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ABSTRACT
This study establishes that the effective thermal conductiv-

ity ke f f of crystalline nanoporous silicon is strongly affected not
only by the porosity fv and the system’s length Lz but also by
the pore interfacial area concentration Ai. The thermal con-
ductivity of crystalline nanoporous silicon was predicted using
non-equilibrium molecular dynamics (NEMD) simulations. The
Stillinger-Weber potential for silicon was used to simulate the
interatomic interactions. Spherical pores organized in a sim-
ple cubic lattice were introduced in a crystalline silicon ma-
trix by removing atoms within selected regions of the simula-
tion cell. Effects of the (i) system length ranging from 13 to 130
nm, (ii) pore diameter varying between 1.74 and 5.86 nm, and
(iii) porosity ranging from 8% to 38%, on thermal conductivity
were investigated. A physics-based model was also developed
by combining kinetic theory and the coherent potential approx-
imation. The effective thermal conductivity was proportional to
(1−1.5 fv) and inversely proportional to the sum (Ai/4+1/Lz).
This model was in excellent agreement with the thermal con-
ductivity of nanoporous silicon predicted by MD simulations for
spherical pores (present study) as well as for cylindrical pores
and vacancy defects reported in the literature. These results
will be useful in designing nanostructured materials with desired
thermal conductivity by tuning their morphology.

∗Address all correspondence to this author.

1 Introduction
Porous silicon has been the subject of intense studies due to

its wide range of applications. For example, porous silicon has
been used in optoelectronics for its photoluminescence proper-
ties [1]. Optoelectronic devices generate heat by Joule heating
and by photon absorption. Thus, knowing the thermal conduc-
tivity of porous silicon is important for proper thermal manage-
ment of these devices [2]. In addition, porous silicon has been
used as thermal insulator and sensor in microsystem technology
thanks to its low thermal conductivity and rigid solid structure
[3]. More recently, nanoporous silicon was also found promis-
ing in high energetic MEMS devices [4–10]. The presence of
nanosize pores creates very large internal surface area. Combin-
ing with oxygen source and heat input, strong exothermic reac-
tions take place within the nanoporous silicon which could be
used for microthrusters, microinitiators, and gas generation for
actuators [9]. Here also, the thermal conductivity of nanoporous
silicon is essential to the design and operation of these MEMS
devices.

Moreover, porous silicon is a potentially efficient thermo-
electric material for energy harvesting applications [11, 12].
Thermoelectric materials utilize the Seebeck effect to directly
convert a temperature gradient directly into electricity. Their
performance is described by the figure of merit ZT given by
ZT = σT S2/k, where T is absolute temperature, σ and k are
the electrical and thermal conductivities, respectively. The See-
beck coefficient S depends on the temperature and on the mate-
rial [13]. Good thermoelectric materials feature high electrical
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conductivity and high Seebeck coefficient but low thermal con-
ductivity. However, it is difficult to find such materials due to
the interdependence among σ , S, and k [13]. As a thermoelectric
material, bulk dense crystalline Si is considered inefficient with
ZT around 0.003 at room temperature [12]. However, according
to recent simulations, well-ordered nanoporous silicon with pore
diameter between 0.6 and 1.2 nm and porosity between 12% and
30% may feature ZT of about 1.0 at 300 K [12]. This significant
increase in ZT was attributed to the large reduction in k accom-
panied by only moderate changes in σ and S [11,12]. Practically,
a ZT value of about 3.0 could lead to efficient solid state energy
conversion [13]. Thus, the thermal conductivity of nanoporous
silicon needs to be tuned in order to further improve its figure of
merit. It is therefore, important to first understand and predict
thermal transport in nanoporous crystalline silicon.

2 Background
2.1 Molecular dynamics simulations

Molecular dynamics (MD) simulations solve the Newton’s
equation of motion of individual atoms whose interactions are
governed by an empirical interatomic potential. Two main ap-
proaches have been developed to predict thermal conductivity
using MD simulations, namely (i) the equilibrium Green-Kubo
approach and (ii) the direct non-equilibrium molecular dynamics
(NEMD) approach [14]. These two approaches have been de-
scribed in detail in the literature [14–19]. MD simulations are
increasingly used to investigate physical phenomena controlling
energy transport in both bulk dense and nanostructured materials.
In particular, Lee et al. [11] investigated the transverse thermal
conductivity of nanoporous silicon with periodically arranged
cylindrical pores at 300 K using MD simulations. The authors
performed equilibrium MD simulations using the Einstein rela-
tion [20] similar to the Green-Kubo relation [16, 17]. Note that
the simulation cell contained only one cylindrical pore and the
atoms at the surface of the pore were passivated with hydrogen
atoms. The thermal conductivity predicted by this equilibrium
method corresponds to the bulk property. The porosity and pore
diameter ranged from 7% to 38% and from 0.63 to 2.26 nm, re-
spectively. The Tersoff type potential was used to model inter-
atomic Si-Si and Si-H interactions [21]. This potential overesti-
mated the thermal conductivity of dense crystalline Si by about
80% compared with experimental measurements at 300 K [11].
The authors indicated that the predicted thermal conductivity of
nanoporous Si at 300 K was more than two orders of magni-
tude smaller than that of dense crystalline silicon [11]. They also
showed that the thermal conductivity of porous silicon (i) de-
creased with increasing pore diameter for a given pore spacing,
and (ii) increased with increasing pore spacing for a given pore
diameter [11].

Moreover, the non-equilibrium molecular dynamics
(NEMD) simulations can predict the thermal conductivity

from the temperature gradient and heat flux flowing through a
simulation system. It is ideal for investigating finite size effect
for structures such as thin films and superlattices [14, 18]. This
method had previously been implemented to predict the thermal
conductivity of dense solid materials such as silicon [18],
quartz [22], dense and nanoporous amorphous silica [23–25].
Recently, Lee et al. [26] investigated the effect of randomly
dispersed vacancy defects on the thermal conductivity of
crystalline silicon using NEMD simulations with the Tersoff
potential. The authors considered tetrahedral, hexahedral, and
dodecahedral-like vacancy clusters with vacancy concentration
(i.e., porosity) ranging from 0.15% to 1.5% [26]. Considering
the induced strain fields, their effective diameters were estimated
as 1.33, 1.50, and 1.70 nm, respectively. Note that each vacancy
cluster contained only 4 to 12 atoms and the maximum vacancy
concentration simulated did not exceed 1.5%. The thermal
conductivity at 300 K was found to decrease by 95% with
porosity of 1.5%. It was not affected by the size of the clusters
above the vacancy concentration of 1% [26].

2.2 Physical modeling
The thermal conductivity of nanoporous crystalline materi-

als was reported to depend on both the porosity and the pore
size [2, 11, 27–29]. Alvarez et al. [28] studied the influence of
porosity and pore size on the thermal conductivity of crystalline
porous silicon using the phonon hydrodynamics approach. The
authors considered monodisperse spherical pores randomly dis-
persed in a three-dimensional crystalline silicon matrix. They
expressed the effective thermal conductivity as [28],

ke f f = km
1

1
f ( fv)

+18 fv
(l/dp)

2

1+2A′ (l/dp)

(
1+

3√
2

√
fv

) , (1)

where km is the thermal conductivity of dense matrix material,
fv is the porosity, dp is the pore diameter, l is the dominant
phonon mean free path (MFP) in bulk dense silicon, f ( fv) =
(1 − fv)

3 based on percolation theory [30, 31], and A′ is a
function of l/dp expressed by Millikan [32] as A′ = 0.864 +
0.29exp(−0.625dp/l). The authors compared predictions of
Equation (1) with experimental results at room temperature for
electrochemically etched porous silicon with porosity ranging
from 40% to 90% and vertical cylindrical pores with radius rang-
ing from 1 to 100 nm [28]. Good agreement was found by taking
the dominant phonon MFP l for silicon at 300 K as 40 nm [28].
However, this value was smaller than that of about 300 nm sug-
gested in the literature [33, 34]. This latter value was derived by
considering the phonon dispersion and assuming that only the
acoustic phonons contributed to heat transfer [33, 34].

As previously discussed, Lee et al. [11] investigated the
transverse thermal conductivity of nanoporous silicon with cylin-
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drical pores at room temperature using MD simulations. The
authors also correlated their results with the ballistic-diffusive
model developed by Prasher [27] for two-dimensional systems
and expressed as [27],

ke f f = km
1

1
f ( fv)

+α
√

fv

F ( fv)

1
dp

, (2)

where F( fv) =
√

4 fv/π(sin−1
√

4 fv/π − π/2) +
√

1−4 fv/π
and f ( fv) = (1− fv)(1+ β f γ

v ). The three empirical fitting pa-
rameters α , β , and γ were fitted against MD simulation results
for ke f f as α = 50.9, β = 1821.1, and γ = 1.9, respectively [11].

The present study aims to predict the thermal conductivity of
crystalline nanoporous silicon using NEMD simulations. Multi-
ple spherical pores organized in a simple cubic lattice were in-
troduced into a crystalline silicon matrix. First, the simulation
procedure was validated with results for dense crystalline silicon
reported in the literature [18, 35, 36]. Then, the thermal conduc-
tivity of nanoporous crystalline silicon was computed at 500 K
for various system morphology including porosity, pore diame-
ter, and system length. Finally, a physics-based model predicting
the effects of these parameters on the thermal conductivity of
nanoporous silicon was developed.

3 Analysis
3.1 Thermal conductivity prediction using NEMD sim-

ulations
The detailed procedure of the NEMD simulations used in

the present study has already been described by Coquil et al. [25]
and need not be repeated. In brief, the thermal conductivity was
estimated using the so-called Muller-Plathe method [19, 23]. It
consists of imposing a heat flux q′′z along the z-direction and de-
termining the resulting temperature gradient dTMD/dz to estimate
the thermal conductivity as [18],

k =−
q′′z

dTMD/dz
. (3)

The heat flux was imposed by a velocity swapping technique
described in the literature [19, 23]. To do so, the atoms with
the largest kinetic energy (i.e., the hottest) in the heat sink were
exchanged with those with the lowest kinetic energy (i.e., the
coolest) in the heat source. The simulation cell was first divided
into an even number of slices. The temperature of each slice and
its gradient were calculated by averaging the atomic kinetic en-
ergy over time as well as over all the atoms in the slice. The
temperature TMD(z) of a slice along the z-direction (i.e., the di-
rection of the heat flux) at every time step was determined from

the classical statistical mechanics equipartition theorem as [23],

TMD (z) =
1

3nkkB

nk

∑
i=1

miv2
i , (4)

where kB = 1.38×10−23 m2kg/s2K is the Boltzmann’s constant,
nk is the number of atoms in the slice about z, and mi and vi are
the mass and velocity of individual atoms i, respectively. The
temperature of each slice was then averaged over multiple time
steps. The number of atoms per slice nk was chosen to be larger
than 32 following Schelling et al. [18]. After reaching steady
state, a temperature profile TMD(z) decreasing from the center to
the ends of the simulation cell could be estimated using Equa-
tion (4). A total number of 6 to 8 million steps were simulated
for a microcanonical or NVE ensemble, in which the total num-
ber of atoms, total volume, and total energy of the system were
conserved. In addition, periodic boundary conditions were im-
posed in all directions. Finally, the thermal conductivity was
retrieved using Equation (3) by averaging over the last 2 mil-
lion time steps. The numerical procedure was implemented using
the Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) [37]. Simulations were run in parallel on 32 to 128
64-bit nodes with 1024 to 2048 MB of RAM.

It should be noted that the expression for temperature
TMD(z) given by Equation (4) is widely used in MD simulations.
However, TMD represents the real temperature T only if the latter
is much larger than the Debye temperature TDebye [38]. In cases
when the system temperature is lower than TDebye, TMD needs to
be corrected for quantum effects [38]. For silicon, TDebye = 650
K [18] and according to Volz and Chen [38] and Tang [39], quan-
tum corrections are negligible when TMD exceeds 500 K for crys-
talline silicon systems.

3.2 Validation
MD simulations were first validated with dense crystalline

silicon. The well established two- and three-body interactions
Stillinger and Weber (SW) potential [40] was used. It is known
to successfully describe the elastic constants and thermal expan-
sion coefficients, as well as phonon dispersion relations of dense
silicon [41–43]. It was also previously used to model silicon ther-
mal conductivity above 500 K [18]. Here, simulation systems
consisted of six silicon unit cells in both the x- and y-directions,
with each unit cell consisting of a diamond cubic arrangement of
eight silicon atoms. The lattice constant a of each unit cell was
5.43 Å. On the other hand, the number of unit cells along the z-
direction varied from 48 to 384. Results for thermal conductivity
were analyzed as a function of the simulation system length Lz
ranging from 26 to 104 nm. The total number of atoms varied
from 13,824 to 55,294. Simulations were performed at both 500
and 1,000 K. The simulation time step was set to be 0.55 fs and
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simulations were run for a total of 6 million time steps. This
corresponded to an effective time of 3.3 ns which was more than
twice as long as the total time used by Schelling et al. [18] and
well above the 1 ns limit necessary to reach a steady-state tem-
perature profile [18]. The equations of motion were integrated
using a velocity Verlet algorithm [15]. The rate of velocity ex-
changes was chosen so that the corresponding heat flux was ap-
proximately 1.8×1011 eV/nm2·s, in agreement with that used by
Schelling et al. [18]. The simulation systems were divided into
slices corresponding to 1/4 of a silicon unit cell. Note that the
temperature profile was found to have already converged after
the first 2 million steps.

The temperature profile was linear except for the slices
within the heat source and heat sink regions, both corresponding
to about 20% of the simulation system length. The non-linearity
in temperature observed around those regions was attributed to
the strong scattering caused by the heat source and sink [44].
The linear part of the temperature profile was fitted with a linear
function, TMD(z), and the resulting gradient, dTMD/dz, was used
in Equation (3) to estimate the thermal conductivity. The gradi-
ents estimated for the two different linear regions, on each side of
the heat source, typically differed by less than 10%. This differ-
ence was used to estimate the error associated with the retrieved
thermal conductivity. Note that the system length Lz represents
half of the total length of the simulation cell along the z-direction.

Figure 1 plots 1/k as a function of 1/Lz at 500 and 1,000 K
along with results previously reported by Schelling et al. [18] and
bulk properties for natural and isotopically enriched silicon re-
ported in the literature [35,36]. It establishes that results obtained
in the present study were in excellent agreement with those pre-
viously reported by Schelling et al. [18]. In addition, the bulk
thermal conductivity can be estimated by extrapolating the linear
fit (solid lines) for 1/k vs. 1/Lz as 1/Lz tends to zero or Lz tends
to infinity [18]. Then, the thermal conductivity of bulk silicon
was found to be 141± 25 W/m·K at 500 K and 46± 2 W/m·K
at 1,000 K. The measured thermal conductivity of natural Si at
500 and 1,000 K were about 80 and 30 W/m·K, respectively [35].
That of isotopically enriched Si, known to contain fewer defects
than natural Si, was estimated to be 120 W/m·K at 500 K [18,36].
This was in reasonable agreement with the present MD simula-
tions results.

3.3 Thermal conductivity of nanoporous silicon
In order to simulate crystalline nanoporous silicon, simula-

tion cells of crystalline silicon were first generated. Here, the
simulation cells had the same size (6 to 12 unit cells) along both
the x- and y-directions and had 48 to 480 unit cells along the z-
direction. Then, spherical pores, in a simple cubic arrangement,
were introduced by removing silicon atoms within a spherical re-
gion along the centerline of the crystalline lattice. Figure 2 shows
the 2D atomic structures of a typical crystalline nanoporous sil-
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 linear fit, present study data

1/
k 

(m
.K
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)
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FIGURE 1. Predicted values of 1/k as a function of 1/Lz for crys-
talline silicon at 500 and 1,000 K along with similar results reported by
Schelling et al. [18]. Experimental data for bulk natural silicon [35] and
isotopically enriched pure silicon [36] are also displayed.

icon phase with two pores, 2.6 nm in diameter, inserted in a
3.26×3.26×6.52 nm3 simulation cell. The structure represented
a cross-section in the y-z plane which intercepted the center of
pores. Note that, in the present study, there was no passivation
on the pore surface, i.e., silicon atoms on the pore surface have
dangling bonds.

1 nm

z

''
zq ''

zq

Si atomsa=5.43Åunit cell

y

FIGURE 2. Typical atomic structures of the nanoporous crystalline
silicon phase with two spherical pores of 2.6 nm in diameter aligned
along the z-direction of a 3.26×3.26×6.52 nm3 simulation cell. This
2D representation corresponds to the projection of 1 nm thick slab in
the out-of-plane direction.
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Here also, the time step was 0.55 fs. Initially, the system
temperature was uniform and set to be 515±15 K by impos-
ing constant number of atoms, volume and temperature (NVT
ensemble) for 20,000 time steps. Then, the system was set to
equilibrium under constant number of atoms, volume and energy
(NVE ensemble) condition for another 20,000 time steps. Fi-
nally, the simulation was performed in the NVE ensemble for
6 to 8 million time steps with velocity exchange rate adjusted
to impose a heat flux of approximately 1.8×1011 eV/nm2·s (i.e.,
2.9×1010 W/m2). Note that the pore shape remained spherical
throughout the simulations. The z-direction of the simulation
cell was divided into slices corresponding to 1/2 of a silicon unit
cell and containing more than 50 atoms. The procedure used to
estimate the temperature gradient and to calculate the thermal
conductivity was identical to that previously described for dense
silicon. The temperature profile was found to have already con-
verged after the first 4 million steps.

Finally, Table 1 summarizes the values of porosity fv, spher-
ical pore diameter dp, cross-sectional area Ac, system length Lz,
and pore number N of the crystalline nanoporous silicon systems
investigated in the present study. The porosity ranged from 8%
to 38% while pore diameter varied from 1.74 to 5.86 nm. The
system length was between 13 and 130 nm corresponding to 4 to
32 aligned pores.

TABLE 1. Summary of simulated crystalline nanoporous silicon sys-
tems with various porosity, pore diameter, cross-section area, system
length, and pore number.

Porosity Pore diameter Cross-section area Length Pore number

% dp (nm) Ac (nm2) Lz (nm) N

8 1.74 3.26×3.26 13 to 104 4 to 32

8 2.93 5.43×5.43 22 to 109 4 to 20

15 2.17 3.26×3.26 13 to 104 4 to 32

15 2.88 4.34×4.34 17 to 104 4 to 24

27 2.61 3.26×3.26 13 to 104 4 to 32

27 3.48 4.34×4.34 17 to 104 4 to 24

27 4.34 5.43×5.43 22 to 109 4 to 20

27 5.21 6.52×6.52 26 to 130 4 to 20

38 2.93 3.26×3.26 13 to 104 4 to 32

38 3.91 4.34×4.34 17 to 104 4 to 24

38 4.89 5.43×5.43 22 to 130 4 to 24

38 5.86 6.52×6.52 26 to 130 4 to 20

4 Result and Discussion
4.1 Effects of system length and pore diameter

Figures 3(a) and 3(b) show the predicted effective thermal
conductivity at 500 K of crystalline nanoporous silicon ke f f as a
function of system length Lz for different pore diameters dp with

porosity fv equal to 27% and 38%, respectively. They indicate
that the thermal conductivity of nanoporous crystalline silicon
was more than one order of magnitude smaller than that of dense
crystalline silicon at 500 K (see Figure 1) [18, 35, 36]. This was
due to the fact that the presence of the nanosize pores greatly
enhances phonon scattering. Note that similar reduction in ther-
mal conductivity was observed for only 1.5% vacancy concen-
tration as reported by Lee et al. [26]. This could be attributed
to the facts that vacancy defects introduced large strain fields in
regions of the materials with size comparable to the pore diam-
eter used in the present study [26]. These randomly distributed
defect-induced strain fields caused large rate of phonon scatter-
ing by clusters and effectively obstruct the cross-sectional area
for phonon transport [26]. In addition, Figure 3 also establishes
that the thermal conductivity of crystalline nanoporous silicon
systems for a given porosity (i) increased with increasing Lz for
a given pore diameter dp and (ii) increased with increasing pore
diameter dp for a given length Lz. Similar results and conclusions
were found for the other values of porosity investigated (Table 1).

Moreover, it is interesting to note that Coquil et al. [25]
established that the system length had no effect on the thermal
conductivity of amorphous nanoporous SiO2 when the system
length was larger than approximately 5 nm for dp = 1.8 nm
and fv = 25± 2%. The different behavior observed with crys-
talline nanoporous Si can be attributed to their crystalline nature
in which phonon modes have significantly longer mean free path
(MFP) than in amorphous materials.

4.2 Effect of porosity
Figure 4 shows the thermal conductivity of nanoporous sili-

con at 500 K as a function of system length for porosity ranging
from 8% to 38%. Here, the pore diameter dp was maintained
at 2.8±0.2 nm and the porosity of nanoporous silicon systems
was adjusted by varying the cross-sectional area Ac. It is evident
that the thermal conductivity decreased with increasing poros-
ity. In addition, the system length Lz had stronger effect on ther-
mal conductivity for systems with smaller porosity. For exam-
ple, the thermal conductivity of nanoporous silicon with porosity
fv = 8% and 38% increased by 85% and 40%, respectively, as
Lz increased from 22 to 109 nm. This was due to the fact that,
in systems with large porosity, phonon scattering by pores dom-
inated over phonon scattering by film boundaries.

4.3 Bulk thermal conductivity of nanoporous silicon
The bulk thermal conductivity of nanoporous Si can be de-

termined by linear extrapolation of 1/k vs. 1/Lz as Lz → ∞ [18].
Sellan et al. [45] indicated that the minimum system length
used should be comparable to the largest MFP of the domi-
nant phonons. The authors further defined the maximum thermal
conductivity kmax that can be accurately predicted using the lin-
ear extrapolation procedure with a minimum system length Lmin
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FIGURE 3. Predicted effective thermal conductivity of crystalline
nanoporous silicon at 500 K as a function of system length Lz for poros-
ity (a) fv = 27% and (b) fv = 38% along with various pore diameters dp

and simulation cell cross-section Ac.

as [45],

kmax =
LminkBvg

6a3 , (5)

where a is the lattice constant and vg is the average phonon group
velocity given by [45],

vg =
1
3
(vg,L +2vg,T ) , (6)
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FIGURE 4. Predicted effective thermal conductivity of crystalline
nanoporous silicon at 500 K as a function of system length for pore
diameter dp = 2.8±0.2 nm and porosity fv between 8% and 38%.

where vg,L and vg,T are the longitudinal and transverse phonon
group velocities, respectively. Note that the above requirement
was validated against results of MD simulations for argon and
dense crystalline silicon [18, 45]. Here, we further expressed the
group velocities vg,L and vg,T in nanoporous crystalline Si as [46],

vg,L = [(Ke f f +4Ge f f /3)/ρe f f ]
1/2 and vg,T =(Ge f f /ρe f f )

1/2,
(7)

where Ke f f , Ge f f , and ρe f f are the effective bulk modulus, shear
modulus, and density of the nanoporous material, respectively
[46]. For porous material of porosity fv, the effective bulk mod-
ulus Ke f f has been expressed as [47],

Ke f f = Km

[
1− fv

(
1+

3Km

4Gm

)]
, (8)

where Km and Gm are the bulk and shear modulus of the contin-
uous dense matrix. Similarly, the effective shear modulus Ge f f
can be expressed as [47],

Ge f f = Gm

[
1− fv

(
1+

2Gm (3λm +8Gm)

9Gmλm +14G2
m

)]
, (9)

where λm is the Lamé’s elastic constant of the dense matrix
[47]. In addition, the effective density ρe f f is given by ρe f f =
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ρm(1− fv). The density ρm, the bulk modulus Km, the shear mod-
ulus Gm, and the Lamé’s constant λm for the dense crystalline sil-
icon matrix were calculated from previously reported MD simu-
lations using the Stillinger-Weber potential as 2300 kg/m3, 71.5
GPa, 52.4 GPa, and 36.6 GPa, respectively [42]. For comparison,
the experimental data for ρm, Km, Gm, and λm were 2329 kg/m3,
59.6 GPa, 79.6 GPa, and 6.5 GPa, respectively [48]. Then, the
phonon group velocities vg,L, vg,T , and vg of nanoporous sili-
con were calculated using Equations (6) to (9). Finally, con-
sidering that the minimum system length Lmin simulated was 50
nm, i.e., 1/Lz < 0.02 nm−1, the maximum thermal conductivity
kmax predicted by Equation (5) ranged between 3 and 5 W/m·K
for systems with porosity between 8% and 38%. Note that the
same conclusions were reached by using the above experimen-
tally measured elastic properties [48].

Figures 5(a) and 5(b) show the predicted values of 1/ke f f
at 500 K as a function of 1/Lz for crystalline nanoporous silicon
with porosities of 27% and 38%, respectively. Systems satisfying
1/Lz < 0.02 nm−1 were used for linear extrapolation. Except for
systems with 8% porosity, the predicted thermal conductivity of
bulk nanoporous silicon ke f f (Lz → ∞) was less than or equal to
kmax, confirming the validity of the linear extrapolation of 1/ke f f
vs. 1/Lz [45]. For systems with 8% porosity, simulations of sys-
tems significantly longer than those simulated would be required.

4.4 Physical modeling
4.4.1 Effective medium approximations The ef-

fect of porosity on various properties of porous materials is usu-
ally accounted for by some effective medium approximations
(EMAs). Numerous EMAs have been developed in order to pre-
dict the effective thermal conductivity ke f f of porous materials
[25, 49]. Here, the pores in nanoporous silicon are so small that
their thermal conductivity can safely be neglected as explained
in Refs. [25, 50]. Then, EMAs typically provide expressions for
ke f f as the product of the matrix thermal conductivity km and
a function of porosity Ψ( fv), i.e., ke f f = kmΨ( fv). For exam-
ple, the Russell model [51] gives ΨRussell( fv) = (1− f 2/3

v )/(1−
f 2/3
v + fv) while the Eucken model [52] uses ΨEucken( fv) = (1−

fv)/(1 + fv/2). These models were previously used to model
the effective thermal conductivity of microporous silicon with
periodically aligned cylindrical pores and porosity of 23% and
26% [53, 54]. Note that these two functions behave similarly
and the maximum relative difference between them is about 6%
for porous Si of any porosity. In addition, the coherent potential
model is expressed as [55, 56],

ke f f = kmΨcp( fv) = km(1−1.5 fv). (10)

This model was first derived by Landauer [55] for the effective
dielectric properties of random mixtures of spherical inclusions

0 0.02 0.04 0.06 0.080.00.2
0.40.6
0.8  dp=2.61 nm, Ac=3.26x3.26 nm2 dp=3.48 nm, Ac=4.34x4.34 nm2 dp=4.34 nm, Ac=5.43x5.43 nm2 dp=5.21 nm, Ac=6.52x6.52 nm2

1/keff (m.K/W)
1/Lz (nm-1) fv=27%

(a)

0 0.02 0.04 0.06 0.080.20.40.6
0.81.01.2
1.41.6  dp=2.93 nm, Ac=3.26x3.26 nm2 dp=3.91 nm, Ac=4.34x4.34 nm2 dp=4.89 nm, Ac=5.43x5.43 nm2 dp=5.86 nm, Ac=6.52x6.52 nm2

1/keff (m.K/W)
1/Lz (nm-1) fv=38%

(b)

FIGURE 5. Predicted values of 1/ke f f of crystalline nanoporous sil-
icon at 500 K as a function of 1/Lz for porosity (a) fv = 27% and (b)
fv = 38% along with various pore diameter dp and simulation cell cross-
section Ac. Linear extrapolation used data satisfying 1/Lz < 0.02 nm−1

(Lz > 50 nm).

in a continuous matrix. The main assumption was that “a re-
gion of type 1 is not preferentially surrounded by either other
regions of type 1 or by regions of type 2” [55]. Therefore, porous
materials having very small or very large porosity do not satisfy
this assumption. Cahill and Allen [56] successfully applied the
coherent potential model to predict the thermal conductivity of
Vycor glass from 30 to 300 K with pore diameter and porosity
approximately equal to 10 nm and 30%, respectively. More re-
cently, this model was also found to agree well with predictions
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of thermal conductivity of amorphous mesoporous silica at 300
K obtained by non-equilibrium MD simulations [25].

Finally, note that the above EMAs do not directly account
for the effect of pore diameter. However, Figures 3 and 5 show
that dp has significant effect on ke f f for a given porosity. Thus,
the coherent potential model and most other EMAs, in their con-
ventional form ke f f = kmΨ( fv), are inadequate to predict the ef-
fective thermal conductivity of crystalline nanoporous media.

4.4.2 Effect of interfacial area concentration It
has been established that the reduction of thermal conductivity
of nanocomposite material is mainly due to phonon scattering by
interfaces [11, 57–59]. The phonon-interface scattering rate is
known to increase with increasing interfacial area concentration
Ai (in m−1) defined as the surface area of interface per unit vol-
ume of nanocomposite material [57–59]. In porous material with
spherical pores arranged in a simple cubic lattice, the interfacial
area concentration can be expressed as Ai = 6 fv/dp. Thus, for a
given porosity fv, Ai increases with decreasing pore diameter dp.
Figure 3 suggests that ke f f decreased not only with increasing fv
but also with decreasing dp and thus with increasing Ai.

Moreover, the systems simulated in the present study fell in
the ballistic regime characterized by l/dp ≫ 10 [60]. Then, the
phonon hydrodynamics model given by Equation (1) for spheri-
cal pores simplifies to,

ke f f = km
1

1.3l
(

1+
3√
2

√
fv

)
Ai

. (11)

The relative difference between predictions by Equations (1) and
(11) for nanoporous silicon systems investigated in the present
study was less than 1%. More importantly, Equation (11) sug-
gests that the thermal conductivity of nanoporous silicon is in-
versely proportional to Ai.

Similarly, for cylindrical pores with the same ranges of
pore diameter and porosity explored in this study, the ballis-
tic diffusive model given by Equation (2) simplifies to ke f f =
kmα

√
fvF( fv)/Ai, where for periodically arranged cylindrical

pores Ai = 4 fv/dp. Here also, the thermal conductivity appears
to be inversely proportional to Ai.

Unfortunately, predictions by Equation (11) underestimated
the thermal conductivity computed by our MD simulations by
about 90% at 500 K using km = 80 W/m·K for high purity crys-
talline silicon [35] and l ≃ 140 nm [33]. To improve the predic-
tions of Equation (11), the MFP l could be treated as a fitting
parameter. Alternatively, a new physics-based model was devel-
oped in the present study.

4.4.3 Modeling This section presents a model for the
effective thermal conductivity of mesoporous Si based on ki-

netic theory and able to simultaneously account for the effects of
porosity, interfacial area concentration, and system length. The
kinetic theory expresses the thermal conductivity km of the dense
matrix in nanoporous materials as [61],

km =
1
3

Cv,mv2
g,mτtot . (12)

The total relaxation time τtot includes the contributions from (i)
phonon Umklapp scattering τU as well as phonon scattering by
(ii) pores τph−p, and (iii) film boundaries τph−b. Here, Umk-
lapp scattering rate was estimated based on the phonon MFP
in bulk dense silicon as τ−1

U = vg,m/l where l ≃ 140 nm [33].
The relaxation time for phonon scattering by large defect ag-
gregates [62] was adopted to account for phonon-pore scatter-
ing. It was expressed as τ−1

ph−p = vg,mnπd2
p/4, where n is the

number density of pores of diameter dp. For spherical pores,
n = 6 fv/(πd3

p) so that the phonon-pore scattering rate can be
expressed as τ−1

ph−p = vg,mAi/4. This corresponds to an average
phonon-pore scattering MFP of 4/Ai in good agreement with that
derived by Minnich and Chen [57] for phonon-interface scat-
tering in nanocomposites. In addition, phonon-boundary scat-
tering can be expressed as τ−1

ph−b = vg,m/Lz [35], where Lz cor-
responds to the thickness of nanoporous silicon thin films. In
nanoporous materials, Umklapp scattering is typically negligible
compared with phonon scattering by pores and by film bound-
aries, i.e., τ−1

U ≪ τ−1
ph−p and τ−1

U ≪ τ−1
ph−b. These conditions can

also be formulated in terms of pore number density or porosity as
n≫ 4/

(
lπd2

p
)

or fv ≫ 2dp/(3l) and in terms of system length as
Lz ≪ l, respectively. In the present study, the number density of
pores n was at least 10 times larger than 4/

(
lπd2

p
)

for all systems
simulated. This verified that Umklapp scattering was negligible
compared with phonon scattering by pores. Then, according to
Matthiessen’s rule, the total relaxation time τtot can be expressed
as [35],

1
τtot

=
1

τph−p
+

1
τph−b

= vg,m

(
Ai

4
+

1
Lz

)
. (13)

Combining EMAs, accounting for the effect of porosity on
ke f f , with the matrix thermal conductivity km, accounting for the
effect of phonon-pore scattering, the effective thermal conduc-
tivity of nanoporous silicon systems can be expressed as,

ke f f = kmΨ( fv) =
1
3

Cv,mvg,m
Ψ( fv)

Ai/4+1/Lz
. (14)

It is evident that as Lz tends to infinity, the bulk effective ther-
mal conductivity ke f f is inversely proportional to Ai in agreement
with the phonon hydrodynamic model for spherical pores [28]
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and the ballistic diffusive model for cylindrical pores in the bal-
listic regime [27].
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FIGURE 6. Effective thermal conductivity ke f f as a function of
(1−1.5 fv)/(Ai/4+1/Lz) of all crystalline nanoporous silicon systems
simulated at 500 K for porosity fv ranging between 8% and 38%, pore
diameter dp between 1.74 and 5.86 nm, and system length between
13 and 130 nm. Predictions by Equation (15) are also shown with
β = 8.40×108 W/m2·K.

Furthermore, the specific heat Cv,m and the group veloc-
ity vg,m of the silicon matrix may differ from those of dense
bulk silicon due to band folding and phonon confinement ef-
fect [63,64]. In fact, Hopkins et al. [64] recently observed, using
the plane-wave expansion technique [65], a large reduction in
phonon group velocity in single crystalline nanoporous silicon
films made by phononic crystal patterning. The main purpose
of the present study was to investigate the scaling laws predict-
ing the effects of morphological parameters on the thermal con-
ductivity of nanoporous silicon. To facilitate the scaling analysis
and considering the approximate nature of potentials used in MD
simulations, the product Cv,mvg,m/3 was substituted by a semi-
empirical parameter β so that the effective thermal conductivity
can be written as,

ke f f = β
Ψ( fv)

Ai/4+1/Lz
, (15)

where β depends only on temperature, on the matrix materials,

and possibly on the choice of interatomic potential. Note that
equilibrium MD simulations with the Green-Kubo theorem could
be used to predict phonon dispersion and density of state as well
as specific heat and group velocity in silicon nanostructures [63].
However, this falls outside the scope of the present study.

Figure 6 plots ke f f from the MD simulations as a function of
(1− 1.5 fv)/(Ai/4+ 1/Lz) for all values of porosity, pore diam-
eter, and system length investigated in the present study (Table
1). It is remarkable that nearly all data points previously scat-
tered (see Figures 3 to 4) collapsed onto a single straight line.
This indicates that the present model successfully captured the
effects of various system morphology simultaneously. Here also,
the systems with porosity fv = 8% showed relatively large de-
viations from the other systems. This could be attributed to the
fact that the small porosity systems do not satisfy the assumption
of the coherent potential model [55], as previously discussed. In
addition, Figure 6 shows that the effective thermal conductivity
ke f f for all systems can be linearly related to the present model
by using a slope of β = 8.40× 108 W/m2·K with a coefficient
of determination R2 = 0.99. Note that using the Russell model
ΨRussell( fv) resulted in β = 7.72×108 W/m2·K with R2 = 0.97.

Figure 7 plots the effective bulk thermal conductivity ke f f as
a function of (1−1.5 fv)/(Ai/4) for nanoporous silicon with (a)
spherical pores computed in the present study as well as, (b) peri-
odically arranged cylindrical pores [11], and (c) vacancy defects
[26] for various values of porosity and pore diameter reported
in other MD simulations. Note that the latter used the Tersoff
potential instead of the Stillinger-Weber potential. This suggests
that the linear relationship between ke f f and (1−1.5 fv)/(Ai/4)
is independent of the choice of potential although the coeffi-
cient of proportionality β may not. Also, note that in Lee et
al.’s study [26], the 0.15% vacancy concentration did not sat-
isfy the ballistic transport assumption and was not included in
the plot. Here also, the effective bulk thermal conductivity ke f f
was inversely proportional to Ai and followed the coherent po-
tential model (1 − 1.5 fv) for the three types of nanostructures
considered. The coefficient of proportionality between ke f f and
(1−1.5 fv)/(Ai/4) was found to be β = 5.38×108 W/m2·K and
β = 6.26×108 W/m2·K for nanoporous Si with cylindrical pores
and vacancy defects, respectively. The difference in the value of
β can be attributed to difference in temperature (500 or 300 K),
interatomic potential (SW or Tersoff), pore or vacancy shapes, as
well as spatial arrangement.

5 Conclusion
This study established that the effective thermal conductiv-

ity ke f f of crystalline nanoporous silicon predicted from non-
equilibrium MD simulations was strongly affected by the pore
interfacial area concentration Ai, the porosity fv, and the system’s
length Lz. In addition, a modified effective medium approxi-
mation combining kinetic theory and the coherent potential ap-
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Predictions by Equation (15) are also shown with (a) β = 8.40×108 W/m2·K, (b) β = 5.38×108 W/m2·K, and (c) β = 6.26×108 W/m2·K.

proximation suggested that ke f f was proportional to (1− 1.5 fv)
and inversely proportional to the sum (Ai/4+1/Lz). This model
agreed with MD simulation predictions for the thermal conduc-
tivity of crystalline nanoporous silicon with not only spherical
pores (present study) but also with cylindrical pores and vacancy
defects, reported in the literature [11, 26]. These results will be
useful in designing nanostructured materials with desired ther-
mal conductivity by tuning their morphology for various appli-

cations including thermoelectric energy conversion.
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