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Abstract

Syllogistic reasoning is one of the oldest domains of reasoning
research and has made great advances in understanding and
modeling human reasoning processes. However, the field was
mostly focused on a traditional set of quantifiers originating in
first-order logic, thereby neglecting the large variety of quan-
tifiers humans use when engaging in reasoning in their every-
day life. The present work makes three main contributions: (I)
we conducted a study yielding a dataset covering all traditional
syllogisms and tasks containing generalized quantifiers “most”
and “most not”, providing a starting point for existing theories
and models to transition to generalized quantifiers. (II) based
on the dataset, we analyze the impact that the additional quan-
tifiers have on the reasoning behavior. (III) We investigated the
reasoning behavior with respect to the difference between tra-
ditional and generalized quantifiers, gaining insights into some
of the peculiarities of the domain of generalized syllogisms.
Keywords: syllogistic reasoning; generalized quantifiers

Introduction
The first investigations of syllogistic reasoning by Störring
(1908) took place a century ago, which makes syllogistic
reasoning one of the oldest domains of reasoning research.
A syllogism consists of two quantified statements (called
premises) connecting three terms A, B and C via the mid-
dle term B and pose the task to derive a conclusion about the
relation between the end-terms A and C. In traditional syl-
logisms, the quantifiers used in the premises are one of the
four quantifiers underlying first-order logic: all (A), some (I),
some not (O), or none (E).

The respective letters in parentheses are classical abbrevi-
ations commonly used in the field (e.g., Pfeifer, 2006), which
will also be used throughout this article. Furthermore, the
terms in a syllogism can be arranged in four different ways,
which are referred to as figures. In this article, we use the def-
inition of figures used by Khemlani & Johnson-Laird (2012),
which is shown in the following table:

Figure 1 Figure 2 Figure 3 Figure 4

Premise 1 A-B B-A A-B B-A
Premise 2 B-C C-B C-B B-C

The abbreviations of the quantifiers together with the Fig-
ure allow to abbreviate the type of syllogism. As an example,
consider the following two assertions, which form the syllo-
gism II1:

(1) Some cognitive theories are predictive.
(2) Some predictive theories are field-changing.

What, if anything, follows from these two premises?

Most people do infer from this syllogism that some cogni-
tive theories are field-changing (Khemlani & Johnson-Laird,
2012). While this fits our background knowledge and the
findings in experiments, it is not logically valid, which means
that counter-examples can be found that contradict the con-
clusion. However, logic is a normative framework, but does
not necessarily describe the way how humans reason about
these tasks. Explaining the processes leading to this devia-
tion from logic lies at the core of most theories of syllogistic
reasoning. A variety of theories for syllogistic reason exists,
which can predict the overall response of the participants on
aggregated data by up to 85% (Khemlani & Johnson-Laird,
2012), which means that existing theories can —at least to
some extent —explain reasoning for the syllogistic problems.

In total, the domain of syllogistic reasoning consists of a set
of 64 tasks, which can be formed by combining four quanti-
fiers in two premises with four possible arrangements. The
fact that the domain is finite and is small enough to make col-
lecting complete datasets covering all tasks feasible makes it
not only a good fit for model development, but also detailed
evaluations (e.g., Riesterer et al., 2020a) and in-depth analy-
ses of patterns in the data (Brand, Riesterer, Dames, & Ragni,
2020).

However, most work focused on the traditional Aristotelian
syllogisms which only consider four quantifiers, while hu-
mans consider a variety of additional quantifiers in their ev-
eryday reasoning (e.g., Barwise & Cooper, 1981; Geurts,
2003). This leads to a core question of this work: Are the
findings still valid when dealing with an extended set of gen-
eralized quantifiers, i.e., the quantifiers such as most? From
this question, two important points arise:

First, most experimental findings on the basis of the tra-
ditional syllogism considered a limited set of quantifiers not
only for the premises (All, Some, Some not, None), but also
for the possible conclusions that the participants could rea-
son about. To this end, it is not clear if participants would
have shown a different reasoning behavior if additional op-
tions were available. Even for the 64 traditional syllogisms,
the findings could be heavily influenced by the selection of
quantifiers.
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Second, the processes of human reasoning might also
change depending on the type of the quantifiers (e.g., when
leaving traditional quantifiers), which would decrease the sig-
nificance of theories and models explaining reasoning for
first-order logic tasks as accounts of general human reason-
ing.

The present work aims at tackling both points by conduct-
ing a study that extends the traditional syllogism by the gen-
eralized quantifiers most (abbreviated by T) and most not (D).
This allows us to obtain a complete dataset, that consists of
the full set of syllogisms that are possible with the new quan-
tifiers, including the 64 traditional syllogism. This allows us
to investigate the differences between the traditional and gen-
eralized quantifiers, assessing the question if the domains of
the traditional and generalized quantifiers can be considered
to be independent. The resulting dataset can also serve as a
starting point for evaluating or extending models and theories
on an extended set of quantifiers. Furthermore, we will tackle
the question, if the reasoning processes for both domains are
different and provide a first overview of the effects occurring
when transitioning from first-order logic to generalized quan-
tifiers.

In the following, we will first introduce relevant work cov-
ering the traditional syllogisms as well as generalized quanti-
fiers. Second, our study and the resulting dataset is presented.
Third, we describe our analyses and results. Finally, we will
discuss our findings and implications for the field of syllogis-
tic reasoning research.

Related work
Over the years, models and theories for syllogistic reasoning
cover the wide range from heuristic, probabilistic, logical and
model-based approaches (Khemlani & Johnson-Laird, 2012).
While the number of theories is still increasing (Tessler et
al., 2022; Brand, Riesterer, & Ragni, 2020), the recent years
showed a shift of focus towards model evaluation and bench-
marking (Riesterer et al., 2018, 2020b), allowing to compare
models on fair grounds. However, evaluations fall and rise
with the quality of the underlying data. While comprehensive
datasets for traditional syllogisms are available, datasets that
include generalized quantifiers are rare, hindering the transi-
tion of modeling and model evaluations to generalized quan-
tifiers.

Pfeifer (2006), Evans (2002), and others have criticized the
limitations of traditional quantifiers with respect to everyday
communication and reasoning. The universal quantifiers, i.e.,
None (E) and All (A) are too strict as they do not allow for
any exceptions. In contrast, Some (I) and Some . . . not (O) are
considered too weak, as they are already satisfied by a single
element in the set (Pfeifer, 2006). In contrast, everyday hu-
man reasoning is “based [. . . ] on beliefs, in which there are
varying degrees of confidence” (Evans, 2002, p. 980). Given
its relevance there have been only few experimental investiga-
tions of generalized quantifiers such as most or few (Oaksford
& Chater, 2001; Chater & Oaksford, 1999; Pfeifer, 2006) and

few extensions and evaluations of cognitive theories (Ragni
et al., 2014). While we refer for the traditional syllogisms
to the article by Khemlani & Johnson-Laird (2012), we will
briefly introduce the generalized quantifiers most, which has
been investigated in about all papers for generalized quanti-
fiers (Geurts, 2003).

How is the quantifier most interpreted formally? A logical
interpretation of the quantifier Most(A,B) for finite sets A and
B is true, if the elements that are in both A and B at the same
time is greater than the number of elements that are only in
A, but not in B. Formally, it holds |A∩B|> |A−B|, with | · |
being the size or the number of their elements (Westerståhl,
1989; Novák, 2008), but see for other interpretations (e.g.,
Hackl, 2009). It is important to notice that the quantification
over the size of sets is formally not possible in first order logic
(and requires at least a fragment of second order logic).

How is the quantifier most interpreted by humans? A corol-
lary from the above that “Most S are P is to say that there are
more S that are P than S that are not P” has been used in exper-
imental investigations (Pfeifer, 2006). Thompson (1982) ar-
gues that “Few S are not P” makes a strong enough claim that
it would be invalid to infer it from the weaker claim “Most S
are P”. The definition used by Chater & Oaksford (1999) sug-
gests that the meaning should be given in terms of constraints
on the conditional probability, leading to “Most S are P” be-
ing interpreted as the probability of P given S being high (but
less than 1, essentially excluding all as a possible meaning).
This is also in line with the Gricean implicature that states
that we are as informative as required but not more informa-
tive (Geurts, 2010, p.11), therefore excluding all from most
in language. Furthermore, according to Chater & Oaksford
(1999), few and most are used as inverse relations. However,
Ragni et al. (2017) demonstrated that few might not be per-
ceived that way by humans. Finally, Newstead et al. (1987)
investigated the interpretation of quantifiers in rating scales,
finding a dependency of the interpretation on the set size.
This could also be problematic for syllogistic tasks, as the set
sizes are usually not defined, potentially leading to variance
due to different assumptions about the set sizes.

Study
For the 64 first-order logics based syllogisms (referred to as
traditional syllogisms in this article), datasets containing the
response behavior for all syllogisms and all possible conclu-
sions exist (e.g., Dames et al., 2020). These datasets allow for
a rich analysis of the response patterns (e.g., Brand, Riesterer,
Dames, & Ragni, 2020), that would not be possible without a
complete dataset. In this work, we aim at extending the tradi-
tional domain to generalized quantifiers in a way that allows
existing models and theories for the traditional syllogisms a
smooth transition. Therefore, it is important to also provide
a comprehensive and complete dataset that also contains the
traditional syllogism. The inclusion allows us to investigate
the impact that additional options for conclusions have on the
reasoning process and it provides a starting point for extend-
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ing existing syllogistic theories and models.

Experimental setup and dataset
However, while the traditional syllogisms consist of a well-
defined, finite set of 64 tasks, syllogisms containing general-
ized quantifiers will always be an arbitrary selection of tasks
and/or quantifiers. Even when restricting the quantifiers to
commonly used ones (e.g., most, few, many), the number of
possible tasks grows exponentially with each additional quan-
tifier. In order to obtain a complete dataset that is comparable
to the datasets available, we only considered the generalized
quantifier most and the negated form, most not. By choos-
ing most not over few, we aimed at avoiding additional issues
with the exact interpretation, as it is still debated if they offer a
comparable meaning. Additionally, it brings the advantage of
being more consistent to the handling for some and some not.
As mentioned above, the traditional quantifiers from the 64
syllogisms featuring the first-order logic quantifiers to gener-
alized quantifiers were also included, leading to a total of 6
quantifiers and 144 syllogisms (64 of which were traditional
syllogisms).

With the inclusion of generalized quantifiers we leave the
traditional frame of first-order logic and additional effects
might come into play. For example, quantifiers have been
shown to slightly vary in their interpretation based on the set
sizes (Newstead et al., 1987). Since the set sizes are not de-
fined in syllogistic reasoning, the interpretation of quantifiers
that do not have a classical logical interpretation might in-
troduce an uncontrollable source of variance, as participants
could base their reasoning on an arbitrary set size. This brings
up another reason for choosing most: Its interpretation refers
to the majority of a set (e.g., more than half) and is therefore
presumably more invariant to assumptions about the set size.
Additionally, it allows to determine the logical correctness
and the possibility to reason about it while still being distinct
to some and all (e.g., syllogisms like TT4 are valid, while II4
is not and others like TT1 are invalid, while AA1 is valid).
Other common options like many on the other hand are am-
biguous as they can be understood as many of, resulting in a
similar meaning to most, but can also refer to the total number
of elements (Thompson, 1982).

We acquired data from 31 participants (female: 16, mean
age: 36.8, SD age: 14.0) using the platform Prolific1. Each
participant responded to all 144 syllogisms over 3 sessions,
resulting in a total of 4464 data points. Participants were pre-
sented with one syllogism at a time and were asked to select
the conclusion from the set of all 13 possible conclusions (6
quantifiers with 2 possible ways to order the end terms, yield-
ing 12 possible conclusions, as well as the possibility that
there is no valid conclusions (NVC)). The order in which the
syllogisms were shown was randomized. All syllogism con-
tained professions as subjects in order to avoid biases. The
professions differed in each syllogism and were randomized
for every participant. To reserve participants’ attention, the

1https://www.prolific.co/
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Figure 1: Comparison of the patterns on the traditional 64
syllogisms between the general quantifiers dataset (left) and
the Ragni-2016 dataset, which did only contain the traditional
syllogisms and response options (right).

experiment was split into three separate sessions, which they
could complete at any time. They took about 45 minutes on
average to complete each session. In addition to their re-
sponse to the syllogisms, we obtained demographic, reaction
time, and situational data from participants (e.g., what strat-
egy they had used to respond, how attentive they had been
during the experiment, to what extent they had guessed their
responses). Additionally, they were asked about their inter-
pretation of the quantifier most, i.e., if it also includes all.

Analysis
Using participants’ responses to the full set of syllogisms
based on our six quantifiers, we firstly investigated if tra-
ditional syllogisms can be examined as an independent do-
main from generalized syllogisms. To this end, we assessed
how participants’ response patterns were affected by the in-
troduction of generalized quantifiers. The dataset and anylsis
is available on GitHub2. Secondly, we explored the effects
of adding generalized quantifiers by analyzing their order of

2https://github.com/Shadownox/cogsci-2022-genquant
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informativeness and by comparing the difficulty of the syllo-
gisms. We will describe each of these analyses in turn.

Are traditional syllogisms an independent domain?
The additional response options given by generalized quan-
tifiers could affect the responses to traditional syllogisms.
To investigate this, we compared the response patterns of
our dataset to the response patterns found in the Ragni-2016
dataset that can be obtained from the Cognitive Computa-
tion for Behavioral Reasoning Analysis (CCOBRA) Frame-
work3. The dataset contains the responses of 139 partici-
pants to all 64 traditional syllogisms (with correspondingly
fewer response options). Figure 1 shows the average re-
sponse patterns for the traditional syllogisms in the present
dataset compared to the Ragni-2016 dataset. As the Ragni-
2016 dataset only had the 9 traditional response options avail-
able, the columns for the generalized quantifiers are empty
by definition. Generally, the difference between both datasets
is low, with both datasets clearly showing the same general
patterns. In order to quantify the difference, we calculated
the root mean squared error (RMSE) between the response
distributions for each syllogism. The mean RMSE across all
tasks was 0.04, indicating that the results on both datasets can
be considered to be comparable. It becomes apparent that
the additional response options do not seem to have an im-
pact on the general response behavior. While there are some
responses using the additional quantifiers, they are not sub-
stantial and could be attributed to guessing behavior. In the
following analysis, we aim at providing detailed insights at
the interactions between quantifiers in the premises and re-
sponses, which also allows to put these responses into per-
spective.

Next, we examined how the quantifiers in the premises
and in the responses interact when generalized quantifiers are
added. Figure 2 depicts a crude view of participants’ answer-
ing patterns for each group of syllogisms (i.e., ignoring fig-
ures and the order of premises). We further divided syllo-
gisms and responses into universal, existential, or general-
ized, depending on the quantifiers. As is evident, participants
mostly responded with the same type of quantifier that was
already present in the premises (83.6% of responses). This
is specifically true for syllogisms containing only universal
quantifiers (86.7%), existential quantifiers (91.7%), or a mix-
ture thereof (91.7%). This corroborates the notion that adding
generalized quantifiers does not influence the answers given
to traditional syllogisms. Only when generalized quantifiers
were involved, participant noticeably swayed from this pat-
tern, mostly by responding with existential quantifiers even
if these were not present (29.6% for a mixture of universal
and generalized; 37.6% for generalized only). In sum, these
two findings indicate that the traditional syllogisms, albeit be-
ing a subset of the syllogism with generalized quantifiers, can
be investigated independently. This is especially important,
as most findings in the field of syllogistic reasoning research

3https://github.com/CognitiveComputationLab/ccobra
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Figure 2: Participants’ responses for all syllogisms collapsed
across figures and orders of premises. A darker color indi-
cates a higher number of responses. Syllogism groups are
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(universal: U, existential: E, generalized: G) are shown on
the right and top for premises and responses, respectively.

were based on the traditional syllogisms only and would have
been severely affected if additional quantifiers had altered the
results significantly.

Effects on correctness
Although traditional syllogisms seem to be largely indepen-
dent from the syllogisms with generalized quantifiers, the
processes when solving tasks from both domains can still be
similar. In the following, we aim at providing additional in-
sight into the reasoning behavior for both domains, by fo-
cusing on the correctness of the given responses. For the as-
sessment of the correctness in the analyses in this work, we
settled with the interpretation that most A are B refers to the
majority, i.e., more than half, of the elements in A are B. Fur-
thermore, it does include the case that all elements of A are B.
Table 1 shows the correct conclusions for all valid syllogisms
that differ to the traditional syllogism (for invalids, the correct
answer is NVC; for the remaining syllogisms see Khemlani
& Johnson-Laird, 2012).

Figure 3 shows the mean correctness for the different tasks
broken down by the type of the quantifiers in the premises.
It becomes apparent that the performance substantially drops
for syllogisms that include a generalized quantifier. In the
following, we assess three possible explanations for this.

First, reasoning with the quantifier most might be less com-
mon, while traditional syllogisms and first-order logic are
more common. This could imply that participants were more
familiar with the traditional tasks. However, participants were
asked if they participated in similar experiments, which only
1 out of the 31 participants answered affirmatively.

Second, the results might be an artefact of the tasks. Invalid
syllogisms, which only have a single solution (namely that
there is no valid conclusion possible), are often considered to
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Table 1: Valid syllogisms and the respective conclusions. The direction of the conclusion is indicated by ac and ca. Only
syllogisms that are not part of the traditional set have differing conclusions are included.

Task Conclusions

AA1 Aac, Iac, Ica, Tac
AA2 Aca, Iac, Ica, Tca
AE1 Eac, Eca, Oac, Oca, Dac, Dca
AE3 Eac, Eca, Oac, Oca, Dac, Dca
AT2 Iac, Ica, Tca
AT4 Iac, Ica
AD3 Oca, Dca
AD4 Oac

Task Conclusions

EA2 Eac, Eca, Oac, Oca, Dac, Dca
EA3 Eac, Eca, Oac, Oca, Dac, Dca
ET1 Oca
ET2 Oca, Dca
ET3 Oca, Dca
ET4 Oca
TA1 Iac, Ica, Tac
TA4 Iac, Ica

Task Conclusions

TE1 Oac, Dac
TE2 Oac
TE3 Oac, Dac
TE4 Oac
TT4 Iac, Ica
TD4 Oac
DA3 Oac, Dac
DA4 Oca
DT4 Oca
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Figure 3: Mean correctness of participants’ responses for
different syllogisms broken down by quantifier types of the
premises (Universal, Existential, Generalized).

be more difficult due to a variety of reasons ranging from the
necessity to perform a exhaustive search for counterexamples
to general biases against the response option (e.g., Ragni et
al., 2019; Brand, Riesterer, & Ragni, 2020). However, the ad-
dition of the quantifiers most and most not introduced a total
of 80 new tasks, out of which 61 are invalid (while there are
37 invalid syllogisms for the 64 traditional syllogisms). Given
the potentially more challenging nature of invalid tasks, this
could explain the difference. To investigate this, we divided
the tasks into quartiles based on the mean performance for
the respective task and assessed the proportion of general-
ized quantifiers and valid tasks in the quartiles (see Figure 4).
While the easiest tasks (4th quartile) indeed seem to confirm
the assumption that the correctness largely depends on the
validity, the remaining groups do not. Instead, mostly the re-
lation between the proportion of generalized quantifiers and
the correctness becomes apparent, while the validity seems to
be of secondary importance.

Third, participants might use a different interpretation for
most, which in turn leads to a systematic misjudgement of
their performance. When asked if the meaning of most also
includes all, 27 participants responded that it does not, while
only 2 participants agree that most can also include all (2
participants responded that they do not know). This can
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Figure 4: Proportion of correctly solved tasks, occurrence
of generalized quantifiers and valid syllogisms for different
quartiles based on the correctness.

explain why certain tasks containing generalized quantifiers
have very low correctness values (e.g., AD2, which was not
solved correctly by any participant). These tasks seem to be
valid, as the counterexamples for the conclusions require to
consider a universal meaning of the quantifier. To assess this
explanation, we also considered the correct conclusions under
the assumption of the alternative interpretation. To achieve
this, we replaced the quantifier, essentially mapping the task
to another task. For example, for the task AT2 with the quanti-
fier most, the alternative interpretation implies that some ele-
ments are excluded, which means that we also considered the
result for the quantifier some not, respectively the task AO2.
The same principle holds for existential quantifiers, where
some could also imply some not. Note that this means that
we could also continue the replacement from most over some
not to some, but as it is already implied by most, it wouldn’t
yield any additional possible conclusions. Additionally, it is
important to note that in the case of generalized quantifiers
and existential quantifiers occurring together, the replacement
is not necessary, as the task is already invalid and there is no
possibility leading to a valid task. Figure 5 shows the propor-
tion of correctly and incorrectly solved tasks, as well as tasks
that were solved correctly by relying on the misinterpreted
quantifiers, as determined by the described procedure. It be-
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out considering the misinterpreted meaning of quantifiers,
and incorrectly solved tasks broken down by the occurrence
of generalized and existential quantifiers. Note that existen-
tial only considers the traditional syllogism.

comes apparent, that in most cases, errors were not caused
by the alternative interpretation of the quantifiers. While this
does not mean that misinterpretations did not play a role in
the reasoning processes, they can be ruled out as the primary
cause of errors.

The difference in correctness can be interpreted in two
ways: On the one hand, the tasks might simply be more de-
manding, increasing the likelihood of mistakes. On the other
hand, they might be processed differently. In order to shed
some light on these options, we investigated the differences
between the performance on tasks with generalized and tradi-
tional quantifiers on an individual level: If generalized quan-
tifiers are processed differently, participants that solved them
correctly won’t necessarily solve the traditional syllogisms
and vice versa. Figure 6 shows the mean correctness for
each participant on traditional syllogisms plotted against the
correctness on syllogisms featuring the generalized quanti-
fiers. The correctness for both types of syllogisms seems to
be tightly coupled, which also shows in a high correlation be-
tween both (Spearman r = 0.91, p < 0.001). This indicates
that the ability to solve the traditional tasks seems to extend
to the generalized quantifiers and therefore supports the as-
sumption that the same processes are used for both domains.

Discussion
With this work, we aimed at providing a starting point for ad-
vancing the understanding of syllogistic reasoning to the do-
main of generalized quantifiers. To our knowledge, no com-
prehensive and complete dataset exists that contains general-
ized quantifiers as well as all traditional syllogisms. While
some theories exist that are already capable of dealing with
those (e.g., PHM Chater & Oaksford, 1999; Oaksford &
Chater, 2001) the lack of data prevented a rigorous evalua-
tion of the theories and hindered in-depth analyses of the do-
main. We conducted a study which extended the traditional
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Figure 6: Participants’ correctness on traditional quantifiers
against generalized quantifiers. Each point represents an in-
dividual participant.

syllogisms by the quantifiers most and most not, obtaining a
first complete dataset that allows to assess the transition be-
tween the traditional and generalized quantifiers. Our analy-
sis showed that the addition of conclusions with generalized
quantifiers did not have an impact on the reasoning behavior
for the 64 traditional tasks. This finding is important for two
reasons: First, if the reasoning behavior had been affected, it
would have been necessary to reconsider findings based on
the traditional tasks alone, as they could have been an arte-
fact of the task design. Second, the independent nature both
domains allows future studies to exclude the traditional syl-
logisms when investigating generalized quantifiers, which is
greatly beneficial in a domain that has already a large number
of tasks (which quickly becomes experimentally unfeasible
due to the exponential growth when adding new quantifiers).

Furthermore, we investigated general properties of the two
domains, especially with respect to the reasoning perfor-
mance. We found that generalized tasks seemed to be sub-
stantially more challenging. Our analyses could rule out that
the lower performance was due to misinterpretations or the
high proportion of invalid syllogism in the generalized tasks.
This leads to the question, if different processes are used
when solving generalized tasks, or if the tasks are just more
difficult due to their innate properties. Although we found
that the ability to correctly solve the tasks is highly corre-
lated between the traditional and the generalized tasks, it is
ultimately a question that needs to be targeted by cognitive
models and theories. We hope that our work can serve as a
basis for further research extending the domain of syllogistic
reasoning to a wider range of quantifiers that better reflect ev-
eryday reasoning and provide an insight into different facets
of logical reasoning.
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