sample type. All samples are shown 

in jittered and means and standard errors are plotted in light purple for autoclaved sediments and 

dark purple for not-autoclaved sediments. (C) Pooled community richness by sample type. Here 

all bacteria that occurred in at least 50% of samples at at least a 0.5% detection rate pooled by 

sample type. Hashed bars indicate ASVs that were shared across sample types. (D) Pooled 

community richness including all bacteria in a sample type. Hashed bars indicate ASVs that were 

shared across sample types. While we saw an effect of genotype (discussed later), there was no 

difference in community structure (Figure 3.S2A, r2treatment = 0.011, Ftreatment = 1.465, ptreatment = 0.081, 

r2genotype = 0.204, Fgenotype = 3.168, pgenotype = 0.001, r2treatment:genotype = 0.061, Ftreatment:genotype = 0.954, ptreatment:genotype = 0.631), 

richness (Figure 3.A2B, negative binomial glm p = 0.4, class composition), or ASV identity 

(Figure 3.A2C&D, >70% shared in all ASVs, >80% shared in core ASVs, no major differences 

in abundance among bacterial classes) between roots that would be planted in autoclaved or non-

autoclaved sediment. (E) On a rough class level, the composition of root microbial communities 

that would be put into autoclaved vs. not autoclaved sediments. These communities did not look 

substantially different. This bar graph represents the mean abundance of various different 

bacterial classes within sample types. 
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Initial composition of root microbial communities by genotype 

Figure 3.A3: Different genotypes harbored different communities at the time of planting. (A) 

Principal coordinate representation of phylogenetic isometric log-ratio transformed abundances 

show differences among different genotypes. Each genotype is show in its own color. All 

genotypes were distinct from each other except Orange & Yellow and White & MM (each pair 

was indistinguishable) (pairwise PERMANOVA with fdr corrected p-values < 0.05). (B) Per 

sample community richness by sample type. All samples are shown in jittered and means and 

standard errors are plotted by genotype. (E) Community composition by genotype by class. The 

composition of communities in autoclaved vs. not autoclaved sediments varied substantially 

across time. This bar graph represents the mean abundance of various different bacterial classes 

within sample types. On a course level we see that some classes were relatively more or less 

abundant in different genotypes. For detailed descriptions of taxa that varied among genotypes 

see Figures 3.A4-A12. 
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Figure 3.A4: Bacterial taxa that distinguish the Red genotype from other genotypes before our 

sediment treatments. All other genotypes that are being compared to the Red genotype are 

colored. A positive value indicates higher in the Red genotype, a lower value indicates higher in 

the other genotype. 
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Figure 3.A5: Bacterial taxa that distinguish the Purple genotype from other genotypes before our 

sediment treatments. All other genotypes that are being compared to the Purple genotype are 

colored. A positive value indicates higher in the Purple genotype, a lower value indicates higher 

in the other genotype. 
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Figure 3.A6: Bacterial taxa that distinguish the Green genotype from other genotypes before our 

sediment treatments. All other genotypes that are being compared to the Green genotype are 

colored. A positive value indicates higher in the Green genotype, a lower value indicates higher 

in the other genotype. 
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Figure 3.A7: Bacterial taxa that distinguish the Gray genotype from other genotypes before our 

sediment treatments. All other genotypes that are being compared to the Gray genotype are 

colored. A positive value indicates higher in the Gray genotype, a lower value indicates higher in 

the other genotype. 

   



 

 209 

Figure 3.A8: Bacterial taxa that distinguish the Blue genotype from other genotypes before our 

sediment treatments. All other genotypes that are being compared to the Blue genotype are 

colored. A positive value indicates higher in the Blue genotype, a lower value indicates higher in 

the other genotype. 
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Figure 3.A9: Bacterial taxa that distinguish the White genotype from other genotypes before our 

sediment treatments. All other genotypes that are being compared to the White genotype are 

colored. A positive value indicates higher in the White genotype, a lower value indicates higher 

in the other genotype. 
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Figure 3.A10: Bacterial taxa that distinguish the Orange genotype from other genotypes before 

our sediment treatments. All other genotypes that are being compared to the Orange genotype are 

colored. A positive value indicates higher in the Orange genotype, a lower value indicates higher 

in the other genotype. 
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Figure 3.A11: Bacterial taxa that distinguish the Yellow genotype from other genotypes before 

our sediment treatments. All other genotypes that are being compared to the Yellow genotype are 

colored. A positive value indicates higher in the Yellow genotype, a lower value indicates higher 

in the other genotype. 
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Figure 3.A12: Bacterial taxa that distinguish the MM genotype from other genotypes before our 

sediment treatments. All other genotypes that are being compared to the MM genotype are 

colored. A positive value indicates higher in the MM genotype, a lower value indicates higher in 

the other genotype. 

 




