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Residual Energy Scan for Monitoring Sensor Networks
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Abstract— It is important to have continuously updated infor-
mation about network resources and application activities in a
wireless sensor network after it is deployed in an unpredictable
environment. Such information can help notify users of resource
depletion or abnormal activities. However, constrainted by the
low user-to-node ratio, limited energy and bandwidth resources,
it is infeasible to extract state of each individual node. In this pa-
per, we propose an approach to construct abstracted scans of sen-
sor network health by applying in-network aggregation of network
state. Specifically, we design a residual energy scan which approx-
imately depicts the remaining energy distribution within a sensor
network. Simulations show that our approach has good scalability
and energy-efficiency characteristics, compared to continuously
extracting the residual energy level individually from each node.

Index Terms—Wireless Sensor Network, Aggregation, Network
Instrumentation

I. INTRODUCTION

Wireless sensor networks have been attracting increasing re-
search interest given the recent advances in miniaturization,
low-cost and low-power design. Such networks will consist of
a large collection of small wireless, low-power, unattended sen-
sors and/or actuators [1][2][3][4]. Sensor networks can enable
“smart environments” which can monitor ambient conditions
such as temperature, movement, sound, light, location and oth-
ers. One important feature that distinguishes sensor networks
from traditional distributed systems is their need for energy ef-
ficiency. Many nodes in the emerging sensor systems will be
untethered, having only finite energy reserves from a battery.
The requirement for energy-efficiency pervades all aspects of
the system design [5]. Another important feature is their unat-
tended and ad hoc nature. Because of their compact form factor
and potential low cost, nodes might be autonomously deployed
in an unplanned fashion. The working environment for those
sensor nodes might be unpredictable and thus affect the perfor-
mance of the network dramatically. The high node-to-human
ratio also makes it infeasible to maintain individual nodes con-
stantly.

Given their unattended nature and their complexity, it is crit-
ical that the users be continuously updated of the sensor net-
work health indications, i.e., explicit knowledge of the overall
state of the sensor network. We propose sensor network scans
as such indications of network health. A scan can provide early
warning of system failure, aid in incremental deployment of
sensors, or help testing sensor collaboration algorithms. For

example, knowing the remaining energy resource distribution
within a sensor field, a user may be able to determine if any
part of the network is about to fail in the near future due to de-
pleted energy. Similarly, given the practical difficulties in pre-
cisely planning sensor field deployments, network scans can
guide incremental deployment of sensors. By examining the
distribution of node density, communication quality and other
resources in the sensor field, additional sensors can be placed
selectively on those regions short of resources. Finally, a sen-
sor scan can be designed to depict the overall response of the
sensors to some known stimulus. Such information is helpful
for validating expected sensing functionality or fine-tuning de-
tection algorithms.

However, continuously monitoring wireless sensor networks
leads to different challenges compared to existing diagnosis
protocols for distributed systems [6][7][8][9][10], or other sys-
tems such as telecommunication networks or power genera-
tion systems [11]. The large number of nodes in a sensor
field makes it infeasible, given energy and communication con-
straints, to collect detailed state information from each individ-
ual sensor node and then process centrally. In this paper, we
propose an efficient monitoring infrastructure for sensor net-
works. Analogous to weather map or air traffic radar images,
our sensor network scans describe the geographical distribu-
tion of network resources or activity of a sensor field. We de-
sign and evaluate a mechanism for collecting a residual energy
scan (eScan). A eScan depicts an aggregated picture of the
remaining energy levels for different regions in a sensor field,
and may look like Figure 1. Instead of the detailed information
of residual energy at individual sensors, this scan provides an
abstracted view of energy resource distribution.

Our proposed approach to construct an eScan applies lo-
calized algorithms in sensor networks for energy-efficient in-
network aggregation of local representations of scans. Rather
than collect all local scans centrally, this technique builds a
composite scan by combining local scans piecewise. At each
step of aggregation, these partial scans are auto-scaled by vary-
ing their resolutions. The information content of the overall
scan scales well with network size. We also propose to ap-
ply incremental updates to scans. When the state of a node
changes, it should not need to continuously re-send its entire
scan. Rather, it only sends a partial update to a scan only when
its local state has changed significantly. Furthermore, that up-
date only traverses up the aggregation hierarchy if it radically



impacts some aspect of the overall representation. An aggre-
gated scan may lose detailed information such as the residual
energy level at each individual node. However, the compact-
ness of such an abstracted representation can reduce the com-
munication and processing cost significantly. As we show in
this paper, the trade-off between reduced fidelity and increased
lifetime is acceptable.

We evaluate the performance of our design by simulation.
To calibrate the performance of distributed scan collection, we
compare our scheme to centralized collection of node resid-
ual energy. It might seem that this comparison is somewhat
trivial—distributed scan collection will obviously be more
energy-efficient than centralized collection. However, dis-
tributed scan collection and aggregation can introduce error in
observed node residual energy. The performance question we
ask is: Can distributed scan collection provide significant en-
ergy savings while introducing little error? We show that there
exist reasonable models of node energy dissipation for which
scanning can result in an order of magnitude energy savings
while introducing less than 10% error in observed residual en-
ergy.

The rest of the paper is organized as follows. In Section II,
we give a brief summary of related work. Section III describes
the design of residual energy scan collection. In Section IV, our
preliminary simulations results show that sensor network scan-
ning is energy-efficient and scales well with network size, com-
pared to collecting all residual energy information centrally.
Section V concludes with some future work directions.

II. RELATED WORK

To our knowledge, there exists no ongoing or previous work
that has attempted continuous monitoring of large-scale dis-
tributed sensor networks. In this section, we review periph-
erally related areas: wireless sensor networks, debugging and
diagnosis protocols for parallel and distributed systems, mon-
itoring other industrial systems and recent work on coverage
problem in sensor networks.

Wireless sensor networks can potentially support a variety
of high profile applications [4][12]. Researchers have been
addressing various aspects of the design of sensor networks
[1][13][14]. In data fusion [15][16], information gathered from
various knowledge sources and sensors are combined to pro-
vide a better understanding of the phenomenon being observed.
An energy-efficient paradigm (directed diffusion) for the de-
sign of sensor network protocols is proposed in [13]. One im-
portant feature of directed diffusion are localized interaction.
The control decisions are made based solely on the interactions
with neighbors or nodes with some vicinity, which is intended
to avoid the high energy cosumption on data delivery over long
distance but be more scalable, robust and energy-efficient.

Distributed diagnosis protocols [10][8][17][18] have been
designed either for multiprocessor computers or for wired com-
puter networks. Particularly, instrumentation on the grow-
ing Internet shares similar scalability challenges [7][19][20].

Fig. 1. An Example of Residual Energy Scan
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For example, SCAN [7] provides a multicast-based continuous
monitoring infrastructure with good scalability and robustness
by sharing information between routers. Engineers have been
deploying monitoring systems such as SCADA(Supervisory
Control and Data Acquisition) [11] for power plants, gas com-
panies, telephony systems and others.

When instrumenting a sensor network, lots of ideas can be
borrowed from those techniques. However, none of them is di-
rectly applicable to continuously monitoring sensor networks
which imposes different challenges in scalability and energy-
efficiency. For example, states are intended to be extracted
from the whole network as a background activity of low pri-
ority. The sum of states is accumulatively very large and
light-weight in-network aggregation of those states are nec-
essary. More recently, the coverage problem in wireless sen-
sor networks is studied in [21]. Given the locations of sensor
nodes, these techniques detect maximal breach path and max-
imal support path along which there is poorest and best cover-
age of sensors, respectively. These approaches can detect one
or more specific network vulnerabilities. Sensor network scans
are complementary in that it can provide an approximate indi-
cation of when to invoke these other tools.

III. RESIDUAL ENERGY SCAN

A residual energy scan (or eScan) depicts the remaining en-
ergy levels of sensor nodes(Figure 1). Different regions of the
sensor field are shaded differently, depending on the average
energy resources within that region. An eScan can help users
to decide where new sensor nodes be deployed to avoid energy
depletion. It may also help verifying the behavior of energy-
aware adaptive routing protocols [22].

A. System Model and Assumptions

Without loss of generality, the network we intend to monitor
consists N sensor nodes on a m by m square plane. Each node
is immobile but has symmetric communications to other nodes
within certain range. Location on the plane can be obtained
at each node, by GPS with fair accuracy [23], or other rang-
ing localization systems [24]. Nodes are powered by batteries



with normalized capacity of 100%. The residual energy level
can be measured by interface similar to APM or ACPI. Each
node executes one or more sensing tasks, consuming energy
by inter-node communication and local signal processing. We
emphasize the high energy cost of communication compared
to computation. For example, reference [5] shows the energy
consumed in transmitting a 1 kilobit packet over 100m is ap-
proximately the same as performing 3M CPU instructions on
prototype wireless sensor nodes. For this reason, sensor nodes
will prefer to perform significant local collaborative processing
of data, rather than transmit data over long distances.

We also assume that there are one or more user gateways at
the network edge, from where users will collect residual en-
ergy scans. We intend to design network communication and
aggregation mechanisms for delivering energy scans to a user
gateway with good scalability, robustness and energy efficiency
characteristics.

B. Collecting Residual Energy Scans

The process of constructing a eScan of a sensor field can be
briefly described as follows:

Determining Local eScans: Each node constructs its local
scan with its residual energy level and its location, and it only
reports when the energy level drop significantly since last time
it reported its eScan.

Disseminating eScans: Local eScans are disseminated
across the network to compute a composite eScan of the entire
network. For this to happen, the user at a gateway expresses
a special INTEREST message. This INTEREST message prop-
agates throughout the network by flooding. Upon receiption
of INTEREST message, each node sets the sender as its par-
ent node leading toward the user. An aggregation tree is con-
structed with root as the user gateway. Local eScans is sent
along the tree towards the user.

Aggregating eScans: Those nodes that receive two or more
eScans may aggregate eScans if the eScans are topologically
adjacent and have the same or similar energy level. The aggre-
gated scan is a tuple consisting of a polygon that describes a
collection of nodes, and the range of residual energy levels at
those nodes, which reduces the messaging cost by losing little
critical information content in the scans.

There are several interest problems for us to explore in the
design space, for example: What is the proper compact rep-
resentations for scans? How do we aggregate scans to reduce
messaging cost? Are there other ways to organize the aggrega-
tion paths in terms of energy-efficiency and robustness? Which
network characteristics are proper and which are not? In this
paper, we focus on designs of representation and aggregation
schemes for eScans.

C. Abstracted Representation

A sensor network scan represents an abstracted view of a
particular network characteristics. More precisely, we can de-
fine a eScan as a collection of (VALUE, COVERAGE) tuples.

Fig. 2. Representation and Aggregation of eScans
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VALUE is the quantitative representation of the network state
we are monitoring. It may have a more complex form than
a single scalar value. In eScan, we use VALUE=(min, max),
where min, max are the minimum and maximal residual energy
level of the nodes, respectively. For example in Figure 2(a), the
eScan VALUE in scan A is (35%,37%).

COVERAGE denotes the region that VALUE describes. In eS-
can, COVERAGE of a scan is discribed by a polygon, which
covers those nodes with energy levels falls in the range of
VALUE.min and VALUE.max. The vertices of COVERAGE poly-
gon are the locations of those boundary nodes. The polygon is
not necessarily convex, but not self-overlapping. In Figure 2(a)
, the coverage polygon of the eScan is shown using a solid line.

The representation of eScan leads to energy savings on mes-
saging cost. Combining locations of the nodes with a region,
the polygon representation is more compact. Intuitively, if all

�
nodes within a square have similar values, instead of a list of

�
locations, the polygon representation uses a list proportional

to
� �

. Information of residual energy at each node and the
locations for the interior nodes will be lost. However, it is still
very helpful for a user as an indication of energy resource dis-
tribution. A user is not necessarily interested in the individual
energy levels when monitoring a network in a large number of
nodes. The eScan are enough in most case to identify the near-
depleted regions or discover energy consumption patterns.

The VALUE and COVERAGE representation for eScan is rea-
sonable for another reason. Over long time scales, the energy
consumption pattern is expected to show spatial locality. We
anticipate that all the nodes within a certain neighborhood par-
ticipate in the processing of similar events, thereby spend sim-
ilar energy on the sensing task. If all nodes start out with com-
parable energy levels, spatial locality can results in good com-
pressibility. There exist alternative representation schemes for
eScan and other scans. For example, scans that show ambi-
ent sensing activities can be described in a manner similar to
isothermal curves.

D. In-network Aggregation of eScans

1) Aggregation Rules: One of the most important character-
istics of scans is multiple scans can be combined. For example,
eScan A and eScan B can be aggregated if



A.VALUE and B.VALUE are similar
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And, A.COVERAGE and B.COVERAGE are adjacent:
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where T (tolerance) denotes the maximum allowed relative

error of residual energy value by aggregation. R(resolution) de-
cides when two regions are adjacent. Function Distance gives
the minimum distance between any pair of points, each from
one of the coverage sets. When both conditions are met, the
aggregated eScan C can be obtained in the form of3:	 �����DCE����������	 ��������
�	 �������
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where Merge(P,Q,R) combines two polygons with resolution

R. Obviously, ),�ON�.�0�36@PAJ),�ON�.�0Q�<@�RS),�ON�.10Q
>@T� because Merge
only removes vertices from COVERAGE but never adds new
ones. An example of aggregation operation is shown in Figure
2(b,c), and the scan size is reduced by removing the location
information for 5 nodes.

T and R control how deeply we aggregate scans. They also
decide the “fidelity” of outcome scans. In eScan, we usually
assign a fixed value to R such as radio communication range or
sensing range. The operation to test and aggregate two eScans
costs 5U0 �WV @ time, where

�
is the total number of points in

two scans. Though aggregation consumes energy on local CPU
processing, but such cost is much lower than delivering un-
aggregated data across the network.

2) Incremental Update: From an energy perspective, in-
cremental updates are necessary for continuously monitoring a
sensor network over long time scale. The aggregation opera-
tion introduces error to eScans. If the value change is within
the aggregation tolerance T, it is not necessary to relay the up-
date along the aggregation hierarchy to the user. Each node
maintains a finite eScan cache. New eScan updates are first
compared with cached scans. A update will be droped, if it is
covered by an old eScan and their values are similar with toler-
ance T. Otherwise it will be forwarded to the user and invalidate
any old scan that shares the same region.

E. Discussion

Section III-C and III-D describes the core of eScan construc-
tion: abstracted representation and its corresponding aggrega-
tion operations. There are some additional design issues that
we have currently been investigating.

Complementary Tools: Critical information may be lost
due to abstraction and aggregation. Complementary to sensor
network scans is drill down, where scans can be used as hints to
more thourough diagnosis protocols to identify particular net-
work problems within particular region. The mechanisms for

drill down are similar to those for query distribution and re-
sponse aggregation described in [13].

Aggregation Tolerance Adaptation: To balance the sav-
ings in aggregation and the loss of accuracy in scans, each node
adaptively adjusts its aggregation operation locally. For exam-
ple, if a node keeps receiving scan updates, it can increase the
aggregation tolerance value to reduce the size of resulted scan.
If the node only receives a few escan updates or those updates
are very similar to each other, it can reduce the the aggrega-
tion tolerance value to generate more detailed scans of residual
energy.

Aggregation Path Maintenance: Node failure may parti-
tion the aggregation tree thus some nodes are not able to send
eScan updates to the user. We propose that tree is maintained
by “soft-states” and the user periodically refresh INTEREST

messages to adapt node failure and network dynamics. Sim-
ilar protocols have been well studied in IP routing, IP multicast
and others.

All the issues above are important and can not be ig-
nored. However, our experiments in next section shows the key
benifits of sensor network scans comes from abstracted repre-
sentation shceme, in-network aggregation and incremental up-
dates.

IV. EXPERIMENTAL RESULTS

We compare the performance of eScans to centralized collec-
tion of individual residual energy information from each node.
Our experiments serve more or less a sanity check to reveal the
benefits of abstraction and aggregation for large wireless sen-
sor networks. Distributed scan collection with aggregation can
introduce error in observed node residual energy. We intend
to verify if the communication cost saving is worth by intro-
ducing acceptable error. We use a stand-alone C++ package
to simulate the eScan construction process. In this section, we
present our results and discuss their implications and possible
applications.

A. Metrics

The key performance criterion for eScan is the energy con-
sumed in communicating to the user gateway and the error in-
troduced by abstraction and aggregation. There are other im-
portant metrics for the performance of network scans. For ex-
ample, an eScan update arrived at user gateway is actually a
delayed view of the sensor network. The latency distortion is
another metric of accuracy. We have not studied those metrics
yet but leave them for future work.

Messaging Cost: Sensor network applications consume en-
ergy from time to time. After each sensing activity event, the
energy dissipation may be significant enough to invoke an eS-
can update. We define the messaging cost 8:X for continuous
monitoring as

8<XYC[Z'\^] 3 ]�`_ I 0Qab��+�c^��d^e�.fc^.�!1.��g+h@



where I is the number of events happening per node, 3 ] is the
sum of messaging cost on collecting eScan updates during this
time frame, and

�
is the network size. We define 8�� as the cost

of centralized collection of residual energy information without
any in-network processing. Compared with 8�� , 8 X is expected
to reveal the potential savings by in-network aggregation. We
quantify such savings as cost ratio 9 C������� : larger 9 indicates
more significant savings.

Relative Distortion: Aggregation introduces error into eS-
cans. We quantify the “fidelity” of an eScan snapshot by the
relative root mean square error between perceived residual en-
ergy values in an eScan and the actual values:

( C
	
Z \^]�
 ����
��������� 
 �

�

where 8 ] is the estimated residual energy of node � in the
eScan and 8��] is the real value.

�
is the size of the network.

B. Energy Dissipation Model

There is one missing piece when we define those metrics:8�X and
(

may be sensitive to the energy consumption patterns.
How do we model the energy dissipation in a sensor network?
To our knowledge, there is no realistic model or empirical data
on energy dissipation of large-scale sensor networks. We pro-
pose two energy dissipation models that emphasize different
types of sensing application activity.

We propose a UNIFORM DISSIPATION model, to capture uni-
formly distributed sensing activity. More precisely, during a
sensing event, each node � in the network has a probability� of initiating a local sensing activity, and every node within
a circle of L centered at � consumes fixed amount of energy. . This latter feature of our model is inspired by collaborative
sensing algorithms, where triggered by physical activities on
the sensor field, the nodes within some vicinity send their data
to a particular head node.

In the UNIFORM DISSIPATION model, the residual energy
at all nodes decreases at approximately the same rate. In a
realistic environment, different regions in a sensor field have
different energy dissipation rates. To capture this, we propose
a HOTSPOT DISSIPATION model. In this model, there are �
hotspots uniformly distributed in random on the sensor field
but their locations are fixed during the simulation. Each node� has a probability of ��C���02e1@ to initiate a local sensing activ-
ity, and every node within a circle of L centered at � consumes
fixed amount of energy . ; where � is a density function ande>CE����� \�� � 
 �U� � � 
 � is the distance from � to nearest hotspot.
We use two density functions: ��0 � @�C �1. 
���� is the density
function for exponential distribution, where the hotspot effect
drops quickly with increasing distance; and the Pareto density��0 � @ CF� c 0 ��R���@ �! �" , where the impact of the hotspot falls off
more gradually than an exponential distribution with the same
value of � .

Fig. 3. Messaging Cost Ratio for eScans
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(b) Cost Ratio for Hotspot Model (Expo-
nential, a=0.5)

2

4

6

8

10

12

14

16

18

100 200 300 400 500 600

C
os

t R
at

io

Network Size (N)

T= 1%
T= 2%
T= 5%
T=10%
T=25%
T=30%
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a=0.5)

C. Settings

Following the assumptions in Section III-A, the user gateway
is placed at the upper left corner of the grid. We also assume
a perfect MAC layer, i.e. there is no loss or overhead due to
contention or environment changes. The eScan algorithm in
the experiments uses 16 bits to represent the residual energy
and 32 bits for every node location. An eScan is represented
as a collection of a (min, max) value segment plus a cover-
age polygon. The estimated residual energy in a eScan for a
node covered by a polygon is # � ]  # �!�� in the corresponding
value segment. The messaging cost only includes the data size
for eScans but ignores other overhead such as packet headers.



Fig. 4. Relative Distortion for eScans
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Each node aggregates eScans with tolerance & . Incremental
update is supported with a cache of size 30. eScan updates are
triggered if the energy drops more than 0.1%.

Each run of our experiment corresponds to one choice of
random aggregation tree and parameters for one of the energy
dissipation models. To compute continuous monitoring cost8�X , we also run energy dissipation simulation for I " C � ���
events before starting eScan process. We continue to simulate
energy dissipation for another I C�� ��� events in the same
time of eScanning. We then stop energy dissipation simulation
but continue eScan process until all updates arrive at user gate-
way. We then compute the cost 8 � , 8 X and relative distortion(

for the final snapshot. For each set of experiments , the num-
ber of runs were adjusted to obtain acceptable 95% confidence
intervals.

D. Results

Figures 3 plot 9 of different aggregation tolerance & , as a
function of the network size

�
for different energy dissipa-

tion models and Figures 4 plot the corresponding distortion for
each set of experiments. The energy-efficiency of eScans can
be observed when we evaluate cost ratio together with distor-
tion introduced by aggregation and incremental update. For
example, for a network of 400 nodes using the uniform dissi-
pation model (� C � 	 � ), aggregation with & C � ��� can save
messaging costs by a factor of 12.5, but only introduces ~5%

Fig. 5. Cost Ratio and Distortion v.s. Aggregation Tolerance
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distortion. Beyond a certain tolerance, however, the gains are
almost the same. For example, Figure 3(a) shows T=25% and
T=30% are not distinguishable. At these levels, almost the en-
tire network is aggregated into one polygon. Results for the
two hotspot dissipation models shows the same trend.

Given a fixed aggregation tolerance, the cost ratio increases
with the network size, which indicates that eScan collection
with aggregation and incremental update has better scalabil-
ity than centralized collection with no aggregation. This trend
holds for all three energy dissipation models. However, for
smaller aggregation tolerances, these results seem to be less de-
pendent on network size. This confirms one of our design prin-
ciples that given the high cost for communication, it is prefer-
able to process data locally to aggregate data rather than dis-
seminating raw data over long distance.

The cost ratio 9 can be plotted as a function of & in Figure
5(a). From this graph, the cost ratio increases sharply for larger
aggregation tolerance. However the curve converges gradually
when & increases. Figure 5(b) shows distortion v.s & , where
distortion is roughly a linear function of aggregation of toler-
ance with slope of around "� . Combined with (a), it can provide
guideline to choose proper aggregation tolerance.

In Figure 5(a) the two curves of Hotspot-Pareto and Hotspot-
exponential dissipation models roughly show the same trend
because they share the exact same number of hotspots and lo-
cations. However the curve for Pareto model outperform the
case of exponential distribution. Given the same shape factor



of �GC � 	�� , the Pareto model of energy dissipation tends to have
less localized impact, leading to a smaller deviation of residual
energy across nodes, which increases the aggregatability of the
scan.

We have also studied the performance sensitivity to differ-
ent simulation parameters such as the number of hotspots in
energy dissipation model, probability function shape factor � .
Our experiments show that small perturbations in those param-
eters does not change the experimental results significantly.

The models of energy consumptio in simulations are reason-
able but may appear in favor to our aggregation scheme. The
practical energy consumption might be totally different. For
example, an extreme case might be that residual energy lev-
els are highly diverse between every neighboring nodes, thus
our proposed aggregation scheme with fixed tolerance does not
perform well and the saving in communication is limited. Our
argument for this highly diverse case is that actually there are
hardly any schemes can perform well in this case. Furthermore,
the definition with min/max value serves more as a simple but
proof-of-concept design. Applying more sophisticated statisti-
cal/modeling tools in the definition of VALUE in scans, we ex-
pect our scheme can be more robust to those unfavorable cases
to provide more meaningful abstraction of network states.

V. CONCLUDING COMMENTS

Continuously monitoring resource distribution and network
activity will be a integral component for future sensor net-
works. To our knowledge, there is no other ongoing or previ-
ous work on continuous monitoring large-scale distributed sen-
sor networks. Our design of residual energy scans provides an
overall abstracted view of residual energy in an energy-efficient
manner. Instead of collecting the raw residual energy data from
individual nodes, we apply in-network aggregation to compos-
ite residual energy scans. Our design is an instance of trading
off local processing cost against the savings in communicating
raw data over long distance. Simulation results show that our
approach has good scalability and energy-efficiency character-
istics, compared to extracting the residual energy individually
from each node. To some extent, residual energy scanning it-
self is a unique application on sensor networks. Our research
on this topic will also enrich understanding of sensor network
design in general.

We will continue to refine and evaluate our design, especially
those issues stated in Section III-E. A residual energy scan is
only one kind of abstracted indication of sensor network state.
Different network resource or performance metrics may require
different techniques to achieve good energy-efficiency, scala-
bility and robustness characteristics. We intend to investigate
other sensor network scans and their impacts in the design of
monitoring mechanism for sensor networks.
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