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Abstract

Models of influenza transmission have focused on the ability of vaccination, anti-viral

therapy and social distancing strategies to mitigate epidemics. Influenza transmission,

however, may also be interrupted by hygiene interventions such as frequent hand wash-

ing and wearing masks or respirators. We apply a model of influenza disease transmission

that incorporates hygiene and social distancing interventions. The model describes popu-

lation mixing as a Poisson process, and the probability of infection upon contact between

an infectious and susceptible person is parameterized by p. While social distancing inter-

ventions modify contact rates in the population, hygiene interventions modify p. Public
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health decision making involves trade-offs, and we introduce an objective function which

considers the direct costs of interventions and new infections to determine the optimum

intervention type (social distancing versus hygiene intervention) and population compli-

ance for epidemic mitigation. Significant simplifications have been made in these models.

However, we demonstrate that the method is feasible, provides plausible results, and is

sensitive to the selection of model parameters. Specifically, we show that the optimum

combination of non-pharmaceutical interventions depends upon the probability of infec-

tion, intervention compliance, and duration of infectiousness. Means by which realism

can be increased in the method are discussed.

Keywords

hygiene interventions, social distancing, disease transmission model, cost-benefit, inter-

vention compliance

1. Introduction

Influenza pandemics remain a threat to the public’s health. Influenza prevention and

mitigation strategies include pharmaceutical interventions (e.g., vaccination and anti-viral

medications) and non-pharmaceutical interventions (NPI). NPI include increased social

distancing and hygiene interventions. While social distancing interventions seek to reduce

the frequency of contact between infectious and susceptible persons, hygiene interventions

seek to reduce the probability of influenza transmission upon contact through frequent
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hand washing, surface disinfection, the use of respiratory protection, and the use of

cough/sneeze etiquette. These hygiene interventions reduce the density of virus in the

environment, so as to interrupt potential routes of transmission.

Disease transmission modeling has focused on pharmaceutical interventions and social

distancing; (1−4) with limited exploration of the potential role of hygiene interventions.(5−7)

NPI, however, become particularly important in influenza management when pharma-

ceutical interventions are unavailable, ineffective, or have incomplete coverage.(8−10)

The lack of emphasis on hygiene interventions may be driven by the perception that

hygiene interventions are less powerful than pharmaceutical and social distancing inter-

ventions because their effectiveness requires (i) that the intervention interrupt a dominant

route of transmission, which has remained uncertain for influenza;(11−13) and (ii) that

individuals comply with the interventions over the course of days and weeks, which is

unlikely to be complete.(14−16)

Hygiene intervention modeling to date has been limited in scope, but has demonstrated

that increased mask efficiency and compliance decrease the effective reproductive number

in the context of homogenous well-mixed population model(6) and a heterogeneous (mask

use or no mask use) four-compartment (SEIR) epidemic model.(7) Tracht et al.(7) found

that early introduction of masks during the epidemic, and mask use by both infectious

and susceptible persons reduced the number of cases.

On a larger geospatial scale, Kernéis et al.(5) considered the effects of mask use and

isolation in conjunction with pharmaceutical interventions using a global transportation
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network model with city-level four-compartment (SEIR) models. These investigators

found mask efficacy, coverage and date of introduction to be more strongly correlated

with epidemic features (e.g., total number of cases and epidemic duration) than isolation

in the context of a fast, massive pandemic (R◦ = 4.9); but neither efficacy or coverage of

masks or isolation were correlated with epidemic features in the context of a long-lasting

pandemic (R◦ = 1.8). Notably, NPI interventions were not consistently less correlated

with epidemic features than pharmaceutical interventions.(5) While these results suggest

that NPI may be useful for some types of pandemics, their interpretation for public

health decision making is difficult. In particular, the use of broad uniform probability

distributions for intervention features, such as mask and isolation efficacy (0–1 for masks,

0.2–0.7 for isolation) and intervention coverage in the population (0.001–1), extend beyond

the feasible range and may therefore exaggerate the correlations. But more importantly,

as pointed out by Kernéis et al.,(5) correlations between input variables (the interventions)

and output variables (epidemic features) do not provide information about the significance

of impact on the epidemic.

Overall, there remains a need to understand the potential impact of NPI for influenza

prevention and epidemic mitigation, particularly in terms and conditions accessible to

public health decision makers. The long-term objective of this research is to identify

conditions under which NPI, particularly hygiene and social distancing interventions, are

effective for the mitigation of influenza epidemics, if any. We frame our objective in terms

of health and financial costs, as both criteria are used to develop policy recommendations
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for interventions. The purpose of this study is to illustrate our methodological approach.

As a result, the analyses presented use simple representations of the population and cost

structures. Future work will increase the realism in these structures, and consider more

than two interventions simultaneously.

The specific mathematical model used is an extension of that of Larson,(17) which

emphasized the role of social distancing in disease transmission among a heterogeneous

population. The approach utilizes high- and low-activity groups; considers individuals

to be susceptible, infectious or recovered; and enables a physical interpretation for the

probability of infection upon contact to describe disease dynamics. The later feature is im-

portant from our perspective because we can define a range of physically plausible values

for the probability of infection that reflect (i) the effectiveness of hygiene interventions,

and (ii) the influence of viral factors on emission, environmental survival and transport,

and infectivity.(13,18) We extend Larson’s model by incorporating the effect of hygiene in-

terventions on the probability of infection during contact, and compare the impact of two

NPI simultaneously. We specifically consider the hygiene intervention of mask use, and

the social distancing intervention of reduced contact rates in the high-activity group, but

the method can incorporate other interventions, such as hand washing and heterogeneity

in contact rate reduction.

Each NPI has a different effectiveness for epidemic mitigation, and also a different cost.

Policy makers consider many factors in the recommendation of interventions, including:

efficacy, compliance, and direct and indirect costs. To begin to inform this decision-
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making process, we present an optimization strategy to select some combination of NPIs

which minimize financial costs of an epidemic. In this analysis, the levels of intervention

compliance that minimizes cost and the number of infections are identified, along with

the levels of intervention compliance that impact epidemic dynamics and changes in the

total cost.

2. Methods

2.1. Disease Transmission Model I

The approach described by Larson(17) is applied in the context of a heterogenous popu-

lation divided into two groups, with high and low social activity. Given the emphasis

here on illustration of the modeling approach, the age structure of the population, and

the influence of age on social activity is not included. We assume that each activity group

is homogenous, and that there is no difference between the two groups with regard to

biological susceptibility to infection.

Social contacts that could result in effective influenza transmission are assumed to

occur between two people according to a homogenous Poisson process. The high- and

low-activity groups have respectively λH and λL social contacts per person per day on

average. The two groups interact, such that an individual in the high-activity group,

for example, has a total of λH contacts per day which can occur with persons in either

activity group. Initially (day 0), the high-activity group includes nH individuals, and
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the low-activity group includes nL individuals. Initially, in the population there are

(nHλH + nLλL)/2 interactions, on average.

We assume that upon infection on day i, a susceptible person becomes infectious on

day i + 1, and is no longer able to transmit the disease, e.g. recovered, at the beginning

of day i+ 2. The model can easily be extended to a longer period of infectiousness (as in

model II), or a period of infectiousness with reduced contacts due to isolation at home.

On day i = 1, 2, . . . ,D, nI
H(i) persons in the high-activity group are infectious, and nS

H(i)

are susceptible. We define similarly, for the low-activity group, nI
L(i) and nS

L(i). All

susceptible people on day i become infectious or remain susceptible on day i+ 1:

nS
H(i) = nS

H(i+ 1) + nI
H(i+ 1), (1)

nS
L(i) = nS

L(i+ 1) + nI
L(i+ 1). (2)

The probability that a susceptible person becomes infected upon a random interaction

with an infectious person is given by parameter p. This constant parameter represents a

weighted average infection likelihood over the range of all possible social contacts.

The probability that the next interaction of a randomly selected person is with an

infectious person is equal to the proportion of contacts in the population on day i which

involve an infectious person:

β(i) =
λHn

I
H(i) + λLn

I
L(i)

λHnH + λLnL

. (3)

7



The denominator in Equation 3 is the number of contacts in the total population. This

expression differs from that used by Larson,(17) who permanently removed persons from

the population upon infection. The approach of Larson(17) is not physically reasonable

when the number infected during the epidemic is large because the population available

for contacts decreases, and approaches zero. Given a constant contact rate, the effect is to

increase the intensity of contacts, which in the extreme, is not physically reasonable.

On day i the number of contacts between a person in the high-activity group and an

infectious person in either activity group is a Poisson random variable, with expectation

E[CH(i)] = λHβ(i). The probability of infection conditional upon CH(i) is 1−(1−p)CH(i),

such that the unconditional probability of infection across all possible values of CH(i) is:

pSH(i) = 1 − exp[−λHβ(i)p]. (4)

Similarly, for persons in the low-activity group, the probability that a random susceptible

person becomes infected on day i is:

pSL(i) = 1 − exp[−λLβ(i)p]. (5)

On day i+ 1, the number of newly infectious persons is the product of the probability
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of infection on day i and the number of susceptible persons on day i:

nI
H(i+ 1) = pSH(i)n

S
H(i), (6)

nI
H(i+ 1) = pSL(i)n

S
H(i). (7)

The computations repeat for each of the D days. The total number of infections can then

be computed as:

NI =

D∑
i=1

nI
H(i) + n

I
L(i). (8)

Social distancing interventions reduce the contact rates λH and/or λL. Here we consider

social distancing to reduce λH by quantity λd, where 0 < λd < λH. The contact rate

decreases more with stronger social distancing interventions, such as closing additional

public places, schools or offices.

Hygiene interventions reduce the probability of infection p, by interrupting one or

more routes of disease transmission between persons. Here, we consider hygiene inter-

ventions to reduce p by the quantity ph, where 0 < ph < p. The infection probability

decreases more with more effective hygiene interventions.

The reproductive number, R◦, equal to the number of new infections created by the

average infectious person on day 1, is computed:

R◦ =
pSH(1)[nH − nI

H(1)] + p
S
L(1)[nL − nI

L(1)]
nI
H(1) + n

I
L(1)

. (9)

Hygiene interventions impact R◦ through the parameter p in the definition of pSH(1) and
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pSL(1) (Equations 4 and 5); while social distancing interventions impact R◦ through the

parameter λH and/or λL in the definition of pSH(1), p
S
L(1) and β(1) (Equations refeqn:

beta–5).

2.2. Disease Transmission Model II

Disease transmission model II extends model I to better reflect the duration of incubation

(non-infectious and infectious) and symptomatic infection (infectious). Specifically, upon

infection persons move deterministically through 6 states, each of duration 1 day: 1)

asymptomatic but not infectious, 2) asymptomatic and infectious, and 3–6) symptomatic

and infectious. This progression was selected to align with natural history of influenza

described by Longini et al.(19) The number of persons in each of the 6 states on day i is

denoted nA
H(i), n

I1
H(i), nI2

H(i), nI3
H(i), nI4

H(i), nI5
H(i) for the high-activity group, respectively;

and similarly for the low-activity group. This means: nI1
H(i+1) = nA

H(i),n
I2
H(i+1) = nI1

H(i),

etc. Analogously to Equation 3, the probability that the next interaction of a randomly

selected person is with an infectious person on day i is:

β(i) =
λH

(∑5
j=1 n

Ij
H(i)

)
+ λL

(∑5
j=1 n

Ij
L (i)

)
λHnH + λLnL

(10)

The probabilities that a random susceptible person becomes infected on day i is as defined

in Equations 4–5, but that person enters the statenA
H ornA

L rather thannI
H ornI

L, as specified
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in Equations 6–7. The total number of new infections on day i is

Nnew(i) = nA
H(i) + n

A
L (i), (11)

while the total number infected on day i is

NI(i) = nA
H(i) +

5∑
j=1

nIj
H(i) + n

A
L (i) +

5∑
j=1

nIj
L (i). (12)

For this model we assume that persons are equally infectious on days 2–6 and retain the

activity level of their group.

2.3. Optimization Model

The optimum combination of NPI is one which minimizes an objective function that takes

into account both the financial costs of implementing each NPI and the social costs of the

epidemic. The goal is to select the compliance levels for hygiene (Ch ∈ (0, 1]) and social

distancing (Cd ∈ (0, 1]) interventions so as to minimize the total cost. The optimization

problem is formulated as:

minCd,Ch

(
Cdcd + Chch +NIcI

)
(13)

where cd and ch are the costs per unit compliance of the social distancing and hygiene

interventions, respectively, and cI is the cost of each infection. For this analysis, these
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costs are assumed to be fixed, and independent of, respectively intervention effectiveness

and NI.

2.4. Implementation & Parameters

2.4.1. Population

We consider a population of 100,000 individuals, with a 30:70 split between the high- and

low-activity groups: nH = 30, 000 and nL = 70, 000 (Table 1). There are no specific demo-

graphic features of the population. On day 1, we assume that 0.05% of the individuals are

infectious, such that nI
H(1) = 15, nS

H(1) = 29, 985, nI
L(1) = 35, and nS

L(1) = 69, 965. Sen-

sitivity to the initial population split between social activity groups was explored using

two cases: (i) nH = nL = 50, 000, and (ii) nH = 20, 000 and nL = 80, 000.

2.4.2. Contact Rates

Among European 20–29 year olds, the mean (standard deviation) of number of contacts is

13.57 (10.60) per day.(20) Assuming the contact rate is normally distributed, we equate the

high-activity group contact rate with λH = 26.4 day−1 (87th percentile). The population-

weighted average contact rate is 13.57 when the low-activity group contact rate is λL = 8.07

day−1 (30th percentile). In contrast, Tracht et al.(7) assumed a rate of 16 contacts per day

for the entire population. Sensitivity to contract rates was explored using two cases: (i)

λH = 35.0 day−1 and λL = 8.07 day−1 and (ii) λH = 26.4 day−1 and λL = 4 day−1.

We assume that the effective contact rate in the high-activity group equals 50% of the
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baseline contact rate when complying with the intervention, denoted fd = 0.5 (Table 1).

The intervention is modeled for the duration of the epidemic. Sensitivity of predictions

to fd was explored using fd = {0.3, 0.7}, where compliance with the intervention yields

contact rates equal to 30% and 70% of the baseline rate for the high-activity group. Note

that the overall population size and density affect the reduction in contact rate due to

compliance with the social distancing intervention. For example, social distancing is

likely to have a higher impact when people are spread out over a larger area and where

social settings like school represent a relatively unique opportunity for contact. School

closures in a crowded urban area, however, may not prevent social contacts with infectious

persons as effectively since numerous contacts occur outside of schools. The reduction in

contact rates should then be set taking into account the characteristics of the population

under consideration.

On the population level, the reduction in λH by λd is a function of compliance with the

distancing intervention, Cd. For Cd ∈ [0, 1], equal to the decimal fraction of compliance,

the average contact rate in the high-activity group is:

λH,avg = λH(1 − Cd) + fdλHCd = λH − Cd(λH − fdλH) = λH − λd (14)

for fd > 0, and where λd = CdλH(1 − fd).
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2.4.3. Infection Probability

Mechanistic models suggest that for a relatively high-intensity, 15 min contact, the prob-

ability of infection varies several orders of magnitude, p ∈ [10−7, 10−1].(18) These values

of p used a dose-response function based on human infectivity studies with strains of

seasonal influenza that had been maintained in the laboratory. For pandemic influenza,

p could take even higher values due to increased viral infectivity, and absence of residual

immunity due to prior exposure to or vaccination against similar viruses.(21) Respirators

or masks reduce the inhaled dose of virus to a fraction fh of the inhaled dose without

respirator use. For small p, p is proportional to dose, such that when a respirator or mask

is worn, the probability of infection is approximately pfh.

We consider the NPI of wearing a respirator. N95 filtering facepiece respirators have an

assigned protection factor (APF) of 10,(22) which means that the contaminant concentration

in air inside the respiratory is one-tenth that in the outside air, fh = 0.10. While research

studies have found N95 filtering facepiece respirators to perform better than the APF,(23)

use of the APF is required in the United States for respirator selection in occupational

settings by OSHA (29 CFR 1910.134). Respirators interrupt exposures via other routes, by

preventing the deposition of virus-laden droplets on the mucous membranes of the nose

and mouth via droplet spray and contact. Therefore, the reduction in risk may be greater

than expected from fh, but effectiveness may be decreased because users are untrained in

how to wear a respirator, duration of use may decrease compliance, and some users may

substitute surgical or cloth masks which have lower protection factors.(24,26) As a result,
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we assume fh = 0.5, corresponding to an assigned protection factor of 2. Sensitivity of

predictions to fh was explored using fh = {0.3, 0.7}, for which the probability of infection

equals 30% and 70% of the baseline value of p. The values for fh equal the range of mask

efficacy values used by Brienen et al.(6)

The hygiene intervention was applied for the duration of the epidemic (90 days). In

accordance with the finding of Tracht et al.(7) that early introduction of mask use reduced

the number of infections, we considered respirator use to begin on epidemic day 0, when

0.05% of the population is infected.

On the population level, the reduction in p by ph is a function of compliance with

respirator use, Ch. For Ch ∈ (0, 1], the average probability of infection for the population

is:

pavg = p(1 − Ch) + pfhCh = p− Ch(p− pfh) = p− ph (15)

for fh > 0, and where ph = Chp(1 − fh).

The values ofp = 0.10 andp = 0.12 were selected for use in disease transmission model

I because they yieldR◦ equal to 1.36 and 1.63, respectively, under baseline (no intervention)

conditions (Table 2), which are similar to R◦ values observed for seasonal and 2009 H1N1

influenza epidemics.(26,27) Due to the prolonged presence of infectious persons in the

population in disease transmission model II, smaller values of p are necessary to achieve

observed R◦ values. The values p = 0.028 and p = 0.034 were selected for use in model II

because they yield R◦ equal to 1.36 and and 1.66, respectively, under baseline conditions

(Table 2).
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2.4.4. Social Distancing Costs

There are many direct and indirect costs to social distancing interventions. As a starting

point we consider only the costs associated with lost work productivity. A day of lost

work is valued at $180 per day.(28) We assume that reduced contacts equate to a 10%

decrease in productivity, costing, $18 per day.

We assume that social distancing is observed for the duration of the epidemic. Each

fractional increase in compliance, Cd ∈ (0, 1], with the social distancing intervention

corresponds to ChnH people with reduced productivity. The intervention cost per unit

compliance, is cd =$18 per day per person× 90 days×nH persons. Thus cd= $ 48.6× 106

for nH = 30, 000, and cd= $ 32.4 × 106 and cd= $ 81.0 × 106 when nH = 20, 000 and

nH = 50, 000, respectively.

In certain cases, social distancing intervention costs may grow exponentially, rather

than linearly with compliance. This can be due to the expense of obtaining compli-

ance from reluctant individuals or to the increasing financial impact of compliance. For

instance, closure of schools or of public transportation would incur a cost that grows

rapidly with compliance. To explore the sensitivity of the optimization problem to the

functional form of costs, we defined the intervention cost as an exponential function of

compliance with social distancing, and allowed the cost to vary based with nH. For

nH = 30, 000, the cost is $ 106 × exp(5 × Cd). For nH = 20, 000 and nH = 50, 000, the

constant changes proportionally to nH, such that the costs equal $ 6.67×105×exp(5×Cd)

and $ 1.67 × 106 × exp(5 × Cd), respectively. The value of this cost function surpasses
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the linear costs for Cd >71%. The constants were selected to provide similar costs to the

linear function for low compliance, and higher costs relative to the linear function for high

compliance.

2.4.5. Hygiene Intervention Costs

The respirator considered for the hygiene intervention — an N95 filtering facepiece — can

be purchased at hardware stores. At Lowe’s hardware in Chicago, IL a package of 20 N95

filtering facepiece respirators costs $20. In the occupational setting, use of N95 filtering

facepiece respirators requires a medical evaluation and fit-testing, which incur substantial

costs. However, the general public wears these respirators without such evaluations and

testing. While we therefore assume that no fit-testing occurs, we assume that the costs of

the respirators increase 3-fold due to distribution and supply issues, to $3 per respirator.

We assume that respirator use is observed for the duration of the epidemic, expected to

be 90 days. Each incremental increase δ in compliance with respirator use corresponds to

δn individuals (where n = nL + nH = 100, 000), who use 1 respirator per day for D = 90

days, such that the cost per unit compliance is ch = $3 each ×n persons × 90 days =

$27× 106.

2.4.6. Infection Costs

Based on the analysis of Molinari et al.,(29) we assume: (i) 100% of infected persons lose

3 days of work, with a cost of $180 per day, (ii) 40% of infected persons seek outpatient

care, costing $260 per person, (iii) 4% of infected persons are hospitalized, costing $24,000
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per person, and (iv) 1% of infected persons die, costing $80,000 per person. These data

indicate the average cost of an infection to be $2,400: cI = $2, 400.

2.3.7. Optimization Function

The problem of selecting the compliance levels so as to minimize the epidemic and in-

tervention costs is written in Equation 13. The total number of infections NI depends

on both compliance levels as compliance affects the spread of the epidemics, so we use

numerical simulation to determine the total cost as a function of both Cd and Ch using

Matlab. We simulate the dynamics of the epidemics by evaluating the number of infec-

tious individuals in each subgroup using disease transmission model I (Equations 3–7) or

model II (Equation 10); and evaluate the total number of new infections using Equation 8

or 12. Standard built-in optimization functions may then solve the optimization function.

3. Results

3.1. Disease Transmission Model

The basic epidemic features of disease transmission models I and II are summarized in

Table 2 for baseline conditions and intervention compliance equal to 0% or 50%. In both

models the hygiene intervention applied singly results in fewer infections and lower R◦

than the social distancing intervention applied singly. Increasing p increases R◦ and the

total number of infections. The influence of the interventions on R◦ is similar in both
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models, though more individuals are infected in model II than in model I for the same R◦

value.

For baseline conditions, the total number of infections is minimized by maximizing

compliance with both interventions applied jointly for both disease transmission models

(Figure 1 and S1). Even though the effectiveness of each intervention is equal (fh =

fd = 0.5), the hygiene intervention yields fewer infections for a given level of compliance

than the social distancing. This may be due, in part, to the application of the hygiene

intervention to both activity groups, while the social distancing intervention is applied

only the high-activity group. When social distancing is applied singly, the rate at which

increased compliance decreases the number of infections decreases for larger values of

p in both model I and II. This makes sense because if the probability of infection upon

contact is high, then fewer contacts are needed, on average, to infect susceptible persons,

such that reducing contact rates will have less influence on the epidemic. In Model II,

this phenomenon is more apparent because infectious persons remain infectious in the

population for five days, rather than one day, increasing the proportion of contacts among

susceptible persons with infectious persons.

Increasing the effectiveness of the intervention (smaller values of fh and fd) increases

the rate at which the number of infections decreases with increasing compliance (Figures 2

and S2). Figure 3 considers the event that social distancing is more effective (intervention

compliance yields a high-activity contact rate equal to 0.3λH for fd = 0.3) than the hygiene

intervention (intervention compliance yields a probability of infection upon contact equal
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to 0.7p for fh = 0.7): The asymmetry in intervention effectiveness is apparent, favoring

compliance with social distancing over the hygiene intervention to decrease the total

number of infections. The rate at which the number of infections decreases increases

dramatically when compliance with the social distancing intervention exceeds 40% and

70% in models I and II, respectively, when applied singly. The opposite event is shown

in Figure S3, where compliance with the hygiene intervention is favored relative to social

distancing owing to the greater effectiveness of the hygiene intervention relative to the

social distancing intervention (fd = 0.7, fh = 0.3).

Increasing the number of persons in the high-activity group increases the total number

of infections in the population in both models I and II. Results for nH = 50, 000 are

shown in Figure S4. For nH = {20, 000, 30, 000, 50, 000} absent interventions, model I with

p = 0.10 predicts 43%, 54% and 67% of the population to be infected, respectively. For all

values of nH, absent interventions, model II with p = 0.028 predicts 63%, 70%, 80% of the

population to be infected, respectively. Increasing nH decreases the effectiveness of both

interventions applied singly and jointly (Figure S4), indicated by the higher number of

total infections relative to the baseline cases.

Increasing the contact rate in the high-activity group from λH = 26.8 day−1 to λH = 35

day−1 increases the total number of infections slightly in model I, and decreases the

number of infections prevented by the interventions applied singly and jointly (Figure

S5). The influence on model II is smaller, likely owing to the high number of infections

and small impact of the interventions in this model (Figure S5). Decreasing the contact
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rate in the low activity group from λL = 8.07 day−1 to λL = 4 day−1 has little impact on

the number of infections, and on the number of infections prevented by the interventions

in models I and II (data not shown).

For all combinations of input parameters, the total number of infections are minimized

by maximum compliance with the interventions, applied jointly (Table 3).

3.2. Optimization of Intervention Strategies

Epidemic costs of disease transmission models I and II are summarized in Table 2 for

baseline conditions and intervention compliance equal to 0% or 50%. Intervention com-

pliance that minimizes total cost are presented in Table 3. For these baseline conditions,

total cost increases with increasing probability of infection in both models, and is higher

for model II than model I. When intervention costs are linear with compliance, peak total

cost occurs in the absence of interventions for model I; while peak total cost occurs when

the social distancing intervention is applied singly with approximately 50% compliance

in model II. When social distancing intervention costs are exponential with compliance,

high total cost is associated with application of social distancing in the absence of the

hygiene intervention in both models.

Considering disease transmission model I with baseline conditions, the surface of total

cost as a function of compliance is depicted in Figure 4 for p = 0.10 and Figure S6 for

p = 0.12. When intervention costs are a linear function of compliance, the total cost

is minimized ($2.8 × 107) for p = 0.10 when the hygiene intervention is applied singly
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with 100% compliance; and is minimized ($4.3 × 107) for p = 0.12 when the hygiene

and social distancing interventions are jointly applied with 100% and 26% compliance,

respectively. Inspection of Figures 4(a) and S6(a) indicates that less compliance with the

hygiene intervention does not dramatically increase total cost as long as social distancing

is applied jointly. When social distancing intervention costs are an exponential function of

compliance, the total cost is minimized ($2.8×107) forp = 0.10 when the hygiene and social

distancing interventions are jointly applied with 84% and 26% compliance, respectively;

and is minimized ($3.3×107) forp = 0.12 when the when the hygiene and social distancing

interventions are jointly applied with 100% and 30% compliance, respectively. Inspection

of Figures 4(b) and S6(b) indicates that small decreases in compliance with the hygiene

intervention increase costs more rapidly than similar increases in compliance with the

social distancing intervention. In the exponential cost scenario, the range of intervention

compliance in which costs are minimized is small relative to the linear cost scenario.

Considering the disease transmission model II with baseline conditions, the surface of

total cost as a function of compliance is depicted in Figure 5 for p = 0.028 and Figure S7

for p = 0.034. When intervention costs are a linear function of compliance, the total cost is

minimized ($3.7×107) for p = 0.028 when the hygiene and social distancing interventions

are jointly applied with 100% and 37% compliance, respectively; and is minimized ($6.4×

107) for p = 0.034 when the hygiene and social distancing interventions are jointly applied

with 100% and 66% compliance, respectively. Inspection of Figures 5(a) and S7(a) indicates

that increasing social distancing compliance singly has little impact on the total cost, but
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total cost increases rapidly when compliance with the hygiene intervention decreases,

unless companied by increased social distancing compliance. When social distancing

intervention costs are an exponential function of compliance, the total cost is minimized

($4.9× 107) for p = 0.028 when the hygiene and social distancing interventions are jointly

applied with 100% and 33% compliance, respectively; and is minimized ($5.6 × 107) for

p = 0.034 when the when the hygiene and social distancing interventions are jointly

applied with 100% and 59% compliance, respectively. Inspection of Figures 5(b) and

S7(b) indicates that the total cost in model II respond similarly to that in model I for

the exponential increase social distancing costs with intervention compliance. However,

in the model II, change in the total cost, particularly with compliance with the hygiene

intervention when social distancing compliance is low, and is modest relative to the order

of magnitude change observed in model I.

The total costs for various levels of intervention effectiveness, fh = {0.3, 0.7} and

fd = {0.3, 0.7}, are depicted in Figures 6 and S8–S14 for disease transmission model I

(p = 0.10) and model II (p = 0.028). For both models, when intervention effectiveness

increases (fh = fd = 0.3), the total cost decreases more rapidly as compliance increases

from 0, such that total cost is minimized with lower intervention compliance (Figures S8

and S12). As in the baseline case, however, high compliance with social distancing does

not lower the total cost regardless of whether social distancing intervention costs increase

linearly or exponentially with compliance. When intervention effectiveness decreases

(fh = fd = 0.7), the magnitude of change in total cost over the range of compliance
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decreases for both models (Figures S9 and S13); and the minimal total cost in model

II is an order of magnitude higher than baseline conditions (Table 3). In this scenario,

for both models I and II, when social distancing intervention costs are an exponential

function of compliance, the total cost is higher when the social distancing intervention

has a high compliance rate (Cd > 0.8) than when no interventions are applied. When

hygiene interventions are more effective than social distancing (fh < fd), the total cost

has similar contours to that for baseline conditions in both models. However, when social

distancing interventions are more effective than hygiene interventions (fh > fd) and social

distancing intervention costs are an exponential function of compliance, then total cost

is minimized for a narrow range of social distancing compliance, that widens slightly as

hygiene compliance increases (Figure 6).

Increasing the initial number of persons in the high-activity group (Figures S16–S17),

and increasing the high-activity group contact rate (Figures S18–S19) increase the total cost

in the absence of interventions. Responses to these changes are similar for both models

I and II, and for linear and exponential increases in social distancing intervention costs

when compared to the total cost for the respective baseline conditions. Essentially, these

changes decrease the rate at which total cost decrease with increasing compliance, such

that total cost is minimized by higher compliance levels than in the baseline conditions.

Decreasing the low-activity group contact rate has small influence on the total cost (data

not shown).

The duration of intervention utilization was assumed to be 90 days for all simulations,
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such that the total cost of interventions was independent of the epidemic duration. We

explored the impact of calculating intervention costs based on the duration of the epidemic,

where the duration of the epidemic was defined as time between intervention initiation

and the number of new infections was 6 0.05% of the total population. The cost-benefit

optimization surfaces were indistinguishable from those attained assuming interventions

costs were incurred over 90 days for model I. This indicates that the costs of the infections

drive the optimization of the objective function specified by Equation 13.

Overall, these results indicate that while the magnitude of total cost varies between

disease transmission models I and II, the total cost respond similarly to model inputs,

including to changes in: intervention compliance, intervention effectiveness, contact rates,

and initial subgroup populations. While application of the hygiene intervention singly

did not minimize infections or total cost in all scenarios, the intervention is less sensitive

than social distancing: Total cost declined more consistently with increasing compliance

and had shallower slopes near points of minimization than was often seen with social

distancing interventions. Not shown, is that further increase in p extends the patterns

observed; increasing the total cost and decreasing the rate of cost reduction with increasing

intervention compliance.

4. Discussion

This research presents a method by which the effect of hygiene and social distancing inter-

ventions on influenza epidemic dynamics can be compared; and an optimization strategy
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for the selection of these non-pharmaceutical interventions (NPI) taking implementation

costs into account. We have illustrated that the method is feasible, sensitive to the dura-

tion of infectiousness, and sensitive to the selection of model parameters. Specifically, we

demonstrated that the severity of the epidemic measured by the total number of infec-

tions and the optimal intervention strategy will depend upon the probability of infection

(p), duration of infectiousness (models I and II), intervention compliance (Cd and Ch),

intervention costs (cd and ch), and intervention effectiveness (fd and fh). Notably, the

response of total cost to changes in p, Cd, Ch, fd and fh relative to baseline conditions

were similar for disease transmission models I and II. These preliminary findings support

refinement of the model to incorporate a more realistic population structure and more

representative cost estimates; so as to enable informative exploration of the roles of NPI

in influenza epidemic mitigation.

NPI may significantly impact influenza epidemics. Social distancing, in the form of

school closures, was associated with a 29–37% reduction in influenza A/H1N1 transmis-

sion in Mexico.(27) Epidemiological investigations have been less conclusive with regards

to the impact on hygiene interventions on influenza transmission,(16,30,31) but there is bio-

logical and physical plausibility for the ability of hygiene interventions to reduce infection

risk. Recommended hygiene interventions such as frequent hand washing, surface dis-

infection, the use of respiratory protection, and the use of cough/sneeze etiquette are

intended to reduce the density of virus along potential routes of transmission, thereby

reducing virus exposure and infection risk. Social distancing interventions decrease the
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likelihood of environmental contamination by infectious persons, and likelihood of sus-

ceptible persons contacting infectious persons and contaminated environments. Individ-

uals use NPI as a result of education, and concerns about influenza transmission.(31−33)

In this work we have specifically modeled the use of respirators to reduce the inhalation

of virus in the environment, and like other investigators we have found that respirator (or

mask) use can influence influenza epidemics.(5−7) The approach we have taken, however,

is appropriate to other hygiene interventions. We propose in future work to calculate p

for selected contact scenarios, such as what has been done for a person attending a bed-

ridden infectious patient:(13,18) Different hygiene interventions can be directly incorporated

into the contact scenario model to estimate p ′, the probability of infection given the

intervention. Using the nomenclature herein, we could then estimate fh based on the

relative magnitudes of p and p ′. Similarly, new knowledge or hypotheses about influenza

transmission processes and strain-specific variation in infectivity and disease severity can

be incorporated into calculation of p and p ′. Alternatively, agent-based models of disease

transmission(35,36) may be modified to meet this objective.

Model II extended the duration of infectiousness from 1 day in model I to five days,

including one day of asymptomatic virus shedding to reflect the average duration of

influenza infectiousness; but retains the activity level of infectious persons. This is unre-

alistic in the sense that individuals infected with influenza may be more likely to curtail

social contacts, owing to affects of their illness, than susceptible or recovered individu-

als. Given the results presented herein, we expect that selectively reducing the contact
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rate for infectious persons would decrease the total number of infections, and would in-

crease the effect of social distancing compliance. It is important to observe that total cost

estimated with model II responded to changes in input parameters similarly to model

I, suggesting that insights into epidemic mitigation may be obtained through relatively

simple representations of the natural history of influenza.

Given the intent of illustrating a methodological approach, many important determi-

nants of epidemic dynamics and costs have been excluded from the results presented

herein. This is a stylized model that captures the essential trade-offs between NPI in a

health- and cost-conscious environment. Our goal is to provide a tractable computational

method that can be adapted to the needs of a specific decision-making framework. Com-

plexity and realism must be balanced with interpretability and objectives. The complex

influenza transmission model applied by Kernéis et al.,(5) for example, identified an im-

portant phenomenon — that the influence of interventions on epidemic features may vary

between pandemic types, but the results do not identify the magnitude of impact from

NPI, nor identify conditions under which NPI, alone or in combination, are effective for

the mitigation of influenza epidemics.

With regard to the disease transmission model, for example, the population was de-

fined with two strata — a high- and a low-activity group — but the modeling framework

can be extended to more heterogeneous populations with age- and/or location-specific

contact patterns. In addition, we assumed that the probability of infection, intervention

effectiveness and compliance are constant over the duration of the epidemic, and uniform.
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In fact, all of these factors vary, and are influenced by the size of the epidemic, disease

severity, and personal lifestyle and beliefs.(34) Variability in these model parameters can

be addressed by allowing them to vary across population strata, within population strata,

and to change over time. Such variability requires the development of probability den-

sity functions for each parameter, or conditioning on epidemic features. For example,

variability in p and ph can be determined by using a mathematical model to estimate the

probability of influenza transmission from person to person for selected, representative

contact scenarios.(13,18) In contrast, observational data is available about contract rates and

community population networks.(20,37,38)

With regard to the optimization model, only direct costs related to health outcomes

and lost work productivity were included to the development of a cost function that is

linear with intervention compliance. The optimization function, however, can be readily

extended to include additional direct costs and indirect costs, such as costs resulting from:

health policy implementation, social disruption, loss of quality of life, and/or lost life.

Alternative expressions for the optimization function can also be defined that consider,

for example, the likely event that intervention costs increase non-linearly with compliance

due to the high programmatic costs associated with achieving high levels of compliance.

We approximated this by a cost function that was exponential in compliance with the

social distancing intervention, and showed that this changes the optimum combination

of interventions.

The model presented herein has not directly considered the cost of severity. Severity
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of disease can be incorporated by increasing the costs associated with infection. Severity

of the epidemic can be incorporated by increasing the cost of infection as the total number

of infection increases.
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Variable Value Description
Disease Transmission Model
D 90 day Duration of epidemic simulation
nH 30,000 Total population in high-activity group
nL 70,000 Total population in low-activity group, nL = 100, 000 − nH

nI
H(1) 15 Number of infectious persons in high-activity group on day 1,

nI
H(1) = 0.0005× nH

nI
L(1) 35 Number of infectious persons in low-activity group on day 1,

nI
L(1) = 0.0005× nL

nS
H(1) 29,985 Number of susceptible persons in high-activity group on day 1
nS
L(1) 69,965 Number of susceptible persons in low-activity group on day 1
p {0.10, 0.12} Probability of infection upon contact between infectious

and susceptible persons, model I
p {0.028, 0.034} Probability of infection upon contact between infectious

and susceptible persons, model II
λH 26.4 day−1 Contact rate for persons in high-activity group
λL 8.07 day−1 Contact rate for persons in low-activity group
Cd (0,1] Compliance rate for social distancing intervention
Ch (0,1] Compliance rate for hygiene intervention
fd 0.5 Effectiveness of social distancing invention, proportional

reduction in λH
fh 0.5 Effectiveness of hygiene intervention, proportional reduction in p
Optimization Model: Linear Costs
cd $48.6×106 Social distancing intervention cost per unit change compliance
ch $27×106 Hygiene intervention cost per unit change in compliance
cI $2,400 Average cost of an infection

Table 1: Disease transmission and optimization model baseline parameters defined.
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Minimized Minimzied Total Costs
Total Infections Linear Cost Exponential Cost

Input Parameters Cd Ch NI Cd Ch $ ×107 Cd Ch $ ×107

Disease Transmission Model I
Baseline, p = 0.10 1.0 1.0 100 0 1.0 2.8 0.26 0.84 2.8
Baseline, p = 0.12 1.0 1.0 127 0.26 1.0 2.3 0.30 1.0 3.3
fd = fh = 0.3 1.0 1.0 67 0 0.71 2.1 0.28 0.53 2.0
fd = fh = 0.7 1.0 1.0 605 0.79 1.0 7.7 0.59 1.0 7.1
fd = 0.3, fh = 0.7 1.0 1.0 115 0.77 0 4.0 0.51 0.68 3.5
fd = 0.7, fh = 0.3 1.0 1.0 79 0 0.71 2.1 0.04 0.70 2.2
λH = 35.0 day−1 1.0 1.0 127 0.44 1.0 5.1 0.44 1.0 3.9
λL = 4.0 day−1 1.0 1.0 83 0.07 1.0 3.3 0.28 0.88 3.0
nH = 20, 000 1.0 1.0 95 0 0.82 2.4 0.36 0.58 2.2
nH = 50, 000 1.0 1.0 113 0.23 1.0 4.1 0.25 1.0 3.5

Disease Transmission Model II
Baseline, p = 0.028 1.0 1.0 99 0.37 1.0 3.7 0.33 1.0 4.9
Baseline, p = 0.034 1.0 1.0 257 0.66 1.0 6.4 0.59 1.0 5.6
fd = fh = 0.3 1.0 1.0 53 0.26 1.0 4.4 0.32 1.0 3.4
fd = fh = 0.7 1.0 1.0 22,700 1.0 1.0 13 0.45 1.0 15
fd = 0.3, fh = 0.7 1.0 1.0 21 1.0 0.89 2.5 0.19 0.80 2.6
fd = 0.7, fh = 0.3 1.0 1.0 45 0 0.90 2.5 1.0 0.89 2.6
λH = 35.0 day−1 1.0 1.0 275 0.76 1.0 6.8 0.66 1.0 6.8
λL = 4.0 day−1 1.0 1.0 58 0.41 1.0 5.2 0.43 1.0 3.9
nH = 20, 000 1.0 1.0 80 0.05 1.0 3.6 0.29 0.95 3.1
nH = 50, 000 1.0 1.0 151 0.60 1.0 6.1 0.51 1.0 6.0

Table 3: Social distancing intervention decimal fraction compliance, Cd, and hygiene
intervention decimal fraction compliance,Ch, that minimize the total number of infections
and total costs when social distancing intervention costs increase linearly or exponentially
with compliance. Unless otherwise specified, all implementations of model I use p = 0.10
and all implementations of model II use p = 0.028. Input parameters reflect changes
relative to baseline parameters (Table 1).
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(a) Model I, p = 0.10
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(b) Model II, p = 0.028

Figure 1: Total number of infections as a function of compliance for the lower probability
of infection values in disease transmission models I and II.
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(a) Model I, p = 0.10
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(b) Model II, p = 0.028

Figure 2: Total number of infections as a function of compliance given 30% probability
of infection for respirator use (fh = 0.3) and 30% contact rate in the high-activity group
(fd = 0.3) for disease transmission models I and II.
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(a) Model I
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(b) Model II

Figure 3: Total number of infections as a function of compliance given 70% probability
of infection for respirator use (fh = 0.7) and 30% contact rate in the high-activity group
(fd = 0.3) for disease transmission models I (p = 0.10) and II (p = 0.028).
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(a) Linear Cost
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(b) Exponential Cost

Figure 4: Total costs as a function of compliance given linear costs as a function of in-
tervention compliance for both interventions, compared to exponential costs for social
distancing intervention compliance in disease transmission model I with baseline condi-
tions and p = 0.10.
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(a) Linear Cost
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(b) Exponential Cost

Figure 5: Total costs as a function of compliance given linear costs as a function of interven-
tion compliance for both interventions, compared to exponential costs for social distancing
intervention compliance in disease transmission model II with baseline conditions and
p = 0.028.
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(a) Model I
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(b) Model II

Figure 6: Total costs as a function of compliance given exponential costs of social distancing
intervention compliance in disease transmission models I (p = 0.10) and II (p = 0.028)
with decreased effectiveness of social distancing, fd = 0.3, and increased effectiveness of
the hygiene intervention, fh = 0.7.
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Figure Captions

Figure 1. Total number of infections as a function of compliance for the lower probability

of infection values in disease transmission models I and II.

Figure 2. Total number of infections as a function of compliance given 30% probability

of infection for respirator use (fh = 0.3) and 30% contact rate in the high-activity group

(fd = 0.3) for disease transmission models I and II.

Figure 3. Total number of infections as a function of compliance given 70% probability

of infection for respirator use (fh = 0.7) and 30% contact rate in the high-activity group

(fd = 0.3) for disease transmission models I (p = 0.10) and II (p = 0.028).

Figure 4. Total costs as a function of compliance given linear costs as a function of in-

tervention compliance for both interventions, compared to exponential costs for social

distancing intervention compliance in disease transmission model I with baseline condi-

tions and p = 0.10.

Figure 5. Total costs as a function of compliance given linear costs as a function of in-

tervention compliance for both interventions, compared to exponential costs for social

distancing intervention compliance in disease transmission model II with baseline condi-

tions and p = 0.028.
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Figure 6. Total costs as a function of compliance given exponential costs of social distanc-

ing intervention compliance in disease transmission models I (p = 0.10) and II (p = 0.028)

with decreased effectiveness of social distancing, fd = 0.3, and increased effectiveness of

the hygiene intervention, fh = 0.7.
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