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Abstract

Purpose: Magnetic resonance elastography (MRE) is a technique to characterize brain 

mechanical properties in vivo. Due to the need to capture tissue deformation in multiple directions 

over time, MRE is an inherently long acquisition, which limits achievable resolution and use in 

challenging populations. The purpose of this work is to develop a method for accelerating MRE 

acquisition by using low-rank image reconstruction to exploit inherent spatiotemporal correlations 

in MRE data.

Methods: The proposed MRE sampling and reconstruction method, OSCILLATE, involves 

alternating which k-space points are sampled between each repetition by a reduction factor, ROSC. 

Using a predetermined temporal basis from a low-resolution navigator in a joint low-rank image 

reconstruction, all images can be accurately reconstructed from a reduced amount of k-space data.

Results: Decomposition of MRE displacement data demonstrated that, on average, 96.1% of 

all energy from an MRE dataset is captured at rank L = 12 (reduced from a full rank of 24). 

Retrospectively undersampling data with ROSC = 2 and reconstructing at low-rank (L = 12) yields 

highly accurate stiffness maps with voxel-wise error of 5.8% ± 0.7%. Prospectively undersampled 

data at ROSC = 2 were successfully reconstructed without loss of material property map fidelity, 

with average global stiffness error of 1.0% ± 0.7% compared to fully-sampled data.

Conclusions: OSCILLATE produces whole-brain MRE data at 2 mm isotropic resolution in 1 

minute 48 sec.
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INTRODUCTION

Microstructural integrity of neural tissue can be assessed through its mechanical properties 

using magnetic resonance elastography (MRE)1. MRE has had growing interest as 

a neuroimaging technique for its ability to sensitively analyze brain development2,3, 

degeneration4–6, and cognitive function7,8. MRE measures properties such as viscoelasticity, 

poroelasticity, and material anisotropy in vivo through phase contrast-based MRI. To 

accurately capture full vector tissue deformation in time, it is necessary to collect repeated 

acquisitions with different motion encodings, making MRE a fundamentally long scan. 

This requirement for repeated measurements has imposed limits on several aspects of 

MRE research, such as use on populations who have trouble laying still for extended 

periods of time including children9. Further, the long acquisition times limit achievable 

spatial resolution necessary to study small anatomical areas, such as the subfields of the 

hippocampus10 and thin sections of the cerebral cortex11. And recent techniques involving 

multiple MRE datasets, such as multiple actuations to study brain anisotropic properties12–15 

or multiple frequencies to study brain frequency-dependent material properties16,17, are 

limited in number of scans possible or useable spatial resolution in order to keep exams at 

reasonable length.

Previous research aimed at improving MRE sequence speeds have sought to reduce the 

time it takes to sample one image, including through parallel imaging18, compressed 

sensing19, use of 3D non-Cartesian k-space sampling20–22, and acquisition at higher field 

strength23. Other techniques have focused on acceleration through manipulating how the 

MRE displacements are sampled, including the use of simultaneously applied motion 

encoding gradients (MEGs)24–27 or use of multiple interleaved encoding directions, such 

as in eXpresso-MRE28 and ristretto-MRE29. While these approaches are well-developed 

and can be applied to many MRE problems, they often require lower maximum gradient 

strengths that result in reduced signal-to-noise ratio (SNR). Further advancements in 

acquisition speeds would allow high-resolution MRE to be more readily adopted for clinical 

use.

Here we propose to accelerate MRE acquisitions by exploiting spatiotemporal redundancy 

in the data through sparse sampling and low-rank joint image reconstruction. Low-rank 

methods work by estimating a low-dimensional temporal subspace from auxiliary data 

and enforcing this subspace during image reconstruction30,31. Ideally, these subspaces 

are able to accurately describe the entire image signal if the data is highly correlated32. 

Model based low-rank image reconstructions for time series data have been successfully 

applied in many applications for data which is fundamentally spatiotemporally redundant. 

In MRI, time series low-rank models have been used for accelerating acquisitions including 

spectroscopic imaging33, T2 mapping34, diffusion35, fMRI36–38, and cardiac imaging39–41. 

An MRE dataset comprises multiple highly spatiotemporally correlated time-resolved phase 

encodings of harmonic motion in different directions. Thus, we propose that MRE data can 

be modeled and reconstructed at a reduced rank by leveraging these inherent spatiotemporal 

correlations.
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In this work we introduce OSCILLATE (Observing Spatiotemporal Correlations for Imaging 

with Low-rank Leveraged Acceleration in Turbo Elastography)42, a method of accelerating 

MRE acquisition with negligible loss in data fidelity via sparse sampling and low-rank 

image reconstruction. The proposed method allows for acceleration of multishot MRE 

acquisitions capable of achieving high spatial resolution. Here we describe the theory behind 

low-rank image reconstructions and demonstrate the feasibility of modeling brain MRE 

data at a reduced rank. We demonstrate the accuracy of retrospectively and prospectively 

under sampling MRE data from a spin-echo multiband, multishot spiral MRE sequence and 

reconstructing it with OSCILLATE.

THEORY

MRE Image Theory

MRE measures displacements of viscoelastic tissue induced via harmonic mechanical 

vibration, encoded to the phase of the images through motion encoding gradients (MEGs). 

The different time points are achieved by phase offsets where the onset of mechanical 

vibration relative to the MEGs is varied. The resulting phase of the MRE signal, ϕ(r, n), 

can be generally described as a function of space and time. The spatial distribution of phase 

is given by ϕ0(r) which is modulated in time harmonically with a spatially-varying phase 

relative to the applied vibration of φ(r). Images are sampled with N phase offsets evenly 

spaced over one period of vibration, such that the phase of any sample in time, n, is given 

by:

ϕ r, n =  ϕ0 r   sin 2π n
N +  φ r . (1)

This phase gets mapped on a common complex image, ρ0(r), such that a complete MRE 

dataset is a series of complex images, ρ(r, n):

ρ r, n =  ρ0 r e−iϕ0 r  sin 2π n
N +  φ r . (2)

In addition to N phase offsets, a complete MRE dataset consists of images with both positive 

and negative MEG polarity, which are subtracted during post-processing to amplify contrast 

and remove static background phase. Additionally, MEGs are applied separately along the 

phase, read, and slice directions, which allow full vector displacement fields to be recovered. 

Therefore, the entire acquisition consists of a set of repetitions (phase offsets × polarities × 

MEG directions) that are identical in magnitude and with varying phase. Here we propose 

to express this MRE data as a pseudo-time series, τ, consisting of all repetitions, where τ 
indexes the acquired combinations of phase offset × direction × gradient polarity, and the 

final image series which we seek to recover is ρ(r, τ). In k-space we can consider this as 

d k, τ =  ℱr ρ r, τ . An MRE scan consisting of x number of phase offsets and y number of 

encodings (encompassing directions and polarities) would be considered to have a full rank 

of L = x × y.
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Low-Rank Modeling

MRE data can be considered low-rank in the sense that a reduced number of temporal 

basis functions and spatial coefficients can describe the entire dataset43. MRE data is highly 

correlated and can be modeled as an L-th order partially-separable function in image space:

ρ r, τ = ∑ℓ = 1
L ψℓ r φℓ τ , (3)

such that its Casorati matrix, C = ΨΦ, with elements Cij = ρ(ri, τj) has rank L ≤ 24, 

where Ψij = ψj(ri) are spatial coefficient maps and Φij = φi(τj) are temporal basis functions. 

Here the data is reshaped into a Casorati matrix of rows comprising all discretized spatial 

locations versus a ‘time’ dimension comprising all repetitions (i.e. directions, phase offsets, 

and gradient polarities). This relationship can be written in k-space as:

d k, τ = ∑ℓ = 1
L ψℓ k φℓ τ ;    where  ψℓ = ℱ ψℓ r . (4)

To estimate the Φ for a system, a singular value decomposition (SVD) can be performed 

on the Casorati matrix, C(r) = UΣVH, where VH is the set of temporal basis functions and 

Σ is the singular value matrix. Σ and VH are sorted in descending order of significance, 

with the highest order singular values corresponding to the basis function which contributes 

the most energy to the signal, and all subsequent singular values corresponding to the 

relative contributions of the remaining basis functions. Sorted in this order, and with VH 

= Φ, we can truncate the rank of C to L, thereby retaining only the bases contributing the 

most energy to the signal. The remaining energy and bases primarily consists of random 

noise and information with less well-defined spatiotemporal coherence, such as would arise 

from spurious vibrations and physiological motions present in brain MRE data44, and thus 

does not add additional useful information to the MRE displacement image reconstruction. 

Ultimately, by reconstructing information at a low-dimensional temporal subspace, less 

k-space sampling is necessary to recover the entire set of images.

Low-Rank Reconstruction

We can take advantage of the low-rank nature of MRE data in a joint reconstruction 

framework. If we have an estimate of the temporal basis Φ, a matrix of spatial coefficients, 

Ψ, can be iteratively solved for through the objective function:

Ψ = argminΨ d k, τ − E ΨΦ 2
2 + βℛ ΨΦ , (5)

where d(k, τ) is the acquired k-space data, E is the sampling operator, and ℛ is a 

regularization penalty with scaling factor β. The sequence chosen to implement low-rank 

undersampling and reconstruction must consist of multiple readouts per volume and must 

allow for predetermination of the temporal basis, Φ. The encoding operator, E, encompasses 

all sampled k-space locations and their distribution across repetitions, and thus also how data 

is undersampled. The undersampling pattern in k-space is permitted to be distributed across 

temporal points to take advantage of joint reconstruction. A depiction of the OSCILLATE 

reconstruction method can be seen in Figure 1.
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METHODS

OSCILLATE Implementation

3D Multiband, Multishot Spiral MRE Sequence—The proposed OSCILLATE 

acquisition was built from a foundation of a 3D multiband, multishot spiral, spin-echo 

MRE sequence45 (Figure 2). This sequence uses a multiband RF pulse to excite several 

evenly distributed slices that together form a 3D volume, which is encoded in k-space 

with a stack of 2D constant density interleaved spirals46. Using this approach, SENSE 

parallel imaging47 can be applied in-plane by undersampling kxy-shots and thru-plane 

by undersampling kz-planes, for a total reduction factor of RSENSE = Rxy × Rz. This 

sequence uses a low-resolution 3D navigator image (matrix 40 × 40 × 4), sampled once per 

spiral readout, to capture any motion-induced phase error between excitations that can be 

compensated for during image reconstruction48. The navigator is sampled using a spiral-in 

trajectory blipped between kz-planes49. These navigator images have the same phase and 

image contrast as the MRE image data to which they belong, and thus also the same 

temporal basis. Nonlinear motion-induced phase error correction is achieved via the phase 

corrected SENSE algorithm, which applies the conjugate of the navigator phase to each 

associated shot during image reconstruction via the use of a shot specific SENSE map 

incorporating the conjugate of the error measured by the navigator phase50, which reduces 

shot-to-shot variation in phase arising from spurious vibrations and physiological motions44. 

Data is reconstructed accounting for B0 field inhomogeneities via a fieldmap collected 

immediately prior to MRE data collection51,52. Images are reconstructed iteratively using a 

preconditioned conjugate gradient solver implementing non-Cartesian SENSE47 with field 

inhomogeneity correction via time segmentation with one time segment per 2.8 ms of 

readout length, using the non-uniform fast Fourier transform (NUFFT)51. Regularization 

is achieved through a first order quadratic roughness penalty applied only to the in-plane 

direction with no penalization through-plane or across repetitions. Reconstructions are 

performed using PowerGrid53, which leverages graphical processing units (GPUs) to enable 

faster image reconstruction.

OSCILLATE Sampling—The OSCILLATE sampling scheme undersamples multishot 

data in a distributed fashion across repetitions, with reduction factor indicated by ROSC. 

The implemented scheme is built on the multiband sequence designed for 2 mm resolution, 

which includes 4 interleaved constant density spiral kxy-shots46, each shot having a readout 

time of 13.89 ms, in 4 kz-planes from a multiband excitation of 4 slices evenly distributed 

across the imaging volume (of 64 total slices). In this case we are applying ROSC in addition 

to SENSE parallel imaging with Rxy = 2 and Rz = 2 for a total RSENSE = 4. Here we explore 

different OSCILLATE sampling schemes. To achieve ROSC = 2 we can either alternate 

which kxy-shots were sampled between each repetition, resulting in one sampled shot in 

each of the two planes, or we can alternate which kz-plane were sampled for each repetition, 

for two shots in just one plane. These ROSC = 2 undersampling options are in addition to 

the four-fold reduction from paralleling imaging, resulting in an eight-fold under sampling 

from the fully-sampled sequence (RTOTAL = RSENSE × ROSC). We also explore ROSC = 4 by 

simultaneously undersampling both kxy-shots and kz-planes.
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OSCILLATE Reconstruction—The OSCILLATE low-rank image reconstruction uses 

the same algorithm as the multiband MRE images as described above and includes SENSE 

parallel imaging47, B0 field inhomogeneity correction51, and nonlinear motion-induced 

phase error correction50. However, in the OSCILLATE reconstruction, we predetermine 

the temporal basis function Φ from the low-resolution, phase-corrected navigator images, 

which are collected once per readout and are reconstructed prior to the full-resolution image 

reconstruction. A singular value decomposition (SVD) is performed on the reconstructed 

phase-corrected navigator images to determine Φ, which is then used to solve for spatial 

coefficients Ψ during reconstruction according to Eq. 5. The OSCILLATE reconstruction is 

a joint reconstruction in that data from all 24 repetitions are used simultaneously to solve for 

the shared spatial coefficients.

Data Collection

Five healthy adult subjects (2 male / 3 female; age 21–27 years) completed an imaging 

session on a Siemens 3T Prisma MRI scanner (Siemens Medical Solutions; Erlangen, 

Germany) with a 64-channel RF-receive coil. This study was approved by the University 

of Delaware Institutional Review Board and all subjects provided informed written consent. 

The scanning session included a fieldmap scan and two MRE scans, which included a 

typical multiband MRE scan (RSENSE = 4) and a prospectively undersampled OSCILLATE 

scan with additional ROSC = 2 (RTOTAL = 8). Each scan had imaging parameters that 

included: 240 × 240 mm2 FOV; 120 × 120 matrix; 64 slices; TR/TE = 2240/70 ms; 2.0 

× 2.0 × 2.0 mm3 resolution; bilateral, flow-compensated, matched-period motion-encoding 

gradients at 70 mT/m; and 4 evenly-spaced phase offsets. The multiband MRE acquisition 

time was 3 minutes 15 seconds. The OSCILLATE scan had prospectively undersampled 

shots, where an alternating pattern of which kxy shot was acquired for each of the 24 

repetitions for a resulting reduction factor of ROSC = 2; all other scan parameters remained 

the same. The OSCILLATE scan took 1 minute 48 seconds. For both scans, displacements 

from 50 Hz vibrations were delivered to the head via a pneumatic actuator system with 

passive pillow driver (Resoundant, Inc.; Rochester, MN). Each of the MRE scans included 

a separately collected fieldmap scan with parameters including: 240 × 240 mm2 FOV; 120 

× 120 matrix; 64 slices; and TR/TE1/TE2 = 3200/15.0/15.9 ms. The scanning session also 

included a high resolution T1-weighted MPRAGE (magnetization-prepared rapidly-acquired 

gradient echo) scan for anatomical segmentation (0.9 × 0.9 × 0.9 mm3 voxel size; TR/TI/TE 

= 1900/900/2.32 ms).

Experiment 1: Low-Rank Truncation

We examined the effective rank of MRE data by decomposing the reconstructed multiband 

MRE data using SVD. Image data was then truncated to a series of reduced rank matrices 

according to the SVD by retaining only data in ranks 1 through L, with L equal to 24 

(full-rank), 21, 18, 15, 12, and 9. Each truncated image was processed into maps of shear 

stiffness using the nonlinear inversion algorithm (NLI), which converts MRE displacement 

data into estimates of brain tissue viscoelastic properties54,55. NLI returns the complex shear 

modulus of the tissue (G = G’+iG”), which comprises the storage (G’) and loss (G”) moduli, 

and from which the shear stiffness is calculated as μ = 2|G|2/(G’+|G|)1. The normalized 
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root-mean-squared error (NRMSE) was calculated between stiffness maps from each of the 

truncated datasets (μL<24) and the corresponding full rank dataset (μL=24) according to:

NRMSE =
μL = 24 − μL < 24 F

μL = 24 F
. (6)

In this experiment we also aimed to compare efficacy of different arrangements of the 

MRE data in the Casorati matrix prior to decomposition. To examine this question, we 

decomposed MRE data sets according to each of the following conditions: 1) the temporal 

component including all repetitions (in the order of gradient polarities, directions, and phase 

offsets), with the full MRE rank being L = 24; 2) gradient encoding directions included as 

‘space’, such that the temporal dimension only includes polarities and phase offsets, with the 

full MRE rank being L = 8; and 3) treating each direction separately, such that each have 

their own temporal basis function, with the full MRE rank being L = 8. For comparison of 

results between conditions, the cases two and three are described as having an effective rank 

of L times three.

Experiment 2: Retrospective Undersampling

To demonstrate the viability of the OSCILLATE technique, we retrospectively undersampled 

the k-space data from the collected multiband MRE data for all subjects. Figure 3A shows 

the fully sampled k-space trajectory from the multiband MRE sequence while Figure 3B 

depicts typical undersampling reconstructed with SENSE parallel imaging (i.e. RSENSE = 

4). We tested different OSCILLATE undersampling patterns to determine performance in 

comparison with the original dataset. We choose two ROSC = 2 undersampling patterns 

including alternating which kxy-shots were sampled for each temporal repetition (Figure 

3C) or alternating which kz-plane were sampled (Figure 3D). We also tested a ROSC = 4 

reduction by undersampling both kxy-shots and kz-planes. We used this reduced amount 

of k-space data to reconstruct full image datasets in our joint low-rank reconstruction, 

from which stiffness maps are estimated with NLI. The image regularization used was an 

in-plane, first order quadratic roughness penalty with weighting β. The penalty weighting 

was scaled by the square of the number of shots used to maintain balance with the data 

consistency term in the objective function – i.e. for ROSC = 1, β = 1000; for ROSC = 2, β = 

250; for ROSC = 4, β = 62.5.

We determined error for each case by calculating NRMSE, as described above, and average 

global error between the original multiband MRE dataset (μRosc = 1) and the undersampled 

(μRosc > 1) stiffness maps as (μRosc = 1 − μRosc > 1)/μRosc = 1. Finally, to demonstrate the 

appropriateness of using the navigator images to determine the temporal basis functions, 

we conducted an additional experiment in which we calculated the temporal basis from the 

reference multiband MRE image data (ROSC = 1) and used the resulting Φ in the low-rank 

OSCILLATE reconstruction. We compared errors from reconstructions using Φ estimated 

from the image data and the navigator data.
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Experiment 3: Prospective Undersampling

Lastly, the prospectively undersampled k-space data was reconstructed with OSCILLATE 

for comparison with multiband MRE data. The undersampling pattern used for all 

prospective sampling was ROSC = 2 with alternating kxy-shots sampled. Reconstructed 

data for all subjects was converted into maps of shear stiffness through NLI. Masks of 

cerebrospinal fluid (CSF) were created from the MPRAGE scan using FAST56 and were 

registered to MRE data through FLIRT57, both of which are utilities in the FMRIB Software 

Library (FSL)58. The voxels containing greater than 1% CSF were eliminated from analysis, 

as CSF is a fluid which does not fit the viscoelastic model. Global average stiffness error 

was then calculated between the multiband MRE stiffness maps and the prospectively 

undersampled ROSC = 2 OSCILLATE data.

RESULTS

Experiment 1: Low-Rank Truncation

To demonstrate the low-rank nature of MRE data, we decomposed the complete MRE 

dataset using SVD. Figure 4 shows the normalized singular values of the five MRE datasets 

and the images show an example of the data described by each spatial coefficient (see 

Supplemental Figure S1 for magnitude and phase components of each individual spatial 

coefficient). Nearly all MRE data energy is captured at or below rank L = 12, with the 

sum of the singular values in basis functions 1–12 being 96.1% on average (range 94.4% 

to 97.2%). Data in the first temporal base represents the mean of the complex data across 

all repetitions, which contains the majority of the magnitude information, as this does not 

change between repetitions. Spatial coefficients corresponding to subsequent temporal bases 

depict variable patterns in the signal which occur in the time series, including the differences 

in phase between repetitions. We find that past the 12th base, all successive bases comprise 

primarily noise which does not contain meaningful signal.

Figure 5 shows the results of truncating the complex MRE data and inverting the 

displacement fields from reduced rank images into maps of stiffness. To determine the most 

accurate decomposition to describe the MRE data, we compared the performance of the 

MEG directions each having their own time series and all having the same time series. We 

found that modeling the MEG directions as spatial or temporal components of the Casorati 

matrix resulted in no meaningful differences to the resulting property maps, with a Wilcoxon 

Signed Rank test results of p = 0.813 (Figure 5). We opted to use the MEG directions as 

part of the ‘time’ dimension to provide more versatility in potential undersampling patterns. 

In doing so we found that MRE data is accurately described by just the first 12 bases. 

Reducing the rank to 21 results in a stiffness map with NRMSE of 1.6% ± 0.1% compared 

to full rank of 24. Further reducing the rank showed only very small increases in NRMSE to 

resulting mechanical property maps. Reducing the rank to L = 12 results in NRMSE of 2.3% 

± 1.2% across subjects, which equates to a global average error of just 0.3%. We found that 

truncating to a rank L < 12 returns substantial errors in stiffness maps; for example, rank L = 

9 has an average NRMSE of 34.6% ± 14.7%.
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Experiment 2: Retrospective Undersampling

Figure 6 shows the results of retrospectively undersampling the k-space data acquired with 

the multiband MRE sequence and reconstructed with OSCILLATE with reduced rank of L = 

12. Reconstruction with reduced rank but without undersampling (ROSC = 1) resulted in an 

NRMSE of 5.2% ± 0.5%. Undersampling at ROSC = 2 by alternating kxy-shots resulted in an 

NRMSE of 5.8% ± 0.7% and global stiffness error of just 0.2% ± 0.2%. Undersampling at 

ROSC = 2 by alternating kz-planes resulted in NRMSE of 9.8% ± 1.5% and global stiffness 

error of 2.3% ± 0.6%. Undersampling both kxy-shots and kz-planes simultaneously, for an 

ROSC = 4, resulted in an NRMSE of 13.0% ± 2.2%. We determined that undersampling 

kxy-shots at ROSC = 2 resulted in the lowest error and was used as the undersampling 

scheme for all other experiments. Comparing the stiffness maps which were reconstructed 

with temporal basis estimated from Φ from the navigator images (Φnavigator) and from the 

reference multiband MRE image series (Φimage), we found high agreement between the two 

reconstructions. Each had approximately the same error compared to the reference stiffness 

map (5.1% and 5.3% NRMSE for Φimage and Φnavigator, respectively), and with a small 

NRMSE of 3.5% between them, which is below the degree of variability expected from the 

OSCILLATE undersampling (See Supplemental Figure S2). This confirms that the navigator 

data is sufficient to estimate temporal basis functions describing the image series.

Figure 7 shows the ROSC = 2 retrospectively undersampled stiffness maps from each of the 

five subjects, in comparison with the original multiband MRE reference stiffness map and 

the absolute error between the two scans. The average NRMSE of the OSCILLATE data was 

5.8% ± 0.7% across subjects, with the largest NRMSE in any subject being 6.6%. Based 

on the difference maps between undersampled and reference scans, error appears largely 

concentrated in the ventricle region, which is expected as the ventricles are fluid and are not 

modeled in our inversion, and thus are less stable due to model-data mismatch. Outside of 

the ventricle region, the error is small in magnitude and appears to be randomly distributed 

across the brain in all five subjects.

Experiment 3: Prospective Undersampling

Figure 8 shows the results from the prospectively undersampled OSCILLATE sequence with 

ROSC = 2. We found that average global stiffness error across all subjects was 1.0% ± 0.7%. 

The maximum average global error in any single subject between the reference scan and 

OSCILLATE scan was 2.3%. We did not calculate NRMSE between the two sequential 

scans as small subject motion between scans leads to misregistration and inflated error 

estimates. This 2x acceleration from OSCILLATE resulted in a scan time of 1 minute 48 

seconds, which was decreased from the reference scan acquisition time of 3 minutes and 15 

seconds.

DISCUSSION

In this work we present OSCILLATE, a novel MRE imaging sequence and reconstruction 

technique for rapid data acquisition and accurate mechanical property estimation without 

loss of resolution. This technique leverages the spatiotemporally correlated nature of brain 

MRE data and formulates the MRE problem in terms of a low-rank subspace reconstruction 
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problem to allow for reduction in required k-space data. MRE data is collected as multiple 

acquisitions of the same anatomical image under different phase conditions which are 

modulated by the same induced harmonic actuation, and thus are inherently related across 

repetitions. Here, we demonstrated the viability of implementing these principles in the 

OSCILLATE technique for two-fold acceleration of MRE acquisition time and confirm 

that quality of the measured mechanical properties is maintained. Our implementation of 

OSCILLATE added to a 3D multiband, multishot spiral, spin-echo MRE sequence resulted 

in whole-brain MRE data acquired in less than two minutes.

MRE data is a strong candidate for low-rank modeling, however, the most appropriate 

method for decomposing MRE data into its spatiotemporal components must be 

investigated. Theoretically, each MEG direction is sampled with the same underlying 

harmonic phase, and therefore could be described with the same temporal bases, which 

would be achieved by including this dimension as part of ‘space’ in the Casorati matrix 

and potentially strengthening the model. But in practice, when sampled data includes noise 

and motion-induced phase errors, it becomes necessary to explore how enforcing directions 

as part of ‘time’ or ‘space’ basis affects data decomposition and subspace formation. We 

found that either approach produced no significant difference in resulting property maps. We 

ultimately determined that considering MEG directions as part of the temporal dimension, 

such that the full rank of the dataset is L = 24, would be better suited for the MRE problem 

as it gives more versatility in allowing for undersampling patterns that could be distributed 

across the repetitions. This reduces the importance on any single repetition in the joint 

image reconstruction, which is beneficial in the event of unexpected subject motion or 

physiological noise44.

A key aspect of a low-rank reconstruction is the accurate determination of temporal basis 

functions, which describe how the image repetitions are related. Navigator images are a 

popular MRI tool used in multishot sequences to correct for motion-induced phase errors. 

They are traditionally acquired once per readout, are fully-sampled but low-resolution, 

and offer an accurate description how the signal varies from shot-to-shot and repetition-to-

repetition. The navigator images of the multiband MRE sequence are ideally suited to 

estimating temporal bases, as they are collected immediately before image readout and are 

matched in phase and image contrast. Unlike using raw k-space data for temporal basis 

estimation, the navigator images can be corrected for motion-induced phase errors prior to 

decomposition. While we used a navigator to determine temporal bases in this application, it 

may be possible to estimate these bases by other means, such as from imaging data collected 

using a variable density spiral59 or a blip back EPI60.

In this work, we demonstrate the low-rank nature of MRE data and prove maintained 

accuracy of the resulting stiffness map. After decomposing MRE data into its spatial and 

temporal bases and truncating the data to a reduced number of bases, we find that a 

reduced rank of L = 12 provides a stiffness map with NRMSE of just 2.3%. Of the total 

signal present in an MRE dataset, only 3.9% exists in bases above L = 12, on average, 

and these higher order bases are predominantly made of noise. This reduced rank of L = 

12 can be considered as the minimum representing the complex, full vector displacement 

fields estimated through MRE imaging. Spatial distributions of three motion components are 
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estimated, each of which are complex, describing harmonic motion through the viscoelastic 

medium, for a total of six motion coefficients. Because motion is mapped in the phase of 

the signal, and our approach works on the complex image series with real and imaginary 

components, the six phase bases result in twelve bases in the entire complex series for 

the final rank of L = 12, which matches what we found experimentally. MRE data can be 

described at a low rank of L = 12 regardless of resolution, frequency of actuation, or unusual 

geometries such as tumors. While we demonstrated the performance of OSCILLATE using 

a single frequency of 50 Hz, we expect the method to work for all brain MRE data 

collected with a single frequency of actuation with the same low rank of L = 12. However, 

for simultaneous multifrequency MRE28,61, we expect the required subspace would be of 

higher rank to capture the additional spatial displacement coefficients, and thus limiting the 

potential for image acceleration in some cases.

In Experiment 2, we demonstrate that the proposed OSCILLATE reconstruction can 

accurately recover MRE images from retrospectively undersampled data. With in-plane 

retrospective undersampling at ROSC = 2, reconstructed stiffness maps have an NRMSE of 

5.8%. These values are slightly higher than the error seen in Experiment 1, however this is to 

be expected as in this analysis we are using reduced k-space data with likely different phase 

errors between shots. Other MRE sequences typically do not report voxel-wise error, making 

performance comparisons challenging, however, our results show less than 6% NRMSE and 

just 1% global average absolute error, which is still well within the repeatability range for 

MRE data62,63 and is well below the threshold for detecting group differences or finding 

individual differences. Undersampling by alternating kxy-shots resulted in less error than by 

alternating kz-planes because the spiral sampling in-plane results in incoherent artifacts from 

any residual aliasing, while the thru-plane sampling is Cartesian and potentially more prone 

to slice aliasing artifacts that may impact stiffness results.

Here, we use a nonlinear inversion to reconstruct maps of stiffness, but we would expect 

other MRE algorithms such as common direct inversion methods64–66 or the recently 

developed neural network inversions67,68 to behave similarly in inverting displacement maps 

created from low-rank data. Ultimately, we found that prospectively collected OSCILLATE 

data with 2x undersampling resulted in approximately 1% average error across subjects, 

despite the expected random noise differences between sequential scans, making error from 

OSCILLATE comparable to intra-scan variability seen even between two scans of the 

same sequence. Here we examined performance of OSCILLATE in terms of consistency in 

recovered stiffness maps, which is the ultimate outcome of MRE, as opposed to consistency 

in reconstructed complex image series. The original image series includes physiological 

noise and other non-idealities, and as OSCILLATE seeks to primarily recover just the 

displacement information necessary for accurate stiffness estimation, comparison of image 

series can lead to inappropriate error metrics, while comparison of stiffness gives more 

appropriate and useful metrics.

Other acceleration techniques for MRE have focused on manipulating how the MEGs 

are applied to capture displacement in multiple directions over time. One concept for 

acquisition time reduction involves simultaneously applying each of the three motion 

encoding gradients. The Sample Interval Modulation (SLIM) MRE method proposes using 
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simultaneous motion encodings with the start time of each MEG shifted by a fraction 

of a period so that the accumulated phase in each direction can be differentiated using 

the temporal Fourier transform24,25. Nir et al proposed a similar method and applied 

three sinusoidal MEGs simultaneously uses varying start phases for each of the MEG 

sinusoid26, while Guenthner et al used a Hadamard encoding technique to differentiate 

the accumulated phase27. Simultaneous directional encoding is an effective method for 

acquisition acceleration; however, they can be limited by the need for longer TE and the 

need to play individual gradients at a lower amplitude, impacting the SNR of recovered 

displacement fields. Each of these approaches can be beneficial depending on the application 

and base sequence, though it is unlikely that OSCILLATE could be effectively combined 

with either SLIM or Hadamard encoding, as the latter methods already acquire a reduced set 

of images and thus the low-rank subspace of OSCILLATE would provide less possibility for 

acceleration.

The OSCILLATE encoding and reconstruction scheme can be added to any multishot 

sequence, allowing the advantages of OSCILLATE to be used in addition to other 

advancements to acquisition speeds. We incorporated OSCILLATE into the 3D multiband, 

multishot MRE sequence and are able to retain all relevant components related to previous 

advances in data quality and speed, including the interleaved spiral shots for short readout 

time69, the multiple kz planes for multi-directional undersampling with SENSE parallel 

imaging, and motion-induced phase error correction. Similarly, OSCILLATE could be 

added to other novel MRE sequences, including the TURBINE-MRE sequence22, in which 

multiple EPI readout blades are used to sample 3D k-space in a cylindrical pattern, or to the 

3D spiral staircase sequence21, which uses stack-of-spirals trajectory with each shot slightly 

varied in its kz phase. The basic requirements of a sequence to add OSCILLATE are that 

the sequence must be multishot and the temporal basis must be able to be predetermined 

from a navigator image or alternate method. There are also many other ways to potentially 

exploit the low-rankness of MRE data in an image acquisition and reconstruction approach, 

including the incorporation of additional regularization terms, which may provide additional 

performance in improving speed or reducing error.

CONCLUSION

OSCILLATE is a method for accelerated magnetic resonance elastography which 

harnesses the highly spatiotemporally redundant nature of MRE data to allow for k-

space undersampling through utilization of a joint low-rank image reconstruction. The 

OSCILLATE imaging and reconstruction pipeline is versatile and can be integrated with 

many existing MRE sequences. Here, we demonstrate the efficacy of the OSCILLATE 

method in a multiband MRE sequence where OSCILLATE allows for two-fold data 

undersampling, and a fifty percent reduction in acquisition times, with resulting stiffness 

maps having less than 1% global error. OSCILLATE potentially offers opportunities 

for even greater acceleration factors through combination with other advances such as 

compressed sensing and machine learning approaches. As brain MRE research shifts 

towards tailored sequences for specialized applications, fast acquisition scans that can 

maintain high resolution and low geometric distortion will become increasingly necessary. 

The OSCILLATE sequence allows for ease of scanning challenging populations such 
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as children or for inclusion of multiple MRE scans on a single subject under different 

conditions, and it may generally improve the adoptability of brain MRE in clinical protocols.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
OSCILLATE image reconstruction. Navigator images are decomposed to find the temporal 

basis Φ, which is then truncated to a reduced rank. The objective function is used to 

determine the spatial coefficients by minimizing the difference between undersampled 

k-space data and known Φ. Recovered spatial coefficients and known temporal basis are 

combined to recover the entire complex image series.
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Figure 2: 
3D multiband, multishot spiral, spin-echo MRE sequence diagram for OSCILLATE 

implementation. The sequence comprises 90° excitation and 180° refocusing multiband RF 

pulses; bilateral, flow compensated, motion encoding gradients, which are applied on one 

axis at a time; kz-blipped spiral-in 3D navigator, which is used for motion-induced phase 

error correction and estimation of temporal basis functions; and a multishot kxy spiral out 

image readout. OSCILLATE is implemented by alternating which spiral shots are sampled 

across repetitions.

McIlvain et al. Page 19

Magn Reson Med. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
3D multiband, mutlishot, spiral k-space sample patterns for A) fully sampled k-space B) 

undersampled k-space from SENSE parallel imaging at RSENSE = 4, C) undersampled 

k-space from OSCILLATE at ROSC = 2 with kxy shots undersampled and D) undersampled 

k-space from OSCILLATE at ROSC = 2 with kz planes undersampled.
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Figure 4: 
MRE data is accurately recoverable at reduced rank of 12 from its full rank of 24. Singular 

value decomposition shows that nearly all MRE data energy is captured at or below L=12 

(sum of bases 1–12 = 96.1%).
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Figure 5: 
Results from truncating complex MRE image data and inverting displacement fields from 

reduced rank images into maps of stiffness. Plot shows RMSE for the five subjects at each 

reduced rank truncation, with insert showing the results from the methods of forming the 

Casorati matrix for decomposing the dataset: encoding directions as ‘time’, Φ, or as ‘space’, 

Ψ, or separately. Corresponding stiffness map images from a single representative subject 

with NRMSE from reference rank 24 averaged across the five subjects.
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Figure 6: 
Retrospective OSCILLATE reconstruction of fully-sampled (ROSC = 1) k-space data at A) 

full rank (L = 24) and B) reduced rank (L = 12), and undersampled k-space data in different 

sampling patterns, including: C) ROSC =2, kxy shots; D) ROSC =2, kz planes; and E) ROSC 

=4, both kxy and kz.
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Figure 7: 
Stiffness maps from retrospectively undersampled data reconstructed with OSCILLATE at 

ROSC = 2, as well as reference data for each of the five subjects. Absolute difference maps 

show errors are concentrated in the ventricle regions with estimates of brain tissue stiffness 

having only small and distributed errors. Absolute difference maps are scaled 10x relative to 

stiffness maps to allow for visualization.
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Figure 8: 
Stiffness maps from prospectively undersampled OSCILLATE data at ROSC =2 compared 

with stiffness maps from the original multiband MRE sequence as reference for each of 

the five subjects. The OSCILLATE scan took 1 minute 48 seconds, and global stiffness 

errors between the OSCILLATE scan and the fully sampled MBMRE scan was 1.0% ± 0.7% 

across the five subjects.
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