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MULTISCALE MODEL. SIMUL. c\bigcirc 2019 Society for Industrial and Applied Mathematics
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ON CONSTRAINED LANGEVIN EQUATIONS AND
(BIO)CHEMICAL REACTION NETWORKS\ast 

DAVID F. ANDERSON\dagger , DESMOND J. HIGHAM\ddagger , SAUL C. LEITE\S , AND

RUTH J. WILLIAMS\P 

Abstract. Stochastic effects play an important role in modeling the time evolution of chemical
reaction systems in fields such as systems biology, where the concentrations of some constituent
molecules can be low. The most common stochastic models for these systems are continuous time
Markov chains, which track the molecular abundance of each chemical species. Often, these stochastic
models are studied by computer simulations, which can quickly become computationally expensive. A
common approach to reduce computational effort is to approximate the discrete valued Markov chain
by a continuous valued diffusion process. However, existing diffusion approximations either do not
respect the constraint that chemical concentrations are never negative (linear noise approximation) or
are typically only valid until the concentration of some chemical species first becomes zero (chemical
Langevin equation). In this paper, we propose (obliquely) reflected diffusions, which respect the
nonnegativity of chemical concentrations, as approximations for Markov chain models of chemical
reaction networks. These reflected diffusions satisfy ``constrained Langevin equations,"" in that they
behave like solutions of chemical Langevin equations in the interior of the positive orthant and are
constrained to the orthant by instantaneous oblique reflection at the boundary. To motivate their
form, we first illustrate our constrained Langevin approximations for two simple examples. We
then describe the general form of our proposed approximation. We illustrate the performance of our
approximations through comparison of their stationary distributions for the two examples with those
of the Markov chain model and through simulations of more complex examples.

Key words. density dependent Markov chains, diffusion approximation, Langevin equation, lin-
ear noise approximation, chemical reaction networks, stochastic differential equation with reflection,
systems biology

AMS subject classifications. Primary, 60J28, 60J60, 65C30, 92C45; Secondary, 60H10,
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1. Introduction. Reacting chemical species are often modeled by deterministic
differential equations representing the time evolution of molecular concentrations.
Nonetheless, at a finer scale, chemical reaction systems are fundamentally stochastic
in nature. Deterministic models provide a mean field approximation to these systems
and are generally good predictors when the abundances of all species are high enough
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to average out the stochastic fluctuations. However, in some applications, such as in
systems biology, not every molecular species is present in large numbers. The most
common stochastic model of chemical kinetics treats the system as a continuous time
Markov chain that tracks the (integer-valued) number of molecules of each chemical
species [2, 17, 43]. These Markov chain models are often studied by sample path
simulation in order to get Monte Carlo estimates for desired quantities [14, 15, 16].
However, these simulations can quickly become computationally expensive when some
reactions are very fast, since every reaction is individually accounted for. When the
abundances of the chemical species are large (but not large enough to ignore the
influence of stochastic fluctuations) the units can be converted from abundances to
concentrations and the solutions to the continuous time Markov chain model can be
approximated by solutions of stochastic differential equations (SDEs). The resulting
solutions are usually called a diffusion approximation; see, for example, [25]. These
diffusion approximations can be simulated by numerical methods for SDEs, where a
fixed time step can be set, yielding more efficient simulations in most cases. While
the standard continuous time Markov chain model satisfies the natural condition that
all abundances remain nonnegative for all time, diffusion approximations do not, in
general, respect such a nonnegativity condition.

There are two commonly used diffusion approximations for the Markov chain
model, the linear noise approximation [39, 40] and the chemical Langevin equation
[18, 19, 25]. The linear noise approximation is obtained by linearizing fluctuations
about the deterministic approximation. Although this approximation is well defined
for all times, it typically diffuses outside of the positive orthant, predicting negative
concentration values. In addition, it is well known [34, 41] that it can fail to capture
fluctuations due to nonlinearities in the reaction rate functions. On the other hand,
the chemical Langevin equation is known to give better approximations than the
linear noise approximation when nonlinearities are present. However, the chemical
Langevin equation is usually not defined beyond the first time the boundary of the
orthant is reached. In fact, since the diffusion terms of the equation typically involve
square roots of the molecular concentrations, the unstopped equation becomes ill
posed [28, 36, 42].

For example, consider the following simple reaction system in which a molecule
of S1 can be converted to a molecule of S2 and vice versa:

S1
\beta 1\rightarrow S2, S2

\beta 2\rightarrow S1,(1)

where \beta 1, \beta 2 > 0 are the rate constants and we assume the corresponding propensities
follow mass action kinetics. When the number of S1 molecules reaches zero in the
Markov chain model, the reaction S1 \rightarrow S2 has zero intensity and cannot proceed until
another S1 molecule is created via the reaction S2 \rightarrow S1. In this manner nonnegativity
of the number of S1 molecules is preserved. Of course, a symmetric argument shows
that the number of S2 molecules remains nonnegative for all time. However, denoting
the concentration of Si at time t by xi(t), the usual chemical Langevin equation for
this model consists of the system of SDEs,

dx1(t) = ( - \beta 1x1(t) + \beta 2x2(t))dt - 
1\surd 
r

\sqrt{} 
\beta 1x1(t)dW1(t) +

1\surd 
r

\sqrt{} 
\beta 2x2(t)dW2(t),(2)

dx2(t) = (\beta 1x1(t) - \beta 2x2(t))dt+
1\surd 
r

\sqrt{} 
\beta 1x1(t)dW1(t) - 

1\surd 
r

\sqrt{} 
\beta 2x2(t)dW2(t),(3)

where W1 and W2 are independent Brownian motions, the equations are interpreted
in the It\^o sense, and r is usually taken to be Avogadro's number multiplied by the
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volume of the vessel in which the reactions are taking place. Whenever x1(t) is near
zero,

(4) \beta 2x2(t)dt+
1\surd 
r

\sqrt{} 
\beta 2x2(t)dW2(t)

is the dominant term in the right-hand side of (2). Because the term involving W2

in (4) is as likely to push x1 in the negative direction as in the positive direction,
x1 can become negative, thereby making (2) nonsensical in our context. Of course,
a symmetric argument shows that x2(t) can become negative due to the stochastic
forcing from W1.

In this paper, we propose a constrained Langevin approximation for chemical re-
action systems which is a reflected diffusion satisfying a nonnegativity constraint. In
order to motivate the approximation, we begin with two simple, but natural, one-
dimensional examples and then extend the approximation to the general multidimen-
sional case. For the one-dimensional models, we also show how to compute stationary
distributions for the approximation. It is worth noting that because the constrained
Langevin approximation is developed via the same first principle arguments used in
the development of the standard chemical Langevin equation, solutions to the two
models satisfy the same dynamics within the strictly positive orthant. This fact is in
contrast to other Langevin-type models developed to fix the negativity problem that
perturb the dynamics globally to fix what is inherently a local (to the boundary) prob-
lem [42]. We emphasize that the derivation in this paper of the constrained Langevin
approximation is only formal. The paper [27] is a rigorous technical complement to
this paper. In [27], under mild conditions, the well posedness of the reflected diffusion
is proved and it is shown that this diffusion process can be achieved as a weak limit
of a sequence of jump-diffusion Markov processes that mimic the Langevin system in
the interior of the positive orthant and behave like a scaled version of the Markov
chain on the boundary.

In related work, several authors have devised approaches that combine the ac-
curacy and robustness of the Markov chain model with the computational efficiency
of the Langevin diffusion or ODE models; see, for example, [4, 10, 13, 20] and the
references therein. For example, hybrid models have been proposed that exploit the
existence of fast and slow reactions (determined either a priori or dynamically) [13, 20]
or blend the jump and diffusion models, depending on the current system state [4, 10].
In a different vein, in [33] it has been proposed to extend the range of solutions for
the Langevin equation to the complex numbers. The authors of [33] illustrate their
approximation for some unimolecular and bimolecular examples. Although this state
representation loses physical meaning, the authors show that this ``complex Langevin
equation"" can be used to give real-valued approximations to moments and first pas-
sage times. Our work has a different focus than the references mentioned above. We
operate entirely in the diffusion setting and introduce a general strategy to respect
nonnegativity and well posedness. This permits simulation of sample paths and avoids
the need for ad hoc thresholding, blending parameters or introducing additional state
variables, and does not require specialized assumptions on the structure of the reaction
system.

The rest of this paper is organized as follows. Section 1.1 gives a short description
of the notation which will be used throughout the paper. In section 2, we present
the continuous time Markov chain model for chemical reaction networks, beginning
with its most common form in section 2.1, where the state represents the number of
molecules of each species in the system. Next, in section 2.2, we introduce the scaled
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Markov chain model, where the state representation is converted from abundances
to molecular concentrations. The constrained Langevin approximation is presented
in section 3. We begin by introducing two motivating one-dimensional examples in
section 3.1 and the ideas are then extended to the general multidimensional case
in section 3.2. Section 4 is dedicated to numerical results, where we compare the
constrained Langevin approximation with the Markov chain model and the linear
noise approximation. We begin by comparing the stationary distributions of the one-
dimensional examples in section 4.1 and, later, in section 4.2, we present the result
of computer simulations for two-dimensional examples. For the benefit of the reader,
Appendix A gives a brief summary of some aspects of reflected diffusion processes.

1.1. Notation. For any integer m \geq 1, let \BbbZ m denote the integer lattice and
\BbbZ m
\geq 0 denote the integer lattice of points with nonnegative components. Let \BbbR m denote

the m-dimensional Euclidean space and let \BbbR m
\geq 0 denote the positive orthant in \BbbR m

(i.e., the set of points of \BbbR m whose components are all nonnegative). When m = 1, we
write \BbbZ 1, \BbbZ 1

\geq 0, \BbbR 1, and \BbbR 1
\geq 0 as \BbbZ , \BbbZ \geq 0, \BbbR , and \BbbR \geq 0, respectively. For a vector x \in \BbbR m,

we denote by x\prime its transpose and for a given set of vectors \{ x1, . . . , xd\} \subset \BbbR m, we
denote by span\{ x1, . . . , xd\} the set of all linear combinations of its elements. For sets
A and B such that A \subset B, we denote by 1A : B \rightarrow \BbbR the indicator function, where
1A(x) is defined to be 1 when x \in A and 0 otherwise, for all x \in B.

2. Markov chain model of chemical reaction systems. We consider a
chemical reaction system consisting of a finite set of species \{ S1, S2, . . . , Sm\} involved
in K possible reactions, where K is a positive integer. For k \in \{ 1, . . . ,K\} , we denote
by v - k and v+k the vectors in \BbbZ m

\geq 0 such that v - ik and v+ik (the ith component of each)
give the numbers of molecules of the ith species consumed and produced in the kth
reaction, respectively. For example, if the kth reaction in a system consisting of just
two species is 2S1 \rightarrow S2, then v - k = [ 20 ] and v+k = [ 01 ]. We denote by X(t) the vector
in \BbbZ m

\geq 0 whose ith component gives the number of molecules of the ith species at time
t. We note that occurrence of the kth reaction at a time t changes the state of the
system by addition of the reaction vector vk = v+k  - v - k ; that is,

X(t) = X(t - ) + vk.

We assume that vk \not = 0 for each k = 1, . . . ,K. In the next subsection, we describe
the usual continuous time Markov chain model for such systems.

2.1. Continuous time Markov chain model. The standard stochastic model
for a chemical system treats the system as a continuous time, discrete state Markov
chain [17, 43]. For each reaction there is an associated real-valued function of the
state, \Lambda k : \BbbZ m

\geq 0 \rightarrow \BbbR \geq 0, called the propensity or intensity function, giving the rate at
which the kth reaction occurs. Specifically, it is assumed that for each k \in \{ 1, . . . ,K\} ,
x \in \BbbZ m

\geq 0, and t \geq 0,

(5)

P\{ X(t+\Delta t) = x+ vk | X(t) = x\} = \Lambda k(x)\Delta t+ o(\Delta t),

P\{ X(t+\Delta t) = x | X(t) = x\} =

\Biggl( 
1 - 

K\sum 
k=1

\Lambda k(x)\Delta t

\Biggr) 
+ o(\Delta t),

where o(\Delta t)/\Delta t \rightarrow 0, as \Delta t \rightarrow 0. The usual assumption on the intensity functions
\Lambda k, and the assumption we make throughout, is that they satisfy stochastic mass
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action kinetics: for x \in \BbbZ m
\geq 0 the rate of the kth reaction is

(6) \Lambda k(x) = \kappa k

m\prod 
i=1

(xi)v - 
ik

for some constant \kappa k > 0, where

(7) (xi)v - 
ik

= xi(xi  - 1) . . . (xi  - v - ik + 1) =
xi!

(xi  - v - ik)!
.

The constant \kappa k is called the (stochastic) reaction rate constant.
For example, zeroth order reactions of the form \emptyset \rightarrow S1 have constant rate func-

tion \Lambda k(x) = \kappa k, first order reactions of the forms S1 \rightarrow S2 or S1 \rightarrow \emptyset have rate
\Lambda k(x) = \kappa kx1, and second order reactions of the forms S1 + S2 \rightarrow S3 and 2S1 \rightarrow S3

have respective rates \Lambda k(x) = \kappa kx1x2 and \Lambda k(x) = \kappa kx1(x1  - 1). Thus, the rate (6)
is proportional to the number of distinct subsets of the molecules present that can
form the inputs for the reaction. Intuitively, the mass action assumption reflects the
idea that the system is well stirred in the sense that all molecules are equally likely
to be at any location at any time.

There are different ways to represent the Markov chain model having the prop-
erties described in (5), however, we find the following endogenous representation for
the Markov chain to be very useful. In this representation, the Markov chain X(t) is
given as the solution of the following equation:

X(t) = X(0) +

K\sum 
k=1

vkNk

\biggl( \int t

0

\Lambda k(X(s))ds

\biggr) 
,(8)

where Nk, for k \in \{ 1, . . . ,K\} , are independent unit-rate Poisson processes,1 and, for

each k, the time changed Poisson process Nk(
\int t

0
\Lambda k(X(s))ds) represents the number

of times the kth reaction has occurred by time t (for more on this representation see,
for example, [2], [12, Chapter 6], or [26]).

2.2. Scaled system. We may convert from abundances to concentrations. To
indicate the dependence of quantities such as X on the volume of the vessel in which
the reactions are occurring, we let r denote the volume of the vessel multiplied by
Avogadro's number and we append a superscript r to X (and other quantities that
depend on r). Define X

r

i (\cdot ) = 1
rX

r
i (\cdot ) for i = 1, . . . ,m. Note that X

r

i (t) is simply
the concentration of the ith species in moles per unit volume at time t \geq 0. As the
units of the stochastic rate law are in numbers of molecules, but the units of X

r
are

moles per unit volume, to be able to write a sensible equation governing the dynamics
of X

r
, the rates must also be scaled by r in an appropriate manner. The standard

scaling (see, for example, [43, Chapter 6]) is the following: for zeroth order reactions,
the stochastic rate constant \kappa r

k is equal to rck for some ck > 0 that does not depend
upon r; for first order reactions, \kappa r

k = ck; and for second order reactions, \kappa r
k = ck/r.

In general, for jth order reactions, \kappa r
k = ckr

 - j+1.
Let \Lambda r

k denote the propensity function for the kth reaction that is associated with
the system indexed by r, when following stochastic mass action kinetics as in (6), with

1Recall, Nk is a unit-rate Poisson process if Nk(0) = 0, Nk(\cdot ) has independent increments, and
Nk(t+ s) - Nk(s) has a Poisson distribution with parameter t for all t, s \geq 0.
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rate constant \kappa r
k satisfying the scaling detailed in the previous paragraph. Define

\lambda k(x) = ck

m\prod 
i=1

x
v - 
ik

i

for x \in \BbbR m
\geq 0, where we take 00 \equiv 1. This \lambda k is the reaction rate function associated

with deterministic mass action kinetics, with reaction rate constant ck. It is an
exercise to check that for any reaction, i.e., zeroth order, first order, second order,
etc.,

\Lambda r
k(X

r(t)) = r\lambda k(X
r
(t)) + \epsilon rk(X

r
(t)),

where \epsilon rk(x) is a multivariate polynomial in the coordinates of x and 1/r that is
uniformly bounded for all r \geq 1 as x varies in a compact set, and is nonzero only
if the kth reaction consumes more than one molecule of a particular species. For
example, for the second order reaction S1 + S2 \rightarrow S3 we have

\Lambda r
k(X

r(t)) =
ck
r

\Bigl( 
rX

r

1(t)
\Bigr) \Bigl( 

rX
r

2(t)
\Bigr) 
= rckX

r

1(t)X
r

2(t) = r\lambda k(X
r
(t)),

whereas for the second order reaction 2S1 \rightarrow S3 we have

\Lambda r
k(X

r(t)) =
ck
r
rX

r

1(t)
\Bigl( 
rX

r

1(t) - 1
\Bigr) 
= rckX

r

1(t)
2  - ckX

r

1(t)

= r\lambda k(X
r
(t)) + \epsilon rk(X

r
(t))

with \epsilon rk(x) =  - ckx1.
After performing the above scaling from numbers of molecules to concentrations,

and defining

(9) \lambda r
k(x) =

\Lambda r
k(rx)

r
= \lambda k(x) + (1/r)\epsilon rk(x),

we have that (8) yields

(10) X
r
(t) = X

r
(0) +

1

r

K\sum 
k=1

vkNk

\biggl( 
r

\int t

0

\lambda r
k(X

r
(s)) ds

\biggr) 
.

3. The constrained Langevin approximation. We start by presenting two
examples that serve to motivate our constrained Langevin approximation for the
model (10). We stress that, as there are no limit theorems given here, the arguments
are meant to show the plausibility of the proposed approximation.

3.1. Motivating examples.

Example 1. Consider the chemical reaction system with the two reactions

\emptyset \alpha \rightarrow S1, S1
\beta \rightarrow \emptyset .

The constants \alpha > 0 and \beta > 0 over the arrows here denote the (deterministic) reac-
tion rate constants c1 and c2 for the two reactions. Then, with the scaling of propen-
sities described in section 2.2, the Markov chain Xr(\cdot ), which models the stochastic
dynamics of the number of molecules of S1 when the volume measure is r, satisfies

(11) Xr(t) = Xr(0) +N1(r\alpha t) - N2

\biggl( \int t

0

\beta Xr(s)ds

\biggr) 
,

where N1 and N2 are independent, unit-rate Poisson processes.
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Let G = [0,\infty ), G\circ = (0,\infty ), the interior of G, and Gb = \{ 0\} , the boundary of G.
We now give an equivalent in distribution representation of Xr, where we separately
consider jumps of Xr from the interior of G and from the boundary of G. Specifically,
an equivalent in distribution representation for Xr is

Xr(t) = Xr(0) +No
1

\biggl( 
r\alpha 

\int t

0

1\{ Xr(s)\in G\circ \} ds

\biggr) 
+N b

1

\biggl( 
r\alpha 

\int t

0

1\{ Xr(s)\in Gb\} ds

\biggr) 
 - No

2

\biggl( \int t

0

\beta Xr(s)1\{ Xr(s)\in G\circ \} ds

\biggr) 
 - N b

2

\biggl( \int t

0

\beta Xr(s)1\{ Xr(s)\in Gb\} ds

\biggr) 
,

(12)

where No
1 , N

b
1 , N

o
2 , N

b
2 are independent unit-rate Poisson processes. (The distribu-

tional equivalence of the two solution processes in (11) and (12) can be understood
informally via the superposition property of Poisson processes. See [3, Chapter 1] for
a rigorous argument.)

Recall the definition from section 2.2 of X
r
(\cdot ) = 1

rX
r(\cdot ), the normalized (concen-

tration-valued) process. For this example, the process satisfies

X
r
(t) = X

r
(0) +

1

r
No

1

\biggl( 
r\alpha 

\int t

0

1\{ Xr
(s)\in G\circ \} ds

\biggr) 
+

1

r
N b

1

\biggl( 
r\alpha 

\int t

0

1\{ Xr
(s)\in Gb\} ds

\biggr) 
 - 1

r
No

2

\biggl( 
r

\int t

0

\beta X
r
(s)1\{ Xr

(s)\in G\circ \} ds

\biggr) 
 - 1

r
N b

2

\biggl( 
r

\int t

0

\beta X
r
(s)1\{ Xr

(s)\in Gb\} ds

\biggr) 
.

(13)

We can center a unit-rate Poisson process N about its mean by defining \widehat N(t) =
N(t)  - t for all t \geq 0. Centering No

1 and No
2 in this way, collecting terms in an

obvious manner, and noting that the last term in (13) is identically equal to zero
(since x1\{ x=0\} \equiv 0), we see that X

r
satisfies

X
r
(t) = X

r
(0) + \alpha 

\int t

0

1\{ Xr
(s)\in G\circ \} ds - 

\int t

0

\beta X
r
(s)1\{ Xr

(s)\in G\circ \} ds

+
1\surd 
r

\biggl[ 
1\surd 
r
\widehat No
1

\biggl( 
r\alpha 

\int t

0

1\{ Xr
(s)\in G\circ \} ds

\biggr) 
 - 1\surd 

r
\widehat No
2

\biggl( 
r

\int t

0

\beta X
r
(s)1\{ Xr

(s)\in G\circ \} ds

\biggr) 
+ \u Y r(t)

\biggr] 
,

(14)

where \u Y r(t) = 1\surd 
r
N b

1(r\alpha 
\int t

0
1\{ Xr

(s)\in Gb\} ds), t \geq 0, defines a nondecreasing jump pro-

cess, which can only jump at times s for which X
r
(s - ) is at the boundary of G.

Our goal is to propose a diffusion process defined on [0,\infty ) that approximates
X

r
for fixed r of moderate size. By the functional central limit theorem for a cen-

tered, unit-rate Poisson process \widehat N , we have that 1\surd 
r
\widehat N(r\cdot ) is well approximated in

distribution by \widehat W (\cdot ), a standard one-dimensional Brownian motion.2 This suggests

that for an approximation, we replace 1\surd 
r
\widehat N\circ 
k (r\cdot ) by \widehat W \circ 

k (\cdot ) for k = 1, 2, in (14), where\widehat W \circ 
1 and \widehat W \circ 

2 are independent standard one-dimensional Brownian motions. Inserting

2Indeed, one can even do this in a strong way. One can construct N(\cdot ) and \widehat W (\cdot ) on the same

probability space so that N(t) = t + \widehat W (t) + \xi (t) for all t \geq 0, where supt\geq 0
| \xi (t)| 

log(2\vee t)
is a random

variable with a finite exponential moment (see [12, Corollary 5.5, p. 359] and [24]).
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these approximations in (14) and replacing X
r
, \u Y r with Zr, Y r, respectively, leads us

to propose approximating X
r
by a jump-diffusion process Zr satisfying

Zr(t) = Zr(0) +

\int t

0

(\alpha  - \beta Zr(s))1\{ Zr(s)\in G\circ \} ds+
1\surd 
r
\widehat W \circ 

1

\biggl( 
\alpha 

\int t

0

1\{ Zr(s)\in G\circ \} ds

\biggr) 
 - 1\surd 

r
\widehat W \circ 

2

\biggl( \int t

0

\beta Zr(s)1\{ Zr(s)\in G\circ \} ds

\biggr) 
+

1\surd 
r
Y r(t),(15)

where Y r(t) = 1\surd 
r
N b

1(r\alpha 
\int t

0
1\{ Zr(s)\in Gb\} ds). By a martingale representation the-

orem (see, e.g., [23, Theorem 4.2, p. 170]), the difference of the two processes\widehat W \circ 
1 (\alpha 

\int t

0
1\{ Zr(s)\in G\circ \} ds) and \widehat W \circ 

2 (
\int t

0
\beta Zr(s)1\{ Zr(s)\in G\circ \} ds) (which are local martin-

gales) can be represented as the single stochastic integral process

(16)

\int t

0

\sqrt{} 
\alpha + \beta Zr(s)1\{ Zr(s)\in G\circ \} dW (s),

where W is a standard one-dimensional Brownian motion.
Since we seek a diffusion approximation that moves continuously and spends

zero time (in the sense of Lebesgue measure) at any particular point in [0,\infty ), it is
reasonable to suppress the indicator functions in (15) and to replace the jump process
Y r by a continuous nondecreasing process that increases only when our diffusion
process is on the boundary. This leads to a proposed reflected diffusion approximation\widetilde Zr for X

r
that satisfies

\widetilde Zr(t) = \widetilde Zr(0) +

\int t

0

(\alpha  - \beta \widetilde Zr(s))ds+
1\surd 
r

\int t

0

\sqrt{} 
\alpha + \beta \widetilde Zr(s) d\widetilde W (s) +

1\surd 
r
\widetilde Y r(t),(17)

where \widetilde W is a standard one-dimensional Brownian motion, and where \widetilde Y r is a contin-
uous, nondecreasing process that only increases when \widetilde Zr is zero. The process 1\surd 

r
\widetilde Y r

tracks the cumulative amount of pushing at the boundary required to keep \widetilde Zr non-
negative and is usually referred to as the reflection or local time term. Although the
1\surd 
r
scale factor could be absorbed into \widetilde Y r, we keep it separate here to indicate that

this reflection term is expected to be of the same order as the noise term, i.e., of
order 1\surd 

r
, to counter the excursions of the stochastic integral term involving \widetilde W that

try to drive \widetilde Zr negative. It is known3 that given a pair ( \widetilde Zr(0),\widetilde W ), there exists a

unique solution \widetilde Zr to (17) that lives in [0,\infty ) and is adapted to \widetilde Zr(0) and \widetilde W . The

process \widetilde Zr is a diffusion on [0,\infty ) with state dependent drift coefficient x \mapsto \rightarrow \alpha  - \beta x,
dispersion coefficient x \mapsto \rightarrow 1\surd 

r

\surd 
\alpha + \beta x, and instantaneous reflection at the origin.

Notice that ignoring terms in (17) of order 1\surd 
r
leads to the usual deterministic

approximation to the scaled model (13). The term 1\surd 
r

\int t

0

\sqrt{} 
\alpha + \beta \widetilde Zr(s) d\widetilde W (s) cap-

tures stochastic fluctuations. The term 1\surd 
r
\widetilde Y r only comes into play when \widetilde Zr is zero,

and provides a minimal restoring force to keep \widetilde Zr nonnegative.

3This follows from the uniform Lipschitz property of the drift and dispersion coefficient, and the
Lipschitz continuity of the so-called Skorokhod map that defines the reflection at the origin (i.e.,

determines \widetilde Y r) in terms of the other parts of the equation. In this case with normal reflection at
the boundary, a rigorous justification follows from the work of Tanaka [37].
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Example 2. Consider the chemical reaction system given in (1). For i \in \{ 1, 2\} ,
let Xr

i (t) denote the number of molecules of Si at time t. Let Mr = Xr
1 (0) +Xr

2 (0),
which is a conserved quantity. The process Xr

1 can be represented as a solution to

(18) Xr
1 (t) = Xr

1 (0) - N1

\biggl( \int t

0

\beta 1X
r
1 (s)ds

\biggr) 
+N2

\biggl( \int t

0

\beta 2(M
r  - Xr

1 (s))ds

\biggr) 
,

where N1 and N2 are independent, unit-rate Poisson processes, and Xr
2 (\cdot ) \equiv Mr  - 

Xr
1 (\cdot ).
In a similar manner to that used in Example 1, let Gr = [0,Mr], G\circ ,r = (0,Mr),

the interior of Gr, and Gb,r = \{ 0,Mr\} , the boundary of Gr. A distributionally
equivalent way to represent Xr

1 is as a solution of

Xr
1 (t) = Xr

1 (0) - No
1

\biggl( \int t

0

\beta 1X
r
1 (s)1\{ Xr

1 (s)\in G\circ ,r\} ds

\biggr) 
 - N b

1

\biggl( \int t

0

\beta 1X
r
1 (s)1\{ Xr

1 (s)\in Gb,r\} ds

\biggr) 
+No

2

\biggl( \int t

0

\beta 2(M
r  - Xr

1 (s))1\{ Xr
1 (s)\in G\circ ,r\} ds

\biggr) 
+N b

2

\biggl( \int t

0

\beta 2(M
r  - Xr

1 (s))1\{ Xr
1 (s)\in Gb,r\} ds

\biggr) 
,

(19)

where No
1 , N

b
1 , N

o
2 , N

b
2 are independent unit-rate Poisson processes.

Now for the normalized process X
r

1(\cdot ) = 1
rX

r
1 (\cdot ) with M

r
= 1

rM
r, the conserved

quantity for the normalized process, we have that X
r

1 satisfies

X
r

1(t) = X
r

1(0) - 
1

r
No

1

\biggl( 
r

\int t

0

\beta 1X
r

1(s)1\{ Xr
1(s)\in \widehat G\circ ,r\} ds

\biggr) 
 - 1

r
N b

1

\biggl( 
r

\int t

0

\beta 1X
r

1(s)1\{ Xr
1(s)\in \widehat Gb,r\} ds

\biggr) 
+

1

r
No

2

\biggl( 
r

\int t

0

\beta 2(M
r  - X

r

1(s))1\{ Xr
1(s)\in \widehat G\circ ,r\} ds

\biggr) 
+

1

r
N b

2

\biggl( 
r

\int t

0

\beta 2(M
r  - X

r

1(s))1\{ Xr
1(s)\in \widehat Gb,r\} ds

\biggr) 
,

(20)

where the normalized interior of the state space is \widehat G\circ ,r = (0,M
r
) and the normalized

boundary is \widehat Gb,r = \{ 0,Mr\} . Centering No
1 and No

2 and collecting terms, we see that
X

r

1 satisfies

X
r

1(t) = X
r

1(0) - 
\int t

0

\beta 1X
r

1(s)1\{ Xr
1(s)\in \widehat G\circ ,r\} ds+

\int t

0

\beta 2(M
r  - X

r

1(s))1\{ Xr
1(s)\in \widehat G\circ ,r\} ds

+
1\surd 
r

\biggl[ 
 - 1\surd 

r
\widehat No
1

\biggl( 
r

\int t

0

\beta 1X
r

1(s)1\{ Xr
1(s)\in \widehat G\circ ,r\} ds

\biggr) 
+

1\surd 
r
\widehat No
2

\biggl( 
r

\int t

0

\beta 2(M
r  - X

r

1(s))1\{ Xr
1(s)\in \widehat G\circ ,r\} ds

\biggr) 
 - \u Y r

1 (t) +
\u Y r
2 (t)

\biggr] 
,

(21)
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where \widehat No
1 and \widehat No

2 are centered versions of the Poisson processes No
1 and No

2 , respec-
tively, and for t \geq 0,

\u Y r
1 (t) =

1\surd 
r
N b

1

\biggl( 
r

\int t

0

\beta 1M
r
1\{ Xr

1(s)=M
r\} ds

\biggr) 
, \u Y r

2 (t) =
1\surd 
r
N b

2

\biggl( 
r

\int t

0

\beta 2M
r
1\{ Xr

1(s)=0\} ds

\biggr) 
are nondecreasing jump processes that only jump at times s for which X

r
(s - ) equals

M
r
or 0, respectively. These processes push X

r

1 back into \widehat G\circ ,r. Note that some
boundary jump terms in the expression for X

r

1(t) have been eliminated here due to
the facts that x1\{ x=0\} = 0 and (M

r  - x)1\{ x=M
r\} = 0.

Proceeding in a similar manner to that for Example 1, we approximate 1\surd 
r
\widehat No
k (r\cdot )

by \widehat W o
k (\cdot ) for k = 1, 2, where \widehat W o

1 and \widehat W o
2 are independent standard one-dimensional

Brownian motions. This leads us to propose approximating X
r

1 by a jump-diffusion
process Zr

1 that lives in [0,M
r
] and satisfies

Zr
1(t) = Zr

1(0) +

\int t

0

\Bigl( 
 - \beta 1Z

r
1(s) + \beta 2(M

r  - Zr
1(s))

\Bigr) 
1\{ Zr

1 (s)\in \widehat G\circ ,r\} ds

 - 1\surd 
r
W \circ 

1

\biggl( \int t

0

\beta 1Z
r
1(s)1\{ Zr

1 (s)\in \widehat G\circ ,r\} 

\biggr) 
ds

+
1\surd 
r
W \circ 

2

\biggl( \int t

0

\beta 2(M
r  - Zr

1(s)) 1\{ Zr
1 (s)\in \widehat G\circ ,r\} ds

\biggr) 
 - 1\surd 

r
Y r
1 (t) +

1\surd 
r
Y r
2 (t),

(22)

Y r
1 (t) =

1\surd 
r
N b

1

\biggl( 
r

\int t

0

\beta 1M
r
1\{ Zr

1 (s)=M
r\} ds

\biggr) 
, Y r

2 (t) =
1\surd 
r
N b

2

\biggl( 
r

\int t

0

\beta 2M
r
1\{ Zr

1 (s)=0\} ds

\biggr) 
.

Then using a martingale representation theorem, the difference of the two processes\widehat W \circ 
1 (
\int t

0
\beta 1Z

r
1(s)1\{ Zr

1 (s)\in \widehat G\circ ,r\} ds) and
\widehat W o

2 (
\int t

0
\beta 2(M

r - Zr
1(s))1\{ Zr

1 (s)\in \widehat G\circ ,r\} ds) (which are

local martingales) can be represented as the single stochastic integral process

(23)

\int t

0

\sqrt{} 
\beta 1Zr

1(s) + \beta 2(M
r  - Zr

1(s)) 1\{ Zr
1 (s)\in \widehat G\circ ,r\} dW (s),

where W is a standard one-dimensional Brownian motion.
As in Example 1, suppressing the indicator functions in (22) and replacing the

jump processes Y r
1 , Y

r
2 by continuous nondecreasing processes \widetilde Y r

1 ,
\widetilde Y r
2 that increase

only when \widetilde Zr
1 is at M

r
or 0, respectively, leads to a proposed reflected diffusion

approximation \widetilde Zr
1 for X

r

1 that satisfies

\widetilde Zr
1(t) = \widetilde Zr

1(0) +

\int t

0

( - \beta 1
\widetilde Zr
1(s) + \beta 2(M

r  - \widetilde Zr
1(s)))ds

+
1\surd 
r

\int t

0

\sqrt{} 
\beta 1
\widetilde Zr
1(s) + \beta 2(M

r  - \widetilde Zr
1(s)) d

\widetilde W (s)

 - 1\surd 
r
\widetilde Y r
1 (t) +

1\surd 
r
\widetilde Y r
2 (t),

(24)

where \widetilde W is a standard, one-dimensional Brownian motion, and \widetilde Y r
1 ,
\widetilde Y r
2 are continuous,

nondecreasing processes that only increase when \widetilde Zr
1 is at M

r
or 0, respectively. It is



CONSTRAINED LANGEVIN AND (BIO)CHEMICAL NETWORKS 11

known4 that, given the pair ( \widetilde Zr
1(0),

\widetilde W ), there exists a solution to (24) that lives in

[0,M
r
] and is adapted to \widetilde Zr

1(0) and
\widetilde W .

Notice again that ignoring terms in (24) of order 1\surd 
r
leads to the usual determin-

istic approximation to the scaled model (19). The term

1\surd 
r

\int t

0

\sqrt{} 
\beta 1
\widetilde Zr
1(s) + \beta 2(M

r - \widetilde Zr
1(s)) d

\widetilde W (s)

captures stochastic fluctuations. The terms 1\surd 
r
\widetilde Y r
1 and 1\surd 

r
\widetilde Y r
2 only come into play

when \widetilde Zr
1 is on the boundary of the domain of interest and they provide a minimal

restoring force to keep \widetilde Zr
1 in that domain.

In preparation for the general case, it is convenient to rewrite (24) as

\widetilde Zr
1(t) = \widetilde Zr

1(0) +

\int t

0

\mu r( \widetilde Zr
1(s)) ds

+
1\surd 
r

\int t

0

\sigma r( \widetilde Zr
1(s)) d\widetilde W (s) +

1\surd 
r

\int t

0

nr( \widetilde Zr
1(s)) d\widetilde Lr(s),

where \mu r(x) =  - \beta 1x + \beta 2(M
r  - x), \sigma r(x) =

\sqrt{} 
\beta 1x+ \beta 2(M

r  - x), \widetilde Lr(t) = \widetilde Y r
1 (t) +\widetilde Y r

2 (t) is continuous and nondecreasing and increases only when \widetilde Zr
1 is on the boundary

of \widehat G\circ ,r, and nr(x) = 1 if x = 0 and nr(x) =  - 1 if x = M
r
is the inward unit normal

to the boundary of \widehat G\circ ,r. The vector field nr specifies the ``direction"" of reflection at
the boundary. In this one-dimensional case, there is a unique (up to normalization)
inward pointing direction (which is normal to the boundary). In the general case
treated in the next subsection, more complicated boundary behavior occurs and the
reflection direction is frequently not normal to the boundary.

3.2. The general case. We now consider the general case of a process X
r

satisfying (10). Let \scrS = span\{ vk, k = 1, . . . ,K\} and let \widehat Gr = (X
r
(0) + \scrS ) \cap \BbbR m

\geq 0.

Considering \widehat Gr in X
r
(0) + \scrS , let \widehat G\circ ,r and \widehat Gb,r denote the relative interior and

boundary of \widehat Gr, respectively. Proceeding in a similar manner to that for the two
examples given in the previous subsection, an equivalent in distribution representation
for X

r
is given by

X
r
(t) = X

r
(0) +

1

r

K\sum 
k=1

vkN
o
k

\biggl( 
r

\int t

0

\lambda r
k(X

r
(s))1\{ Xr

(s)\in \widehat G\circ ,r\} ds

\biggr) 

+
1

r

K\sum 
k=1

vkN
b
k

\biggl( 
r

\int t

0

\lambda r
k(X

r
(s))1\{ Xr

(s)\in \widehat Gb,r\} ds

\biggr) 
,

(25)

where No
k , N

b
k , k = 1, . . . ,K, are independent unit-rate Poisson processes. Upon

centering the Poisson processes No
k , k = 1, . . . ,K, to obtain \widehat No

k , k = 1, . . . ,K, we

4Similarly to what was mentioned with respect to the solution of (17), this also follows from the
work of Tanaka [37] by the uniform Lipschitz continuity of the drift, dispersion coefficient, and the
Skorokhod map that defines the reflection, since the direction of reflection in this case is normal to
the boundary.
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may rewrite the above as

X
r
(t) = X

r
(0) +

K\sum 
k=1

vk

\int t

0

\lambda r
k(X

r
(s)) 1\{ Xr

(s)\in \widehat G\circ ,r\} ds

+
1\surd 
r

K\sum 
k=1

vk
1\surd 
r
\widehat No
k

\biggl( 
r

\int t

0

\lambda r
k(X

r
(s))1\{ Xr

(s)\in \widehat G\circ ,r\} ds

\biggr) 

+
1\surd 
r

K\sum 
k=1

vk \u Y
r
k (t),

(26)

where \u Y r
k (t) =

1\surd 
r
N b

k(r
\int t

0
\lambda r
k(X

r
(s))1\{ Xr

(s)\in \widehat Gb,r\} ds).

Noting the relation (9), it is natural to replace \lambda r
k with \lambda k to obtain approximate

dynamics forX
r
. Also, as in the examples in the previous section, we can approximate

1\surd 
r
\widehat No
k (r\cdot ) by \widehat W o

k (\cdot ) for k = 1, . . . ,K, where \widehat W o
k , k = 1, . . . ,K, are independent

standard one-dimensional Brownian motions. Let

(27) \mu (x) =

K\sum 
k=1

vk\lambda k(x)

for each x \in \BbbR m
\geq 0. We suggest approximating X

r
by a jump diffusion Zr satisfying

Zr(0) = X
r
(0) and

Zr(t) = Zr(0) +

\int t

0

\mu (Zr(s)) 1\{ Zr(s)\in \widehat G\circ ,r\} ds

+
1\surd 
r

K\sum 
k=1

vk\widehat W \circ 
k

\biggl( \int t

0

\lambda k(Z
r(s))1\{ Zr(s)\in \widehat G\circ ,r\} ds

\biggr) 

+
1\surd 
r

K\sum 
k=1

vkY
r
k (t),

(28)

where Y r
k (t) =

1\surd 
r
N b

k(r
\int t

0
\lambda k(Z

r(s))1\{ Zr(s)\in \widehat Gb,r, Zr(s)\geq v - 
k /r\} ds). Note that in the def-

inition of Y r
k , the indicator function suppresses jumps from the boundary that would

require consumption of a given species when there is an insufficient amount of that
species to make the transition possible. This is a small correction needed to account
for the fact that the interior diffusion might occasionally bring Zr to a point x on
the boundary of \widehat Gr that cannot be reached by the discrete-valued process X

r
(which

lives on a lattice), and where \lambda k(x) > 0, and from which movement by Zr along
the vector  - v - k would take Zr outside of the positive orthant. Such occurrences are
only possible when more than one component of Zr is small, that is, whenever the
process Zr is near the intersection of two or more faces of the positive orthant. It is
known that such occurrences are rare for some similar reflected diffusion processes.5

Consequently, we anticipate this correction will likely be a relatively small one.
Using a martingale representation theorem (see, e.g., [23, Theorem 4.2, p. 170]),

on a possibly enlarged probability space that accommodates a standardm-dimensional

5For some similar nondegenerate reflected diffusion processes (see [31, Theorem 1] and [6, The-
orem 7.7]), it is known that the total amount of ``pushing"" done by the local-time term at the
intersection of two or more boundary faces of the positive orthant is almost surely zero. Such local-
time terms are approximate measures of the amount of time spent near boundary regions.
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Brownian motion W , we can express
\sum K

k=1 vk
\widehat W o

k (
\int t

0
\lambda k(Z

r(s)) 1\{ Zr(s)\in \widehat G\circ ,r\} ds) as the

vector-valued stochastic integral process
\int t

0
\sigma (Zr(s))1\{ Zr(s)\in \widehat G\circ ,r\} dW (s), where W is

a standard m-dimensional Brownian motion, \sigma (x) =
\sqrt{} 

\Upsilon (x) is the unique6 positive
semidefinite matrix-valued square root of the m\times m matrix

(29) \Upsilon (x) =

K\sum 
k=1

vkv
\prime 
k\lambda k(x)

for x \in \BbbR m
\geq 0, and v\prime k is the transpose of vk.

Remark. The reader may note that the coefficients \mu and \sigma in the above do
not depend on r. Example 1 in the previous subsection illustrates this, whereas
our Example 2 has coefficients that appear to depend on r. However, the latter
dependence occurs because, in that example, we have eliminated one of the variables,
effectively projecting down to the concentration of S1 alone. Indeed, if we had written
the approximation ( \widetilde Zr

1 ,
\widetilde Zr
2) for the concentrations of both species (X

r

1, X
r

2) satisfying\widetilde Zr
1 +

\widetilde Zr
2 = M

r
, then in the notation of this subsection, \mu (x1, x2) = ( - \beta 1x1 + \beta 2x2)v,

where v = (1, - 1)\prime , and \sigma (x1, x2) =
\sqrt{} 

\beta 1x1+\beta 2x2

2 vv\prime , which leads to an equivalent

representation to that given for \widetilde Zr
1 in (24).

To obtain an equation for our proposed diffusion approximation, we remove the
indicator functions in the first two terms in (28), since the amount of time our diffusion
approximation spends on the boundary is zero (in the sense of Lebesgue measure).
Furthermore, we want to replace the last term in (28), the boundary term, by a
continuous process whose paths are locally of bounded variation and that only changes
when the diffusion process is on the boundary \widehat Gb,r. In the examples in the previous
section, the diffusion process was one dimensional and there was a unique (up to
normalization) direction at each boundary point in which the boundary process would
push to keep the diffusion in the state space. In higher dimensions, there is much more
freedom in the choice of such a direction. In the following we motivate our choice for
this ``reflection direction"" in the general case.

In our reflected diffusion approximation, the role of the boundary term is to
counteract fluctuations of the term driven by white noise that tends to take the
diffusion process outside of the orthant. Since the fluctuations are of order 1\surd 

r
,

we expect this boundary term to be of order 1\surd 
r
. This leads us to approximate

N b
k(\cdot ) in Y r

k by its deterministic rate process, and to ignore higher order terms, re-
sulting in the following (formal) approximation:

K\sum 
k=1

vkY
r
k (t) \approx 

K\sum 
k=1

vk\surd 
r

\int t

0

r\lambda k(Z
r(s))1\{ Zr(s)\in \widehat Gb,r, Zr(s)\geq v - 

k /r\} ds

\approx 
\int t

0

\gamma (Zr(s))dLr(s),

(30)

where

(31) \gamma (x) =
\mu (x)

| \mu (x)| 
1\{ | \mu (x)| \not =0\} for x \in \widehat Gb,r,

6The existence and uniqueness of a (symmetric) positive semidefinite square root for any (sym-
metric) positive semidefinite matrix is well known. Furthermore, the mapping from the matrix \Upsilon (x)
to its square root \sigma (x) is H\"older continuous of order one-half. These results can be found in the book
by Bhatia [7], for example.
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for \mu (x) given by (27), and where

(32) Lr(t) =
\surd 
r

\int t

0

| \mu (Zr(s))| 1\{ Zr(s)\in \widehat Gb,r\} ds.

Note here that we have approximated the indicator function in (30) with the simpler
indicator function in (32) (ignoring the rare effect mentioned after (28)).

The process Lr is a weighted and scaled version of the amount of time that Zr

spends on the boundary. In our diffusion approximation, we approximate this by a
continuous nondecreasing process \widetilde Lr that can increase only when our diffusion process
is on the boundary \widehat Gb,r. Indeed, in [27], under certain conditions, a more extensive

rationale is given for approximating Lr by \widetilde Lr. This involves showing that if the jump
size \delta = 1\surd 

r
in Y r

k is sent to zero and at the same time the order of magnitude of the

speed of jumping, \delta  - 2 = r, is sent to infinity, while keeping the other r dependencies
fixed, then Lr converges (weakly) to the process \widetilde Lr.

This leads us to propose the following equation for our diffusion approximation\widetilde Zr for X
r
:

\widetilde Zr(t) = \widetilde Zr(0) +

\int t

0

\mu ( \widetilde Zr(s)) ds+
1\surd 
r

\int t

0

\sigma ( \widetilde Zr(s)) dW (s) +
1\surd 
r

\int t

0

\gamma ( \widetilde Zr(s)) d\widetilde Lr(s),

(33)

where \widetilde Zr is a continuous process living in \widehat Gr and \widetilde Lr is a continuous, one-dimensional,
increasing process that starts from zero and that can only increase when \widetilde Zr is on the
boundary \widehat Gb,r of \widehat Gr. The vector field \gamma defines the ``reflection"" vector field on the
boundary for the process \widetilde Zr. This is the direction in which \widetilde Zr is ``pushed"" to keep
it in the set \widehat Gr. The process \widetilde Lr is the cumulative amount of ``pushing"" done at the
boundary. For more detail on reflected diffusion processes, see Appendix A.

In [27], Leite andWilliams prove well posedness of (33), under the assumption that
the reaction network satisfies a mass-conserving (or mass-dissipating) assumption,
augmented by inflows and outflows on all species. The latter means that the reactions

(34) \emptyset  - \rightarrow Si, Si  - \rightarrow \emptyset ,

are part of the set of reactions for each i = 1, . . . ,m.7 Systems without some of these
inflow/outflow reactions can be approximated by including such reactions with very
small rate constants ck, so that the reactions rarely occur. If one does not make this
assumption, issues regarding existence and uniqueness of the diffusion process can
arise. These are related to the fact that \sigma might only be H\"older continuous near the
boundary in some places, the vector field \gamma on the boundary might degenerate to
either become zero or not point strictly into the interior of the state space \widehat Gr at some
places on \widehat Gb,r. The mass-conserving/mass-dissipating assumption, in combination
with outflows on all species, is used to ensure nonexplosion of the diffusion process.
These assumptions can sometimes be relaxed, especially when \widehat Gr is one dimensional
(or effectively so, as in Example 2), and in some cases in higher dimensions, if one
can show that problematical boundary regions are not reached by the diffusion and

7This assumption ensures that \sigma is strictly positive definite and locally Lipschitz continuous on\widehat Gr = \BbbR m
\geq 0, that \gamma never vanishes on \widehat Gb,r, and it points strictly into the interior of \widehat Gr. As shown in

[27], the conditions given there are sufficient to prove existence, uniqueness, and nonexplosion of the

diffusion process \widetilde Zr.
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there is no explosion in finite time. However, a systematic treatment of these matters
requires new developments for the theory of reflected diffusions in polyhedral domains
with degenerate dispersion coefficients and reflection vector fields. Nevertheless, we
conjecture that a process \~Zr satisfying (33) will be a good approximation to X

r
,

whenever the former is well defined. In the next section, we give examples that
illustrate how well our diffusion approximation works, despite the informal nature of
our derivation. Further examples can be found in [27].8

A problem for further investigation is to develop estimates of the error between
X

r
and \widetilde Zr, assuming the latter is well defined. While this can be done when \widetilde Zr is one

dimensional, a systematic treatment of this is a promising area for future investigation.

4. Examples. We begin this section by showing how the stationary distributions
for the constrained Langevin approximation can be computed for the two examples
given in section 3.1. The results are then compared with the stationary distributions
for the Markov chain model and for the linear noise approximation. Later, in sec-
tion 4.2, we further illustrate the constrained Langevin approximation by comparing
its simulation for some two-dimensional examples with those for the Markov chain
model, the linear noise approximation, and the complex Langevin approximation in-
troduced in [33].

4.1. Stationary distributions. The approximations proposed in section 3 are
for stochastic processes over compact time intervals. In this subsection we look for
insights into the long time behavior by considering stationary distributions for some
examples where analytical expressions are available.

Example 1 (revisited).We begin by noting that for a fixed r > 0, the stationary
distribution of the (scaled) jump model (13) satisfies [1]:

(35) \pi (x) = e - r\alpha /\beta (r\alpha /\beta )
rx

(rx)!
, x \in 

\biggl\{ 
0,

1

r
,
2

r
, . . .

\biggr\} 
.

Turning to our constrained Langevin approximation, by (17) and It\^o's formula
[9] for f \in C2

c ([0,\infty )) (two times continuously differentiable functions with compact
support),

f( \widetilde Zr(t)) - f( \widetilde Zr(0))

=

\int t

0

(\alpha  - \beta \widetilde Zr(s))f \prime ( \widetilde Zr(s))ds+
1\surd 
r

\int t

0

\sqrt{} 
\alpha + \beta \widetilde Zr(s)f \prime ( \widetilde Zr(s)) d\widetilde W (s)

+
1

2r

\int t

0

(\alpha + \beta \widetilde Zr(s))f \prime \prime ( \widetilde Zr(s))ds+
1\surd 
r

\int t

0

f \prime ( \widetilde Zr(s))d\widetilde Y r(s).

Suppose now that f \prime (0) = 0. Then the last term is zero because \widetilde Y r can only increase

when \widetilde Zr is at zero. The integral with respect to d\widetilde W defines a martingale and so,
taking expectations when \widetilde Zr(0) has the stationary distribution \pi with density \rho , we
obtain

0 =

\int t

0

E\pi 

\Bigl[ 
\scrL f( \widetilde Zr(s))

\Bigr] 
ds for all t \geq 0,

8It is also shown in [27], under mild conditions, that a sequence of jump-diffusion processes, in
which the jumps at the boundary are allowed to shrink to zero at the same time that the rate of
jumping goes to infinity, converges weakly to a solution of (33).
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where

(\scrL f)(x) = (\alpha  - \beta x)f \prime (x) +
1

2r
(\alpha + \beta x)f \prime \prime (x)

= \mu (x)f \prime (x) +
1

2r
\Upsilon (x)f \prime \prime (x)

for \mu (x) = \alpha  - \beta x and \Upsilon (x) = \alpha + \beta x. Hence \rho must satisfy

(36)

\int \infty 

0

(\scrL f)(x)\rho (x)dx = 0,

\int \infty 

0

\rho (x)dx = 1.

Integration by parts yields\int \infty 

0

(\scrL f)(x)\rho (x)dx =

\int \infty 

0

f(x)

\biggl( 
1

2r

d2

dx2
[\Upsilon (x)\rho (x)] - d

dx
[\mu (x)\rho (x)]

\biggr) 
dx

 - f(0)

\biggl( 
\mu (0)\rho (0) - 1

2r

d

dx
(\Upsilon (x)\rho (x))

\bigm| \bigm| 
x=0

\biggr) 
,

where we have used the facts that f \prime (0) = 0 and f has compact support in the above
calculation. As the above must hold for all f \in C2

c ([0,\infty )) with f \prime (0) = 0, we see
that \rho must satisfy

(\scrL \ast \rho )(x) =  - d

dx
(\mu (x)\rho (x)) +

1

2r

d2

dx2
(\Upsilon (x)\rho (x)) = 0 for all x \in (0,\infty ),(37)

where \scrL \ast denotes the adjoint of \scrL , with the boundary condition\biggl( 
\mu \rho  - 1

2r

d

dx
(\Upsilon \rho )

\biggr) \bigm| \bigm| \bigm| \bigm| 
x=0

= 0.(38)

Integrating (37) shows that

(39)  - \mu (x)\rho (x) +
1

2r

d

dx
(\Upsilon (x)\rho (x)) = 0 for all x \geq 0,

where the value of zero on the right-hand side follows from the boundary condition
(38). Solving (39), noting that \Upsilon (x) > 0 for all x \geq 0, yields

(40) \rho (x) =
c

\Upsilon (x)
exp

\biggl\{ \int x

0

2r\mu (s)

\Upsilon (s)
ds

\biggr\} 
for x \geq 0,

where c is a suitable normalizing constant. After substituting for our specific \mu and
\Upsilon , we obtain

(41) \rho (x) = ce - 2xr (\alpha + \beta x)
(4r\alpha /\beta ) - 1

for x \geq 0,

where

(42) c =

\biggl( \int \infty 

0

e - 2xr (\alpha + \beta x)
(4r\alpha /\beta ) - 1

dx

\biggr)  - 1

is the normalizing constant.
The linear noise approximation [40] for the Markov chain X

r

1 has as its station-
ary distribution, \rho LN , the steady-state distribution for the Ornstein--Uhlenbeck-type
process \^Z1 that describes the linearized fluctuations of X

r

1 about \=x = \alpha 
\beta , the (sta-

ble) steady state for the deterministic reaction rate equation approximation to X
r

1
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Fig. 1. (Left) Comparison of log(\pi (x)), log(\pi CLA(x)), and log(\pi LN (x)), where log(\cdot ) denotes
the natural logarithm, for Example 1 with \alpha = \beta = 1 and r = 100. (Right) Absolute difference
between the stationary distribution for the Markov chain and those given by the constrained Langevin
and linear noise approximations (i.e., | \pi CLA(x) - \pi (x)| and | \pi LN (x) - \pi (x)| ). Values of x are taken
from the lattice (1/r)\BbbZ and linear interpolation is used to connect the values.

satisfying \mu (\=x) = 0. This process \^Zr
1 satisfies

(43) \^Zr
1(t) = \=x+

\int t

0

\mu \prime (\=x)( \^Zr
1(s) - \=x) ds+

1\surd 
r

\int t

0

\sigma (\=x) d \^W (s),

where \mu \prime (\=x) =  - \beta , \sigma (\=x) =
\sqrt{} 
\Upsilon (\=x) =

\surd 
\alpha + \beta \=x =

\surd 
2\alpha , and \^W is a standard one-

dimensional Brownian motion. The stationary distribution for \^Zr
1 is the Gaussian

distribution with mean \alpha 
\beta and variance \alpha 

r\beta [40], so that

(44) \rho LN (x) =

\sqrt{} 
r\beta 

2\pi \alpha 
exp

\Biggl( 
 - 
r\beta (x - \alpha 

\beta )
2

2\alpha 

\Biggr) 
, x \in ( - \infty ,\infty ).

We now wish to compare the probability mass function in (35) with the densities
in (41) and (44). Notice that the probability that a continuous model with strictly
positive density function f takes a value in the interval [x - 1/(2r), x+1/(2r)) can be
well approximated by f(x) \cdot r - 1. So in order to compare the density for the stationary
distribution of the linear noise approximation with the stationary distribution of the
Markov chain, we define \pi LN (x) = \rho LN (x) \cdot r - 1 for x in the lattice (1/r)\BbbZ , with \rho LN

as in (44). For the constrained Langevin approximation, we define the discretization
\pi CLA(x) = \rho (x) \cdot r - 1 for x \in \{ 1/r, 2/r, . . .\} with \rho as in (41). Since the density of
the constrained Langevin approximation has no mass for x < 0, we let \pi CLA(0) =
\rho (0) \cdot r - 1/2, which is an approximation of the probability that the model takes a
value in the interval [0, 1/(2r)). The result is shown in Figure 1 for the system with
parameters \alpha = \beta = 1 and r = 100. Note that \pi LN is defined for all x, whereas \pi 
and \pi CLA are only defined for x \geq 0.

Example 2 (revisited). For fixed r > 0, the stationary distribution of the (scaled)
Markov chain jump model (20) satisfies
(45)

\pi (x) = \pi (0)

\biggl( 
\beta 2

\beta 1

\biggr) rx
(Mr + 1 - rx)(Mr + 2 - rx) \cdot \cdot \cdot Mr

(rx)!
for x \in 

\biggl\{ 
1

r
,
2

r
, . . . ,M

r
\biggr\} 
,

where \pi (0) is determined so that
\sum M

r

x=0 \pi (x) = 1.
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Turning to our constrained Langevin approximation, the density function \rho of the
stationary distribution for \widetilde Zr

1 , satisfying (24), is supported on [0,M
r
] and, similarly

to how (36) was derived, must satisfy the following two conditions [22]:\int M
r

0

(\scrL f)(x)\rho (x)dx = 0,

\int M
r

0

\rho (x)dx = 1

for all f \in C2([0,M
r
]) satisfying f \prime (0) = f \prime (M

r
) = 0, where

(\scrL f)(x) =
\Bigl( 
\beta 2M

r  - (\beta 1 + \beta 2)x
\Bigr) 
f \prime (x) +

1

2r

\Bigl( 
\beta 2M

r
+ (\beta 1  - \beta 2)x

\Bigr) 
f \prime \prime (x)

= \mu (x)f \prime (x) +
1

2r
\Upsilon (x)f \prime \prime (x)

for \mu (x) = \beta 2M
r  - (\beta 1 + \beta 2)x and \Upsilon (x) = \beta 2M

r
+ (\beta 1  - \beta 2)x. Here, to simplify

notation, we have suppressed the explicit dependence of \mu and \Upsilon on r (which occurs
through M

r
). Integration by parts gives\int M

r

0

(\scrL f)(x)\rho (x)dx =

\int M
r

0

f(x)

\biggl( 
1

2r

d2

dx2
[\Upsilon (x)\rho (x)] - d

dx
[\mu (x)\rho (x)]

\biggr) 
dx

+

\biggl[ 
f

\biggl( 
\mu \rho  - 1

2r

d

dx
(\Upsilon \rho )

\biggr) \biggr] Mr

x=0

.

Therefore, as the above must hold for all such f , we must have

(\scrL \ast \rho ) (x) =  - d

dx
(\mu (x)\rho (x)) +

1

2r

d2

dx2
(\Upsilon (x)\rho (x)) = 0 for all x \in (0,M

r
),(46)

where \scrL \ast is the adjoint of \scrL , and\biggl( 
\mu \rho  - 1

2r

d

dx
(\Upsilon \rho )

\biggr) \bigm| \bigm| \bigm| \bigm| 
x=0

=

\biggl( 
\mu \rho  - 1

2r

d

dx
(\Upsilon \rho )

\biggr) \bigm| \bigm| \bigm| \bigm| 
x=M

r
= 0.(47)

Integrating (46) gives

(48)  - \mu (x)\rho (x) +
1

2r

d

dx
(\Upsilon (x)\rho (x)) = 0 for all x \in [0,M

r
],

where the value of zero on the right-hand side follows from the boundary conditions
(47). Solving (48) yields a solution of the form (40), which after substituting for our
specific \mu and \Upsilon becomes
(49)

\rho (x) =

\left\{       
c exp

\Bigl\{ 
 - 2(\beta 1+\beta 2)

\beta 1 - \beta 2
rx
\Bigr\} \Bigl( 

\beta 2M
r
+ (\beta 1  - \beta 2)x

\Bigr)  - 1+
4Mrr\beta 1\beta 2
(\beta 1 - \beta 2)2

if \beta 1 \not = \beta 2,

c exp
\Bigl\{ 
 - (x - 1

2M
r
)2

M
r
/2r

\Bigr\} 
if \beta 1 = \beta 2

for 0 \leq x \leq M
r
, where c is the normalizing constant chosen so that

\int M
r

0
\rho (x)dx = 1.

Note that in the case of \beta 1 = \beta 2, the stationary distribution is a Gaussian distribution
restricted to [0,M

r
].

The linear noise approximation [40] for the Markov chain X
r

1 in this example has
as its stationary distribution, \rho LN , the steady-state distribution for the Ornstein--
Uhlenbeck-type process \^Zr

1 that describes the linearized fluctuations of X
r

1 about
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Fig. 2. (Left) Comparison of log(\pi (x)), log(\pi CLA(x)), and log(\pi LN (x)), where log(\cdot ) denotes
the natural logarithm, for Example 2 with \beta 1 = 5 and \beta 2 = 1, Mr = 400 and r = 100. (Right)
Absolute difference between the stationary distribution for the Markov chain and those given by the
constrained Langevin and linear noise approximations (i.e., | \pi CLA(x) - \pi (x)| and | \pi LN (x) - \pi (x)| ).
Values of x are taken from the lattice (1/r)\BbbZ and linear interpolation is used to connect the values.

\=x = \beta 2M
r

\beta 1+\beta 2
, the (stable) steady-state for the deterministic reaction rate equation

approximation to X
r

1 satisfying \mu (\=x) = 0. This process \^Zr
1 satisfies

(50) \^Zr
1(t) = \=x+

\int t

0

\mu \prime (\=x)( \^Zr
1(s) - \=x) ds+

1\surd 
r

\int t

0

\sigma (\=x) d \^W (s),

where \mu \prime (\=x) =  - (\beta 1 + \beta 2), \sigma (\=x) =
\sqrt{} 
\Upsilon (\=x) =

\sqrt{} 
\beta 2M

r
+ (\beta 1  - \beta 2)\=x =

\sqrt{} 
2\beta 1\beta 2M

r

\beta 1+\beta 2
, and

\^W is a standard one-dimensional Brownian motion. The stationary distribution for \^Zr
1

is the Gaussian distribution with mean \=x = \beta 2M
r

\beta 1+\beta 2
and variance \Upsilon (\=x)

2r| \mu \prime (\=x)| =
\beta 1\beta 2M

r

r(\beta 1+\beta 2)2

[40], so that
(51)

\rho LN (x) =

\sqrt{} 
r

2\pi \beta 1\beta 2M
r (\beta 1+\beta 2) exp

\left(    - 
r(\beta 1 + \beta 2)

2
\Bigl( 
x - \beta 2M

r

\beta 1+\beta 2

\Bigr) 2
2\beta 1\beta 2M

r

\right)   , x \in ( - \infty ,\infty ).

In a similar manner to that for the previous example, we want to compare the
probability mass function in (45) with the densities in (49) and (51). Again, in order
to compare the density of the stationary distribution of the linear noise approximation
with the stationary distribution of the Markov chain, we define \pi LN (x) = \rho LN (x) \cdot 
r - 1 for x in the lattice (1/r)\BbbZ , with \rho LN as in (51). For the constrained Langevin
approximation (CLA), we define the discretization \pi CLA(x) = \rho (x) \cdot r - 1 for x \in 
\{ 1/r, 2/r, . . . ,Mr  - 1/r\} , with \rho as in (49) and, since the density of the CLA has
no mass for x < 0 or for x > M

r
, we let \pi CLA(0) = \rho (0) \cdot r - 1/2 and \pi CLA(M

r
) =

\rho (M
r
) \cdot r - 1/2, which is an approximation of the probability that the model takes a

value in the interval [0, 1/(2r)) and [M
r  - 1/(2r),M

r
], respectively. The result is

shown in Figure 2 for the system with parameters \beta 1 = 5, \beta 2 = 1, Mr = 400, and
r = 100. Note that \pi LN is defined for all x, whereas \pi and \pi CLA are only defined for
0 \leq x \leq M

r
.

For the cases illustrated in Figures 1 and 2, we see that, in addition to having the
correct support, the stationary distribution for the CLA captures the behavior of the
Markov chain model more accurately than the linear noise approximation.
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4.2. Simulation examples.

Example 3. We now consider a chemical reaction system involving two molecular
species S1 and S2 with the following set of reactions:

2S1 + S2
\nu \rightarrow 3S1, S1

\beta 1\rightarrow \emptyset , S2
\beta 2\rightarrow \emptyset , \emptyset \alpha 1\rightarrow S1, \emptyset \alpha 2\rightarrow S2.(52)

This reaction set is a simple mass-action kinetic system whose reaction rate equation
(deterministic model) exhibits a limit cycle [32]. For this example, the CLA, given by
(33), has drift vector and diffusion matrix given by

\mu (x)=

\biggl( 
\nu x2

1x2  - \beta 1x1 + \alpha 1

 - \nu x2
1x2  - \beta 2x2 + \alpha 2

\biggr) 
, \Upsilon (x)=

\biggl( 
\nu x2

1x2 + \beta 1x1 + \alpha 1  - \nu x2
1x2

 - \nu x2
1x2 \nu x2

1x2 + \beta 2x2 + \alpha 2

\biggr) 
,

and the reflection vector field is given by

\gamma (x) =

\left\{         
\biggl( 

\alpha 1

\alpha 2  - \beta 2x2

\biggr) \bigg/ \sqrt{} 
\alpha 2
1 + (\alpha 2  - \beta 2x2)2 for x1 = 0,\biggl( 

\alpha 1  - \beta 1x1

\alpha 2

\biggr) \bigg/ \sqrt{} 
(\alpha 1  - \beta 1x1)2 + \alpha 2

2 for x2 = 0.

(53)

We compare the CLA with the Markov chain (MC) model, the linear noise approxima-
tion (LNA), and a Langevin equation with normal reflection at the boundaries (LEN).
That is, LEN is given as in (33) with the exception that the direction of reflection is
normal to the boundary. The MC model was simulated using Gillespie's algorithm
[16]. For the LNA, we used a fourth order Runge--Kutta method for the deterministic
part and the Euler--Maruyama method for the stochastic diffusion. For the CLA and
LEN, we used Bossy, Gobet, and Talay's algorithm [8], which is a numerical method
for simulating obliquely reflected SDEs based on the Euler--Maruyama method. The
simulation codes were written in the R programming language [30].

We consider two sets of parameters for this reaction system. First, we set r = 100,
\nu = 10, \beta 1 = 0.2, \beta 2 = 10 - 9, and \alpha 1 = \alpha 2 = 0.1. For this choice, the reaction
rate equation does not exhibit a limit cycle, but it spends most of its time near the
boundary x2 = 0. The time step for the numerical methods used for the diffusion ap-
proximations and the deterministic reaction rate equation was set to h = 0.01 and the
simulations were performed up to time T = 104. The simulations were initialized at
the stationary point for the deterministic model. Figure 3 shows the scatter plot of the
points generated by the simulations. For the CLA and the LEN, we also display the
reflection directions at the boundary and the drift vector field inside the state space,
which is normalized to have unit length to improve the display. Notice that the LNA
permits negative concentrations. In addition, LEN produces a shift to the right due to
the effect of the normal reflection directions. Such a shift is not seen in the CLA sim-
ulation, since the reflection on x2 = 0 is oblique, pointing towards the left of the plot.

In order to have a more precise measure of error, we estimate a discrete density
for each of the simulations. This density estimation is calculated by dividing the state
space into a regular grid of square bins and counting the number of simulation points
present in each of these bins. These square bins have a side length of 1/r and are
centered around each state of the MC model. The total number of points inside each
square bin is normalized by the total number of points in the simulation and the area
of the square. In order to measure statistical variation among different simulation
runs, the experiment was repeated 10 times, using the same data from the previous
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(b) Constrained Langevin Approximation (CLA)
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(c) Linear Noise Approximation (LNA)
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(d) Langevin with Normal Reflection (LEN)

Fig. 3. Scatter plot of the concentrations of S1 and S2, given by x1 and x2, respectively,
generated from simulations of the MC, CLA, LNA, and LEN for the system given by (52) with
parameters r = 100, \nu = 10, \beta 1 = 0.2, \beta 2 = 10 - 9, and \alpha 1 = \alpha 2 = 0.1. For the MC, the plotted
points were magnified in order to improve the display, since the values are within the lattice (1/r)\BbbZ 2.
For (b) CLA and (d) LEN we also show the directions of reflection at the boundary x2 = 0 and the
normalized drift vector field inside the state space. Notice that the distribution of points for (d) LEN
is shifted to the right from the other plots, due to the normal reflection, and that (c) LNA permits
negative concentrations for S2.

Table 1
Integral of the absolute difference between the discrete densities calculated for the approximation

processes and that for the MC simulation (for parameters as in Figure 3). The values displayed are
averages of 10 independent runs. The 95\% confidence intervals for these averages are also shown.

Integral abs. diff. 95\% C. I.
Linear Noise Approximation (LNA) 0.2762 (0.2716, 0.2808)
Constrained Langevin Approximation (CLA) 0.2432 (0.2373, 0.2490)
Langevin with Normal Reflection (LEN) 1.1710 (1.1529, 1.1892)

paragraph. Table 1 shows the integral (with respect to Lebesgue measure) of the
absolute difference between the discrete density calculated for the MC simulation and
those generated by the simulation of each approximation. Notice that the maximum
possible value for these integrals is 2.

For the second set of parameters, we let r = 100, \nu = 1, \beta 1 = 1, \beta 2 = 10 - 9,
\alpha 1 = 0.1, and \alpha 2 = 0.5. This time, the reaction rate equation for this system exhibits
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(b) Constrained Langevin Approximation (CLA)

Fig. 4. Scatter plot of the concentrations of S1 and S2, given by x1 and x2, respectively,
generated from simulations of the MC and CLA for the system given by (52) with parameters
r = 100, \nu = 1, \beta 1 = 1, \beta 2 = 10 - 9, \alpha 1 = 0.1, and \alpha 2 = 0.5. For (b), for the CLA, we show the
reflection directions at the boundaries used by the approximation and the normalized drift vector
field. The paths for the LNA and LEN generated by simulation diverge from the limit cycle and are
not shown here.

a limit cycle which lives near the boundaries x1 = 0 and x2 = 0. For this example, we
used a time step of h = 0.1 for the numerical methods, simulations were performed
up to time T = 105, and the initial condition was set to x0 = (1, 1). The scatter plots
for the simulations of MC and CLA are shown in Figure 4. The paths generated by
the simulations of LNA and LEN grow without bound. For this reason, the scatter
plots for these simulations are not shown. For the LNA, this divergence occurs de-
spite the fact that the deterministic part of the model exhibits a stable limit cycle.
This type of behavior of the LNA is known [34, 38, 41]. Although some corrective
measures have been proposed for similar examples (see [29] and references therein),
this illustrates the inability of LNA to characterize nonlinear behavior adequately.
From Figure 5, we see that the path generated by the simulation of the LEN be-
comes unstable after it hits a reflection from the boundary x2 = 0, which is normal
and pushes the process towards higher concentrations of x1, as can be seen from the
vector field of Figure 4(b). This path is reflected again (perpendicularly) from the
x2 = 0 boundary, making the concentration of x1 increasingly larger, which leads to
numerical instability and divergence for the chosen step size.

Similarly to the previous example, a discrete density estimation was calculated
for the CLA (it was not possible to perform this calculation for the LEN and the LNA
since these simulations diverge). The integral of the absolute difference between the
discrete density calculated for the CLA and that for the MC was given by 0.3058 with
a 95\% confidence interval of (0.3044, 0.3072) among the 10 independent runs.

Example 4. Now we consider a different example in order to compare the CLA
proposed here with the complex Langevin approximation introduced in [33]. The
examples in [33] involve unimolecular and bimolecular reactions. Here, we consider
the following example involving such reactions for species S1 and S2:

S1 + S2
\nu \rightarrow 2S2, S1

\beta 1\rightarrow \emptyset , S2
\beta 2\rightarrow \emptyset , \emptyset \alpha 1\rightarrow S1, \emptyset \alpha 2\rightarrow S2.(54)
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Fig. 5. Plot of the concentrations of S1 and of S2 given by x1 and x2, respectively, versus time.
The paths were generated from simulations for the system given by (52) with parameters r = 100,
\nu = 1, \beta 1 = 1, \beta 2 = 10 - 9, \alpha 1 = 0.1, and \alpha 2 = 0.5. Here we see that the LNA is unstable from early
on in the simulation and that the LEN hits an unstable path near t = 50, where the normal reflection
at the level x2 = 0 pushes the process to take a path with increasingly higher concentrations of x1,
leading the simulation to diverge.

The drift vector and diffusion matrix of the CLA for this example are given by

\mu (x)=

\biggl( 
 - \nu x1x2  - \beta 1x1 + \alpha 1

\nu x1x2  - \beta 2x2 + \alpha 2

\biggr) 
, \Upsilon (x)=

\biggl( 
\nu x1x2 + \beta 1x1 + \alpha 1  - \nu x1x2

 - \nu x1x2 \nu x1x2 + \beta 2x2 + \alpha 2

\biggr) 
with the reflection vector field at the boundary given by (53), since on the boundaries
x1 = 0 and x2 = 0, the reflection vector field for (52) is the same as for (54).

Simulations were performed for the MC model, CLA, the LNA, and the complex
Langevin approximation (complex-LE). We used the Euler--Maruyama method for
the complex-LE, similarly to what was done in [33], and we used Bossy, Gobet, and
Talay's method [8] for the CLA. For the LNA, we used a fourth order Runge--Kutta
method for its deterministic part and the Euler--Maruyama method for its diffusion
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Table 2
Means, variances and covariance for the concentration of each molecular species calculated by

Markov chain (MC) simulation, the constrained Langevin approximations (CLA), the linear noise
approximation (LNA), and the complex Langevin approximation (Complex-LE) (associated with the
parameters as in Figure 6). The concentrations of species S1 and S2 are represented by x1 and x2,
respectively. The table displays the average values among 10 independent runs and also the value
that should be added to/subtracted from the mean to get the 95\% confidence intervals.

MC CLA LNA Complex-LE
E[x1] 3.854e-02 \pm 3.3e-05 3.898e-02 \pm 3.1e-05 3.836e-02 \pm 5.0e-05 3.835e-02 \pm 3.3e-05
E[x2] 1.040e+00 \pm 2.7e-04 1.040e+00 \pm 3.4e-04 1.040e+00 \pm 2.9e-04 1.040e+00 \pm 2.7e-04
var(x1) 3.839e-04 \pm 1.1e-06 4.214e-04 \pm 1.6e-06 4.408e-04 \pm 1.1e-06 4.413e-04 \pm 2.2e-06
var(x2) 1.080e-02 \pm 3.7e-05 1.070e-02 \pm 3.9e-05 1.082e-02 \pm 3.4e-05 1.086e-02 \pm 3.8e-05
cov(x1, x2)  - 1.582e-05 \pm 5.3e-06  - 1.924e-05 \pm 3.4e-06  - 1.603e-05 \pm 4.3e-06  - 1.857e-05 \pm 3.7e-06

part. The simulations were performed up to time T = 105 and the time steps for the
numerical methods were set to h = 0.01. The initial condition used for the simulations
was set to x0 = (1, 1)/r with r = 100, and the samples from the simulations were
collected after an initial time of duration one was completed.

Since the complex-LE predicts real-valued moments, we compare the approxima-
tions by calculating mean concentration values, their variances, and covariance. In
order to account for statistical variation among different runs and calculate confidence
intervals, we repeated the simulations 10 times. Table 2 gives the results for the pa-
rameters r = 100, \nu = \alpha 1 = \alpha 2 = \beta 2 = 1, and \beta 1 = 25. The predicted moments
are fairly closely matched for all simulations. In Figure 6, we give the scatter plot
for the simulations. For the complex-LE, only the real parts of the simulation points
are shown. Although these simulation points appear to be similarly distributed to
those in the MC simulation, like the LNA, the real part of the complex Langevin
approximation permits values outside of the positive orthant.

Since the real part of the complex-LE can take values outside of the positive or-
thant, its behavior depends on the values of the drift and dispersion coefficients there.
We found that, for some examples, the drift vector field used by the complex-LE out-
side of the positive orthant can lead the process to have paths that diverge. One such
example is found by considering the same example (54) with the following set of pa-
rameters: r = 100, \alpha 1 = \beta 1 = 1, \nu = 10, \alpha 2 = 0.02, and \beta 2 = 5. For this example, the
simulation of the complex-LE using the Euler--Maruyama method diverges even with
step sizes as small as h = 0.001. In order to illustrate this, we simulated the complex-
LE with the time step h = 0.001 up to time T = 105. The simulation hits a divergent
path and stops at time t = 6665.421. Figure 7 shows the evolution of the real parts of
the complex Langevin approximation for the molecular concentrations of species S1

and S2, represented by variables x1 and x2, respectively, prior to divergence. From this
figure, we observe that the process has crossed the x2 = 0 boundary, where the drift
vector field pushes the process to higher concentrations of x1 and negative values of x2.

The same experiment was repeated for the MC, the CLA, and the LNA, using
the time step of h = 0.01 for the numerical methods. The scatter plot for a simula-
tion with duration T = 105 is given in Figure 8. We also calculated the integral of
the absolute difference between the discrete density calculated for the MC and those
calculated for the CLA and the LNA. The result is given in Table 3.

5. Summary and discussion. It is attractive, both analytically and computa-
tionally, to approximate a continuous time, discrete state space Markov chain (MC)
by a continuous time, continuous state diffusion process. From a modeling perspective
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(d) Complex Langevin Approximation
(Complex-LE)

Fig. 6. Scatter plot of the concentrations of S1 and S2, given by x1 and x2, respectively,
generated from simulations of the MC, CLA, LNA, and complex-LE for the system given by (54)
with parameters r = 100, \nu = \alpha 1 = \alpha 2 = \beta 2 = 1, and \beta 1 = 25. For the complex-LE, only the real
parts of the variables are shown. Notice that LNA and the complex-LE predict negative values for
x1 at some times.

this step involves replacing integer-valued molecule counts by real-valued concentra-
tion levels. It is intuitively clear that this modeling choice is likely to run into diffi-
culties when one or more species has a small molecule count. This issue may manifest
itself at a practical level by the solution path taking nonphysical negative values. From
a technical perspective, the diffusion process may not remain well defined. Our aim
in this work was to address this issue by introducing obliquely reflected diffusions as
constrained Langevin approximations. The behavior of these diffusions matches that
of solutions to the standard chemical Langevin equation in the interior of the positive
orthant and introduces an appropriate minimal perturbation at the boundary. Our
formal derivation of the CLA was backed up by analytical and computational exam-
ples that illustrate the benefits of the approach. A complementary, more rigorous,
derivation of this diffusion approach, which includes existence and uniqueness proofs,
has been developed in [27].

A direction for further work that we are pursuing is the development of error esti-
mates for the CLA as an approximation to the underlying MC, both at the transient
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Fig. 7. (Left) Real parts (x1 and x2, representing concentration for species S1 and S2, respec-
tively) for a simulation of the complex-LE of the system given by (54) with parameters r = 100,
\alpha 1 = \beta 1 = 1, \nu = 10, \alpha 2 = 0.02, and \beta 2 = 5. (Right) Direction vector field for the drift (normalized
to have unit length) of the complex-LE computed for the same simulation at time t = 6665, where
the real parts of x1 and x2 are given by 1.0655 and  - 0.0483, respectively, (shown as a solid dot)
and their imaginary parts are given by  - 0.0227 and 0.0376, respectively. The vector field shown was
computed for values in the real x1--x2 plane with the imaginary parts fixed to  - 0.0227 and 0.0376
for x1 and x2, respectively.
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Fig. 8. Scatter plot of the concentrations of S1 and S2, given by x1 and x2, respectively,
generated from simulations of the MC, CLA, and LNA for the system given by (54) with parameters
r = 100, \alpha 1 = \beta 1 = 1, \nu = 10, \alpha 2 = 0.02, and \beta 2 = 5. The complex-LE is not shown here since the
approximation diverges during a long simulation (see Figure 7).
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Table 3
Integral of the absolute difference between the discrete density calculated for the Markov chain

simulation and those calculated for the constrained Langevin approximation and the linear noise
approximation (for parameters as in Figure 8). The values displayed are averages of 10 independent
runs. The 95\% confidence intervals for these averages are also shown.

Integral abs. diff. 95\% C. I.
Constrained Langevin Approximation (CLA) 0.2299 (0.2283, 0.2315)
Constrained Langevin Approximation (LNA) 0.4953 (0.4934, 0.4971)

and steady state level. In another vein, the type of diffusion approximation proposed
here is also likely to be of interest for researchers considering other continuous time
MCs that live in the positive orthant, e.g., in population genetics and neuroscience.
The authors would appreciate hearing from researchers interested in such models and
approximations.

Appendix A. Brief introduction to obliquely reflected diffusion pro-
cesses. In this appendix, for the benefit of the reader, we give a very brief summary
of some aspects of obliquely reflected diffusion processes as they pertain to the CLA
described in this paper.

Let \scrG o be a nonempty domain in \BbbR m, \gamma : \partial \scrG \rightarrow \BbbR m be a unit length vector field
defined on the boundary \partial \scrG of \scrG o, and \mu : \scrG \rightarrow \BbbR m and \sigma : \scrG \rightarrow \BbbS m+ be continuous
functions defined on the closure, \scrG , of \scrG o. Here \BbbS m+ denotes the set of (symmetric)
m\times m positive semidefinite matrices. Informally, a reflected diffusion associated with
the parameters (\scrG o, \gamma , \mu , \sigma ) is a continuous (strong) Markov process that behaves in
the domain \scrG o like a solution of the Langevin equation with (state-dependent) drift
\mu and dispersion \sigma , and that is constrained to live in the closure \scrG of \scrG o by a control
at the boundary which acts in the (state-dependent) direction of the vector field \gamma .
This type of control is often referred to as a singular control because it only acts
when the diffusion process is on the boundary, and typically the amount of time that
the diffusion process spends on the boundary has zero Lebesgue measure (and so the
control acts only at a singular set of times).

One possible way9 to try to define such a process precisely is to require it to be a
continuous process Z taking values in \scrG that is a solution of the following SDE with
reflection:

(55) Z(t) = Z(0) +

\int t

0

\mu (Z(s)) ds+

\int t

0

\sigma (Z(s)) dW (s) +

\int t

0

\gamma (Z(s)) d\frakL (s), t \geq 0,

where W is a standard m-dimensional Brownian motion, the stochastic integral with
respect to W is an It\^o integral, and \frakL is a continuous, nondecreasing, one-dimensional
process that satisfies \frakL (0) = 0 and \frakL can only increase when Z is on \partial \scrG , that is,\int \infty 
0

1\{ Z(s)/\in \partial \scrG \} d\frakL (s) = 0. Here \frakL (t) is the cumulative amount of control (or pushing)
exerted at the boundary, in the direction of the vector field \gamma , up to time t. Note that
with Z, \frakL replaced by \widetilde Zr, 1\surd 

r
\widetilde Lr, and \sigma replaced by 1\surd 

r
\sigma , (55) has the form of our

CLA (33).
For historical reasons, a solution Z of (55) is called a reflected diffusion process,

although the constraining action at the boundary is more like regulation or control.

9An alternative approach is to try to characterize such processes in a distributional sense via
submartingale problems, as first introduced by Stroock and Varadhan [35] for reflected diffusions in
smooth domains and extended by various authors. See [21] for references on the two approaches and
development of the relationship between them.
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The origin of the term reflection lies in the fact that when m = 1, \scrG o = (0,\infty ),
\mu = 0, \sigma = 1, \gamma = 1 and Z(0) = 0, (Z,\frakL ) is equivalent in distribution to (| B| , L),
where B is a standard one-dimensional Brownian motion, | B| is its reflection about
the origin, and \frakL is the ``local time"" of | B| at the origin, which satisfies L(t) =

lim\epsilon \rightarrow 0
1
2\epsilon 

\int t

0
1[0,\epsilon )(| B| (s))ds almost surely, and is a normalized measure of the amount

of time that | B| spends near the origin. Indeed, by Tanaka's formula [9],

(56) | B(t)| =
\int t

0

sgn(B(s)) dB(s) + L(t), t \geq 0,

where sgn(x) = +1 if x > 0, sgn(x) =  - 1 if x < 0, and sgn(x) = 0 if x = 0; and

\{ 
\int t

0
sgn(B(s)) dB(s), t \geq 0\} defines another standard one-dimensional Brownian mo-

tion. On setting W (t) =
\int t

0
sgn(B(s)) dB(s) for t \geq 0, we see that (Z,\frakL ) = (| B| , L)

is a solution of (55) when (\scrG o, \mu , \sigma , \gamma ) = ((0,\infty ), 0, 1, 1). For more details on this
reflected Brownian motion case, see [9, Chapters 7 and 8]. Although a mirror re-
flection construction of solutions of (55) does not generally hold for nonzero \mu , state
dependent \sigma , or \gamma and \scrG o in higher dimensions, the term ``reflected diffusion"" has
nevertheless been widely used in the literature for processes of the form (55). We now
describe the results relevant to existence and uniqueness of solutions of (55) beyond
the simple one-dimensional Brownian motion case just described.

Of course, in general, additional conditions need to be imposed on \scrG o, \gamma , \mu , and
\sigma in order for (55) to be well posed. For our CLA, \scrG o is naturally a polyhedral
domain, and in all but one dimension, or in situations that can be reduced to such,
the boundary will be nonsmooth, although it will be piecewise smooth. Also, if \mu \not = 0
on \partial \scrG , then \gamma = \mu /| \mu | can be extended to a smooth (in fact, C\infty ) function in a
neighborhood of \partial \scrG .

In [11], Dupuis and Ishii considered the problem of existence and uniqueness of
solutions of equations like (55) when the boundary of \scrG is not smooth. The first of two
cases that they treated is relevant to CLAs as it allows for a smooth, state-dependent
vector field \gamma defined on a nonsmooth boundary. For that case, they assume that \scrG o

is a bounded domain, \gamma can be extended to a C2, unit-length vector field on all of
\BbbR m, and \mu and \sigma are uniformly Lipschitz continuous on \scrG . They formulate sufficient
conditions for the existence and uniqueness of ``strong""10 solutions of (55). The critical
condition (3.2) in their paper requires that, at each point on the boundary, the vector
field \gamma points into \scrG o in a suitably strong way. Unfortunately, due to topological
constraints, such an inward pointing vector field cannot be globally extended to be
smooth and of unit length on all \BbbR m (see [27] for a counterexample). However, as
shown in [27, section 5], the existence and uniqueness result of [11] is in fact true
with only local extendability of \gamma . In [27], Leite and Williams further show that this
existence and uniqueness result can be extended to where \scrG is the unbounded positive
orthant in \BbbR m, under the assumptions described in our paragraph containing (34).
In particular, with the results of Dupuis and Ishii (as extended in [27]) for bounded
domains and those in [27] for the orthant, existence and uniqueness of solutions of
our CLA (33) for all of the examples considered in this paper, as well as many others,
can be obtained. We refer the interested reader to [11, 21, 27] for more details on
reflected diffusions, especially in nonsmooth domains.

10A strong solution is required to be adapted to the filtration generated by W and the initial
condition Z(0).
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