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ABSTRACT

One of the major complexities in investigating
the behavior of reinforced or prestressed concrete
members is the problem of cracking in concrete. Ana-
lytical study of crack growth in concrete members be-
comes possible only with the advent of large capacity
high speed digital computers and the finite element
method of stress analysis. However, the disruption of
continuity due to cracking presents a number of analyt-
ical difficulties. In order to simulate the cracking
condition in a finite element model, either a crack
has to be manually formed, or the property of a finite
element has to be modified.

The objective of this thesis is to develop a
computer technique which is capable of simulating crack
growth by automatically generating crack-lines in the
finite element model. A network-topological approach
is proposed herein to facilitate such an analysis. A
system concept is adopted in which the entire structure
is treated as a structural network and the various
structural elements are treated as the network components.
Cracking in the concrete members is then viewed as mere-
ly a change in the structural network topology. Graph
theoretic matrices are used in describing and recording
the topology of the structural network as cracking pro-

gresses.
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Through the graph representation of the Gaussian
elimination method, the frontal technique is interpreted
as a means of achieving near optimal ordering. With
the aid of incidence matrices, the "Frontal Solution
Method" developed by Irons is modified and implemented,
thus alleviating the constraint in the node numbering
normally required in most banded type of solution
schemes.

By extending the "Link-At-A-Time" algorithm in
network theory, a reanalysis procedure is developed
within the framework of the frontal solution technique.
Modifications of member properties as well as structural
topology are possible. A proof of nonsingularity and
positive-definiteness of the solution matrix is also
presented.

A computer program is developed to carry out the
frontal solution procedure, the crack growth procedure,
and’the modification procedure. The types of elements
used in the program include a two-dimensionél isopara-
metric element for plane stress, plane strain or axi-
symmetric analysis, a bar element, a bond element, and
a linkAelement. Therefore, ény two-dimensional rein-
forced or prestressed concrete structure can be modeled
and analyzed by the program. With the crack growth
procedure, a predominant crack pattern can be obtained

for a given loading condition.
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Finally, a crack propagation hypothesis is pro-
posed, which is based on the Griffith's theory and a
network sensitivity function. However, no attempt is
made to link the modification procedure and the crack
propagation hypothesis directly to the crack growth
procedure in the present work.

It is believed that the present research represents
a néw direction in the analytical investigation of com-
Plex composite structures where the effect due to crack
interference must be duly considered. While many simpli-
fications have been made either for the sake of conven-
ience or for clarity in the development of such a re-
search tool, they should not prevent any further refine-

ment which is of practical importance.
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CHAPTER 1 INTRODUCTION

1.1 Nature of the Problem

Concrete structural members, either reinforced or
prestressed, are among the oldest and the most commonly
employed construction elements. Their popularity and
importance in the field of structural engineering have
promoted much research in the hope of gaining a fuller
understanding of their behavior. Unfortunately, due to
the complex nature of the problem, research activities
until recently have been largely confined to experimen-
tal investigations. Analytical studies became practical
only when the availability of large capacity high speed
digital computers revolutionalized the possible analyti-
cal techniques. The finite element method, for example,
has proven to be an extremely powerful and versatile
tool in stress analysis, and it has provided a new basis
for the analytical studies of the structural behavior of
concrete members.

The complexity of the problems associated with the
concrete structural members can best be illustrated by
a simple reinforced concrete beam shown in Fig.l.l. As
the lcocad P increases, and because of the well known fact
that concrete is weak in tension, the beam will experience
cracking and become highly indeterminate as depicted in

Fig, 1.2. Within zone A where the shear force is zero,



FIG.I.I A SIMPLE REINFORCED
CONCRETE BEAM
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FIG.1.2 ILLUSTRATION OF
CRACKING




the reinforcement is subjected to a pull which produces
a certain degree of bond slip, Fig. 1.3. Within zone

B where there is a combination of shear and bending,

the situation is no longer a simple one, Fig. 1l.4.
Besides the bond slip, dowel action comes into play.
Stirrups will become more effective in carrying shear
when the crack penetrates across them. The neutral axis
of the beam is continuously shifting to adjust for the
required T-C couple as progressive cracking develops.
This makes the stresses in steel and concrete difficult
to determine. Furthermore, forces due to aggregate
interlock exist at the crack surfaces, even though this
effect is usually neglected in most analyses because

the magnitude and direction of these interlocking forces
are not at all easy to assess.

The nonhomogeneous, nonlinear and time-dependent
material properties of concrete multiply the analytical
difficulties. The essentially biaxial state of stress
in most of the concrete members requires new experiment-
al evidence to support the selected constitutive rela-
tionship and failure criterion for concrete. All these
factors, compounded and combined, would render the task
of stress analysis by the conventional method of con-
tinuum mechanics virtually impossible.

Attention must also be given to the problem of

stress concentration at the crack tips. Crack initia-
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FIG.1.3 SECTION IN PURE
BENDING

FIG.1.4 SECTION IN COMBINED
BENDING AND SHEAR



tion, propagation and stabilization are three distinct
processes and should be treated accordingly. However,
the theory of fracture mechanics governing these three
processes has only been recently extended to the study
of concrete in a very limited manner.

When a prestressing force is introduced, either by
pre-tensioning or post-tensioning, the basic nature of
the problem still persists. Conceptually, prestressing
can be conveniently thought of as a pattern of initial
stresses having been superimposed on the ordinary rein-
forced concrete member. In this case, cracking is de-
layed until the initially compressed fiber reaches the
critical tensile stress state, as the loading progresses.

It is beyond doubt that the nature of these prob-
lems is, indeed, a complex one. Nevertheless, a certain
degree of success has been achieved in analyzing concrete
structural members by means of finite element models.
Some of these research investigations will be examined
in the next section.

1.2 Some Previous Related Studies

Application of the finite element method to the
analysis of concrete structures has been attempted ever
since the method emerged. Wilson [1l] in his thesis,

which is one of the earliest treatises on finite element

method, analyzed the effect of a vertical crack on the

stresses and displacements in a gravity dam. The con-




cept of bi-modulus analysis was also introduced by
Wilson in that thesis. Clough [2] conducted another
series of extensive investigations on concrete dams
with different loading and crack configurations. King
[3] introduced material time-dependency into the finite
element analysis. The time-dependency aspects of ana-
lysis were refined to include incremental construction,
creep and temperature effects by Sandhu, Wilson and
Raphael [4]. Problems such as the above related to
plain concrete structures such as gravity dams can
readily be treated by the finite element method of ana-
lysis., But when steel reinforcement is involved, and
especially when progressive cracking is considered,
other complications begin to appear.

Bresler and Bertero [5,6] employed axisymmetric
finite elements to investigate stresses in a concentri-
cally reinforced concrete cylinder, as a supplement to
their experimental study. A similar method was used
by Lutz, Gergely and Winter ([7], where a special proced-
ure was developed to account for bond slip. However,
that procedure could only provide results for a known
slip and presumed separation between concrete and steel.

Modelling of reinforced concrete beams to incorpor-
ate bond slip into the finite element analysis was first
attempted by Ngo [8], where a physically dimensionless

linkage element was developed to allow a certain degree



of relative movement between two adjacent nodes in two
pPerpendicular directions. With this type of linkage
element, together with some empirical stiffness values
to simulate bonding between concrete and steel rein-
forcement, Ngo and Scordelis [9] carried out a series

of linearly elastic analyses of simply supported rein-
forced concrete beams with predefined crack patterns.
Ngo, Franklin and Scordelis [10] used the same approach
to study the structural behavior of reinforced con-
crete beams with diagonal tension cracks. In that study,
it was possible to examine the effects of stirrups, dow-
el actions, aggregate interlock and horizontal splitt-
ing along the reinforcement near support. Nilson [11,
12} extended the method to include non-linear material
pProperties and a nonlinear bond-slip relationship for
the analysis of concentrically as well as eccentrically
loaded reinforced concrete members under incremental
loads. The tracing of the crack propagation in Nilson's
study was done by redefining the finite element mesh
layout manually when the failure criterion was met at
one or more points on the loaded member, and execution
of the analysis was then re-started afresh from zero
load and incrementally loaded up to next stage of failure.
Houde, Youssef, Spokowski, Mufti and Mirza [13,14,15]
have also employed a similar method to study cracking

and bond failure. Murray [16] used a "rubber-like"



ring around the steel as a bond element in his analyti-
cal model to study crack formation. All these in-
vestigations, Ref. 8 to 16, regarded cracking as being

represented by separating the nodal point where crack-

ing was predicated to take place, hence producing a
crack-line, Fig. 1l.5a, in the finite element model.

Loov [17] proposed a method of subdividing the finite

element to adjust for inclined cracks, and introduced
a crack of finite width with a "sensor element" at the
crack tip to predict crack propagation, Fig. 1l.5b.

In contrast to the crack-line approach, other in-
vestigators have employed a crack-zone tLtype of repres-

entation, Fig. 1l.5c, in which cracking is assumed to

take place within a finite region of the structure. In
terms of finite element analysis, this means that the
element stiffness property is modified to reflect the
failure of concrete strength in the direction perpend-
icular to a crack, whenever cracking has been predicted
to occur in that element.

Isenberg and Adham [18] were the first ones to pub-
lish a mathematical model of stress-strain relations
for a reinforced concrete element based on the properties
of reinforcing steel, plain concrete, and slip in the
bond between them. Nonlinearity due to material in-
elasticity and cracking was included in their finite
element analysis. The idea of employing a finite element

with composite concrete-steel material properties at
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uncracked, cracked and plastified stages was also de-
veloped by Cervenka [19] for the nonlinear incremental
analysis of reinforced concrete panels under both mono-
tonic and cyclic loadings, which included the closing
and re-opening of cracks within the finite element.
Valliappan and Nath [20] applied the "stress transfer"
method to the finite element analysis of tensile crack
propagation in reinforced concrete beams, where the
limiting tensile strength of concrete was taken to be
the failure criterion, but bond slip was ignored. Vallia-
ppan and Doolan [21] later extended the work to include
the elasto-plastic behavior of the concw.ete and steel.

There is still another method of modelling rein-
forced concrete members. Selna [22,23] developed a one-~
dimensional layered system to study the time-dependent,
creep, cracking and shrinkage effects on beams and frames.
Franklin [24] used this type of layered beam system
together with an approach similar to Cervanka's [19] to
perform nonlinear analyses of reinforced concrete frames
and panels. The study of shear wall-frame systems, using
a method similar to Franklin's, has also been presented
by Yuzugullu and Schnobrich [25].

The finite element analysis of prestressed concrete
nuclear reactor vessels has been carried out by Rashid
and Rockenhauser [26], Wahl and Kasiba [27]. Rashid has
also attempted to take the effects of cracking, temp-

erature changes, creep, as well as loading history and
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ultimate strength of materials into consideration [28,
29]. Argyris et. al have presented a comprehensive
study of the recent developments in the finite element
analysis of prestressed concrete reactor vessels [30].
Transfer stress distribution was analyzed by Kripana-
rayanan and Meyers [31] for fully bonded wires in pre-
tensioned concrete members. Post-tensioned highway
bridges have been studied by Jofriet, McNeice and
Csagoly [32]. A method of predicting the behavior of
reinforced and prestressed concrete structures subject
to cracking has been developed by Taylor, Romstad, Herr-
mann and Ramey [33], where an attempt was made to gener-
ate mesh layouts automatically to account for cracking.
Application of the finite element method for the
analysis of reinforeced concrete plates and shells, with
material nonlinearity and cracking effects, has been ad-
vanced by a number of investigators, such as Jofriet and
McNeice [34], Bell and Elms [35, 36], and Scanlon [37].
The concept of layered finite element system was developed
by Hand, Pecknold and Schnobrich [38] for plates and
shallow shells of constant thickness. Lin [39] has deve-
loped a layered system for analyzing reinforced concrete
slabs of arbitrary geometry and for free-form shells
under dead loads and monotonically increasing live loads.
An excellent state-of-art paper has been presented

recently (1972) by Scordelis [40] at a Specialty Con-
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ference on Finite Elements Methods held in Canada. In
that paper a comprehensive summary as well as the poss-
ible areas for future investigation was given for the
application of the finite element analysis to reinforced
concrete structures. A number of interesting related
studies can also be found in the Proceedings of that
Conference [41] where the subject of finite element
analysis of concrete structures was one of the major
topics.

1.3 Crack-Line vs. Crack-Zone

From reviewing the existing literatvre, it can be
seen that the finite element method has become a power-
ful and feasible means of analysis, which helps consider-
ably in the understanding of the behavior of various
types of concrete structures. It can also be noted that
most investigators prefer that crack-zone type of repre-
sentation for the study of cracking in reinforced or pre-
stressed concrete structures, and it is used almost ex-
clusively for the analysis of reinforced concrete plates
and shells. This choice is not at all difficult to
understand. In this crack-zone type of approach, the
finite element mesh layout need not be altered, and only
the element stiffness matrix has to be modified to account
for cracking. Thus the process is identical to the normal
solution method for material nonlinearity problems. The

justification for this approach seems to be based on the
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fact that when fracture takes place within the con-
crete mass, the plane of failure is made up by a mul-
titude of micro-cracks, rather than a clean-cut sur-
face such as those exhibited in most metallic or ceramic
materials. When the finite element size is small, as
compared to the over=-all structural dimensions, the
crack-zone type of representation would indeed capture
the gross structural behavior, without the tedious task
of redefining the finite element mesh layout. But, on
the other hand, one is immediately confronted with the
problem of how small the crack-zone should be reduced

in size in order to simulate a crack. From most of the
published studies, the finite element mesh sizes are
generally too coarse to represent a narrow band of fail-
ure zone, and consequently a large portion of the struc-
ture is pronounced as failed or yielded. Furthermore,
this crack—zone‘type of representation tends to limit the
ability of the finite element model in identifying the
effect of cracking, bond slip and aggregate interlock,
each individually and independently. Another latent
difficulty is that when reversed loading, such as in the
case of éyclic loads, is considered and cross cracking
is allowed in each finite element, there is a possibility
of total loss of the element stiffness if two crossing
cracks happen to be orthogonal. This may lead to ill-

conditioning of the structure stiffness matrix.



The crack-line type of representation also has
its shortcomings. Again, there is the question of how
fine the finite element mesh size should be in order to
produce cracks that would closely simulate the cracking
. of the real structural members under real loading con-
ditions. At any rate, the finite element model is an
approximation at best. Nevertheless, the crack-line
approach offers a good physical picture of the cracking
condition, and at the same time, failure along a line or
a plane, rather than a zone or a block, permits different
added effects to be incorporated into the model and to
be examined independently as demonstrated in Ref. 10.
However, this seemingly simple process of producing a
crack-line by introducing additional nodal degrees of
freedom can complicate the analytical solution procedure
considgrably, The major part of the effort made in the
present study is to overcome this analytical difficulty
encountered in the finite element modelling of cracks by
a crack-line type of representation.

1.4 A Conceptual Model

Suppose that cracking is literally taken to mean
fracturing the structural solid into pieces, and the
finite element model is nothing more than an assemblage
of these small pieces of thé structure, then a model to
simulate cracking can be developed in the following mann-

er:

14



a)

b)

c)

a)
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Subdiving the solid into small elements, Fig.

l.6a;

Connecting the loose individual elements by

the fictitious joint elements, Fig. 1l.6b;
Simply eliminating the joint element to rep- .
resent a crack, Fig.l.6c; or

Alternately modifying the stiffness of the
joint element to account for a certain degree
of bonding or interlocking between the adjac-

ent elements, Fig. l.6d.

A possible resulting crack pattern from such a model is

shown in Fig. 1.7 for a simple reinforced concrete beam.

The impracticality of such a model is, of course,

obvious.

As compared to the ordinary finite element

model, it can easily be found that:

a)

b)

c)

d)

e)

f)

The number of nodes is nearly doubled.

The number of elements is approximately in-
creased by threefold.

The bandwidth of the structure stiffness matrix
is approximately increased by 1-1/2 times.

The system is too flexible if the joint stiff-
ness value is set too low.

The system becomes ill-conditioned if the joint
stiffness value is set too high.

The crack pattern composed of only vertical and

horizontal lines leaves much to be desired.
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However, despite all these shortcomings, this concep-
tual model emphasizes the very fundamental concept upon
which a finite element model can be built to incorporate
the crack-line type of representation. The remaining
question will be how to incorporate such a conceptual
model into a more amenable solution process, which is
cépable of exhibiting various special features such

as bond slip, aggregate interlock and dowel action.

1.5 Need for a New Approach

Working directly with the conceptual model is seen
to be rather cumbersome. While there is a distinctive
advantage that no new nodes need to be introduced at
any stage of cracking, the excessive number of nodal
points and elements, plus the enlarged bandwidth, will
demand an enormous increase in the solution effor£°
Another even more objectionable aspect of the model is
that the stiffness of the joint elament is very difficult
to select. There is no a priori knowledge about the
appropriate stiffness value which should be high enough
to produce a minimum unwanted additional flexibility in
the system, and yet low enough not to disturb the
conditioning of the solution matrix. It is possible
to improve the crack pattern, for instance, by emplby-
ing triangular elements, Fig. 1.8. However, the increase
in the number of nodes, the number of elements and the
size of bandwidth will make the solution even more un-

feasible.
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In order to transform the present conceptual model
into a feasible operational scheme, some of the funda-
mental properties of the finite element method of
analysis require a more detailed examination.

1.5.1 Node Numbering

Node numbering in such a way that the bandwidth is
kept to a minimum is of utmost importance and has been
generally accepted as one of the inherent characteristics
of the displacement method of structural analjsis.

This imposes a considerable constraint on the finite
element analysis of cracking problems. To avoid assign—
ing node numbers to every individual finite element in
the conceptual model shown earlier, the conventional

way of node numbering can be carried out when the member
is uncracked. For example, the structure shown in Fig.
1.9a is well adapted to the banded matrix type of node
numbering sequence. However, as soon as crack-lines are
introduced into the structure, Fig. 1.9b, the nodes inﬁt
evitably have to be re-numbered in order to achieve a
minimum bandwidth. Moreover, while the horizontal crack
increases the bandwidth by one, the vertical crack in-
creases the bandwidth by as many as the number of elements
that the crack runs across, which is three in the case
shown in Fig. 1.9b. It would be very desirable if such
a detrimental relationship between node numbering and

bandwidth could be eliminated.
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1.5.2 Structural Topology

A closer examination of the two structures, Fig.l.
9a and b, will reveal that the difference between them
is merely in their structural topology, i.e., the.manner
that the finite elements are connected to one another.
In other words, the introduction of crack=lines into
any structural member can be thought of as merely in-
ducing a change in the structural topology. This suggests
that the topological aséect of structural analysis should
play an important part in the study of progressive crack

growth,

1.5.3 Structural Modification and Reanalysis

Methods of structural modification and reanalysis
can conceivably be developed and employed to lessen the
”burden of computational effort. This direction of en-
deavor is particularly appropriate when cracking is view-
ed as merely a change in the structural network topology.
Such a topological change generally takes place within
a small region of the structure. A large portion of
the structure remains unaffected as far as the topolo-
gical and the mechanical properties are qoncerned.
This fact suggests that the already formed and decomposed'
stiffness matrix can again be utilized to seek a new
solution, if the original stiffness matrix can be prop-
erly modified to account for the changes encountered.

1.5.4 Crack Propagation




The proposed>conceptual model only provides a means
of accommodating cracks within a structural member. The
condition and the manner which dictate where a crack
should appear and when a crack should grow must be stip-
ulated in order to properly simulate and study crack
propagation. Almost all investigators employ a failure
criterion, and cracking is dedﬁared for the portion of
the structure where the condition of the failure crit-
erion is met. Little effort has been made to study the
problems of crack propagation in concrete from the frac-
ture mechanicsrstandpcint. Stress concentration at the
crack tip is known to exist. It is also well known that
fracture can occur at a much lower stress level in a
notched specimen. All these facts deserve some recogni-
tion in the development of a finite element model for
the study of progressive crack growth in concrete mem-
bers.

1.5.5 A Proposed Approach

The various problems mentioned above form the core
of the present study. To reconcile most of the diffi-
culties, a new orientation of viewpoint is taken. The
structure is treated as physical system represented by
a network whose topological properties are given full
recognition. Graph theoric matrices and some network
theories can then be utilized. This methodology is

collectively called "network-topological approach"”,
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a term which has been coined by Fenves and Branin [42].
The fundamental concept of such an approach has been
pioneered and advanced by scholars both in the United
States and abroad in recent years.,

1.6 Objective and Scope

An attempt will be made in this thesis to develop
an operational scheme based upon the improvement of the
conceptual model proposed earlier for the analytical
studies of cracking in reinforced and prestressed con-
crete members. Discretization and simulation of the
structural system are carried out by means of the finite
element method where a computer can be utilized as a
solution aid. A network-topological approach is éuggest—
ed as a unified treatment for the various problems en-
countered in analyzing crack growth. It aims at supple-
menting the existing finite element method of analysis
for the purpose of handling the problems associated with
cracking,.

The objective of the present study is threefold:

l) To develop a finite element model which is
capable of automatically producing crack=-lines
to simulate progressive crack growth.

2) To show that the network-topological approach
can be extended to include modification and
re-analysis.

3) To postulate a hypothesis regarding crack



propagation in the spirit of fracture mechanics,

based on a network sensitivity function.
A computer program is written to perform the necessary
computations with examples to demonstrate its capabil-
ities., However, no attempt is made at present to com-
bine the structural modification procedure, the crack
propagation hypothesis and the progressive growth cal-
culation into a single general purpose computer program.
This task is left fof future investigations.

1.7 Notations

This thesis involves a number of different engineer-
ing disciplines. To avoid any unwarranted confusion in
nomenclature, notations commonly used in a particular
field of study will be followed, and will be defined when
they first appear in the text, or when they assume a new
meaning. No special symbol is adopted for matrix equa-
tions, since they should be self-evident from the context.
Brackets for matrices and vectors are used only when
they are deemed necessary for greater clarity. Greek

letters generally denote a constant.
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CHAPTER 2 TOPOLOGY, GRAPH, NETWORK AND
STRUCTURAL SYSTEM ANALYSIS

2,1 Structural Network and Topology

A structural system can be considered as a physical
network, and the connectivity of the structural elements
can be depicted by a system graph G. Network analysis
can be thought of as a practical application of algeb-
raic topology beginning with Kron's application of
topological theorems to the analysis of complex elastic
networks.

Kron also coined the word "Diacoptics," or the
"method of tearing" [43, 44, 45, 46]. However, it is
Branin [47, 48, 49] who was responsible for making Kron's
ideas of tearing and the network-topological method un-
derstandable to the engineering world. In addition, Roth
[50, 51, 52] provided much of the topological foundation
for Kron's Diacoptics as well as for the network analysis.

In the last two decades, many important contribu-
tions of the network-topological approach to the analysis
of structural networks have been made. The pioneering
work of Langefors [53,54], especially the use of coincid-
ence matrices, is of fundamental importance. The topolo-
gy underlying structural analysis has long been recognized
by Baron [55]. Sammuelson [56,57] presented a thorough
treatment of linear structural analysis by algebraic to-
pology. Wiberg [58, 59, 60] used a similar method to

study structural disection. The linear graph counterparts
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of Sammuelson's and Wilberg's works are given by

Fenves and Branih [42], and by Steward and Baty [61],
respectively. System theory has been employed by Lind
[62] and Wu [63]. Topological studies of structural
stability and~determinécy have been done by Henderson

and Bickley [64], Morice [65], Henderson [66] and Di=-
Maggio [67]. DiMaggio and Spiller [68] have also app-
lied the network analysis to various types of structures.
Henderson and Maunder [69], Maunder [70] employed the
topological methods to the feasible selection of cycle
bases in the flexibility method for the linear elastic
analysis of skeletal structures. Oden and Neighbor [71]
extended the network-topological formulation of the force
method to the analysis of geometrically and materially
nonlinear space frames. Oden [72, 73] has further carried
out the topological consideration into the general theory
of the finite element method. Additional references can
be found in the Reference Section at the end of this
thesis.

The term’“network=topology“, in the context of the
present study, is a coliective term which stands for the
fundamental concept and methodology in the areas of al-
gebraic topology, linear graph, network and system theo-
ries, that are useful in structural analysis, particularly
with respect to the study of progressive crack growth.

It is not the intention of the present study, however,



to produce a unified network- topological formulation

or a system theory for structural analysis. Instead,
advantage will be taken of the already well known and
established theories in linear graphs, networks and
systems to help solve the problems associated with
progressive crack grthh. Therefore, only the relevant
network-topological concepts needed in the present study
are presented here and in following chapte?s whenever

it is deemed necessary.

2.2 Some Graph Theoretic Matrices

Network topologies can be conveniently described
by graph theoretic matrices. Some of such matrices re-
lated to the present study are presented below, and their
properties of interest are also discussed. A more com-
plete discussion of graph theoretic matrices can be found

in Ref. 74, 75 and 76.

2.2.1 Branch-Node Coincidence and Boolean Connectivity

Matrices

Consider the system graph G which consists of non-
oriented l-complexes, Fig. 2.la. Then G can be uniquely
specified by a coincidence matrix Ml’ suggested by Lange-
fors [53]. ‘The elements of the matrix M, are of order

1 and are known as coincidence numbers, Using the terms

of node and branch in place of O- and 1= simplex, res-
pectively, the nodes of G are listed in a row, and the

endpoints of the branches are listed in a column. A
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coincidence number of 1 is assigned in each row under

the node where the endpeoint of each branch is coincid-
ent to that node, andyéll other entries are 0's, Fig. 2.
1b. Another scheme can also be established where there
is only one row for each branch and in each of such row
1's are placed in the columns of these nodes to which

the branch is incident, Fig. 2.lc. The matrix so defined
is called an unoriented incidence matrix Hl by Lange=
fors.

The graph in Fig.'2.la can also be described in a
third way. Let a branch represent the connectivity re-
lationship between nodes, and an incidence number 1 is
assigned whenever such a connectivity exists, a new
coincidence matrix D, can then be constructed, Fig. 2.2a.
Similarly, the connectivity of a node, or a group of
nodes, to the rest of nodes in a graph can also be rep-
resented by a coincidence matrix By, Fig. 2.2b, a special
case of’which is the Boolean connectivity matrix referred
to»by @igyris and Roy [132-134]. Strictly speaking, Dy
and Bi are quite different from M, and Hy in nature.
However such a differentiation is not necessary in the
present study. Therefore, no distinction is made among
them, and they are coliectively referred to as coincid-
ence matrices and denoted by M, unless otherwise speci-

fied,
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Note that the coincidence matrix M consists of
Boolean components, i.e., the entries ére either 0's
or 1's. Such a coincidence matrix can legitimately be
considered as a Boolean Matrix [77]. However, unlike
in the study of switching circuits, no special matrix
operation is required in the present study. All rules
of ordinary matrix algebra apply to matrix M. When the
elements in M are’treated as decimal instead of binary
numbers, the matrix M possesses some properties which
are noteworthy.

Property I: Defining the summation of the coinci-

dence number in each row of matrix M as being the row sum

r and similarly, column sum cg, it is obvious that

Sl
cg of Mj = cg of H] = cg of Bj.
Furthermore, in the case of rg = i, such as in My, it can
be easily verified that
t
M} M3 = Dcg (2.1)

where Dog is a diagonal matrix whose elements are the
column sums cg of the corresponding columns. This is
simply a consequence of matrix product and the condition
rg = 1. Therefore, if the column sum cg is also set to
unity, c¢g = 1, such as in the case of By, then according
to Eg. 2.1,

B By = 1

In this light, the Boolean connectivity matrices b;,



b, and b, employed by Argyris and Roy [132-134]
can be regarded as conincidence matrices, because
they all satisfy the conditions

rg = 1

cg =1
and the orthonormal relationship

bt b, + bS by + be by = I (2.2)
clearly holds. The meaning of various matrices in
Eg. 2.2 will be explained later in Chapter 5 where struc-

tural modification and realalysis are discussed.

Property II: Let coincidence matrix M satisfy the

conditions
ro =1
S
(2.3)
Cg = 1

and K be a square matrix, then

a) the pre-multiplication of K by M, MK, has the
effect of interchanging the rows in K,

b) the post-multiplication of K by mt, KMt, has
the effect of interchanging the columns in K,

c) and therefore, the triple product

M K Mt (2.4)

will result in rearranging the elements in the
matrix K in such a way that the rows and columns
are interchanged according to the order specified
by a non-zero entry in each row and column of the

coincidence matrix M. This property has been
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utilized to form the "Law of 3 x 3 partitioning"
by Argyris and Roy [132]. It should also be
noted that the conditions stated in Eg. 2.3
imply that M is a square matrix, and
t

MtM = T = MM (2.5)

Property III: If the conditions in Eq. 2.3 are

altered to be

rg = 1

(2.6)
cg 1

This implies M is a rectangular matrix in which the number
of columns c is greater than the number of rows r. Then
é) pre-multiplication of K by M means collection
of rows in K according to the columns in M,
where cg = 1,
b) post-multiplication of K by MY means collection
of columns in K according to the rows in Mt,
where ry = 1,
c) and the triple product MYKM has the effect of
dispersing the elements of K into a matrix of
" higher dimension, according to the order spec-

ified by the non-zero entries of M.

Property IV: If the column sum cg is greater than

or equal to'1l, i,e.,

Yg = 1
T T . (2.7)
bk PR I cs Z l

then M is a rectangular matrix with r>c. The triple
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product MtKM compresses K into a matrix of smaller dimen-
sion, in which rows and columns of K are summed accord-
ing to the non-zero entries in each column of M. This

is the well known summation process and equivalent té

the direct stiffness method which has been commonly used
to form the total structural stiffness matrix from indi-
vidual element stiffness matrices in the matrix method
of structural analysis.

All these properties of the coincidence matrix M
are rather elementary. They are re-iterated here because
they have been used extensively by Argyris and Roy in
their formulation of the structural modification method,
they also help simplify some of the computational pro-
cedures developed in the present study once the essence
of these properties is recognized. Furthermore, the
employment of the coincidence matrix M, instead of the
more conventional types of incidence matrix for the
oriented graph (see next section) enables the direct ad-
option of the conventional element stiffness matrices
without the necessity of modifyiﬁg either the stiffnesé
or the incidence matrix itself.

2.2.2 Branch-Node and Branch-Mesh Incidence Matrices

Most network theories make use of the oriented
linear graph, rather than the unoriente€d one. A linear
graph G, Fig. 2.3a, is oriented when its branches and

meshes are assigned a sense of direction, Fig. 2.3b.
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Thus distinction can be made whether a branch is posi-
tively or negatively incident to a node or a mesh. Con-
sequently, the element of a branch-node incidence matrix

A,"Eig_'2.3c, associated with an oriented graph is def-

ined as
+1 positively
th ) ) incident to
a; . = =1 if i branch is negatively
et the jth node
0 not

and the element of a branch-mesh incidence matrix C,

Fig. 2.3d, is given by

+1 positively
. . th ) . incident to
c,., = =1 if i branch is negatively
i] the jth mesh
0 not

The algebraic structure related to a linear graph
arises from the fact that it is possible to associate
a set of mathematical objects such as vectors spaces
to the nodes, the branches and the meshes of an orient-
ed graph. This is equivalent to the construction of
chain and cycle spaces in the case of algebraic topo-
logy. It can be shown that the incident matrices At
and A, C aﬁd ct play the roles of boundary operator 23,
and coboundary operator §, , injective homomorphism j
and prejective homomorphism j*, respectively [56, 57,

58). Therefore, two exact sequences and their trans-
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formation can be constructed in terms of the matrices

A and C, as presented by Fenves and Brain [42], Fig. 2.
4, It éaﬂ further be shown that node and mesh analyses,
or equivalently, displacement and force methods gan be
~derived from the transformation diagram when the two
isomorphisms F and K are prescribed [42, 47, 56]. Hence
any system which can be cast into a network formulation
will be handled in the same manner. However, when this
type of network formulation is applied to structural
systems, the conventional stiffness or flexibility matrix
has to be modified. Fortunately, this problem is over-
come in the present study by working with the coincidence
matrices instead. But it is still crucial to note that
two fundamental laws in network theory, namely, KCL and
KVL or equivalently, the static and kinematic compatibi-
lity requirements in a structural network, can be conven-

iently expressed as

Ct u

0 and/or p Cp’

(2.8)

0 ;ahd/or u=A4au'
and based upon which Tellegen's theorem is derived, as
presented later in Chapter 6. The link-at-a-time algor-
ithm discussed in Chapfer 5 also makes use of the incid-
ence matrices A and C.

2.2,3 Dual Graph and Adjacency Matrix

Given a topological graph G which is planar, un-

hingéd~and connected, it is possible to construct another
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graph G [78] by

l) associating each node in G with a mesh in é,

including the outer mesh, |

2) assigning a branch to connect two nodes in G

whenever there is a common branch between the

meshes in G.
The resulting graph é, Fig. 2.5,is a dual of G, and is
called a dual graph. Note that the dual graph é de-
picts the adjacency relationship of the meshes in G.
Therefore, an adjacency matrix A can be constructed from
the dual graph G. Each element in the (i, j) position
of the matrix A is equal to the number of edges incident
with both vertex i and vertex j [79].

A given finite element mesh, such as the one shown
in Fig. 2.6a, can be thought of as a planar graph and
correspondingly a dual graph can be obtained, Fig. 2.6b.
This dual graph furnishes a complete picture of how the
two-dimensional finite elements are connected and are
adjacent to each other. Since ohly the adjacency rela-
tionship is of real interest in the present study, two
modifications can be made to the construction of dual
graph.

1) The outer mesh in the original graph G is

 irrelevant here and therefore will be omitted.

2) The requirement of the graph G being planar will

also be relaxed.
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Note that the resulting dual graph G may or may not be
planar in this case.

2.2.4 Node-Mesh Incidence Matrix

To facilitate the analysis of progressive crack
growth a novel node-mesh incidence matrix D is defined,
Consider each finite element to be an individual mesh
of a linear graph, then similar to the branch-mesh in-
cidence matrix C presented in Sec. 2,2.2, the element
of the node=-mesh incidence matrix D is given by

1 is
dij = if i node incident o j mesh.
0 is not
This matrix provides the information of what elements
each nodal point is connected to in the whole structure.
Therefore, it becomes very valuable in the frontal sol-
ution process and in the process of producing a crack-

line,

2.3 Structural Network with Changing Topology

It has been seen that any structural system can be
associated with a topological graph G, and furthermore,
a dual graph G can also be obtained. This concept of
casting the structural analysis into a network problem
is particularly helpful in dealing with the problem of
cracking in structures. Because, in a discretization
analysis such as the finite element method, it is pbssa

ible to view cracking as being merely a change in the



network topological graph, or equivalently, a change
in the network dual graph, and all the graph theoretic
matrices can be profitably employed in the various
stages of the solution process.

Consider a portion of the structure idealized by
finite element’model in Fig. 2.7a. Omitting the outer

mesh, its dual graph and adjacency matrix are shown in

Fig. 2.7b and c. When a crack-line is introduced into -

the structure, Fig. 2.8a, the corresponding dual graph
has one branch deleted, Fig. 2.8b, and its adjacency
matrix is modified accordingly, Fig. 2.8c. If a joint
element is inserted at the crack to simulate bonding
or interlocking across the cracked surfaces, Fig. 2.9a,
then the dual graph has one additional node and one
additional branch, Fig. 2.9b, and the adjacency matrix
is enlarged correspondingly, Fig. 2.9c. Using this
vehicle, the ease in communicating with the computer
should be apparent. It can also be observed that the
adjacency matrix is symmetric and its row sum rg is

equal to the column sum cg.
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CHAPTER 3 FRONTAL SOLUTION TECHNIQUE

3.1 Gaussian Elimination and Its Peculiarity

For a linear time-invariant steady-state system,
the network equation can be simply described by a
matrix equation

Yx=0Db (3.1)
where Y is a coefficient matrix, b the known input vec-
tor and x the unknown output vector to be determined.

It has become clear to engineers today that direct meth-
ods of solutions are often preferred to iterative ones
[80].

Almost all of the direct methods are based on the
concept of triangular decomposition by equivalent trans-
formation of matrices. In recent years, various schemes
have been proposed to solve Eg. 3.1 for both structural
and electrical network problems. Tocher [81l] suggested
a selective inversion. The Choleski Decomposition was
used by Johnson [82] and Roy [133]. Sato and Tinney
«[83] carried out the decomposition in terms of elementary
matrices., ~The use of "table of factors" was proposed
- by Tinney and Walker [84], and was extended to solve
large scale structural problems by Jensen and Parks [85].
A LU decomposition, also known as Gaussian-Doolittle
Method, was employed by Berry [86]. Melosh and Bamford
[87] decomposed the coefficient matrix in a triple pro-

duct of LD_lLt. - Whestone [88] used a solution method
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based on K-partitioning. The Crout reduction method
has been efficiently programmed by Wiberg [89] and
further improved by Mondkar and Powell [90]. And many
improvements on the solution of banded matrices have
been accomplished by Wilson and others [91, 92, 93].
Meyer [94] has summarized the recent advances in this
general subject area.

The list of the solution methods may appear to be
long. But by taking a closer examination, one can regard
all these methods as being a judicious application of the
over one and a half century old concept of Gaussian
elimination. Elimination, decomposition and reduction
are similar in theory. The difference among them is
mainly in the sequence of operations. This is particul-
arly true when the coefficient matrix Y is symmetric.
For instance, the Crout reduction can be viewed as a
scheme of recording the factors of decomposition in the
lower triangular matrix L, and differs from the LU de-
composition only in the manner of storing the diagonal
terms. While the LU decomposition associates the dia-
gonal terms with the upper triangular matrix U, Crout
reduction associates the diagonal terms with L. The
"table of factors" also bearsAa great similarity with
Crout's method. When the diagonal terms are handled as
an individual matrix, then a triple product LDU of the

Choleski type can be formed. This triple product can



also assume the form of LD"lLt as proposed by Melosh
and Bamford [87]. When the K-partitioning reduces to
the order of one, then it is identical to the Gaussian
elimination procedure. Another interesting fact is
that for a dense coefficient matrix, i.e., where the
tOpoiogical graph of a physical network is complete, it
Has beén shown that no rational operation can take few-
er steps for the solution than the Gaussian elimination
[951].

" 3.1.1 Sparsity and Bandedness

Rarely, if ever, is a physical network so strongly
connected that'its topological graph is a complete graph.
This is especially true for structural systems. There-
fore, the resulting coefficient matrix ¥ in Eqg. 3.1
is generally sparsely populated, and many efforts have
been made to take advantage of this fact in solving such
a system of equations. For structural systems, the
banded matrix technique is commonly employed in the dis-
placémént method of analySis. The minimization of band-
width is generally achieved by the proper selection of
é’nOdeénumbering scheme. On the other hand, the topo-
"logy of electrical networks does not lend itself easily
to the banded matrix technique by’node numbering. Instead,
a so-called sparse matrix technique is often used, such
as the ones proposed by Tinney and Walker [84], and by
Berry [86].

It should be emphasized once more that both the

50




banded matrix technique and the sparse matrix technique
aim at reducing the computational effort by recognizing
the vast numbers of zero entries in the coefficient
matrix, and any type of elimination procedure can be
employed in both techniques. However, the two techni-
ques are founded on somewhat different concepts: one
deals mainly with the minimization of bandwidth and
relies heavily on node numbering; the other concerns
itself chiefly with the minimization of the number of
new entries in the coefficient matrix during the elimina-
tion process and generally requires an elaborate book-
keeping scheme. This latter aépect is another peculiar-
ity of the Gaussian elimination procedure, which is often
overlooked by most structural analysts.

Consider the network shown in Fig., 3.la,’the system

coefficient matrix will have the form of Fig.,3,lb,

associated with the given node numbering., After the first

row has been processed, the matrix Y has the form of Fig.
3.1lc. It can be seen that all of the formerly zero
entries are now filled. But if the network is given a
different node numbering as shown in Fig. 314, the res-
ulting Y matrix has a different form as shown in Fig. 3.
le, and no new non-zero entry is produced after the
first row is processed as shown in Fig. 3.1f. These ex-
amples demcnstrate how the nodé numbering or operation

Sequence will affect the matrix sparsity and the over-all
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solution process. Therefore, the node odering is of
prime importance if the solution process is to be eco-
nomized.

3.1.2 Optimal Node Ordering

The task of node numbering to achieve a minimum band-
width or to create a minimum number of new entries can
sometimes become frustrating even for an experienced
analyst. Automatic node numbering algorithms to mini-
mize the bandwidth have been presented by Rosen [96],
Akyuz and Utku [97]. Some of the now commercially avail-
able structural analysis programs also have this feature
built-in. However, the effort expended on minimizing
the bandwidth may or may not be rewarding, because the
banded matrix technique itself does not always represent
an optimal solution. It can easily be shown that the
zero entries within the band are rapidly filled [85, 98].

To preserve the sparsity as much as the topology of
the network permits, a number of sparse matrix techniques
have been developed by various authors (83, 84, 85,961,
In general, node re-numbering in the sparse matrix tech-
nique is more elaborate than in the banded matrix tech-
nique. It also involves the altering of the actual
operation sequence, which no longer follows the natural
order of the node numbers. This drastic departure from
the banded matrix technique requires a more sophisticated

book-keeping scheme,



For networks having a changing topology, the
pProvision of an automatic node re-numbering or reorder-
ing capability within a computer program is certainly
essential. But in the case of finite element analysis
of cracking problems, minimum bandwidth may not be the
optimal solution. Node re-ordering such as the one
employed in the sparse matrix technique can be shown
to be more efficient. To gain a better picture of the

- effect of re-ordering, graph Trepresentation again proves
to be very helpful.

3.2 Graph Theoretic Approach

Given a square matrix Y of order n, whose elements
are denoted by Yijr an incidence matrizx M, whose elements
are mij' can be defined by [99]:

) ; Yij =0 ori=j
mgy = if .
1 otherwise
From this incidence matrix M, an oriented graph D, some-
times also called directed graph or digraph for short,
can be constructed. An example is shown in Fig. 3.2.
A few definitions and theorems are now presented to

facilitate the discussion [100].

Definition 3.1: A square matrix Y or a digraph D

is "incidence-symmetric® if the associated inicdid-
ence matrix M is symmetric.

A special class of incidence-symmetric matrices
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are the symmetric matrices Y, which are typical
for all stiffness matrices dealt with in struc-
tural analysis. For this special class of incid-
ent-symmetric matrices, an unoriented graph G

‘is sufficient to represent the symmetric matrix
Y as shown in Fig. 3.3. This representation
will be used exclusively in the present study.

Definition 3.2: The "valency" of a node (or a

group of nodes) in a graph G is the number of
new paths added among the remaining set of nodes
as a result of the elimination of the node (or

the group of nodes).

Definition 3.3: The "valency of an ordering” on a
given subset of nodes of a graph G is the total
number of new paths generated in the process of
performing the node elimination in the order spec-
ified.

Lemma 3.1 [100]: There is a one-to-one correspond-

ence between valency of a node of a given graph G
and the number of new non-zero elements introduced
_into the associated incidence matrix by the Gauss-
ian elimination of that variable, which is associa-
ted with the node, from the system of linear algeb-
raic equations associated with the graph G.

Theorem 3.1 [99]: Upon elimination of x; from the

subsequent equations, the new graph G' of the
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remaining system is contained in the graph E‘obtained
from G by:

1) Eliminating the point "i", and

2) Pair-wire connecting (by arcs) all points which

were previously connected to "i",

Lemma 3.1 and Theorem 3.1 are quite similar in
nature. Lemma 3.1 is due to Ogbuobiri, Tinney and
Walker [100]. Theorem 3.1 is given by Parter [99]. Their
formal proofs will not be repeated here, but they should
be intuitively clear from the inspection of Fig. 3.1,
Bree [101] has also presented a similar theorem. Based
upon these theorems, graph representation of the Gaussian
elimination can then be constructed. As an example, the
matrix shown in Fig. 3.3 is reduced step by step in Fig.
3.4 where the heavy branches denote the newly created
connecting arcs, or the valency, which correspond to the
added entries denoted by C in the matrix. The implica-
tion of this elimination process can be further illustra-
ted by the example presented by Jensen and Parks [85]
for structural networks.

Consider the network given in Fig. 3.5a, the con-
ventional node numbering scheme produces a banded matrix
as shown in Fig. 3.5b. The number of valency of this
particular ordering in this graph, i.e. , the total
number of the newly created terms C with symmetry account-

ed for, is found to be eight. If a new order is taken,
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as shown in Fig. 3.6, the resulting matrix is shown in
Fig. 3.7. The valency of this ordering is reduced to
five. For large networks, this disparity will usually
be much greater in favor of the node re-ordering scheme.
This type of scheme is sometimes referred to as optimal
or near-optimal node re-ordering in current literature,
and it is not surprising that many researchers tackle
the solution method for a system of linear equations
with the graph theoretic or topological approach [99-
109].

For the solution of the crack growth problem in
structural system, saving on computational effort can
further be realized by the graph theoretic approach.
Take, for instance, the network in Fig. 3.8a to simulate
a crack in the structure shown previously in Fig. 3.5a.
The additional node has to assume the next higher number
in sequence, 10 in the present example, because it is
generally impractical to re-number all the nodes in the
network. From the banded matrix solution standpoint,
this inevitably results in an increase of bandwidth,
which means more effort and storage are required, as it
can be seen that the valency of this particular ordering
is increased to eleven. On the other hand, a re-ordering
shown in Fig. 3.8b produces only a valency of four, one
valency less than the ordering of the previous case

shown in Fig. 3.7. This is, indeed, a crucial point in
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implementing a solution scheme for the analysis of
crack growth.

A number of optimal ordering algorithms for the
sparse matrix technique have been proposed for networks
with fixed topology. Undoubtedly, all such algorithms
require additional computer effort in searching and re=-
cording the variables. 1In the case of changing topology,
the effort spent in the optimal ordering every time
a change takes place may prove to be quite a burden. For-
tunately, in most strucﬁural problems, the network is
rather regqular, énd near-opfimal ordering can generally
be achieved by inspection.

Consider the structural networks shown in Fig. 3.9.

which are very unfavorable to the banded matrix technique,

the optimal ordering by inspection is indicated by the
numbering sequence. Three important points should:bé
noted in this method of ordering:

l) To minimize the valency, the ofdering shduld be
such that it creates a minimum number of "active
nodes". A node becomes "active" when it is conn-
ected by a branch (or arc) to the node being
eliminated. All the active nodes form an "active
front" or "wave front",

2) Thehordering précess\dan be thought 6f as pro=
gressing mesh by mesh, as indicated by the mesh

numbering,'
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3) If a book-keeping scheme can be devised such
that the ordering of nodes being eliminated
is independent of the actual numbering assign-
ed to each node in the network initially, the
solution scheme will be totally free from the
constraint of node numbering.

These three key points enumerated above can be viewed
upon as the graph theoretic foundation of a solution
technique known as "the frontal method.” They also
provide the prime motlvatlon for adoptlng a frontal
methéd as the basic solution algorlthm in the present
study.

3.3 Frontal Solution Technique

The frontal solution technique has been developed
by a number of authors in recent years. However, seldom
has this method been associated with thé gréph theoretic
approach. The frontal solution technique is a rather
novel and rational approach which is suited very well to
the finite element method of analysis. When the crack
growth problem is encountered, the frontal solution tech-
nique even appears to be the only feasible means for such
an analysis, because as the computer program developed
by Irons [98] has demonstrated, the solutlon can be com-
pletely independent of the node numbering a551gned to
the structure. In other words, the node numbers are

merely node identification symbols, or nicknames as
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they are so aptly called by Irons. Thus one can freely
modify the topology at any stage of analysis by adding
new node numbers anywhere in the structural network &
without the constraint imposed by bandwidth restriction.

To formulate the frontal solution technique, the
first requirement is the description of the structural
topology. This can be accomplished by the use of the
adjacency matrix. Since each mesh is processed at a
time, a pointer array can be established, and hence the
ordering of the elimination sequence can also be made
independent of the mesh or element numbering. The second
requirement is the recording of the incidence relation-
ship between the nodes and the branches or the meshes.
Since each finite element is treated as a mesh, the node-
mesh incidence provides all the incidence information
required. Lastly, and perhaps most imortantly, a clear
understanding of the Gaussian elimination process and a
systematic method of tracking down the nodes and the
valencies are required in order to dispense with the
necessity of keeping a large two-dimensional array while
working with matrices. An especially important chara-
cteristic of the frontal solution technique is that the
order of the variables being eliminated is different
from the order of the variables being picked up for pro-
cessing.

Consider the set of equations resulting from the



displacement method of analysis

Ku=P (3.2)
where K is the structural stiffness matrix, u the un-
known displacements, and P the known nodal loads. The
equations obtained from eliminating the variable ug,

using equation eg in Fig. 3.10, by Gaussian procedure

are
- _
kKis
k¥.. = k ;5 =1k
ij 1] s
| Y Kgs | (3.3)
k.
P%*, = P, - | P is
i i s f

It was Irons [ 98] who noted that as long as the equa-
tion e, is complete, i.e., all the contributions from
the structural elements to the coefficients kis' ksj’
kg and P, have been fully accounted for, elimination
of the variable ug can be performed while the contribu-

tions to the rest of the coefficients ki and Pi may or

J
may not have been fully summed. This important recogni-
tion of the Gaussian procedure holds the main key to the
frontal solution technique. Also note that, due to sy-

mmetry of the stiffness matrix K, only the coefficients
ksj (3 =1, 2, ..., n) and Py need by fully summed, be-
cause this will automatically imply kig (1 =1,2,...,n)
have been fully summed also. Furthermore, since only
the upper triangular matrix is stored, the actual co-

efficients required to compute the quantities within

69



the brackets in Eg. 3.3 are

kis (i=l'-o-.’S),
ksj (j = 1,4000,n), and
Ps

The coefficients to be modified are also confined to the
upper triangular matrix and the column vector P. The
various coefficients involved while processing the vari-
able u, are shown in Fig. 3.10.

All the coefficients kij and P; involved in elimina-
tion process can be stored in a one-dimensional array
within the computer. A scheme has been ingeniously de-
vised by Irons to correlate the element kij in a matrix
to the element kq in a one-dimensional array. All matrix
coefficients are stored columnwise as shown in Fig. 3.
1l1. This scheme has the advantage of being completely
independent of the exact matrix size. Every location
of the coefficient is conveniently determined by a
Mathematical Statement Function NFUNC(I,J) in Irons'
published computer program ZIPP [98].

NFUNC(I,J) = I + (J*(J-1))/2 (3.4)
This simple function turns out to be extremely useful.
For instance, the location of a coefficient ksj which
is below the diagonal is given by NFUNC(J,S); the stor-
age allocation required for the upper triangular matrix
of order n x n is given by NFUNC(N,N); the head of each

string of coefficients in a column j is given by NFUNC
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(0,J), without the need of knowing the exact size of the
matrix that the coefficients belong to.

Irons' program ZIPP, which is well documented and
hence will not be repeated here, provides the foundation
upon which the computer program developed in the present
study is built. However, besides the alteration of in-
put and output formats, several modifications to Irons'
original program have been made:

1) The preprogram phase has been eliminated. The
destination of each variable is assigned during
the element stiffness assembling process in-=
stead of in the preprogram phase.

2) CODEST, a subroutine in ZIPP to interpret coded
destinations, has been eliminated. Incidence
numbers are used in place of the code.

3) Most of the major arrays are dynamically allocat-
ed. Therefore, the mathematical statement fun-
ction NFUNC(I,J) in ZIPP is altered slightly and
replaced by a new function

LOCATE(I,J,K) = I + (J*(J-1))/2 + K
where K is the starting location.

4) Multiple degrees of freedom per node are added.

5) Global loads are associated with nodal points
rather than with individual elements. Therefore,
no summing of load vectors is necessary. However,

elements with an initial load such as in the
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case of prestressing are also made possible.

6) Prescribed displacement boundary conditions
are allowed and reactions are recovered.

7) The construction' of the Choleski decomposition
UtU from the frontal solution technigue has
been made optional.

8) ECS (Extended Core Storage) and Disk File are
used to serve as a two level I/O. Thus the
time-consuming BACKSPACE-READ-BACKSPACE pro-
cedure is avoided.

9) To further save core storage srace and to allow
for partially format-free inputs, bit manipula-
tion and string processing techniques are used,
which necessitate the use of assembly language
programming.

Some of these modifications will be discussed subsequent=-
ly.

3.4 Treatment of Displacement Boundary Conditions and

Recovery of Reactions

Simultaneous imposition of non-zero prescribed loads
and displacements, and the recovery of reactions can be
accomplished in various ways. The commonly employed
method is to modify the load vector. Consider the set

of equations shown in matrix form



_
K K K
11 12 13
Ka1 Koy Kyj
K31 K3, Kyy

S -
% P
u, P2 (3.5)
u P

] = 3J - 3J

adopting the notations of Melosh and Bamford ([87] in

which Kij are stiffness coefficients; u; and Pi are dis-

placement and force components to be determined; and

uj and Pi

are prescribed displacement and force compon-

ents, respectively. If the values of reactions need not

be computed, Eq. 3.5 can be simply rewritten in the form

of
Kip 0 Kyj
0 1 o0
| K3y 0 Ry

Uy Py ~K12
- L. 3.J L. 3.4 - 32.J

Note that if 52 = 0, the equation and the terms associa-

ted with ﬁz are simply deleted without any modification

to the load vector.

When the values of reactions are

desired, Eq. 3.5 can be modified as

K11

Koi

K31

0 K

13
-1 K,
0 K33

Alternately, Irons

— —— — — - — —

U,
1 | us J | P3| _-K32J (3.7)

[98] and Wilson [90 ] have suggested

a large coefficient, k" say, be added to each of the
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equations associated with a prescribed displacement.
This procedure can be illustrated as follows, using

Eg. 3.5 as an exanmple:

_ - - - -
Kya Ki2 Kj3 u Py
Koy (K22+kn) Ko3 X = k2 up
. _ (3.8)
LK31 K32 K33 uj Pi
] _ w b e

This will yield an x in the order of k "

, and u; with an
error also in the order of k™. The reaction P can be

obtained by comparing Eg. 3.8 with Eq. 3.7, i.e.,

Ko1 uy - P2 + K33 u3z = - K22 ﬁz

%
Koi ui + (Kzz + kn) x + K33 uz = kn u,

*
Since u; ¥ uy for kP >> Kij

Py = (Kyp + k) (8, - x) (3.9)

However, in terms of the frontal solution technique, a
method proposed by Melosh and Bamford [87] is much more
natural and can be effectively incorporated into Irons'
frontal solution program ZIPP for the treatment of dis-
placement boundary conditions and to recover the re-
actions.

Instead of applying Gaussian elimination directly,
as done by Irons, the stiffness matrix K of Eg. 3.2 is

decomposed into a triple product by Melosh and Bamford
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-1 t t t -
L, © o ||p;3 o o ||lef; 15, iy ||u,| |B
t -1 t t -
-1 t —
L3; L3y D33f|0 O D310 O L3z f|uz |P3
n )| JL JL oL T

(3.10)

where L is a lower triangular matrix whose elements are
given by
i-1 L'Lni
L.. = K,, - ¢ —=l-2= : il

ij i3 w1 g

and D is a diagonal matrix whose elements Dii are
equal to the diagonal elements of L.  The general

solution procedure for this type of decomposition is to

let

y = p ! Lt u
and Ly = P (3.11)
or y = ™ p

Since L is a triangular matrix, a "forward substitution”

will yield y , and a "backward substitution” will
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yield the required displacements u.

In order to avoid modifying the whole set of
equations when prescribed displacements are encounter-
ed, such as in the cases of Egs. 3.6 and 3.7, Melosh

and Bamford recast Eg. 3.10 into

B -1 e t t 17 ]
Lll 0 0 Dll 0 0 Lll Lzl L3l ul
-1 -1 .t -1t ||=-
Lppy T 0 0 D22 0 |l 0 Kpp-LppD31 L21 Kp3-L21D11L31 |u,
-1 -1_t
_L3l 0 L33_L.O 0 D3§- _0 0 K33—L31D11L3]; LU.3_J
P
1
2 (3.12)
-— -1 t -
Py = (K33 ~L31 D1 L1) w,

It can be seen that the equation preceding ﬁz is left
undisturbed. This is an utmost crucial point in the front-
al solution technique. A careful examination of Eg. 3.12
and the general procedure of treating the prescribed
boundary conditions proposed by Melosh and Bamford suggests
that transference to the Gaussian elimination process
employed by Irons is quite plausible. The steps in the
solution of Eq. 3.12 are recapitulated here.

1) Perform the decomposition of each row and

distribution of its contribution to the following rows



of the stiffness matrix, until a row of the stiffness
matrix associated with a particular prescribed dis-
placement is reached.

2) At this particular instance, the data in

coxre are
B -1 .t -1 .t |
Kyp = Lyp D171 Lyg Ky3 = Ly D11 Ly
(3.13)
-1 _t
O - L3l Dll L3l
-1 _t -1 _ ¢
The row vector [ K22 - L21 Dll L21 ’ K33 - I Dll L3l ]

21
is written out without further change. “
3) Continue the decomposition of the remaining
row to produce L33 .
4) Perform forward substitution, using the first
set of decomposition rows one at a time until a constrain-
ed displacement is encountered. The available data in

the core are

'—Lzl Yl (3-14)

-1 —
where Yy = Lll Pl
5) When a constrained displacement is encounter-

ed, the reaction is given by the second row of Eg. 3.12

as modified by the inverse multplication, this is
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-1 -
t 1_t _
[ Ky = LpiPyiLyy » Kpz = LpyDyjli3y | = Py - Lp1V¥y

(3.15)

The partitions on the left-hand side of Eg. 3.15 defining
the contribution to following rows, and the contribution
of prior rows on the right-hand side, -L,; Y, can be written

in an auxiliary storage. The boundary condition ujp is

read in to replace -L,j y, and the contribution of the
restrained row to following rows is distributed.

6) Forward substitution of the remaining rows of
the decomposition and boundary condition matrix, as in

step 4 to produce

vy = L33 [ Py - K3pdp + L31D11L§laz - Layp |
(3.16)
7) Perform backward substitutions in reverse order
and operate on y5 to yield

t
uy = [ L33 17" Dis3v3 (3.17)

8) When constrained rows of the decomposition are
encountered, the az, us contribution to reactions (left-
hand side of Eg. 3.15) are calculated and written on
auxiliary storage.

9) The backward substitution continues to define
the unknown uy, with Gz and u, known,

3

t -1 t - t
u; = [ Lyp | Dyl y3 = Ly uy = Lgpug 1 (3.18)

10) The forward and backward contributions to the

reaction are summed.
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The steps outlined above suggest a way of treating
the displacement boundary conditions to be incorporated
into Irons' frontal solution program ZIPP. Using the
original notation in Irons' paper, the Gaussian process

employed by Irons to eliminate Xxg , using equation e

is
¢ =,y - CisCsi
f ’ Ces (3.19)
Cig X
x; =X. - -*8°8
i
Css
for a set of equations
Cx =X (3.20)

To see how the two solution methods are equivalent,

expand the K matrix in Eqg. 3.5 into triple product of np~ 1L

— — — [ — - - -

-1 t t t
K11 K12 Kp3 Lyj; O 0 D;j; 0 O L1y L33 L3y
-1
Ko1 Koy Kp3| = |Lpy; Lpy O 0 Dpy O o 15, iy
-1 £
K31 K32 K33 D31 L3z L33 || 0 0 D33] |0 0 L33,

(3.21)

Carry out the multiplication to express Ki; in terms of

j
-1 _t
Lij Dij Ljy
- e
Kyj1 = L33 D11 Inn
_ _ -1 _t
Kyj2 = K33 = Ly D31 Lgj
_ _ -1 .t
Ky3 = K37 = L3y D3 b3y

_ -1 _¢ -1 t
K22 = Lpj D33 Loy + Loy Dyp Loy




~ _ -1 -1t
23 = K35 = Kyp D7 Lgq + Loy Dyy L3y
- -1 .t -1t -1 .t
K33 = L3j Dyy L33 *+ L3y Dyy Lgy + Lgy Do Lgg
(3.22)

Again, carry out the matrix multiplications in Eg. 3.12

to obtain

B 1t -1 ¢ -1 |7 [-
Li; D17 P11 Lyj; Pyp Dpp Li; D33 31 up Py
-1t ' - | =
L1 P11 Ina Ky2 Ky3 uy | = | Py

-1t -

-

(3.23)

by comparing Eq. 3.23 with Egqg. 3.22, it can be seen that
Eg. 3.23 merely states that the first row and first column

have been decomposed. Note that there exists the relation-

ships
-1 _ t
Lij Djj = Djj Lj; =1
and Lil = Kll = Klj = Llj (3.,24)

Perform the Gaussian elimination on Eq. 3.12 to obtain

— — p—— — — —

t t
Li1 Loy L3; up Y1
0 st it 3 = |p, - L
Koo = Lp1Pyily; K3 = LpiDypl3; Uy = 2 21Y1
-1 t c -1.t -
0 K32 - L31D11L21 K33 - L31D11L31; u3 | P3 - L3ly];
(3.25)
where y; = Lii 51 . It should be clear that from Egq. 3.25
C. Cea- -1
1s ~S] - - . . .
Cij - C - Kij Lig Dii LS]

SS
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This identity indicates that the elimination procedure
of Irons is equivalent to the "decomposition" procedure
of Melosh and Bamford.

Since the second equation involves a known displace-
ment, no decomposition is necessary. But it should be
noted that, as pointed out by Melosh and Bamford, the
term -L,; y; is the contribution from above 4, to P,,
and ( Ky, - L21DI%L§1 » Koz - LZlDIiLgl ) are the con-
tributions from below ﬁz to P,. Therefore, they are

stored as if a second equation, along with the first one.

The third row of Eq. 3.25 can be written as

=1 t, = -1_t =
(K32 - LBlDllL ) u2 + (K33 - L31D11L31) U3 = P3 - L3lyl

orxr

-1 ¢ _ = -1 ¢ -
(K33 - L33DyiL3yluz = P3 - L3zyy- (K3p - L33D11Lzy) U,

(3.26)
where the right-hand side can immediately be recognized
as being equal to L33 y3 in Eq. 3.16. Now, uj can be

readily obtained by

_ 1t -1 (= Lt o)
ug = [ K33 = L31DP1)L3;] P3 - L3i1y; - (K32 - L3 D11lpy) u,

(3.27)
which is equal to Eq. 3.17, if k33 is substituted by the
quantity shown in Eq. 3.22 without the contribution of the

-1 t
L32 D22 L32 term.



The reaction P. is calculated from
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2
[ Kyp - LleiiLgll Uy = Py + {-Lyyv; } - (Kp3 - L2lDliL§l) usg
(3.28)
and uj from
teSy 1w = {y}- alp 8, - @3y ug (3.29)

What should be observed is the striking similarity in
pattern among Egs. 3.27, 3.28 and 3.29. If the guantities
within the curly brackets are stored as the right-hand
side, called CONST, the quantities within the paren-
theses are the left-hand side coefficients being stored
as C(I) , regardless whether or not the equation is assoc-
iated with a known or unknown displacement, and the quantity
in the square brackets is called PIVOT, then the simple
backward substitution algorithm in ZIPP holds for all cases,
namely,

DO 10 I = N, M

CONST = CONST - C(I)*U(I) ~ (3.30)

10 CONTINUE

where N and M indicate the range of back substitution,
C(I) and U(I) are the coefficients and the known displace-
ments, respectively. To obtain the displacement component
u: , called ANSWER, it only needs to carry out

1

ANSWER = CONST/PIVOT (3.31)

If it is for a reaction, called REACT, for which the
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displacement is prescribed

ANSWER = ‘_‘2

and REACT = ANSWER*PIVOT - CONST

which should be evident from Egq. 3.28. Therefore, the
procedure developed by Melosh and Bamford fits nicely into
the program developed by Irons to handle prescribed boun-
dary conditions and to recover reactions in a very, straight-
forward manner, once the similarity and the equivalency

between the two procedures are recognized.



CHAPTER 4 ANALYSIS OF PROGRESSIVE CRACK GROWTH

4;l:FinitevElement Model
. A number of finite element models have been con-
structed by varlous authors around the world for studies
of relnfcrced and prestressed concrete structural sys-
tems, and’scme of tnese models have been mentioned in
Sec;_l.z of this’thesis. For plane structures, the
nasiccomponentsof the finite element model generally
Jcon51st of two—dlmen51onal elements, one-dimensional
bar elements, llnk elements and bond elements. The de-
grees of freedoms per node are limited to two in-plane
displacement components. The two-dimensional finite
element can be used to represent the concrete structure
proper, and occasionally to represent the main steel re-
inforcement when shearing stress in the main steel rein-
fcrcement’is‘of interest. The oneedimensional bar ele-
ment can beaused to represent the web reinforcement,
‘ érestressing strand, or main reinforcement, when only
the unianial effect is to be simulated The link of
llnkage element is phy51cally dlmen31onless, but is
capable of prov1d1ng a structural connection between

two nodal p01nts, while at the same time permitting
fcertaln degrees of relatlve movement between them. Thus
'the llnk element can be used to model bondlng between

the concrete and the steel relnfcrcement, interlocking
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across two cracked planes, or simply as a connecting
device at discrete points in the structure. The bond
element was originated from the study of jointed rock
in the field of rock mechanics. It can be considered
as an extension of the link element. Being physically
dimensionless, it serves the same purpose as the link
element, except that connection is distributed along
a line rather than concentrated at a point. This added
feature makes the bond element an ideal joint element
in the conceptual model proposed earlier in Sec. 1.4.
The types of element employed in the present study
-will be described in the following sections.

4.1.1 Isoparametric Quadrilateral Element with 4 to 8

The isoparametric two-dimensional quadrilateral
element developed by Bathe, Ozdemir and Wilson [110] is
shown in Fig. 4.la, with its square mapping onto the
"parent" element shown in Fig. 4.lb. Nodal points 1 to
4 are mandatory. Nodal points 5 to 8 may be included
in any arbitrary manner to form the so-called "hier-
achical® elements. This higher order element, of course,
produces better results. But at the same time, it re-
quires more computational effort. This novel feature
of being able to have a mid-node at any side offers add-
ed convenience in the gradation of mesh size within a
particular layout. Formulation of the element stiffness

is presented in Appendix I(a).
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With this isoparametric element, plane stress,
Plane strain or axisymmetric analysis can be performed
by simply specifying the corresponding constitutive
relationship to be used.

4.1.2 Triangular Element by Degeneration

The isoparametric quadrilateral element developed
by Bathe et al. can be degenerated to a constant strain
triangular element if node 3 and node 4 are given the
same coordinates, Fig. 4.1lc. The assignment of the
coordinates for node 4, however, is taken care of
automatically in the present program. Therefore, plane
stress, plane strain and axisymmetric constant strain
triangular finite elements are made available in the
manner as if they were ordinary triangular elements
with three nodal points.

4.1.3 One-Dimensional Bar Elements

The one-dimensional axial bar or truss element is
a very common type of structural element and its element
stiffness matrix is well-known, Fig. 4.2. However, to
be consistent with the present finite element develop-
ment, the stiffness of a bar element having two or three
nodal points is derived in a manner similar to the iso-
parametric element in Appendix I(b). 1In the present
study, a bar element with only two nodal points is used,
and initial stress is permitted in this type of element

for the simulation of prestressing force.
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4.1.4 Link Element

The link element was first published by Ngo and
Scordelis [9] to simulate the effect of bonding and
bond slip, Fig. 4.3. The basic concept is to derive
an element whose stiffness characteristic is independ-
ent of its physical dimensions such as cross-sectional
area and length. This is made possible by a direct
appeal to the constitutive equation. A “spring constant"
is assigned in place of the stress-strain relationship
and hence neither the derivative of the shape functions
nor the integration over the length of any particular
direction is required. Formulation of this link element
stiffness is reproduced in Appendix I(c).

4.1.5 Bond Element

Following the same basic concept of the link element,
Goodman, Taylor and Brekke [111] later developed a
joint element which assumes the shape of a line instead
of a point, Fig. 4.4. While the link element can be con=-
sidered to be a lumped stiffness element, the bond ele=~
ment is a distributed stiffness element along a straight
line. Therefore, the spring constant assigned to bond
element is on the basis of per unit length. Again, as
for the bar element, its stiffness can be derived in a
manner parallel to the isoparametric element, for a four
Oor six node element as shown in Appendix I(d). Only

the four-node element is used in the present study.
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3 4
c) DEGENERATION

b) PARENT ELEMENT

a) TWO-DIMENSIONAL ELEMENT

FIG. 4.1 ISOPARAMETRIC QUADRILATERAL
ELEMENT



FIG. 44 BOND ELEMENT
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4,2 Simulation of Crack Growth

As stated earlier, one of the main objectives in
the present study is to develop a computer method which
is capable of analyzing cracking problems by automati-
cally introducing crack-=lines into a two dimensional
solid, using the finite element model. Therefore, some
"ground rules" must first be laid. This involves the
setting of the criteria for three major phases, namely,
1) crack initiation; 2) crack propagation; and 3) crack
stabilization.

In what follows, a set of simplified rules is adopt-
ed for the sake of convenience in developing the "crack
growth" procedure.

4,2.1 Crack Initiation

The prediction of where a crack will initiate is
based on the conventional concept of failure criteria.
Throughout the years, many failure criteria have been
developed for concrete structures by various authors.
See, for instance, a recent summary given by Argyris
et al. [30] in connection with the finite element ana-
lysis of prestressed concrete reactor vessels,

For the present study, the simple failure criterion
adopted is shown in Fig. 4.5. It offers simplicity in
checking every point for potential crack initiation,
once the principal stresses at every discrete point of

the structure have been computed. If the principal
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stress at a particular point meets the tensile failure
criterion, then a crack is said to initiate at that
point, which may be located anywhere in the two dimen-
sional solid. If, on the other hand, a principal stress
meets the compressive failure criterion, then the struc-
ture is declared failed in compression. No compressive
fracture is investigated in the present study.

Note that the isoparametric element used in the
present study is a higher order element. It can be ex-
pected that the stresses vary within the gquadrilateral
element itself. Therefore, it is possible to obtain a
better stress gradient by first computing the stresses
at each corner node of the gquadrilateral elements, and
then averaging all the stresses of those corners in-
cident to a given nodal point. These averaged stresses
are used to define the state of stress at that parti-
cular point. Clearly, the node-mesh incidence matrix
devised earlier provides all the needed information for
performing such an averaging process.

4,2.2 Crack Propagation

After a crack has been initiated, the structure is
reanalyzed, which results in a new set of averaged nodal
stresses, including the node at the crack tip, see Fig.
4,6a. The crack is assumed to propagate if the averaged
nodal point stresses produce a highest maximum prin-

cipal tensile stress that meets the failure criterion.
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The direction of propagation is assumed to follow the
path of the principal tensile stress trajectory.

It should be clear that the nodal point stresses
at the crack tip are merely an indication of the
"stress environment" around the crack tip, because
no special provision is made to capture the stress sing-
ularity in the present model. Furthermore, the crack
length and the crack orientation are dictated by the
finite element mesh layout, as discussed previously in
Sec. 1.4, with respeét to the conceptual model. Possible
paths for a crack to propagate are illustrated in Fig.
4.6b.

4,2,3 Crack Stabilization

Consequent to the crack propagation criterion
stated above, a crack will be stabilized if the princi-
pal tensile stress at the crack tip falls below the crit-
ical level, or it will temporarily cease to grow when
a higher principal stress level occurs at some other
point in the structure. 1In the latter case, another
crack will initiate or propagate instead. When the
stresses at every point in the structure do not exceed
or meet the failure criterion set forth, then the crack-
ing configuration is considered to be stable under the

given loading condition.

4.3 General Crack Growth Procedure

With the basic rules governing the crack initiation,
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propagation and stabilization having been set in the

previous section, a computer method can now be developed

for the crack growth procedure. Take, for example, the

simplified two-dimensional structure shown in Fig. 4.7.

The total structural system is regarded as composed of

main structure represented by the two-dimensional fin-

ite elements and a substructure consisting of the bar
and bond or link elements. Suppose that an initial sol-

ution by the frontal method has been carried out for a

given loading condition, and it is expected that crack-

ing, in the form of a crack-line, is going to develop.

For the present, assume the crack growth is limited to

the main structure only. The general procedure to gen-

erate a crack-line or to trace the crack growth is out-
lined as follows:

1) Average the stresses at each nodal point and compute
the resulting principal stresses and angle defining
their direction. Check the principal stresses against
the failure criteria. The node with the highest prin-
cipal stresses that meets the failure criterion is
henceforth referred to as the cracked node, ISPLIT,
Fig. 4.7, and the principal angle is defined as
ANMAX, Fig. 4.8.

2) Execution of the program is terminated if no cracked

node has been found, or if there is a failure in com-

pression.
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3) For the cracked node, ISPLIT, examine its status
from the array (NOD) to see whether the cracked
node is situated either at a prescribed force or
displacement boundary point. If yes, execution is
halted. If no, start to introduce a crack-line
into the main structure proper by first setting a
flag for the node ISPLIT in the (NDO) array and
by checking whether the node has been the tip of
a previous crack, If yes, set KRTIP=1.

4) From the node-mesh incidence array (NMI), locate
the elements and the nodes which are directly in-
volved with the cracked node ISPLIT, Fig. 4.8,
and store them into (KELE) and (KNDE) arrays, res-
pectively. The actual number of elements and nodes
involved are denoted by NELE and NNDI.

5) Store the nodal points of each element in a two di-
mensional array (KNND), and construct the local node
incidence number array (KICD)and local node-mesh
incidence array (KNMD), Fig. 4.9. At the same time,
store the’corner nodes of each quadrilateral element
into the (KQUD) array, Fig. 4.8. The total number of
such nodes is indicated by NQUD. These corner nodes
are included only for those elements which are:

a) Not a boundary element (See Example C ), or
any element being excluded from the crack growth

consideration.




6)

7)

8)

9)

10)

b) Not an element having been previously cracked
or bordering a crack-line, when KRTIP = 1.
If NQUD = 0, it means that the cracked node is

located within a totally fractured zone. Further

cracking is possible only when a hinged connection

exists at the cracked node, Fig. 4.16, which is
indicated by NGAP 2 0 (See step 11 below). Note
that a triangular element is not treated in the
present crack growth procedure.
Rotate the node numbers of each element stored in
the (KNND) array, so that the cracked node becomes
the first node number in each element. The rotation
count for each element is stored in the (KROT) array.
Store the elements indirectly affected by cracking in-
to the (IELE) array and the total number of such ele-
ments, Fig. 4.10, is denoted by MELE. This defines
the ultimate extent to which any topological change
may occur due to cracking.
Treating the cracked node ISPLIT as being the origin,
compute the angle to each corner node with respect to
the cracked node, and store it into the (ANGL) array,
Fig. 4.8.
Transfer the node status from (NOD) array to (INCD)
array for all nodes affected by cracking.
Form the local adjacency array (KAJC) Fig. 4.1l1, as
follows:
a) Obtain an element number from (KELE) array, Fig.

4.8.
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b) Obtain the nodal point number of that element
from the (KNND) array.

c) Check in the local node incidence array (KICD),
Fig. 4.9, to see whether the incidence number of
that node equals to 2. If no, skip that node.

If yes, obtain the element numbers from the local
node-mesh incidence matrix (XNMD), Fig. 4.9, of
that node, and store them in the adjacency

array (KAJC), Fig. 4.11.

11) Set the gap count NGAP to =2, and construct a pointer
array (KDUA) for the dual graph, Fig. 4.12, directly
from the adjacency array as follows:

a) Look for an empty slot in the (KDUA) array and
check to see whether the corresponding row in
the adjacency array (KJAC) has a single or double
adjacency. If it is a single adjacency, sign-
ified by a 0 in the second column, then it is
the head of the pointer array. If no such con-
dition exists, i.e., the initial dual graph
is a closed loop such as the one shown in Fig.
4.12, then simply pick an arbitrary element, say

the Jth element in the (KELE) array.

b) Set IEL = JEL KELE(J), as a start.

c) Obtain the row number I of the element number IEL

in the (KELE) array.

th

d) Check in the I row of the (KAJC) array to see
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if there is any positive number K which is not
equal to JEL.

e) If yes, store K into KDUA(I) and reset JEL~=
IEL and IEL=K, at the same time, negate K in
(KAJC) array and go back to step c) and repeat
the procedure until all elements have been ac-
counted for.

f) If no, set a large negative number in KDUA(I)
and increment the gap count NGAP by 1, Then
go back to step a).

g) After all elements have been processed, reset
the large negative number, if any, in the (KDUA)
array to zero, and all entries in (KJAC) array
to positive numbers. Now NGAP indicates the
number of gaps or discontinuities existing in
the dual graph.

12) Determine the number of additional nodes to be creat-
ed. In general, two new nodes are required if there
is a substructure attached to the cracked node ISPLIT,
otherwise, only one node is added to the total struc-
ture.

13) Create more additional nodes if there is more than
two gaps existing in the dual graph, signified by
NGAP>0. The number of extra new nodes required will

be equal to NGAP. When NGAP20, it means that more




101

than one crack has reached the cracked node ISPLIT.
Therefore, no determination of the crack orientation
will be performed. Execution procedure jumps dir-
ectly to step 18) below for the construction of
separate chains. No new element is created in this
case.

14) Detect the crack tip or tips as follows:

a) Compute the crack orientation in accordance to
the given principal angle ANMAX.

b) Search through the angle array (ANGL) to see if
there is any node which lies within 30° of the
crack orientation. Any node which falls closest
to the crack orientation within this 30° cone
will be denoted as the crack tip.

c) Flag the crack tip node in the (INCD) array.

d) An error message will be given in no crack tip
can be found.

15) Check if crack tip reaches the boundary of the struc-
ture, and record such a crack tip node in IBOUND or
NBOUND. A boundary is characterized by a node in-
cidence number of 2 or less.

16) Determine the number of elements to be added by check-
ing in the local node incidence array (KICD) for
each of the crack tip node:

a) If the incidence number equals 2, that means no

new element need by created. A crack-line is
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formed by separating two adjacent elements
along the element boundary. Negate the ele-
ment number in each other's row of adjacency

matrix (KAJC), Fig. 4.13.

b) If the incidence number equals 1, that means
a gquadrilateral has to be subdivided into

two triangles to form a crack=-line. Create

a new element, say e, in Fig. 4.10 and 4.13.
Store it in (KELE) and (IELE) arrays, and in-
crement the counters NELE and MELI. Expand
the dual graph and modify the adjacency re-
lationship, Fig. 4.13. Update all the arrays
involved.

17) Interchange the entries in each row of the adjacency
matrix (KAJC), so that all positive entries appear
on the first column.

18) Construct separate chains based on the adjacency

array (KAJC), Fig. 4.14:

a) Initialize the (KDUA) array which now becomes
the indicator for processed elements.

b) Check through the adjacency array (KAJC) for
each unprocessed element to see if there is any
severance which is indicated by a negative or
zero entry.

c) If yes, store that element as a member of the

chain and flag that element in the (KDUA) array
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to indicate that it has been processed. Con-

tinue to build up the chain through the adjac-

ency relationship, until next point of sever-
ance is encountered.

d) If no element remains to be processed,
then the procedure for the construction of the
chains is completed. Otherwise, start a new
chain by repeating the construction procedure
starting from step b.

19) Assign new node number to the elements belonging to
each chain. One of the chains will retain the crack-
ed node number, if there is no substructure attached
to the cracked node.

20) If there is any quadrilateral being subdivided into
triangles, formation of the triangular element node
numbers must be made in accordance with its adjac-
entkelement. Using Fig. 4.10, as an illustration,
the steps are:

a) From the adjacency array (KAJC), locate the el-
ment d which is connected to the newly created
element e.

b) Similarily, locate the element ¢ which is sever-

ed from the element e.

c) Since all node numbers have been rotated such

that the cracked node is the first node number,




104

and all nodes have been numbered counterclock-
wise (I,J,K,L), it is necessary only to check
the second node of element c to see if it is
equal to the fourth node of elemént d.

d) If yes, the triangular element c assumes the node

numbering I, K, L; and element e, I, J, K.

e) If no, then the opposite is true for the two
elements c and e.

21) Assign the coordinates of the cracked node ISPLIT to
all the newly created nodes.

22) Update all element data including rotation of the
node numbers to their original order for all quad-
rilaterals, using the (KROT) array, and store them
into ECS.

23) Update the original node status array (NOD), the
original node-mesh incidence array (NMI), and the

element pointer array (NXT) for next cycle of fron-

tal solution,

24) If the crack tip has reached the boundary or reached
another crack tip hence forming a hinged condition,
then ISPLIT is set equal to that crack tip node and
the procedure is repeated onée again starting from
step 3.

4.4 Tests of Crack Growth Capability

The steps outlined in the last section form the

basic algorithm for the crack growth procedure which
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has been programmed into a FORTRAN subroutine called
CRACKPA. In reality, there are numerous crack growth
patterns and configurations, depending on the structural
layouts, finite element sizes and loading conditions.
Therefore, it is desirable to examine the capability

of the programmed crack growth procedure in develop-

ing crack-lines under differnt circumstances which con-
ceivably can occur during a crack growth analysis.

These kinds of tests can be easily accomplished here, be-
cause the subroutine CRACKPA has been so programmed

that it depends only on two key parameters, the crack-

ed node ISPLIT and the principal angle ANMAX. Instead

of actually carrying out the frontal solution procedure
and the stress averaging procedure, a simple driver
routine can be written to read in specifically an ISPLIT
and an ANMAX to simulate the desired cracking condition
occuring on a given finite element mesh layout, Fig. 4.15.
‘A few tests were performed and are described below:

a) Vertical Crack at Boundary. Common flexural cracks

are initiated at the boundary. Figure 4.l6a simulates
such a condition, and Figure 4.16b shows that the
vertical flexural crack continues to propagate.
Because of the layout of the finite element mesh,

the crack=-line is generated along the element bound-
ary, thus no new element is created.

b) Inclined Crack at Boundary. When flexural stress is
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c)

d)

e)
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combined with shearing stress, an inclined crack
often results. This is often observed in some beam
experiments. Figures 4.16¢c and d show an inclined
crack initiated at the boundary and continue to
propagate. Note that because of the inclined crack
path, quadrilateral elements are subdivided into
triangles to accommodate the crack-line.

Vertical and Horizontal Cracks in the Interior.

Cracks may also be initiated at an interior point

of the structure, such as commonly seen in prestress-
ed concrete and pull-out specimens. Figures 4.16e
and f show how the vertical and horizontal interior
cracks are handled by the crack growth procedure.

Inclined Cracks at Interior. Inclined cracks also

frequently occur in the beam webs of laboratory test
specimens. Limited by the layout of the finite ele-
ment mesh, Figures 4.16g and h show how the inclined
cracks at the interior point of a structure are ac-
commodated.

Branching Cracks. In order to be able to obtain a

better approximation of the crack growth patterns,
propagation should be allowed to branch into the
direction closely adherent to the predicted crack
path. Figures 4.16i and j demonstrate two of such
branching cracks. Branching in other directions is,

of course, quite possible in the present crack growth



f)

g)
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procedure to meet the actual cracking situation.

Separation of Substructure. In the study of reinfor-

ced and prestressed concrete members, cracks are
commonly initiated at the point where reinforce-
ment is attached to the concrete. In order to
handle such situations, the computer program must
be able to recognize this special problem of conn-
ectivity and properly assign extra new nodes to
the structure. Certainly, no difficulty will be
incurred if the topology of the structural network
has been classified into main system and subsystems,
for which separate subgraphs are envisioned. There-
fore, the incidence member of each node consists
of two classes: one for the graph of the main sys-
tem and the other for the subsystem. Both numbers
are stored in the node status array (NOD) which is
constantly available for reference and updating.
Figures 4.16k and 1 illustrate the separation of

a substructure (e.g. reinforcement) when a crack-
line is introduced into the concrete. Note that
the original node number is retained by the sub-
structure, thus little is affected in the topolo-
gy of the substructure, and two new nodes are as-
signed to the main structure, plus the creation of

one additional element in this example.
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a hinged connection. This seemingly rare situation
does occur when the cracking condition becomes more
intensified. Using the concept of dual graph, gaps
or discontinuities in the dual graph provide a means
of detecting the hinged connection, as explained in
previous section. The present crack growth proced-
ure succeeds in recognizing and releasing the hinged
connection, Fig. 4.lén. This capability is rather
important, and will be demonstrated in the follow-
ing cases.

Separation of Boundary Hinges. Boundary hinges are

formed when the crack originally initiated at an
interior point propagates outward and ;eaches the
boundary. Figures 4.160 and g simulate this situa-
tion. Since both crack tips in these particular
test examples reach the boundary, total severances
of the structures result, Figs. 4.16p and r.

Separation of Crack Tip Hinge. Figure 4.16s shows a

crack which is initiated at the boundary. Another
interior crack is generated, Fig.4.16t, and reaches
the tip of the boundary crack. Therefore, a crack
tip hinge is formed, and subsequently released as
shown in Fig. 4.16u. However, the other tip of the
interior crack also reaches the boundary, which is
also automatically released by the crack growth pro-
gram. This results in fracturing the solid into

two pieces, Fig. 4.1l6v.
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4.5 Treatment of Matrix Singularity due to Crack Growth

The various test cases presented in the last sec-
tion display the extent of the capabilities that can be
processed by the crack growth procedure developed in
the present study. At the same time, they point out a
somewhat unusual problem that requires special treatment.

When bar elements are used to simulate steel rein-
forcement and their orientation happens to be parallel
to the global axes, singularity in the structural stiff-
ness matrix will result after a separation takes place,
such as in the test case £ (Figs. 4,16k and 1) shown
in the last section. Similarly, this ill~-condition
would occur in the situations of total severance or
fracture, such as in the test cases g, h and i, (F;gs,
4.160 to v) because of kinematic instability. In drder
to preserve the continuity in the execution of the crack
growth procedure, a small stiffness in the order of
ldJsis automatically added to the variable at which
equation singularity occurs during the frontal solu-
tion procedure. Physically, this means a minute ground-
ed spring is attached to that node in the direction
where the stiffness matrix becomes singular.

In most cases, the introduction of the small spring
has no effect on the final results, because of the re-
latively low stiffness value and the physical configura-

tion of the structure. Erroneous answers can happen
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only in the case where the part being totally fractur-
ed or spalled out, is loaded. Fortunately, for rein-
forced and prestressed concrete members, the load
carrying capacity is jointly shared by the concrete

and the steel reinforcement. Therefore, a total loss
of load carrying capacity without yielding of the steel
reinforcement can be considered as an exceptionally
rare occasion.

4.6 Interruption and Resumption of Solution Procedure

Even though much effort has been made to automate
the progressive crack growth solution procedure, no
claim has been made that the method will cover every
pogsible cracking condition which may be encountered
in every analysis. In fact, it has become evident that
engineering judgement remains an essential part of the
crack growth analysis. Therefore the need of human in—
tervention must be anticipated. To this end, interrupt-
ion and resumption of the program execution have been
fully provided for.

In the present batch-processing computer system,
interruption is done by halting the execution of the
program and by printing a message to indicate further
information and instructions needed to be input. These
situations comprise the following:

a) Cracking occurs at or through a loaded point, or

at a prescribed boundary point;
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b) Cracking occurs at a totally fractured region;

and

¢) Crack tip cannot be located.

These constraints are inevitable consequences of the

discretization and modelling of the structure in the

finite element method. To avoid loss of intermediate

results, output is printed at the end of each cycle

of analysis. In addition, a "PUNCH MODE" has been

made available so that any change in the data due to
crack growth, such as the creation of new nodes and
eléments, together with their status with respect to

cracking, can be output on cards which in turn can be

used as input when the program execution resumes. Thus

continuity of the solution process is preserved.

4,7 Example Problems

Several examples which have been analyzed with

the present program are presented in this section to

illustrate the versatility as well as the limitation
of the crack growth procedure. Due to the many simp-
lified assumptions used in developing the present mod-
el, no attempt is made here to compare the results

with experimental values. But the ability of the method

to capture the general trend and the predominant pattern
of crack growth should be self-evident. The crack
growths are shown by stage in a series of figures, and

the location of the cracked node is indicated by an
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AXrow.

Example A: A Simple Modulus of Rupture Test.

A simple plain concrete specimen under a concen-
trated load at midspan is shown in Fig. 4.17. The seg-
uence of crack growth from the analysis is shown in Fig.
4.18. It is of interest to note that diagonal cracks
initiated prior to the vertical flexural crack. A per-
fect symmetrical crack pattern was obtained, as would
be expected from the loading and geometrical configura-
tion., Moreover, once the flexural crack develops, it
continuously propagates upward until the top fiber ex-
periences a compressive failure because the crack has
almost penetrated through the entire cross-section.
This is a typical phenomenon of a flexural repture test
of a plain concrete specimen.

Due to the fact that a linear elastic analysis is
performed at each stage of cracking, it is also possible
to scale the stress intensity to obtain the critical
load level at which crack will initiate or propagate
at every stage of crack growth, Fig. 4.19. The critical
load is seen to decline beyond the peak level once the
vertical flexural crack has developed. This result
bffers a clear explanation why the crack growth is un-
stable in ordinary modulus of rupture tests.

Example B: A Concrete Bracket

The ijidealization of a concrete bracket and its steel
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reinforcement is shown in Fig. 4.20. The sequence of
crack growth is shown in Fig.4.21l. Note that the crack
was initiated slightly away from the re-entrant angle
where high stress concentration is predicted by the
theory of elasticity. This deviation is probably due
to the inherent characteristics of the finite element
approximation ahd the averaged nodal stresses used.
However, the over-all picture of the crack growth has
not been hampered by this deficiency, and, certainly,
is within limits of for the prediction of cracking in
this reinforced concrete structure. The general behav-
ior of the structure can be seen that after cracks have
reached the steel level, the tensile force required to
resist the external load is carried mostly by the steel
reinfbrcement, which creates a situation similar to the
pull-out test. Therefore, a vertical interior crack
appears repeatedly, which further weakens the bond be-
tween the concrete and the steel. The structure finally

fails by yielding of the horizontal steel reinforcement.

Example C: A Doubly Reinforced Concrete Beam

The doubly reinforced concrete beam 5pecimen and
its finite element model are shown in Fig. 4.22. Joint
elements are introduced at the line of symmetry. This
is an artifice which enables cracks to grow along pres-
cribed displacement boundary line. The steel reinforce-

" ment is represented by bar elements which are directly
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connected to the concrete beam proper. Therefore, no
bond slip is permitted in this case. The sequence of
crack growth is shown in Fig. 4.23. It can be seen

that the crack pattern is dominated by the vertical
crack at the center line, which penetrates quite deeply
into the compression zone. Equilibrium continues to

be maintained because of the presence of the compression
steel. Note that a series of cracks develop at the
tension steel level, at the same time, the bonding is
destroyed at the locations where such cracks occur. The
internal T-C couple has shifted more and more to the
top and bottom steel reinforcement. And finally, the
crack growth procedure was interrupted, because a high
tensile stress is found at the lower left corner. This
fact, which is entirely contradictory to the actual
state of stress that would exist in a real beam, indiéa—
tes the limitation of the present mesh layout. There-
fore precaution should be taken in selecting a finite
element mesh layout. Had there been a finer mesh near
the support reaction and some degree of bond slip per-
mitted, this awkward situation probably could have been
avoided.

Example D: A Prestressed Concrete End Block

To illustrate the capability of introducing initial
stress into any two-dimensional structure for analysis,

a prestressed concrete end block for a pretensioned
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peam is selected and shown in Fig. 4.24. Bond elements
between the steel and concrete elements are provided
for the purpose of obtaining a realistic transfer of
the prestressing force from the steel to the concrete.
The resulting crack growth patterns are shown in Fig.
4.25. As expected from tests in prestressed concrete
end blocks, interior inclined shear cracks are develop-
ed and are accompanied by horizontal splitting.

The execution of the program was halted because
another inclined crack, shown by dotted line in Fig.
4.25(6), was developed in an element being regarded as

in the crack zone, since that element is adjacent to

a horizontal crack line. This is, of course, an assump-

tion artificially imposed in the crack growth procedure,

which aims at providing an opportunity for checking and
intervening should engineering judgement be deemed nec-
essary. At this point, the engineer has the option

of proceéding or suppressing the crack growth at that

particular location, if further analysis is desired.
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CHAPTER 5 STRUCTURAL MODIFICATION AND
REANALYSIS FOR CRACK GROWTH

5.1 Crackihg and Structural Modification

.It has beén shown that cracking causes a change
in the network topology. The structure is constantly
béing modified during the crack growth. Such a modifi-
cation is very often confined to a small region of the
Structure at each stage of loading. 1In the analytical
procedure presented in the previoué chapter, the growth
of a cfack is treated individually, and it involves re-
analysis\of the entire structure each time a crack
growth appears. This érocedure is, of course, a time-
cbnsuming ptocess. Thérefore,’in order'to improve the
efficiency of the procedure for crack growth analysis,
an endeavour is made herein to develop a method which
is aiméd’at reducing the computational effort during
the reanalysis of the modified structure.

The basic nature of the structural modification
forvcraCk growth is éommon to all other structural
modification problems, such as iﬁ cases of member pro-
perties alterations, cut—outs or add-ons, element
yielding or plastification, optimization and redesign.
The increasing uée.of high speed computers as a design
aid, as well as an analytical tool, has further gener-
ated é‘wide—spread interest in efficient methods for

the reanalysis of modified structures. The treatments
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of structural modification can be classified into two
main categories: the iterative method, and the direct
method. Similar to the case of solving a set of linear
algebraic equations, the iterative technique always
encounters the difficulty of assuring the convergence,
even though the method itself may prove to be advan-
tageous in some instances. The direct method, on the
other hand, produces a solution after a specified number
of calculation steps. Thus, the pertinent question
concerning the direct method again lies in the mini-
mization of the total number of numerical operations.

In general, the direct method for reanalysis of
modified structures is based on one of the following
approaches:

1) compensation theorem [112, 113]

2) initial stress or strain methods [114-116]

3) parallel element concept [117-119]

4) perturbation method [120]

5) multiple configuration analysis [121, 122]

6) inverse matrix modification [123-127]

7) substructure analysis [128, 129]

8) mixed method [60, 89].
These headings should not be considered as a rigorous
classification of the different approaches. 1In fact,
there exist certain similarities in concept among them.

A comprehensive comparison of some of the methods has
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been presented by Kavlie and Powell [127] Perhaps, it
is safe to say, as concluded by Kavlie and Powell, that
there is no Single method of reanaly51s which is superior
in all cases. Therefore, the nature of any partlcular
problem should be carefully examlned before final judgment
is made on the selection of a reanaly51s procedure.

In what follows, a modlflcatlon procedure based on
a network theory’is proposed. By realizing the topolog-
ical implication oflthe general theory of modification,
the procedure is not only carried out within the frame-
work of the frontal solution technique, but it is also
entirely consistent with the standard input used in

structural analysis programs.

5.2 Modifications of Structural Networks

In order to v1sualize what is involved in the
structural modification process, particularly with res-
_pect to the study of crack growth, a network-topological
pointwof yiew again‘proves to be very helpful Let.the
whole structural system be treated as a network Then,
modlfications can take place under two conditions.

l) with fixed topology, and

2) with changlng topology

5.2.1 Fixed Topology

- When the network topology is fixed, i.e., the num-

ber of nodes :and branches remains unchanged; only the



branch characteristics are modified. This situation
occurs when there is a change in the constitutive
relationship, or in member geometry, or both, which
results in a change of the element stiffness. Most
of the crack-zone types of analysis fall into this
category, Fig. 5.1. However, it should be noted
that if the element stiffness is being reduced in
the extreme, the element can be considered as being
removed from the network, which in turn causes a

change in the network topology.

5.2.2 Changing Topology

Another class of structural modifications involves
a change in the network topology, in which the number
of nodes and branches may increase or decrease. The
introduction of crack-line into a structure inevitably
changes the topology of the structural network. For
the network shown in Fig. 5.2&, cracking may be simulated
by splitting a node into two, which process may be
termed "discoalescing,"” plus modifying some of the
branch characteristics, Fig. 5.2b. Furthermore, new
branches may be added between the two newly splitted
nodes or connected to any pair of nodes in the network,
for instance, to simulate interlocking, bonding,
additional reinforcement, or constraints, as shown in
Fig. 5.2b. Note that since all structures are repre-

sented as non-oriented graphs in the present study,
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multiple branches'acrcss any two nodes can be combined
into a single branch,’Fig. 5.3. This fact enables mod-
ification on any particular element to be accomplished
by adding a parallel branch to account for the increase
or decrease of the stiffness characteristics. In ex-
treme cases, the element may be completely nullified

or rigidified. Therefore, it can bé seen that modifi-
cation with changing topology consticﬁtes a much broader
and more impc;pant“classyof problems in structural

modification than that associated withffixed'topology.

5.3 Link-At-A-Time Algorithm and Its Dual

In electrica; networks where each branch represents
a scalar quantity; the LAT (link-at-a-time) algorithm
provides a means of édding new branches, one at a time,
to the original network‘Without performing any additional
inversion. This is accompiished by modifying the already
computed inverse matrix at each‘time when a new branch,
or link, is added to the network, hence without the
necessity of resolving the whole new set of equations.
The mathematical counterpart of this algorithm is the
Sherman-Morrison (S-M) formula [130] which has been
generalized to,modificatiOh of inverse matrix‘by House-
holder. Thus it is also known as the Householder
inverse matrix modification equation in matrix theory

[131]. Several attempts have been made by various
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authors to apply the S-M formula, or the Householder
equation with various degrees of success [124-127], and
among them, the work of Argyris, Broulund, Roy, and
Sharpf [125] holds the greatest promise. The Householder
équétionﬁcanﬁbe derived from different points of view.
Hbﬁseholder generalizéd the S=M formulas from a heur-
istical approach [130]. Branin showed that it can be
obtained from diacOpticé using Kron's method of "tearing"
[125]. Boesch gave an algebraic derivation of the
quatiqn”ip connection with electrical network theory
;[75}.7 Boesch's de:ivation\is the only straightforward
fglgqbra%c approach known to the writer, and offers a
clear and simple insight into the Householder equation.
Thg;efqye, it is worthwhile to reproduce Boesch's

. derivation here for further discussion.

Suppose that matrix K, with k-1 being its known

inVéfSé) is perturbed by another matrix Ky. Assuming

\théf”KA‘can be expressed as a triple product XkT, then:

(K + Ky) = (K + XKT) = K(I + K~ 1xkT)

Where I is a unit matrix let:

0 = K™1x
H = kT
Then:  K(I + K~lxkT) = K(I + QH).

Note that:

Q(“;Il';HQ)"; (1 + oMo




Therefore:
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(I + oH)~1lg = (1 +HQ) "1

(1 + oH) ~loH = Q(I +HQ) " lH

(I + oH)~1+ (1+08) Ton = (1 +om)-1 + Q(1 + mQ)~1lH
(I + oH)~1(1 + gH) = (I +QH)~1 + Q(1 + HQO)~1m
I=(I+0H"1+ (1 + HQ)"1H

(r+0oH)"1 =1 - o(I + HO)-1H

Make the corresponding substitution for Q and H

and obtain

which is t

(T + K-1xxr)-1 = 1 - k~1x(1 + xTR~1x)=1lk7T
KLk + xk1) 171 = 1 - R-Ix[k(k~1 + TR~1x))-1lkT

(K + XkT)~1K = 1 - K~Ix(x~1 + 7r-1x)-1lx~1lkT

(K + xk7)~1 = k71 - k-1x(x~1 + Tx~1x)-1lpx-1

(5.1)

he LAT algorithm in matrix form. Clearly,

if a link with a scalar value k is added to or deleted

from a network whose coefficient matrix K is of the or-

der nx n,
branch-nod
is nx 1

Eq. 5.1 ca

where it c

obtain the

then X and T can be interpreted as the -
e incidence matrices AT and A, whose order
and 1 x n, respectively. Consequently,

n be put in the form

1 _ x-latak-1

(K + atka)~1 = k- —
1/k + ak-1at (5.2)

an be seen that no inversion is necessary to

new inverse matrix when a link is’'added or



deleted. Th;sﬂig the very essence of the LAT algorithm.
What,muéﬁ'bé ébservéd‘in the derivation of Eqg. 5.1
is that only two prerequisites are imposed:
1) There exists a K-l for the coefficient matrix
o K; and -

'é) “Karban be4deCOmp05éd into a’triple product.
‘Another“imporfant point to be noted is that Eg. 5.1
is'appiiéablé’aéklong as the network meets these two
féqhifeménté} regardless whether the network graph is
' oriented or un-oriented. For most physical networks,
the two prerequisites stated above can be fulfilled
frivially; v

“’ConveréeIY} Boesch further shows thatithe dual of
 £he'LAT'aigorithm can be used to split a node in the
ﬁéEWOtkf"aﬁd thereforé,“it is possible to increase the
number of nodes in a network. In this case, the branch-
" mesh incidence matrix C takes the place of the branch-

node incidence matrix A'; and F,f replace K,k , respect-

o iVéIy.;wObGiouSIY; F equals K1, and a mesh analysis is

now perfofmed} iﬂs£eéd of a node anlaysis. The dual
" of the LAT algorithm can then be stated as:
- (E®+ctfoyml = prl - prlet(eml 4 cprlct)-lcp-l

(5.3)

. Again, if the rank of (£71 + cr-lct)-1 is chosen to be

;Tyone,xghen;tpg new modified inverse matrix is simply

: . given by:
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F-lctcp-1
1/f + cr-1lct (5.4)

(F + ctec)~l = 771 -

It is of interest to consider the topological inter-
pretation of the dual LAT algorithm. If C is the branch-
’mesh matrix of a given network, with c being one of its
rows and C; the remainder of C, then it is easily veri-
fied that C is not the branch-mesh matrix of the graph
obtained by merely removing the branch corresponding to
to the row c. Instead, it is obtained from'#emoval of
the branch by identifying its end nodes and éeleting the
created self loop, Fig. 5.4, [75]. This process is
called "coalescing"” the nodes. The reverse proéess,
"discoalescing” the nodes, will then create a new node
plus a new branch. By this process of coalescingkor
discoalescing, the size of a network can be continuously
modified by deleting or adding new nodes and new branches.
Equations 5.2 and 5.4 are identical to the S-M
formula, and Equations 5.1 and 5.3 are identical to the
‘Householder equations. By this network-topological
interpretation of the modification equations a clearer
physical picture of how these formulas can be applied
to the modification of structural networks is obtainéd.
Indeed, the LAT algorithm and its dual have supplied
much of the incentive to the network-topological approach
taken in the present study. However, there are certain
pitfalls in the practical application of the LAT algor-

ithm.
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Note that to add or delete a branch, the node anal-
ysis is performed, which is equivalent to the displace-
ment method in structural analysis. To add or delete
a node, mesh analysis is used, which meahs that the
force method has to be employed. Furthermore, both k-1
and F~1 are full rank, and more often than not, k-1l and
F-1 are full matrices. Keeping the finite element
method in mind, it is not at all difficult to appreciate
all the problems involved in applying the LAT algorithm
and its dual to the reanalysis of modified structural
networks. Fortunately, the highly illuminating works
of Argyris, Roy and their colleagues have éhed new light
on the reconciliation of the difficulties mentioned

above.

5.4 The Modification Methods of Argyris and Roy

In an earlier work, Argyris et al. [125] developed

a direct modification procedure for the displacement
method based on the Householder equation. Suppose that
in the well-known stiffness solution equation

Kr =R
where K is the stiffnessmatrix, r the displacements, and
R the applied loads, the matrix K is modified by K,,
then

(K + K))(r + ry) =R
where r, is the change'in r due to K,. .By letting

K, = btk,b



where b is a coincidence or Boolean matrix with linearly
~independent rows, each of which contains all zeros except
for one unit value located at the column associated with

a change in K, the Householder equation assumes the form:

(K + btkyb) "1 = k-1 - k-1pt (k71 + bk~1pt) ~lpk-1
Instead of solving difectly for the modified inverse
matrix, Argyris et al. computed the change in the dis-

- placement by

[(K + btkub)"LIR = (k™1 - x~Ipt(k7! + bk~ 1bt)~lpr™ 1R
r+ry, =r - K'1lpt (kx1 + bkt lpr
s 1y = -K~lbt (kzl + pr7lbt)-lpr
(5.5)

However, kZl may not exist. Eg. 5.5 was rearranged to get

r, = -k~ bt [k31(1 + bk~ 16817 b e

-k~ 1pt (1 + k, bk~ 1bt)~lk,br (5.6)

It

Equation 5.6 can be further simplified by using the
Choleski decémposition: |

K = Uty

k! = ulwh Ll = iyt
ﬁéﬁ z = Uf’tbt to be obtained by forward-substitution, and

0 =bklb=bu-lyu-tpt = ztg

i

Then ry = -U"lumtpt (1 + k,0) “lk,br

-1z (@71 + k)17 1k, br

|

-umlzgl(o71 + k) "lkybr (5.7)
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This ingenious switch in strategy certainly makes the
computation much more amenable. Note that no full
inverse matrix is involved. Bearing in mind that U is
triangular, and even though the inverse of a triangular

matrix is also triangular, it is more convenient to let

r''t = 207 (01 + kp) “lk,br
The éhange in displacement r, can then be obtained by
back substitution

rp = ~y~lpre
without the chore of actually inverting U and storing u-l.

In their more recent work, Argyris and Roy [132-134]

have developed a much more general treatment of struc-
tural modifications, which’includes changing elements,
adding degrees of freedom, removing degrees of freedom,
and coupled combinations of all these three types of
modifications, which are based on the "laws of 3 x 3
partitioned matrices", and the "Boolean separation of
freedoms" [132]. Argyris and Roy were able to obtain
not only an equation for modifications to elements, which
is identical to Eq. 5.7 but also solutions for many
other cases of modification as illustrated in their
publications. Among all the examples, the most interest-
ing of all is the’"decoupling", as Roy called it [133, 134].
It is believed that, for the first time, adding new
nodes to an existing structure has been made feasible.

The method of Argyris and Roy truly provides a means of



treating problems in the structural modification with
changing topology, which, obviously, is of great
interest in the analysis of crack growth. For this
reason, the computational procedure of the decoupling
’method proposed by Roy [133, 134] is summarized into
-the following steps:

1) In the displacement method of structural analysis,
the system equation is written as

Kr =R ;
(5.8)

where K is the global stiffness matrix, r the unknown
displacements, and R the nodal point loads.

2) The stiffness matrix K is expressed through the
symmetric transformation

K = at x a
(5.9)

where a is the Boolean connectivity matrix, and k the
hyper-matrix of element stiffnesses with respect to
global coordinates.
3) Decompose K into UYU and solve for r.
4) The matrix K is partitioned into three distinct
families:

(i) family i for Ujunmodified freedoms

(ii) family m for the Uy freedoms modified by

element changes
(iii) family r for the U, freedoms to be completely

removed.

146



147

If F is defined as the inverse of K, F = K"l, and the

total degrees of freedom n = nj + np + n,, then
o t—— a— — o ——y
Frr Fmnf Fiy Ker Kp& Kif I, 0 O
Fmr From Fim Kmr Kmnm Kifi|=|0 In O
| Fir Fim Fii | | Kir Kim Kii| [0 0 Ij |
(5.10)
5) The submatrices of K are expressed in terms of
F through a forward pass of Gaussian elimination. This
3 x 3 partitioning in Eq. 5.10 is thus reduced to
- ~ 0T N
Frr Fnf Fif ( Krr KpmF Ki& Iy 0 0
i
t -
0 Vmm Wip Knr Kmm Kim | _ ["FmrFrr Im 0
| 0 0 Xjj Kir Kim Kij| Yir  ~WipVmm Ij|
(5.11)
where
Vom = (Fpm = FrorFrFml)
mm mm mrfrrimr
-1 t
Wim = (Fim = FirFriFyy)
-1, t -1.. t
Xji = (Fii = FiyFerFir = WinVmnWim)
-1 -1 -1
6) The following relationships are obtained by a back

substitution process through the last two rows of Eq. 5.11.

-1
Kii = Xi4
KiiKim = -WimVmm
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-1
KiiKir = Yip
(L -1 -1
(Kpr = KimKiiKir) = -VpmFurFrr
! -1
(Kpm = KimKiiKim) = Vmm

(5.12)

~ ~/ ~
7) With the Boolean matrices bj , by , by for family
i, m, r, respectively, the submatrices of F can be ex-

pressed as

Fi; =b; FbY ; Fiy=by Fbt ; Fi. =b: FbL
ii T Pi i im = Pi m i ir T Pi i
Fo =by FbE ; Fp =bg FbE ; Fp = Dby FBE
mm = Pm m mr = Pm r 7 rr = Dr r
(5.13)
~t~' Nt»\l ~t~ _
Note that bibj + btbm + biby = In.
8) Defining
_t"’t
(5.14)
-t t
Zr=U br

the submatrices of F can alternately be obtained from
t t

9) Correspondingly, the displacements r and loads R

can be regrouped by the Boolean matrices as

R=bERi +’]';I%Rm+ﬂ1;}: Ry
r = bg ry + b; Im + b; Iy (5.16)



where
Ri=biR; Ry = by R R, = by R
ri =bjir ; rm =bp r ry = by r

10) The original system, Eq. 5.8 can now be written

in partitioned form

Kij Kim Kir rj RiT
t —

Kim Kmm Kmr 'm | = -
t

Kir Kmr Krr ry i Ry

(5.17)

11) In the case of decoupling, there is no removal of

freedom involved, and Eq. 5.17 reduces to

Kij Kim ry Rj
_ (5.18)
t
Kim Kmm I'm Ry

12) The family m is further expanded into a new family
e to account for the newly created degrees of freedom,

(see Fig. 5.5).

Kijj Kim Kie rj Rj

Nt o~ ~ _ o~

Kim Kmm Kme rm = Rm
t t

Kie Kme Kee Ye Re_J

(5.19)
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13) The following relationships are observed:

i) In general, n, = Dp with Kpe = 0
i) Kijp * Kie © Kim
iii) K+ Koo = Kpp (5.20)
iv) Ry = Re = Fy

~

14 Matrice K K ‘E K and K av
) Ges im " ie ' mm ' “me ' ce Dave

to be re-assembled from the branch or element
matrices k which are incident at the nodes to be

decoupled, i.e.,

_ ~t ~
Kie = ai k ag
P _ Nt ~
Kim = i k am
- =t ~
Kme = ap k ag (5.21)
7~
- =t =~
Kmm = ay k an
_ =t ~
Kee = ag k ag
~ ~t . 9~ _ ~ . T Tt
where a; = aibi Poap = ambm ;i 8g = aebe
15) Subtract Eq. 5.18 from Eq. 5.19 to obtain
Kii Kim %o Trg Kim ‘m
Ko K Fre |l | ™m R, - Kyp T (5.22)
t t t
LFie Kme Kee_ | Te | Lge Kie Ti]
where '; = r., = Y.

Al 1 i
16) Solve for ¥Ai from the first row of Eq. 5.22,

~ -1 a~r ~ )
rpi = Kii (Kim rm - Kim rm - Kje re) (5.23)
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17) Substitute ;ki back into Eg. 5.22 to obtain

(Kmm Kim Kii Kim) (Kme Kim Xi3 Kie) m
(5.24)
~t -1 t t -1
Kie ™ Fim Xii Kie) ®ee ™ Kie Kij Kie | | Te |
O s | .
t -1
| Re Rie Rii Kym T+ T3) ]
~which can be abbreviated as
_ e s L
Y Y r P
mm me m m
Yﬁe Yee Te Pe
. o L ..J L —
18) Make proper adjustments for the absence of family
r in Eg. 5.12 and Eq. 5.11 to obtain
-1 _ -1 _ _ T =1 -1
Kii ®im = " Fim Frm = - b; U m From
-1 _ -1 t
Kii = Fii = Fim Frym Fim (5.25)
= bij (K~ - U~ 2 Fpp 2- U ) by
19) 1let K = bb K
m i im
= -1
Tm U Km
- Tt
Ke - bi Kie
_ -1
Te = U Ke

and compute



20)

21)

22)

23)
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o = Ut G5 10
X, = Unt (g T
vy o= K- ttr o+ x b (5.26)
Yoo = Kpe - TE To + XX
Yoo = Kee - Tg Te + Xﬁe Xne
Let W o= 2 Qo rn = %y Fem In
R = R + R, =bR+R
where ‘EA is the change in applied load, if any, and
compute
Pp = Ry * T£ Wp - Kﬁr (5.27)
P, = R, + TEw, - k&,

Now the displacements of nodes being decoupled can

be obtained from

- - vt -1 _ vt v
r, = Yee = Ve Vme) (Pe Ve Pr)
r, = Umm (Pm - Vme re) (5.28)
- ~t _ —t -1 4=t o =1
where P& = Umm Pm P Vme = Umm Yme and Umm Umm Ymm

The changes in displacement is obtained by
substitution
~ ~ -l —l t ~

(5.29)

o

+ r, , the final result of

Recalling ri =TI, i

displacements T due to decoupling are
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(5.30)

Pursuing the decoupling procedure step by step is
richly rewarding. 1In fact, the program SMIS by Wilson
[135] has been extended by the writer to carry out the
matrix’algebra for the purpose of understanding Roy's
decoupling procedure. It reveals that the topology of the
structure, as expressed through the Boolean connectiv-
ity matrices a and b , plays a predominant role.

The grouping of the variables into families i, m, r
and e 1is accomplished by Boolean matrix transformations,
Egs. 5.13, 5.16, rather than physically reordering the
equations. The stiffness matrices of all branches or
elements incident to the nodes being decoupled have to
be reformed, Eq. 5.21, according to the topological
changes. The newly formed global stiffness matrix is
then subtracted from the original one, Eg. 5.22. This
can be interpreted as removing a portion of structure
where decoupling occurs and replacing it by a new part
with the decoupled nodes, Eq. 5.24. Again, as in the
case of element modification in Eq. 5.7, the change

in displacements is sought, Eq. 5.23. All these facets
of the decoupling procedure suggest a new possibility
of extending the LAT algorithm to handle the problem of

node decoupling, which can be conveniently incorporated



into the frontal solution technique and perform struct-

ural modification in a much simpler way.

5.5 Extension of Link-At-A-Time Algorithm

Recall the derivation of LAT algorithm in Sec. 5.3.
One of the prerequisites is the assumption of the exis-
tence of an inverse. This implies that the matrix K

1

can be decomposed into vtu and k71 = U~ U*t. Suppose

that K is concatenated to form

K 0

=
I

0 Te (5.31)

where I, is a unit submatrix to account for the newly

created degrees of freedom. Clearly, it follows that

U 0 '

U = (5.32)
0 Io

and
-1
U 0
g1 =

0 Ie , (5.33)

whereby the original system has not been disturbed, and
the inverse of K is readily obtainable. The next re-

quirement to be fulfilled is the formation of a triple
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product. This presents no difficulty if one recalls

the properties of coincidence matrices, enumerated in
Sec. 2.21. If the original system is to be modified or
perturbed, the change EA in the global sense can be re-

presented by
b (5.34)

which simply means that the amount of change EA is
dispersed throughout the entire system in a manner dic-
tated by the coincidence or Boolean matrix b. Since
the modification of any structure must be known ad init.,
the triple product can be constructed accordingly. Now

Eg. 5.1 can be cast in the form of

® + bt Ep) T =KL -kt (R, e bR Y T bR
(5.35)
and similarly Eqg. 5.7 becomes
— 1l _ -1 7 _ -1 - :
r, = -0 ZQ (Q 7+ ky) ky br (5.36)

Therefore, the step in decoupling by LAT algorithm con-
sists of:

1) Forming the stiffness matrix k_ of the branches
or elements incident to the nodes to be decoupled,
Fig. 5.6a.

2) Forming the stiffness matrix k+ to account for

the node decoupling. Fig. 5.6Db.
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3) Computing the total amount of change

4) Applying Eqg. 5.33 to obtain the change in
displacements Tpe
5) Summing the change in displacements r, to

the initial displacements to obtain final displacements

r




158

|
1
|
|
3

a) ELEMENT STIFFNESS k- TO BE REMOVED

X
|
|
N
|

000

b) ELEMENT STIFFNESS k. TO BE ADDED
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5.6 A Proof of Nonsingularity and Positive Definiteness

The possibility for nonsingularity of the matrix
(6- + KA) in Eq. 5.33 becomes a particular concern,
because the matrix EA in the present development is ob-
tained in a rather unorthodox whay which involves sub-
traction of a unit diagonal submatrix. Argyris et al.
[125] have claimed that the quantity (I + k,b k™1 bt
in Eq. 5.6 is nonsingular even when k, is sihgular;
and that (Q"l4-kA) in Eq. 5.7 is positive definite,
without giving the actual proof. An independent attempt
is made by the writer here to assure the nonsingularity
and positive definiteness in the proposed solution

procedure by proving the following theorem:

Theorem 5.1 : If both the original and the modified

structures are kinematically stable, then the quantity
(ﬁr +k,) is nonsingular and positive definite, regard-
less of whether or not EA is nonsingular.

To show that (5r14-EA) is nonsingular, the follow-
ing Lemma due to Lam [136] is first presented:

Lemma 5.1 : Given two matrices M and N . If
(I + MN) is nonsingular, then (I + NM) is also nonsing-
ular.

Proof : By contradiction, assume that
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(I + NM) 1is singular. Then

}v#0; (I +NM v=o0

(NM) v = ~v
Let Mv = u

MNu=MNMV) = ~-Mv=-1u
or (I + MN) u = o
But u # o

(I + MN) = o s

.. (I + NM) is also nonsingular.

Since both the original structure and the modified

structure are kinematically stable, which implies K
— _ : -1

and (K + KA) are nonsingular, and there exists K

and ((K # ;)71 Therefore,

(K + Ky) = (I + KAK-l) K is nonsingular.
recall K, = b"K,b and bbb =1=0b"0
and let Y = k,b
then (I + b° ¥ 1) is nonsingular.
by lemma 5.1, (I +Y KFl bt) is also nonsingular.
Let 0=0b K—lbt , which is nonsingular,

because it is possible to construct
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b BT bt bRbEH =1

Therefore, Q_l exists.

Make substitution

=1 1

— t __."' — —
(I+k,bK Db") =(Q +k,) Q

Clearly, (@ + k is nonsingular.

A)

—1 —
To show that (Q + k is also positive definite,

A)
one only needs to evoke the fact that the structural
stiffness matrix is positive definite. Therefore K
and (K + KA) must be positive definite as in any other
structure as long as they are kinematically stable.

Then

@ +k) = (&b +

~1

A)
=b K bt + b K,bt = b (K + K,) bt.

By the definition of inner product

(y, ®+K) y) >0
and ( At v , u) = (v , Au)

Let y = bt X
t = = t
(b x , (K + KA) b x) >0
and (x,b (K+K) b x)>0
- -1 —
e b (K + KA) bt = (Q + kA) "is positive
definite. Obviously, Theorem 5.1 holds true for all

types of modification.



5.7 Construction of Choleski Decomposition from Frontal

Solution

In order to implement the LAT algorithm, the
Choleski decomposition utu is required. It was stated
earlier in Sec. 3.1 that all methods of solving a sys-
tem of linear equations can be regarded as being a jud-
icious application of Gaussian elimination. An example
of this has been illustrated in Sec. 3.4 where the
LD_l Lt decomposition proposed by Melosh and Bamford
is shown to be equivalent to the Gaussian elimination
in the frontal technique developed by Iron. Consequent-
ly, one would expect that the Choleski decomposition

UtU could be obtained from the frontal solution. This

is, indeed, the case, because the identity
ol Lt =1 (p1/2) 1t = yty (5.34)

is trivial. The only remaining difficulty lies in the
fact that in the frontal technique the order of variables
being eliminated is entirely independent from the order
of node numbering sequence. Therefore, a special com-
putational scheme must be developed to recover matrix
U of the Choleski decomposition for the reanalysis of
modified structures. The method used in the present
study consists of the following:

a) When the modification procedure is called for,

storage allocation is made in the back sub-

stitution phase of the frontal solution proce-
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dure.

b) Each row of the U matrix is formed in reversed
order by dividing the entire equation by the
square root of its diagonal term. This is
equivalent to the multiplication of (D'l/z)Lt
in Eq. 5.34.

c) The resulting equation together with the active
front are recorded in ECS.

d) The order of the variables being processed is
recorded in an array (NIK), and the destination
of the diagonal term in (VDS).

With these minor modifications to the frontal solution
routine, the matrix U (in reversed order) of Choleski
decomposition is readily made available for the reanalysis

of the modified structure.
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5.8 Program Input Requirements

Once the topological implication of the LAT
algorithm and the properties of the coincidence matrix
are recogniied, together with the availability of matrix
U , the implimentation of the modification procedure is
rather simple from the user's standpoint. Two sub-
routines, MODIFIC and LATALGO, have been written for this
purpose. No elaborate input data is required, since
the main computer program developed in the present study
is format free, except for those numerical data which can
be expected in a repeated form, such as nodal point co-
ordinates and element data. If modification of the struct-
ure is anticipated, the following simple commands will
effectuate the reanalysis by the LAT algorithm:

“a) SOLVE WITH MODIFICATION PROCEDURE

This command will cause the matrix U of the
Choleski decomposition to be constructed during
the back substitution phase of the frontal sol-

" ution process.

b) STAGE i , NUMBER OF NODES INVOLVED = h

Value i is the identification number of the

stage of modification, and n is the number of
‘nodes involved in that stage of modification,

which is needed for storage allocation.

c) ADD NODE

Supply nodal point data after this command, if

there is a new node to be created in the structural
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modification.

d) DELETE ELEMENT
Only the element number need be supplied. From
this information the stiffness k_ is formed, see

Fig. 5.6a.

c) ADD ELEMENT

Supply the element data from which stiffness ki

will be constructed, see Fig. 5.6b.

Note that the coincidence matrix b in Egq. 5.31 is
formed internally by the program. All the node and ele-
ment data are input in the same format as in the origin-
al structure, and they are administrated by subroutine
MODIFIC. However, different format is also allowed by
specifying the new input data format at each command
card. The LAT algorithm is then carried out in sub-
routine LATALGO. Multiple stages of modification are

possible. But it should be kept in mind that each

modification is made on the original structure, not on
the last modified one. The "modification of modification”
procedure proposed by Argyris and Roy ([132 - 134] has

not yet been included in the present program.

Once the displacements of the modified structure
have been obtained, the normal process of computing the
new element stresses or forces follows. And the program
is ready for the execution of next stage of modification,

or for another new problem.
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5.9 Example Problems

As mentioned earlier in Sec. 5.4, the program
SMIS (Symbolic Matrix Interpretive System) by Wilson
[135] has been extended to carry out Roy's decoupling
procedure. At the same time, it offers an indepen-
dentcheck on the LAT algorithm. In fact, the SMIS
program, with its capability of directly adding the
element stiffness to form the total structure stiff-
ness, has proven to be indispensable:during the develop-
ment of the modification procedure. The first three
problems, Examples E, F and G, have been purposely de-
vised as check cases which can be easily verified step
by step with SMIS, or by hand calculation. Examples
H and I aim at demonstrating the potential use in
relation to the progressive crack growth analysis. All

of the above examples were successfully analyzed.



Example E : Adding an Element

The original truss structure is shown on Fig. 5.7a.
It is to be modified by adding another vertical member
to the structure, Fig. 5.7b. Displacements of the two

unrestrained nodes are given on the figures.

Example F : Discoalescing a Node

The lower node of the structure shown in Fig. 5.7a
is to be split into two, hence the total degrees of
freedom of the structure are increased by two due to

such a modification. This situation is also a simulation

of cracking at a node. Clearly, all truss members connect-

ed to that cracked node become unstressed, and the final
results should be identical to a simple two-bar system,

which can quickly be checked by statics, see Fig. 5.7c.

Example G : Deleting an element

A two-dimensional finite element is added to the
truss system of Fig. 5.7a to serve as a diaphram,
Fig. 5.7d. The modification procedure is used to ob-
tain the resulting effect due to the removal of the

diaphram. Obviously, the final displacements and bar

forces should be identical to the case shown in Fig. 5.7a.
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Example H : Double Cantilever Test

The double cantilever test, also known as trousers
test, is often employed in the field of fracture mechanics
to study the crack propagation phenomena. A simple
specimen is shown in Fig. 5.8a. The cracking condition
is shown in Fig. 5.8b. Furthermore, to illustrate the
capability of the modification procedure in simultaneous-
ly introducing a new node and a new element, the effect
of intérlocking is simulated by the insertion of a bond

or joint element at the crack, Fig. 5.8c.

Example I : Simulation of Crack Growth

Example I is a replica of Example A, in chapter
4, except that joint elements are introduced at the
crack-lines to simulate the interlocking effect, and
only half of the structure is considered because of
symmetry. The stages of crack growth are identical
to Example A Fig. 5.%9a. Therefore, it is possible to
examine the two different structural responses. The
deflection at the point under the applied load is shown
on Fig 5.9b for Example I and A , for the various stages

of crack growth.

5.10 Remarks on Efficiency

The present modification procedure based on the

LAT algorithm has been demonstrated to be feasible



169
0| 2x
_ =2 | 2y
Y\ = 10| 3x
6.0 -1 | 3y
1@
2
1y
N 6 @
S _AEs= 2/Z
4
0 g 1o - X
a) ORIGINAL TRUSS STRUCTURE b) EXAMPLE E
r - m =3
0 | 2x 0 -
-3 |2 -
|3 2y . 5.0%10
! -3 | 3y 0 -6
@ 3| 5x DIAPHRAM — &\ "3.2"!0“‘J
|5 T0BE ARN
DELETED £ N
%I 1 ‘).3‘ ¢
CRACKED ~= 2& 3x10°
NODE ‘)_yl 9= 0.25
c) EXAMPLE F d) EXAMPLE G

FIG. 5.7 MODIFICATION EXAMPLES E,F &G




170

INFILLED
S JOINT ELEMENT

ANANNAN NN NS N R AN Sy AANVRN NN RN NN R RNy SANTNRN L N N AN O RN
. x
- . ) o

FIG. 5.8 MODIFICATION EXAMPLE H



b)

é
m :

— . —-BOND ELEMENT
TO SIMULATE
INTERLOCKING

-
=1

/j' 4
fv@ & (é
STAGE OF MODIFICATION

< lo1xi0° WITH BOND
ELEMENT,
e
2
©
- WITHOUT BOND
3 ELEMENT
Ef 5 -
E
' a 2 3 4
STAGE
FIG. 59 MODIFICATION EXAMPLE I

171



within the framework of the frontal technique. Even
though the evidence provided by the example problems
ih last section is not conclusive, it shows a strong
possibility that the modification procedure can be
fruitfully employed as a means of reducing the com-
putational effort. Argyris et al. [125] gave an

mapproximate operation count n by
= NBn /2 + Nn2/4 + 2n>/3 (5.35)
n = n, ng n_ .

:}where N is the total degrees of freedom, n, the number
of changed columns in the structure stiffness K , and
B the half handwidth of K , which can be considered
equivalent to the maximum active frontal size. The
break-even point is approximately atvnc = 0.75B. How-
ever, it should be noted that the efficiency of the
method depends on the location of the modification
occuring’in the structure stiffness K. If modification
is in ﬁhe lower portion of K, then a higher effeciency
. can be expected. This can be observed from Eq. 5.7
where the size of 2 , consequently Q , is affected

by the coincidence matrix b. Therefore, in Example

E, F, and G no saving is possible, because the modi~
fication, signified by the matrix b, covers the full
rank of the structure stiffness matrix K. But even so,

the convenience offered by the modification procedure

still cannot be overlooked.
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When modification is confined to a small portion
of the original structure, such as in Example I , time-
saving can certainly be realized. For instance, the
CP time required to analyze each case in Example I is
4.1 seconds; the total CP time required for solving
stages 0 to 4 is 10.076 seconds, which averages to about
- 2 seconds per case. The reduction in time is approx-
imately 50%. It is also of interest to examine the time

required in each subroutine, as shown in the following

table
Stage Time , Sec. Subroutine
0 1.559 | FRONTAL
1 0.262 | LATALGO
2 0.503 LATALGO
3 0.895 LATALGO
4 1.500 LATALGO

As the modification involves more and more nodes, hence
the size of matrix Z grows bigger and bigger, the time
consumed in LAT algorithm begins to approach the time

required by the frontal solution process.




174

CHAPTER 6 A CRACK PROPAGATION HYPOTHESIS

6.1 Fracture Mechanics and Concrete Research

The conventional method of predicting crack propa-
gation in concrete structural members is by means of a
failure criterion, as presented previously in Sec. 4.2.
This type of approach seems to be justifiable in the
case where cracking is represented by a crack-zone.
When a crack-line is introduced into a solid body, the
employment of failure criteria to predict crack growth
may require renewed evaluation. The effect of cracking
in the latter case is centered at the crack tip where a
stress singularity exists. The region surrounding the

' is under such a

crack tip, known as the "process zone,'
complex state of stress that it demands special attention.
Therefore, it appears that a fracture mechanics approach
should be a logical alternative which deserves further
exploration.

Fracture mechanics has been rapidly gaining prominence
in many advanced levels of engineering design, such as
for machines, ships, aircrafts and nuclear reactors.
However, the application of fracture mechanics to con-

crete research is rather limited. This fact may be attri-

buted to the following reasons:



1) Rarely, if ever, does only a simple single
crack develop in a concrete structure. Multiple
cracks would normally initiate and propagate; either
simultaneously or successively within the same struct-
ure. On the other hand, the theories in fracture mech-
anics generally deal with a single individual crack
under a particular loading condition.

2) Because of the interaction between steel and
concrete in reinforced and prestressed concrete members,
the "critical flaw size" in fracture mechanics does
not assume a meaningful role.

3) The nonlinear, heterogeneous, time~dependent
properties of concrete, and its composite action with
steel reinforcement makes the fracture analysis an un-
wieldy task.

4) Even with the finite element method where stress
and strain fields can be obtained with relative ease,
the operational aspects such as node renumbering and
mesh regeneration, and the integration and differentia-
tion of the energy functions complicate the numerical pro-
cedure.

However, all these difficulties have not been a total
deterrent. Some positive progress has been made in
recent years, in attempts to apply fracture mechanics to
the study of concrete structures. Kaplan [137] has cal-

culated the critical strain energy release rates G, for
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three concrete mixes by the notch-bend method and
applied them successfully in predicting beam strengths.
Romualdi and Batson [138] used the critical strain re-
lease rate Go and the critical stress intensity factor
Ke to study the fracture arrest mechanism, and obtained
theoretical results which indicated that the tensile
cracking strength of concrete increases proportionally
to the inverse square root of the reinforcement spacing.
Glucklick [139] took a fracture mechanics approach to
examine fracture in concrete and claimed that the

strain energy was transformed almost entirely to sur-
face energy and that the relatively high G, in concrete
was due to the increase of the microcracked zone and the
heterogeneity of the material. He also found that Gg
increases with cracked length in tensile fracture, but
remains constant in compressive fracture. Bianchini,
Kesler and Lott [140] suggested that the concept of
fracture mechanics would be a logical extension to the
theoretical and experimental works of Broms [141] who
investigated the internal cracking in some simple re-
inforced concrete specimens, and proposed that double-
cantilever specimen types could be used to simulate

the internal cracking of the centrally reinforced con-
crete members used by Broms. Shah and McGarry [142] tried
to relate notch sensitivity and critical crack length for

concrete and mortar to Griffith's fracture criterion.
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They found that the critical length for concrete and
mortar is at least a few inches. Microcracks shorter
than the critical length grow gradually and in a stable
fashion, while cracks larger than critical length pro-
pagate spontaneously, for which the Griffith formula
can be applicable. A macroscopic fracture criterion

' based on Griffith's theory and its modification by
McClintock and Walsh [143] has been incorporated into
a crack-zone type of finite element procedure by Sandhu
and Huang [144, 145]. Their comparisons of the center-
line deflectinns of some simple reinforced concrete
beams with laboratory results indicate excellent agree-
ment. Loov [l7] suggested the use of a sensor element

at the crack tip as a means of detecting crack propa-

gation, Fig. 1.5. Rostam and Byskov [146] used the finite
element method with "cracked elements" to analyze rein-
forced concrete beams. All these studies point toward

the fact that the theory of fracture mechanics is indeed

a potential means of investigating cracking in concrete
structures.

In order to achieve a better understanding of how
fracture mechanics can be fruitfully employed in con-
junction with the finite element method, some funda-
mental concepts and the application of finite element

method in fracture mechanics will be reviewed in the

next section.




178

6.2 Fracture Mechanics and Finite Element Analysis

6.2.1 Griffith, Irwin and Orowan

The development of fracture mechanics is inevitably
traced back to the paper by Griffith [147]. An excell-
ent account of Griffith's work is given by Finnie and
MacKenzie [148]. Essentially, Griffith took an energy
approach to fracture prediction. Let the symbol U
denote energy, then the basic concept is embodied in the

relation

dUsystem _ (6.1)

94

where a 1is the crack length, Fig. 6.la, and the energy

of the system is defined as

Usystem = Uloading + Usurface (6.2)

For an elliptical crack of length 2a, with zero semi-

minor axis, through an infinite plate of unit thickness, so
loaded that a uniform stress o normal to the crack re-
sulted, Griffith deduced that

Usystem = -2Na2¢g2 + Ta2¢2 + davy
E E (6.3)

= -Ha202 + day

where E 1is the Young's modulus, and <y , surface
energy per unit area. By applying Eq. 6.1, the critical

* .
stress o 1is obtained
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aUsystem = 3 ( - nag2 + day ) =0
2a 3a E
- 2lac? + 4y =0
E
Ha02 = 2y
E
or o = ( 2Ey )% 0= o* at critical state
Ta
(6.4)

which is the well known Griffith formula. Any com-
bination of stress and crack length which satisfies

Eq. 6.4 will give a metastable equilibrium condition.

In other words, when the critical stress level o* is
attained, an infinitesmal increase in crack length will
cause sufficient amount of energy released by the external
loading and the stress field for creation of a fresh
crack surface, with the applied load being kept constant.
Therefore, the crack will start propagating.

There are, however, quantitative limitations to the
Griffith formula, as discussed by Finnie and MacKenzie
[148]. The question concerning the effects of loading
on Griffith's fracture criterion has also been raised
by Swedlow [149]. However, despite these uncertainties,
Griffith's énergy approach to fracture prediction is
very useful, and there is experimental evidence to support
the existence of a critical stress o  and even the type
of law similar to Griffith's formula [150]. This very

basic concept of Griffith has been modified and extended



by Irwin and Orowan to form the core of the present day
approaches to fracture prediction.

Orowan [151, 152] pointed out that plastic deform-
ation exists at the root of the crack. As the crack propa-
gates, a new plastic zone is created while the previous
plastic zone is being unloaded and left with some
permanent deformation. Thus a surface layer of permanent
plastic deformation is generated along the cracked surface.
This process dissipates energy which may be calculated iﬁ
proportion to the gain in crack surface. Therefore,
Griffith's formula still stays valid if a dissipation
energy is substituted for the surface energy. Irwin
[153] postulated that one could define a surface energy
characteristic of fracture which could be measured in a
fracture test and defined a quantity, called "critical

strain energy release rate," G, where

G, = the work required to create a unit

increase in crack area by fracture

Irwin also designated the "strain energy release rate,"
sometimes referred to as "crack driving force," by
¢ = 23U = 2y (6.5)
dA 3 (2ah)
where A 1is the crack surface which equals the plate

thickness h times the crack length 2a. Similar to

Griffith's analysis, the stability of a crack is given by
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< stable
G = G, metastable (6.6)
> unstable, crack will propagate

Irwin has also suggested [154] that if two different
loading systems produce the same stress environment, then
the influence on crack extension should be similar. This
would indicate that the critical strain energy release
rate G, could be regarded as being a fundamental mater-
ial property, similar to the Young's modulus E. This
concept, though being not strictly correct, has turned
out to be extremely useful when proper modification is
made. Extensive applications of this concept in theo-
retical as well as experimental studies have been carried
out by Irwin himself, and by many others in the field.
of fracture mechanics.

An alternative to the energy approach is the
so-called stress intensity factor approach. The elastic
stresses near the tip of a sharp crack, Fig.6.lc, have

an inverse square root singularity

Mode I, II : o, = __K; fx,1(0)
(2Ir)z
o _ K
y = 1 £ (9)
(ZHI")—z y,i



o, = y (o, + o0 for plane strain

bid Y)

o, = 0 for plane stress
1 = I, II
Mode IIT : Oy = [ Kyyr/(2nr)® 1 sin (6/2)

Uyz = KIII CcOos (6/2)

17 KII ’ KIII are -called stress inten-

sity factors for Mode I, II, and III respectively, Fig.

The parameters, K

6.1b, they are independent of r and 6 , but depend

on the magnitude of loading and crack geometry. For in-
stance, Ky equals to ow(na)% for the case of a crack
with length 2a in an infinite sheet under uniform stress
0, +» Fig. 6.la. In the case of finite geometry such as
narrow sheet, KI can be expressed as Co, (na)%, where

C 1is a correction factor made available from some hand-
books. If the critical stress intensity factor under
which failure occurs is denoted by K, , and is a known
material characteristic, then crack growth will result
whenever K is equal to K, , similar to the Griffith
type of energy relationship. It was Irwin [155] who

showed that the energy and stress intensity approaches
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were equivalent in the fully linear elastic situation, i,e.,

K (E G)!2 for plane strain,

EG )%
l—y2

K = ( for plane stress.

6.2.2 Dugdale, Barenblatt and Dvorak

Even though the crack surface may be stress free,
localized stresses do exist at the root of the crack.
The problem of plastic zone, as pointed out by Orowan,
has been studied by Irwin [156] who represented the
plastic zone as the shaded area shown in Fig. 6.2. The
effective crack length becomes 2(c + ry), where ry is the
radius of the plastic zone. With Sy being the yielding
stress, Iy is approximately equal to (1/2)(KI/sy)2 in the
case of plane stress. Another method for estimating the
plastic zone size for plane stress was given by Dugdale
[157], and is often referred to as the Dugdale model,
Fig. 6.3. He assumed that the plastic zone, instead of
a circle, forms essentially as an extension of the crack,
Fig. 6.3a. Dugdale reasoned that the stress intensity
factdrs due to the applied loading and the "crack closing
forces” should be equal and opposite so that the stress
is finite at the end of the plastic zone. By super-
imposing the solutions for the two loadings shown in
~Fig. 6.3b and Fig. 6.3c, the plastic zone size s can

then be obtained.
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An approach similar to Dugdale's has also been
advocated by Barenblatt [158] and others in the Soviet
Union. It is argued that for the cracks to be at
metastable equilibriuﬁ, they must close smoothly like a
zipper, Fig. 6.4. Thus, the combination of stresses due
to applied loads and cohesive forces must be such that
there is no infinity of stress at the crack tip. It

was deduced that

K = K = Constant = K,
applied loads cohesive forces
(6.7)
d
—
| 2 t) dt
with K = - [|— gi—lg~*
cohesive forces II o t
' (6.8)

and K, is the critical stress intensity factor. Here,
instead of plastic zone size s, a plastic intensity
factor is obtained.

Another model of crack tip zone configuration was
presented by Dvorak [159]. The crack zone consists of
elastic and plastic parts, Fig. 6.5, where the stresses
are transmitted by the "ductile links," and "material
weakening" is assumed to occur. With this model, Dvorak
was able to analyze in continuum terms the micro-

mechanism of brittle fracture propagation in metals.



FIG. 64 THE BARENBLATT MODEL
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6.2.3 Bueckner, Hayes and Williams

Following the energy approach of Griffith and Irwin,
Bueckner [160] used the Clapeyron and Betti Theorems to
develop the analysis of strain energy release rate for
a cracked three-dimensional body of volume V, subject
to body forces X, prescribed surface tractions T
acting on surface Sj, and boundary displacements on
surface S;, Fig. 6.6a. The existing initial crack with-
in the body, having the upper crack surface C] and lower
surface Cy, is assumed to undergo a virtual crack ex-
tension resulting in new surfaces Ci and C5, under
the same loading and displacement conditions, Fig. 6.6b.
Denoting the initial cracking condition as being the
"first state,” and the condition with virtual crack
extension being "second state," the stresses, strains,
and displacement vectors for the first and second
states are o4y, €jkx, u and o!

ik’
Bueckner further introduced a "sum state" and a

eik, u' respectively.

"difference state" as

+ 0o

sum state : stresses

%ik ik
. °
strains = Eik + Eik
displacements v, = u' +u

S
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Difference state : stresses = cik - 0ik
strains = Eik - eik
displacements vg = u' - u

The first state was then reinterpreted by Bueckner, which,
for the sake of clarity, is called "virtual crack state"

in this study, as represented in Fig. 6.6b.

Virtual crack State : The body V with the extended

crack,

the body forces X,

The tractions T on Sl’

The prescribed displacements

on Sy,

The tractions T* on Ci and Cé
(T* is the traction required to
close the crack surfaces Ci
and Cé),

The displacement u from first

state.

The sum and difference states are found by using the

corresponding interpretations, Fig 6.6c and 6.6d,



Sum State: The body V With extended crack,
The body forces 2X,
The tractions 2T on S,
The prescribed displacements on S3,
No traction on C; and Cy,

The tractions T* on Ci and C3.

Difference State: The body V with extended crack,
Nokbody force,
No traction on S3,
No prescribed displacement on Sy,

The tractions -T* on Ci and Cﬁ.

With the energies associated with these three states,
Bueckner was able to derive and conclude the following

extremely useful relationships:

1) The strain energy of the difference state is all
that counts for crack propagation.

2) Any reference state can be chosen, including
the state of body V without any crack.

3) The traction T* resulting from the reference
state and acting on C] + C; and Cp + Cp is
responsible for crack propagation.

4) The strain energy of the difference state is

then given by
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Ugq =-(1/2) vqg - T* ds
(6.9)

'
Ci + C,

Hayes [161, 162] applied Bueckner's formulation to
finite element analysis and arrived at an efficient and
accurate method of determining stress intensity factors
for cracked bodies of arbitrary shapes. Referring back
to the Griffith-Irwin formula, Eg. 6.5, the strain

energy release rate is then given by

(6.10)

G=_3Ud=:_li. Vd‘T*dS

1 L]
Cl + C2

‘Schemes for automatically determining Ug and its

derivative with respect to crack length have been de-

vised by Hayes to obtain the stress intensity factors for

several cracked plates which gave good agreement with

known results. This method has also been adapted to

give Dugdale model solutions for cracked arbitrary bodies

by Hayes and Williams [163].
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6.2.4 Finite Element Method in Fracture Mechanics

An exploration of the literature in fracture mechanics
quickly reveals that one of the main difficulties in
the analytical study of fracture problems is the deter-

mination of the stress fields in a cracked body. Very

often, solutions for stresses are taken from the work of

Muskhelishvili [164], where a number of solutions are
available for limited cases of geometry and loading con-
ditions. The versatility of the finite element method

in stress analysis should logically find its rightful
place in the domain of fracture mechanics. Indeed, there
are a number of directions in which the finite element
method has already been fruitfully employed. Rowe [165]
préesented a comprehensive review of finite elemeht methods
suitable for calculating stress intensity factors. An
attempt is made here in this section to emphasize the var-

ious ways by which the finite element method is made use

of, in connection with the studies in fracture mechanics.
The technique of extrapolation has been found to
produce quite acceptable values for stress intensity
factors Ky » by Chan, Tuba, and Wilson [166] in their
earliest and most important contribution to the appli-
cation of finite element method in fracture mechanics.

*
Correlation of the nodal point displacements u, is

made with the well known crack tip displacement equations
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K1

= 5
u, =g (r/2m* £; (6,v) (6.11)
where G is the shearing modulus, v is Poisson's
ratio, r and 6 are defined in Fig. 6.7. By sub-
stituting the nodal point displacements u; at some

point (r,6) near the crack tip into Eq. 6.11, a quantity

k4
KI can be calculated from

* *
K. = (2n/r)% [GU./f: (8, V)]
I o4 (6.12)

The values of K; can be plotted as a function of r for

a fixed value of 6. Since the finite element displacements
become inaccurate near the crack tip, an extrapolation
technique was used to obtain the value of K; at r=0 ,

which should approximate the theoretical value of K;.

Nodal point stresses c;j could also be used in a similar

manner to obtain the approximated value of Ky

oij = _51_; fij(g)
(20r)

kY - (2m)* of (r, e)
£5500) (6.13)

%
Ky = K; at r = 0 ; 6 = constant.



Wilson and Thompson [168] used the same extrapolation
technique for finding the stress intensity factors for
cracked plates in bending.

The compliance method has been suggested by Dixon
and Dukes [169]. The rate of change of stiffness with
crack extension is related to the crack extension force

G by
G = $P2 (31/3n) (6.14)

where P is the load, A 1is the crack size, A is the
compliance equal to the deflection A at loaded point
divided by the load, A = A/P. 1In this approach, the
small restricted region of high stress around crack

tip is deemed to contribute little to the total deflection,
thus the need of fine element mesh size can be eliminated.
If ) 1is calculated for several crack lengths, a curve
fitting by polynomials can be made, whereby 3A/3A can

be derived to obtain G. Watwood [170] published a
variation of the compliance method. He used directly the

energy release rate formula

3A (6.15)

where U 1is the strain energy stored in the system, A is
the crack area, and + for constant loads, - for constant

displacement.
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The strain energy stored in an elastic body is
U= 3% I P.A, (6.16)

Therefore, 3U/3A can be obtained by calculating the
strain energy for several crack lengths and by finding
the rate of change. A similar method with linear-strain
rectangular plane-stress elements was used by Mowbray
[171] for a single edge crack specimen under uniform
tension.

Utilization of Rice's J-integral [172] has also
been suggested by Chan et al. [166]. Since the integral
is path independent, any arbitrary path around the crack
tip can be taken in the finite element layout to calcu-

late the strain energy density W needed in
J = S (Wdy - T 2% gg) (6.17)
v ax

where T is the traction vector defined éccording to the
outward normal n along ' , Fig. 6.7. The integral

is evaluated in a counterclockwise sense starting at
lower crack surface and continuing along ' to the
upper crack surface, by a numerical procedure. Leverenz
[174]) showed how this method can be extended for the
analysis of a crack in a bi-material plate. Once J

is determined, Ky is given by
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—— for plane strain cases.
1 -vy2
' (6.18)

Chan [167] also suggested that instead of working with
the numerical integration procedure, another useful rela-
tionship derived by Rice [173] can be used

g = - 9B (6.19)

asg
where - dP/d% denotes the rate of decrease of poten-
tial energy per unit thickness with respect to crack

size, and can be approximated by

- a2 . - aW ' (6.20)
dg Ag
where AW is the incremental work done. Therefore, by
running a separate finite element analysis for crack
lengths % and (& + A% ) , Fig. 6.7, and calculating
the work done in each case, W and (W + AW), respect-

ively. Then J is simply obtained from

2 2
ar W _ %1 - v
E

(6.21)

It has been found that this method of finding the stress
intensity factor is very accurate, even when the element

size around the crack tip is rather coarse.
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What Chan has suggested bears a striking similarity

to Irwin's energy release rate method used by Swanson [175].

du . au

G = = B
aa  AA
(6.22)
Kp = ECr % (for plane strain)
1 -v2

Stress intensity factors are obtained for a cracked
two-layered cylinder. The strain energy U is computed
for each element and summed over the entire body. This
procedure, identical to Chan's, requires two computer
runs in order to obtain AU/AA. Good results have also
been obtained by Swanson with a relatively coarse mesh.
Practical application of Bueckner's formulation has
been carried out by Hayes and Williams [161 - 163], as
presented earlier in Sec. 6.2.3. Hayes [162] points
out that Bueckner's formulation is a special case of
Rice's formulation, and that the use of Bueckner approach
can be regarded as evaluating Rice's J-integral, but in
a much simpler way. It is only necessary to determine
first the stresses that act on the surface where the crack
is to appear. Then by introducing the crack and applying
these stresses in reversed directions at the newly cracked
surfaces with all other tractions, body forces and pre-

scribed displacements set to zero, then the work done is
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calculated. 1In the finite element method, all tractions
are applied as nodal point loads. Therefore, the integral
of Egq. 6.9 is simply the sum of the work done by each
nodal point force acting through its own displacement.
Expressing this work as a function of crack length and by
differentiation, the required strain energy release
rate is obtained.

Instead of using the Bueckner formulation, Walsh
[176] calculated what he called the "unit distortion
field" from the inner mesh, Fig. 6.9. The stresses which

correspond to a unit value of K; are computed from
o =Ky r % £(0) (6.23)

and applied as external loads to the inner mesh. This

inner mesh is the entire specimen. An elastic analysis

is carried out for the required specimen loading, from

which the distortions near the crack tip, termed "computed

distortion field," are obtained. The value of KI is

then calculated to give the best fit between the computed

distortion field and K times the unit distortion field.

This method can be extended to include material orthotropy.
Construction of.a special crack tip singularity ele-

ment has been done by Byskov [177] who made use of the

complex stress functions of Muckhelishvili [164].

Byskov's cracked element is an equilateral triangle with



four nodes and the crack emanating from a corner,
Fig. 6.8a. This cracked element can then be assembled
with other constant strain triangles for the solution of
cracked plateé, Fig. 6.8b, which can produce a stress
intensity factor agreeing within 3-4% of the known refer-
ence value. However, non-monotonous convergence was
observed in that study. The lack of compatability be-
tween the cracked and uncracked elements is responsible
partly for this behavior. Tracey [178] presented another
triangular element which embodies the inverse square root
singularity near a crack tip. The well-known Westergaard-
Irwin [179] formulation for near-crack-tip stress and dis-
placement distributions was used. The triangular
element actually is a constrained quadrilateral element
such that two of the nodes have the same physical coor-
dinates and has a square map into the "parent" element,
Fig. 6.10a. The mesh configuration consists of a whole
ring of triangular elements around the crack tip, which
are joined in the radial direction with quadrilateral
isoparametric elements, Fig. 6.10b. The displacement
functions are so chosen that the singularity is completely
embedded while displacement compatability on inter-
element boundaries is assured. Good results can be ob-
tained from a relatively coarse mesh.

More advanced aspects of nonlinear finite element
analysis of stresses and strains, which includes elasto-

plastic material properties have been carried out
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extensively by Swedlow and his co-workers [180 - 184].
Contributions in this area‘have also been made by Tuba
[185], Wells [186], Levy, Marcal, Ostergren and Rice
[187 - ]90], among others. Recently, Levy, Marcal, and
Rice [191] summarized the progress in the development

of finite element methods for three-dimensional elastic-
plastic stress analysis in fracture mechanics.

As remarked by Rowe [165], the linear elastic two-
dimensional situation seems to be well established for
practical application of finite element methods to fracture
analysis, and the energy method appears to be the most
expedient. Elasto-plastic analysis, particularly for
three-dimensional cases, are more complex and costly.

At any rate, the usefulness of the finite element method
as an analytical tool in fracture mechanics is clearly

unreputable.



204

&= X

FIG. 67 CRACK TIP COORDINATES &
J-INTEGRAL CONTOUR

S

R
AN

- K

a) CRACKED TRIANGLE b) CRACKED PLATE

FIG. 6.8 BYSKOV'S CRACKED ELEMENT



205

FIG. 69 INNER MESH USED IN
THE ANALYSIS FOR ZERO
ANGLE CRACKED
SPECIMEN BY WALSH




a) NEAR TIP TRIANGLE- SQUARE MAP

8

" -——-—_.J—-—-—-——b.

b) MESH LAYOUT FOR CRACKED PLATE

FIG. 6.10 TRACEY'S SINGULARITY
ELEMENT

206



207

6.3 A Crack Propagation Hypothesis

Various schemes for applying the finite element
method to obtain the strain energy release rate G or the
stress intensity factor K have been presented in the last
section. Among all the schemes, the energy approach has
been demonstrated to be very attractive, especially in
the case of Bueckner's formulation as utilized by Hayes
and Williams [161 - 163]. However, to calculate the strain
energy release rate G , a minimum of two strain energy
values, Uy, and U2+A1 , have to be computed; one at
crack length & and one at crack length (2+A%). This
involves forming and inverting the total structural stiff-
ness matrix at least twice, plus a numerical procedure
to differentiate the energy U with respect to crack

surface area A

U -
G AU _ L+AL

AA h (AL) (6.24)

U,

where h is the plate thickness. This procedure may
prove to be overly laborious if the energy release rate

G 1is to be incorporated into the finite element analy-
sis of concrete structures. 1In order to provide a simpler
method for approximating the strain energy release rate

G , so that it can be more feasibly incorporated into a
finite element analysis in an automatic fashion, a hypo-

thesis is boldly postulated herein.



Let k be a parameter spacée and assume both U

and A are continuous in k , then G can be written as

du _ 4u dk
dA dk da (6.25)

G =

However, there is no a priori evidence to support such
a continuity condition. On the other hand, if the para-
meter k is taken to be an element stiffness, then the
energy U is certainly a function of k. Intuitively,

k can also be related to crack surface A in some way.

But, instead of trying to resolve this dilemma, the follow-

ing hypothesis is postulated:

*
Hypothesis : An energy release rate G is defined to be

G" = f(a , 8) (6.26)

where o 1is an emperical constant and s = (duUu/dk) is
defined as network sensitivity. Crack growth is then
determined by the conditions

< stable
metastable (6.27)

> unstable, propagates
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6.4 A Network-Topological Consideration

The motivation behind the hypothesis proposed above
is that the quantity 3U/sk, known as "network sensitivity,"
is relatively easy to compute.

The relative sensitivity or simply the sensitivity
of a network function T, with respect to a parameter

x, denoted by Sg is defined by Chua as [76].

_ 3T/T _ 34nT

x
X X T 9x/x 3 4nx

(6.29)

A number of methods are available for the determination of
the sensitivity S , and among them, the adjoint network
method appears to be well suited for automatic computer
analysis [76, 192-196]. The adjoint method relies

heavily on the Tellegen theorem. Therefore, for the

sake of continuity in presentation, Telegen's theorem
will be proved, using the graph theoretic matrices and the

notations of Fenves and Branin [142].

6.4.1 Tellegen Theorem

Recall the equilibrium and continuity conditions
stated in terms of the branch-node incidence matrix A
in Eg. 2.8
Equilibrium atp=o0 (6.30a)
Continuity Au' =u (6.30Db)

where, as defined previously,
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p = total branch force vector
u = total branch distortion vector
u' = joint displacement vector

these conditions of Egs. 6.30a and b must hold true for

any structural network and are called invariant relation-

ships in structural analysis by Baron [55].

Consider a network N and its adjoint network N
having the same topology, i.e., A = ﬁ ; where the symbol
" ~ " gjgnifies adjoint quantities. The following

relationships must also be true

At p=o0 (6.31a)

>

Au' =u (6.31b)

if the branch distortions u of the original network

N are multiplied by the branch forces P of the adjoint

network ﬁ , then one has the relationship
utp = autp = wtatp= ()t @At p =0
(6.32a)

Similarly, if the branch forces p of the original

network N are multiplied by the branch displacements
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u of the adjoint network N ; the product also vanishes,

p-u'= pt(é u') = pt A Ga' = (at p)t u' = 0

(6.32b)

Egs. 6.32a and b are known as Tellegen's theorem, and

are usually written in the following forms.

b

£ uj pj =0 (6.33a)
i=1

b

I p;u; =0 (6.33b)
i=1

where b 1is the total number of the branches in the
network N or N . Note that networks N and N are
only required to have the same topology, but not necess-
arily the same branch characteristics. Furthermore,
Tellegen's theorem is only predicated upon the equi-
librium and continuity conditions; thus, it is valid for

all linear, nonlinear, time-invariant and time-variant

networks.
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6.4.2 A Network SensitiVity Function

A network sensitivity function S(N,T,x) can now

be derived by the adjoint network method. Again, let net-

work N and its adjoint network N have the same topol-

~

ogy, and the pairs of network variables p and u , p and
u associate with network N and adjoint network N ’
respectively. The number of nodes n and the number of
branches b in network N are equal to those of the
adjoint network N.

To obtain, for instance, a very simple case of sen-
sitivity, assume that the network function T represents
the response up_j; in branch hy_; and the parameter x

represents the branch characteristic k, of branch hy

Fig. 6.11, then the network sensitivity can be written as

dUupy - '
s = b=l (6.34)
oKy, -

Tellegen's theorem asserts that

b2
: P; 4y * Pp-p up-1 t Phup T 0 (6.35a)
i=1
b2
I u pj * up-1] Pp-1 t UpPp =0 (6.35b)
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When the branch value ky in network N is perturbed,
it results in a variation of values Ap; and Auj .
Since Tellegen's theorem is independent of branch values,

it still remains valid and can be written as

b-2
z (pi + Apl){ll + (Pb_l'l'Apb_l)ab_l-f- (pb+Apb)ﬁb = 0
i=1 (6.36a)
b-2
L (U, + AU )P; + (Up 1+AUL_ 1) PR3+ (Up+AW )Py = 0
i=1 (6.36b)

Subtract Egs. 6.35 from Egs. 6.36 to obtain

2 AP 1A‘i + APp_1 Up-p + APy up = 0 (6.37a)

z Auy éi + Aub-li;b"l + Auy ﬁb = ( (6.37b)

Subtract Eq. 6.37b from Eq. 6.37a to obtain

z (dpjuy = Bu;p;) + (8py_qup_y = Bup_1pp-1)

+ (appdy, = AU Py) = 0 (6.38)
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If the network variables u; and p; are related by

P; = kj uy ( i=1, .... b) (6.39)
which implies

(pi + Api) = (ki + Aki) (ui + Aui)
or Ap; = kjbdu; + Akiui + AkiAui (6.40)

For the purpose of obtaining first order approximation
to the sensitivity, the higher order terms Ak;Aujy can
be neglected.  Furthermore, by keeping Pp-] constant,
i.e., ApPp-1 = 0, Eg. 6.40 is substituted into Eq. 6.38

to obtain

b-2 b-2
z (kiui - pi)Aui + I Akiuiui = buy_1Pp-g
i=1 i=1 (6.41)

+ (kply - Pp)auy + Akpupuy = 0 (6.41)

Note that branch characteristics ki (i=l,....,b-2) are

unperturbed, therefore,

Ak, =0 ; M i=l,...., b=2 (6.42)
Thus far the branch characteristics in the adjoint net-
work N have not been specified. 1If the variables

~

u; and p; are so chosen that

p; = kiﬁi ; ¥ i=1,...., b-2
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which means that the adjoint network N is identical
to the original network N (this is true only for re-

sistive networks). Then Eq. 6.41 reduces to

- Aup_g ﬁb-l + Akbubﬁb =0

or .
fup-1 _ Y Yp

~ 6.43
Akp Pp-1 ( )

If the driving force pp.j; in the adjoint network N is
selected to be unity, then the first order network sen-
sitivity S , for the change in the response up_j3 with

respect to a change in kp , is given by

_ Aub—l - ubab
bkp (6.44)

The implication of Egs. 6.43 and 6.44 is that the rate
of change of response in branch i with respect to the
change of the characteristic in branch j can be ob-
tained by simply applying a branch force p; at branch
i in the adjoint network, and dividing the product of
the two branch distorsions ujﬁj by ﬁi. Since the
adjoint network is identical to the original network,
the solution effort required is merely a forward and a
backward substitution of an additional load vector,

and no additional inversion or decomposition is necess-

ary.



6.5 A Model of Crack Tip Zone

In order to utilize the crack propagation hypothesis
proposed in Sec. 6.3, a model for the crack tip zone

is now constructed and shown in Fig. 6.12. It
"pictorially" portrays the models of Dugdale, Barenblatt
and Dvorak, in the sense that there is an elastic-

plastic zone extended from the crack tip, and there is

a set of forces acting at that zone. This particular zone
is represented by an infilled bond element to transmit

the stresses across the crack. Fig. 6.12b, in a spirit
similar to the "ductile links' used by Dvorak [159], or
the "distributed line spring" used by Rice and Levy [190],
With a proper choice of the infilled element stiffness,

it is possible to obtain the traction value T such as
that required in the model of Bueckner, Hayes and Williams.
By virtue of the finite element method, the infilled bond
element can also be conveniently treated as a single link
element, Fig. 6.12c, where.the localized distributed
traction T* is lumped into a nodal force P* , and the
distributed stiffness is lumped into an equivalent link
element stiffness denoted by k. Then 38Uyq in Eqg. 6.10

can be written as

*

g = 3(5 P*u) = U (6.45)

and from Egs. 6.26 and 6.44 G* = f(o, s)

where S 1is obtained from uﬁ/P*.
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6.6 A Parameter Study

A single edge cracked plate subject to uniform tension
is selected for a preliminary parameter study, Fig. 6.l3a,
and its finite element idealization is shown in Fig.
6.13b. With the crack tip zone model shoWn in Fig. 6.12,

a series of analyses were performed to obtain the net-

work sensitivity S , for different combinations of crack

and width ratio, a/d, and spring stiffness constant k.

Furthermore, a simple function is assumed
G' = f(o , 8) = a . s (6.47)

some of the results are presented in the table below. It is

a/d 0.416 0.458 0.5 0.54 0.58
5 -5 -5 -4 -4 -4
k=3x10 S |.6134x10°°].8746x10 ~|.1267x10 |.1874x10 ~|.2848x10
0=2.2x10° | G* 1.3 1.9 2.78 4.1 6.2
_ - - - )
k=3x10° s |.2697x1075].3761x10>| .5307x10>| . 7608x10™>| . 1113x10
0=5.25x10°| G" 1.4 1.97 2.78 3.99 5.82
7 -7 -7 -6 -6 -6
k=3x10 s |.6469x10”7|.8927x10" "] .1244x10 ~|.1759x10 | .2530x10
@=2.23x107| G* 1.42 1.98 2.77 3.90 5.6
- 8 -9 -9 -8 -8 -8
k=3x%10 s |.7170x10" 7| .9884x10”°] .1375x10" °| .194x10 .2784x10
a=2.0x10° | G 1.54 1.97 2.75 3.88 5.56
Hayes,
ky/o[Ta 2.09 2.38 2.68 3.05 3.52
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FIG. 6.13 A SINGLE EDGE CRACKED PLATE
FOR PARAMETER STUDY
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interesting to note that it is possible to select an
arbitrary constant o for each k value, such that the
valve G' =a . s remains approximately constant at each
a/d ratio. This encouraging fact seems to suggest that
the network sensitivity is a fundamental parameter in terms
of crack growth. A comparison with the published valves
by Hayes [162] shown in the table above, indicates the
degree of accuracy of this approximation. Full satis-
faction, of course, can not be claimed here. But it
should be evident that with further refinement, an appro-
priate function can be chosen such that more accurate

G' value can be achieved, which in turn can be convert-

ed to proper unit to obtain c*.
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CHAPTER 7 SUMMARY AND CONCLUSION

7.1 Summary of the Present Work

Ever since the first publication on the subject by
Ngo and Scordelis, interest has increased rapidly and
progress has been made in the application of finite el-
ment method to study the behavior of reinforced and pre-
stressed concrete structures where the problem of crack-
is of particular concern. However, due to the many ana-
lytical difficulties involved, most researchers have
chosen to represent cracking by a crack-zone rather than
by individual crack=lines. In this thesis, an effort
has been made to introduce crack-line automatically into
the finite element model. To this end, some of the
analytical difficulties were overcome. A broad over-all
view of the subject was taken from the network-topologi-
cal standpoint.

In Chapter 1, the nature of the problem was stated.
Literature on the subject was reviewed, with the aim of

showing how the cracking problem has been treated in the

finite element method of analysis. A conceptual model
was then proposed and the problems associated with the
conceptual model were enumerated. These problems include
the node numbering, the structural topology, the struc-
tural modification, and the crack propagation. The net-
work-topological approach was proposed as being the

unified treatment needed, both from the philosophical




and the methodological standpoint, to solve these prob-
lems.

In Chapter 2, the basic concept of structural net-
~ work and topology was introduced. Some rudimentary
graph theoretic matrices were given. It should be noted
that the terms topology, graph, network and system were
used interchangably, because a fine distinction among
them was not necessary in the present work.

In Chapter 3, sparsity and bandedness were dis—
cussed. Graph theoretic interpretation of the Gaussian
elimination was given, from which it was shown that the
band type solution technique is not optimal, especially
with respect to the problem pf progressive crack growth.
From this graph theoretic interpretation, the frontal
solution technique was considered to be a means of ach-
ieving optimal ordering. The program ZIPP developed by
Irons further shows that the usual node numbering scheme
has no bearing on the solution procedure. Instead, the
topology of the structure, expressed through the incid-
ence matrices, plays a predominant role. Treatment of
prescribed boundary conditions and recovery of reactions
were made possible by adopting the method of Melosh and
Bamford, once the equivalency between the elimination
method of Irons and the decomposition method of Melosh
and Bamford was demonstrated. Therefore, the frontal

solution method becomes a feasible technique in the
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present study.

In Chapter 4, the finite element model and the
method of simulating crack growth were described.

Each crack growth was viewed as a local change in the
structural topology. Therefore, by examining the local
incidence relationship expressed through graph theoretic
matrices, it was possible to construct a crack=line auto-
matically to accomodate any conceivable crack growth.
The capability of the crack growth subroutine was illus-
trated with test cases. Some examples were also offered
to show how predominant crack growth patterns can be
obtained. Even though the cracking criteria as well as
the crack geometry was restricted due to the simplified
assumptions in modelling, satisfactory progressive crack
growth analysis could still be achieved.

In Chapter 5, a method for structural modification
was developed, which is based on the Link-At-A-Time al-
gorithm in network theory. The computational aspect of
the LAT glgorithm was related to a method proposed by
Argyris and his colleagues, Inspired by the work of
Roy and Argyris, the LAT algorithm was extended to in-
clude the analysis of node discoalescing or decoupling,
Again, through the graph theoretic interpretation, the
modification can be implemented in such a way that it
is entirely consistent with normal process of the direct

stiffness analysis. The method of constructing the
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Choleski decomposition from the frontal solution was
also presented, which makes the computation procedure
of the LAT algorithm feasible. A theorem concerning
the nonsingularity and positive definiteness of the
solution matrix was proposed and proved. Examples were
used to illustrate the potential of the modification
Procedure in a progressive crack growth analysis.

In Chapter 6, an attempt was made to examine the
relevant aspects of fracture mechanics, with the emphasis
on how the finite element method could be employed as
a solution aid. Among all the approaches, the energy
method of Bueckner, as utilized by Hayes and Williams,
appears to be promising. However, there is computation-
al inconvenience even with this method when automatic
crack growth analysis is to be achieved. Therefore, a
hypothesis was postulated, which makes use of the net-
work sensitivity function obtained from the adjoint net-
work method. Tellegen's theorem, from which the adjoint
network method is derived, was stated and proved in terms
of the structural network incidence matrices given by
Fenves and Branin. The preliminary results obtained by

using this approach were found to be encouraging.

It is not the aim of this thesis to show the inter-
transferrence of different physical systems, even though

this aspect has proven itself naturally, Neither is the
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purpose of this thesis to advocate a general structural
system theory based upon the network-topological theorems.
The network-topology, in the context of the present
study, is a collective term which stands for a concept
and metholology drawing from algebraic topology, linear
graph, network and system theories which are useful in
the solution of progressive crack growth. However, it
would be a mistake if the network-topology is merely
taken as a semantic difference from the conventional con-
cept of matrix structural analysis, or merely a pedagog-
ical experience.

In retrorespect, the network-topological approach
employed in the present study, rudimentary as it is,
still represents a unique method which makes the
progressive crack growth analysis possible and feasible.
Needless to say, much refinement is possible and necess-
ary in order to perfect such an analytical tool.

7.3 Conclusion

This research represents another phase of the con-
tinuous effort, not only at the University of California,
but also in this country and around the world, in the
search for better understanding of the behavior of con-
crete structural members. The introduction of the crack-
line concept into the finite element analysis has certain
distinctive advantages of its own, such as being able to

predict a well defined crack pattern, crack width, and



concrete-reinforcement interaction. The network-topo-
logy approach has been shown to be an invaluable aid

in tracking and describing the crack, and provides the
basic computational algorithm. The approach also finds
application in the solution of simultaneous equations,
structural modifications, and in the area of fracture
mechanics.,

It is believed that this research has created a
new approach for the study of concrete structures,
whether they are plain, reinforced or prestressed, The
importance of the ability to predict and to control
cracking in concrete structures, such as dams, bridges,
highrise buildings, reactor vessels, or even pavements
can not be overemphasized. It is hoped that this thesis

will generate further imputus for study in this direction.
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APPENDIX I

ELEMENT STIFFNESS MATRICES
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I (a) Isoparametric Quadrilateral Element with

4 to 8 Nodal Points {110]

s
2 %5 Jg
6 |
P T
|
3 T 4
7
Node r s
1 +1 +1
2 -1 +1
3 -1 -1
4 +1 -1
- x 5 0 +1
o 6 -1 0
7 0 -1
8 +1 0
1) Coordinate Interpolation Function: The natural
coordinates r, s and the global coordinates x, y are
related by
Q
x(r, s) = ¥ h.x,
i=1 t 1
(A.1)

Q
y (r, s) =i‘£lhiyi

where h; are the interpolation functions, and Q is the

number of nodal points (4 <Q <8) describing the



quadrilateral

o .

1}

S*

element. Defining
l +«r
1+ s
1 -r
1l -s
l‘— r2
1 - s?

functions are given by

Q 4 5 E 6 i | : 8 !
hy (l/ﬁé‘l.—)“vRS‘ .+ =(1/2)hg l| ; i—(l/2)h8 |
h, = (1/4) Rs 1 ~(1/2)hs : —(l/2)h6= : '
hy = (1/4) RS : ; -(1/2)h6: -(1/2)h7:
_54 (1/4) RS J ; ]l —(l/2)h7; - (1/2)hg
he = (1/2) R*S l i ! |
: |
hg = (1/2) Rs* | { |
V o } | |
h; = (1/2) R*S !
hg = (1/2) RS* ‘
. . I

249



250

Equation A.2 is written for a compete eight-node

quadrilateral element. If fewer than eight nodes, but
greater than or equal to four nodes are used to define
the element, the corresponding interpolation function
of the omitted node is deleted and the functions h; to

h, are modified accordingly.

2) Displacement Functions: Denoting the components of

the global displacement uy and Uy in the x and y
directions, respectively, the displacement functions
also have the same interpolation functions as in the

coordinate transformations

uy(r, s) = %hiu,l{

i=1

0 _ (A.3)
uy(r, s) = E hiu§

i=1

i are the global displacements at node i.

i
where u g and uy

3) Strain Displacement Transformations: Let matrix B

relate the strain components e to the nodal point dis-

placements u
e(r, s) = B(r, s) u (A.4)

where

ol
|

(u}Jir \1;) H i=1, 6., Q

e = (exx' eyy' exy)
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with
_ 9 i
exx(r, 8) = I (3h;/3x) uy
i=1
0] .
e.. (r, s) = % 1
vy v ) i—‘zl(a h i/ay) uy
and
e,.,(r, s) = L g (3h./3y) ui + L % (dh,/ox) ui
7 - 3 .

The linear strain displacement transformation matrix B

can be expressed in the following form

FBH / X 7]
d0H / 3y
B(r, s) = (A.5)
3H / Jyax
H*
where
dH/9x = (3hy/03x%, 0, ahz/ax, 0, . . -, 3hQ/ax, 0)
2H/3y = (0, 3hy/3y, 0, 3hy/3y, . . ., 0, *Po/3y)
dH/3ydx = (ahl/ay, ahl/ax, ahz/ay, ahz/ax e e e
.., Bgsay, Pgsax)
H* = (hl/}.—(, 0, hz/}—{, O, ° ° ° ° 7 hQ/}-E, 0)
with
- Q :
R(r, s) = & hyx'
i=1

Since the functions hi are in terms of r and s, the
chain rule is applied in order to compute the derivatives

with respect to the global x-y coordinates.



3/3r l_ax/ar ay/or {'a/ax
3/3s L._ax/as dy/3ds L_a/ay
(A.6)
Invert the Jacobian operator to obtain
/0% | [Cay/ss -3y/3r 3/3r |
1 !
= =, i
J i
. =9 o
La/ay N x/3s IX/dxr a/as<J
(A.7)
where J is the Jacobian determinant given by
J = (3x/9r) (dy/3s) - (3x/3s) (3y/3r) (A.8)

From Eg. A.l, the derivatives of the global coordinates
x and y with respect to the natural coordinates r and s

can be evaluated by

9X/9r = % (ahi/ 3 1) x:.L
i=1
Q i
ox/3s8 = I (ahi/ax) X
i=1
(A.9)
o i
dy/dr = % (ahi/ar) y
i=1
Q i
9y/3s = 1 (3h;/3s) y

i=1
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For any given values of r and s, the derivatives of

the interpolation functions can now be evaluated, and
thenrby using Eg. A.9, it is possible to compute the

2 x 2 Jacobian operator which transforms the derivatives
from natural to global coordinates. The derivatives of
the interpolation functions h; with respect to global
coordinates x and y can be calculated by Eg. A.7 to
obtain the elements of the transformation matrix B in
Eg. A.5.

4) Numerical Evaluation of Element Stiffness Matrix

For a two-dimensional body of thickness t, the element

stiffness matrix k can be obtained by
k = 5 B DB dv (A.10)
v
where D is the constitutive matrix and

dv = t dx dy for plane stress

dv dx dy for plane strain (A.11)

dv

x dx dy for axisymmetric
changing the variables of integration to r and s, and
by using Eq. A.1ll, the element stiffness k can be

written as
1 1

.
k =j 5 BY(r, s)D(r, s)B(r, s)J(r, s)n dr ds
-1 -1 (A.12)
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where
for plane stress analysis n ==t
for plane strain analysis n =10
for axisymmetric analysis n= 9 h.ixi

The integral can be evaluated by using the two-

dimensional Gauss integration formula

N N t A
k —j=21 kil WiW B~ (ry, sk)D(rj, sk)B(rj, SE) 1 nlry, sg)d(ry, s.)

(A.13)
where rj, s, are the natural coordinates of the inte-
gration point; Wjand W, are the associated weights; and

N is the order of integration.




255

I (b) Bar Element

1) Shape Functions

hy = (1/2)(1 + 1) - (1/2) (1 - r?) = (x/2)(r + 1)
hy = (1/2) (1 - r) - (1/2)(1 - %) = (z/2) (r - 1)
hy = (1 - r?)

(dh,/dr) = r + 1/2 ~ (B.1)

(dhz/dr) =r - 1/2

(dh3/dr) = -2r

2) Coordinate Interpolations

x'(r) = 8 hi XE_
i=1
(B.2)



3) Displacement Function

Q i
w(r) = I h;w (B.3)

4) Strain Displacement Transformation

e'(r) = B'(r) w(xr) (B.4)
where
wt(r) = (Wys « o o o wQ)
0 .
e'(r) = (dw(r)/dx') = I (dhi/dx')wl
i=1

Therefore, for Q = 3,

B'(r) = (dhl/dx', dhy/dx"', dh3/dx')

and
dx'/dr = [(dhl/dr)xi + (dhz/dr)xé + (dh3/dr)x§]
= J'(r)
(B.5)
Note that
dr/dx® = 1/J"'(xr)
also
dx' = J'(r) dr
dw(r)/dx® = (dw(r)/dr) (dr/dx') = dw(r)/JY(r)dr
Thus
B'(r) = (dhy/dr, dh,/dr, dhs/dr) J.tr)

(B.6)
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5) Element Stiffness in x'-y' Coordinate System

k' = J B9 D (BY)av (B.7)
Vv
Since D =E
dv = A dx°

where E is the moldulus of elasticity, and A, the

cross sectional area, the element stiffness becomes

x1
K = 5 BHYE (B") A ax’
X2
1 dhl/dr
= 5 dh,/dr | [dh,/dr, dhy/dr, dhy/dr]
1| dng/ar [(AE/J (r)) ldr
(B.8)

The quantity J(r) can be evaluated as

J(r) = (r + l/2)xi + (r - l/2)xé - 2rx§
= r(xi + xé - 2x§) + (l/2)(xi - xé)
If Xy = (xi + xé)/Z
then J =

(x' - x')/2 = constant
1 2 (B.9)

and the element stiffness reduces to




— .
1 r + 1/2
k' = \S r-1/2 | (r +1/2, r - 1/2, -2r] [AE/J] dr
-1 -2r
7/6 1/6 ~-4/3
- 2 AE 7/6 -4/3 (B.10)
xi - xé
symm. 8/3 _J

If the center node is omitted, it degenerates to
= L. v =
J (xl x2)/2 L/2

where L is the member length, and the element stiffness

becomes the familiar

1 -
1/2
k' = {1/2, =1/2] (2 AE/L) dr
-1/2
-1
F‘ =
1 -1
= _AE (B.11)
L

-1 1

6) Transformation to Global x-y Coordinates:

k =at k a (B.12)
in which a is given by
—
C S 0 0 0 0
[a] = 0 0 C S 0 0
0 0 0 0 C S

where C = cos 8 and S = sin 6.

258



Link Element

Forces and Displacements Relationship:

Displacement Transformation:

259



—-d ] [ S
r -C C
d S -C -S
L S L
or a = a

3) Force Transformation:

— . = =
PiX -C S
ij C -5
P. S C.
R . _
or P = at

4) Link Element Stiffness Kk :

av}
It
o]
o

il
jo)]
(v
~i
o]}

which can be expanded to obtain

B B
e u.
S 11X
u.
1y (C.2)
u-
C Jx
- Lujy

t (C.3)
L'
F
By substitution
(C.4)
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e

+ K_S K_SC - K_SC
S r s

K.S2 + KSC2

symm.

2 2
—KrC - KSS

-K,.SC + K SC

K_c2 2

r + KSS
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uy

I (4d) Bond Element ?s

ve'

3¢
oy’
8 ux
Y ////;\
A gl
g’ \iz © 2%
qoP ¥
3
2 %
[ '/ il () N
g >
5 % g
" %6
*5
6
= X
1) Shape Functions:
hy = (1 +1)/2 = (1 -12)/2= (£? + 1)/2
Top  hy = (1 -1)/2 - (1 -1?)/2= (£2 - r)/2
hy = (1 - r?) (D.1)

hy = (L+1)/2 - (1 -1%)/2= (2 + 1)/2
Bottom hg = (L - r)/2 - (1 - £2)/2 = (r? + 1)/2

he = (1 - r?)
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2) Coordinate Interpolation Functions:

- 3
v = LR
Top x'(r) iil hlxl
(D.2)
Bottom x'(r) = g h-x"
. —_ i=4 1—i
3) Displacement Functions:
- -1
ur(r) - 121 hiur
Top
- -1
us(r) T =1 hius
D.3
6 : ( )
u (r) = Z h.,u
i=4 1T
Bottom
6 i
u (r) = £ h.u
=4 1—-S
4) Force and Displacement Relationship:
Pr(r) = kr wr(r)
Ps(r) = kg ws(r) (D.4)
where wr(r) = ur(r) - gr(r)
_ 3, 51 _ 8 i
- E hju, - E hjuy

i=1 i=4
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and ws(r) = u_(r) - us(r)
3 -1 6
= .% ar - . h ul

5) Equivélent Nodal Forces:

virtual Displacements du = I hy sut

. _ it o1
External Virtual Work We = [ dBut}] - F
Internal Virtual Work WI = [ du ]t P

9 it
= [Z hy du]™ kw

1
W, = Wy
(it i = (% n, 5ut1® ke av
1
v
x'
i t
Fo o= ko[ § hi] w dx’
1
L}
X2
x'
1 0 £ OT |84
= k,[% h1% T h, - % hl ax
i h " . 1
l 1 u-
x}! -1
2

where ko, QT, QB are the generalized stiffness,
number of nodal points at top, and number of nodal

points at bottom, respectively.




6) Element Stiffness k' in Local Coordinates: Note that

-
gl r-Fi ] 3
r -r
5
Top . = - . Bottom : ’,Spgﬁr tx
i pi w® A
S ~s ¢

Consider the top edge (2-3-1)

- =it
We = [3ur]

-ilt
- Cul a2l uf o o)
gi
Pr(r) = kr wr(r)
= k_[ £ h.,at - gh.ul]
Thi=1 YT i=g VT -
L
£ 3
WI = eu.l- P (r) dv = [ =&
r .
i=1l

e £ £ £
HRoRuH&HKWHNDHKE

ol

o
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]
J

or ' u::ll:'
Xq —hl-1 u%
Wy = Gl k. h, | (hy h, hy -h, -hg -hg)dx' | u]
x5 [Py ul
U

[ A ] | ug |

Define J(r) = dx'/dr

= (dhl/dr)xi + (dhz/dr)xé-k(dh3/dr)x§
= (r + l/2)xi + (r - l/2)x5 - (2r)x§

= r(Xi + xé - 2xé) + (xi - xé)/z

If x} = (x] + x5)/2

Then J = (x; - x,)/2 = L/2

Similarly Jd = (x; - xg)== L/2

By the same procedure, it can be shown that

1
Ft = kg ‘S [§ 1 Far ot k' ol
s s s °s

-1
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1
i_ - i
Er = kr .g [ Er 1] 3 dr u_ = 5% uy
-1
1
i _ 1 - 30 1
Fs = kg \g [ Hg 1 J dr ug = Es Ug
-1
Note that [Hr]=[Hs]=—[§i_r]=—[§S]
Denote [ ﬁr l=108B) 5 -[H 1=-1[H]

Therefore, the element stiffness k' can be written as

k! 07 k H 0 ]
r 1 Y
0 k! 0 k_H
K = s| - ° (L/2)dr

k! 0 -k_H 0

0 k! 0 -k _H

L =S | | s _

(D.6)

with
N L hlhl hlhz hlh3 —hlh4 —hlhs —hlh6

Hdr =5 hohy  hohy hyh3z -hphg -hphg -hphg dr

h3hy hshy h3hy -hhg -h3hs -h3hg

Recall that hy = h, ; hy; = hg ; h3 = hg.

Only the following integration need be carried out.
1 1

S' hlhl dr = h4h4 dr
-1 -1
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1
- § [ (x® + r)/2 1% ar = 4/15

-1
1 1
g hih, dr = 3 h,hg dr
-1 : -1
, 1
2 2
= J [ " + ©)(x" - x)/4 ] dr = -1/15
-1
1 1
hlh3 dr = S h4h6 dr
-1 -1
1
- 2 2 _
= [ (x“ + r)(1 - xr©)/2 ] dr = 2/15
-1
1 1
1l
= S [ (£2 - r)/2 1% ar = 4/15
-1
1 1
hyhy dr = J hgh, dr
-1 -1

1
= S‘ [ (r2 -r) (1 - r2)/2 ] dr = 2/15




h3h3 ar

1

=S hghg dr
-1

1
(1L - r
-1

2,2

)

dr =

16/15

Thus the element stiffness in matrix form is

T 2(15)

4k

4k

symm.

0 2g O
16k, 0 -2ky
16kg O
4ax

0 -2k
kg O
0 -2k

-4kg O
0 -16k

) S
0 2k,

kg O
0 2ky

4kg O

16k

16kg

(D.7)
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If the center nodes are eliminated, it degenerates to

the element of Goodman, Taylor and Brekke [1l1l1].

J = (x' - x')/2 =L/2
(xl xz)/ /

1 1
S hlhl dr = S‘ h4h4 dr
-1 -1
1
- S [ (1+1)/2 1% ar = 2/3
-1
1 1
S hjh, dr = 'S hyhg dr
-1 -1
1
= S‘ [ 1 +r)(l -1xr)/4 ] dr = 1/3
-1
1 1
s hoh, dr = .g h5h5 dr
_l "'l

1l
- S [ (1-1)/21%ar = 2/3
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2k, 0 kr 0 -2k, 0 —kr 0
2kg 0 kg 0 -2ks 0 ~kg
2k, 0 -k, 0 -2k, 0
L
1] — - -
k' = 2(3) 2kS 0 ks 0 ks
2k, 0 Ky, 0
symm. 2k g 0 kg
2kr 0
2ks
(D.8)

7) Transformation to Global x-y Coordinates: Let

C = cos 6

S = sin ©

C S
a' =
-S C
a' B
al
al
9
[a] = .
a' (D.9)
al
L .

Then the global stiffness k is simply obtained by

k = at k' a (D. 10)
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APPENDIX II

General Structure of the Computer

Program NTAFEA
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II (a) Program Macro-Flow=-Chart

NTAFEA

A computer program §on the network-topological
approach to the §inite element analysis of
proghessive crack growth in concrete membens.

O——

READIN SETCORE

Reads 4in and inten- | Sets gield Length
prets input data. fon dynamic conre
stlonage.

ECHO

Echo print of 4input
data

°

4

SOLVE

Deterunines the solution
procedure 1o be used.




FRONTAL

Assembles element sEL4{ness
and carvies out the grontal
elimination process.

Computes Choleski decom-
position U for modification
procedure Lf requinred.

Outputs displacements and
heactions.

274

STIFFNS

Fonms element

:

CSTRESS

Computes element strnesses.

Determines failure of sub-
structunal elements, A4
requined. -

AELGfness matrices.

4

CRACKPA

Chack propagation

procedure.

,<> MODIFIC

Structural modigication
procedure.

)

\
i

AVERAGE

Averages nodal point
stnesses and checks
against gallure

cuterua.

LATALGO

Link-at-a-Ltime
Algonithm.
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APPENDIX III

Computer Program Input Description
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IIX (a) General Remarks

1)

2)

3)

4)

5)

6)

7)

The input to the computer program is basically format-
free. However, for the purpose of minimizing the effort
in decoding the BCD (Binary Coded Digit) and in search-
ing for next START or STOP card, the following two
restrictions are imposed:

a) The START and STOP cards must begin at column 1.

b) Data of coordinates, structural elements, loading
conditions and boundary conditions are read in
with a format either supplied by the user or by
default.

Each word must be separated by one or more blank

spaces or by a comma.

Blank spaces are generally ignored except within a

pair of quotation marks or parentheses.

Any character appearihg after a "/" mark is treated
as comment and will not be processed by the program.
The program examines only the first four characters
of each word. Therefore, any word which is longer
than four characters can be abbreviated.

Each input command can continue onto a second card.
A comma at the end of a string of characters on the
first card will serve as a continuation mark.

In case of input via teletype, an equal sign at the

end of a string of characters will delete the whole
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string. Other input editing features follow the rules
of the Remote Terminal System.
8) Execution MODE cards can be inserted anywhere within

the input sequence as long as each is followed by a

command card with the "$" sign.

9) The following abbreviations are reserved words:

E Young's Modulus
NU Poisson's Ratio

uc ULtimate Compressive Strength

UuT Ultimate Tensile Strnength

KH Hondizontal Spning Constant

KV Ventical Spring Constant
UHC Ultimate Hornizontal Compressive Strength
UHT ULtimate Honizontal Tensdile Strength
uve ULtimate Vertical Compressive Strength
UvT Ultimate Ventical Tensile Sinength

MAX. Max.{mum

10) The sequence of input is rather flexible. However,

it is advisable to follow the general sequence as

stipulated in the next section.




I1II (b) Input Commands

1) START
Signifies the starnt of a new problem. 1%
must begin at column 1 and 48 requinred for
every problem. [ $ START 45 also an
acceptable command, but not advisable.)

2) PROBLEM TITLE " Tithe "

3)

4)

5)

6)

7)

Any acceptable FROTRAN charactens can be
used as title to identify each given
problem. Up to 130 characters can be en-
closed within the quotation marks.

NORMAL MODE

Noamal execution mode. The program auto-
matically assumes a noumal mode Lif no
other mode 45 specified.

CHECK MODE
Key parametens in the program execution will
be ouput forn spot checks.

DEBUG CODE
More extensive intenmediate nesults will be
output §orn debugging purposes. '

PANIC MODE
Causes a dump of the active core at each step
of computation. 14 48 extrnemely time-
consuming and the output 4s voluminous.

Therefore, this mode 4is recommended only for
very small problems.

~PUNCH MODE

Causes the nesulting changes in element and
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8)

9)

10)

nodal point data to be punched on cards
which can be used as Anput when execution
resumes.

$ UNPUNCH MODE

Tuns 044 the punch mode. The program auto-
matically assumes the unpunch mode unfess a
punch mode 44 specified.

$ MAXIMUM FIELD LENGTHS

Degines the field Lengths for the dynamic
cone Atornage. 1i& must be input for every
problem. However, any one on all of the
following input cards may be omitted, and
the comresponding §ield Length will be

defined by default. The parameter n Ab

an Antegen.

MAX. DIMENSION OF COORDINATES = 2 Preset value
MAX. DEGREES OF FREEDOM PER NODE = 2 Preset value
MAX. NODE NUMBERS = # - Degault = 384
MAX. ELEMENT NUMBERS = K Default = 197
MAX. MATERIAL TYPES = 4 Default = 4
MAX. ELEMENT TYPES = Degault = 4
MAX. NODES PER ELEMENT = # Degault = §
MAX. DISPLACEMENT BOUNDARY POINTS = n  Defautt = 37
MAX. LOADED NODAL POINTS = A Degault = 32
MAX. FRONTAL SIZE = n Default = 32
MAX. BUFFER SIZE = 1 © Default = 1664
$ ELEMENT TYPE L = mg

Parametern A A the integer Ldentifying

the element type, and m; can be one 0f
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the following elements:

BAR
BOND
i LINK
4 PLANE STRESS
PLANE STRAIN
AXISYMMETRIC
11) $ MATERIAL TYPE 4 = my

Parnameter A 48 the intergen Ldentifying the
material type, and mi can be one of the

ei

materials Listed below.

constants e; and thein values vj
as nequired to define the material.
pressive sthenth 48 indicated by a minus ( - )

= Vi

Input the material

Adgn.
me e
CONCRETE E NU uc ur
STEEL E Nu Uuc Ut
BAR E uc ur
BOND KH KV UHC UHT  uvC
LINK , KH KV UHC UHT uvC
Example: $ MATERIAL TYPE 1 = CONCRETE E = 3000000,
NU = 0.2 UCT = -3000 UT = 300
12) $ NODAL POINT COORDINATES "( Imput Format )"

as many
Com-

uvrt
uvr

Aftern this cand, supply nodal point number,

x-coordinate, y-coordinate, An that onden,
acconding to the input format specifdied.

1§ the input gormat 4s omitted, the program
will assume a Atandarnd fonmat of (15, 5X, 3F10.0}.

b A bLank cand to end neading of this group.
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13)

14)
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$ STRUCTURAL ELEMENT DATA " ( Input Format )"

Aftern this cand, supply the Atructural
element data accornding to the input format
specified, 4in the following onder:

ELement numben

Element type numbenr

Material type number

Index for crack exclusion: 1=yes; 0=no
Index for substructure: T=yes; 0=no
Number o4 nodal points (max. §)
Node 1

Node J

Node K

Node L

Node M

Node N

Node 0

Node P

Bar Area on Angle of Link element
Pretensioned stness

1§ no Ainput format is Aspecified, the program
will assume a format of ( 15, 413, 815, 2F10.3)

A blank cand to end reading of this group.

$ DISPLACEMENT BOUNDARY CONDITIONS " ( Input Format )"

Aftern this cand, supply the imposed dis-
pLacement boundary conditions accornding fo
the fonmat specified, in the following order:

Nodal point numben
Known x-displacement
Known y-displacement

Known displacements are nead in as alphanumeric
numbens. 14 there 45 an unknown displacement
in any dirnections, Leave the space blank. 1§
no Anput fornmat 4is specified, the progham will
assume a format of ( 15, 5X, 3A10 ).

A blank carnd to end neading of this group.
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15) $ LOADING CONDITIONS " ( Input Fornmat "
Aftern this cand, supply the nodal point Loads
acconding to the format specified, in the
gollowing onden:
Nodal po.int numben
Load 4in x-direction
Load in y-direction
1§ no input forwmat is specified, the program
will assume a fowmat of ( 15, 5X, 3F10.0 )
b A blank cand to end nreading of this group.

16) $ NUMBER OF STEPS = n
Integen n 48 the number of sfeps 4in crack
ghowth, modification orn iteration.,

17) $ ECHO PRINT ONLY
Causes input data to be printed out for
checking purpose.

18) $ SOLVE WiTH FRONTAL PROCEDURE

To obtain a solution with the grontal technique.

19) $ SOLVE WITH CRACK GROWTH PROCEDURE
To obtain a crack pattenn unden the given
Loading condition.

20) $ SOLVE WITH MODIFICATION PROCEDURE
To perform structural Modiéication and ne-
analysis by the Link-at-a-Time ALgorithm.
Supply the §olLowing cards to define the
modd§ication process:

STAGE L NUMBER OF NODES INVOLVED = n

Parameter 4 4s the .integern identifying the
stage of modification, and integer n As




21)

ADD NODES

the number of nodes Lnvolved in this stage of
modification. This carnd s required for every
stage of modification.

" Input. Format )"

Aften this cand, supply the coondinates of the
added nodes, sameas (12). The program will
assume the prevailing format defined previously
eithern by Anput on by degault, if no Lnput
fonmat is specified here. Omit this card 4if no
new nodes are fo be added.

A blank cand to end neading of this group.

ADD ELEMENTS "( Input Format )"

o

Agten this cand, supply the structural element
data, same as (13). The program will assume
the prevailing format deddined previously either
by input on by default, if no Anput gormat

A5 specified here. Omit this card 4§ no new
elements are to be added.

A blank card to end neading of this group.

DELETE ELEMENTS " ( Input Format "

STOP

Aftern this cand, supply the efement number Lo
be defeted. However, the input format should
be consistant with othen structural element
data, i.e., the input §ormat should be for all
the items Listed in [13).

A blank cand to end neading of this group.

Signifies the end of program execution. 1%
must begin at column 1, and may appear only
once at the very end of the Ainput sequence.
( $ STOP {5 also an acceptabfe command, but
not advisable.)
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