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Abstract

Background—Recent theoretical models of schizophrenia posit that dysfunction of the neural 

mechanisms subserving predictive coding contributes to symptoms and cognitive deficits, and this 

dysfunction is further posited to result from N-Methyl D-aspartate glutamate receptor (NMDAR) 

hypofunction. Previously, by examining auditory cortical responses to self-generated speech 

sounds, we demonstrated that predictive coding during vocalization is disrupted in schizophrenia. 

In order to test the hypothesized contribution of NMDAR hypofunction to this disruption, we 

examined the effects of the NMDAR antagonist, ketamine, on predictive coding during 

vocalization in healthy volunteers and compared them to the effects of schizophrenia.

Methods—In two separate studies, the N1 component of the event-related potential (ERP) 

elicited by speech sounds during vocalization (Talk) and passive playback (Listen) were compared 

to assess the degree of N1 suppression during vocalization, a putative measure of auditory 

predictive coding. In the cross-over study, 31 healthy volunteers completed two randomly ordered 

test days, a saline day and a ketamine day. ERPs during the Talk/Listen task were obtained pre-

infusion and during infusion on both days, and N1 amplitudes were compared across days. In the 

case-control study, N1 amplitudes from 34 schizophrenia patients and 33 healthy controls were 

compared.

Results—N1 suppression to self-produced vocalizations was significantly and similarly 

diminished by ketamine (Cohen's d=1.14) and schizophrenia (Cohen's d=.85).

Conclusions—Disruption of NMDARs causes dysfunction in predictive coding during 

vocalization in a manner similar to the dysfunction observed in schizophrenia patients, consistent 

with the theorized contribution of NMDAR hypofunction to predictive coding deficits in 

schizophrenia.

Keywords

schizophrenia; predictive coding; ketamine; N-methyl-D-aspartate glutamate receptor; speech 
motor control; electroencephalography

1. Introduction

Predicting imminent events is a fundamental strategy to efficiently process the 

overwhelming amount of information from the environment (1, 2). While predictions can be 

based on regularities in the environment, or past learning, all animals are adept at predicting 

the sensory consequences of their own actions. Examples of action-based predictive coding 

are ubiquitous across species (3), and have been linked to the concepts of “efference copy” 

(4) and “corollary discharge” (5).
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Modulation of auditory cortex during vocalization has been studied across species, including 

songbirds (6), non-human primates (7), and humans (8-20), and is posited to be mediated by 

predictive coding. In human speech (15, 20-24), it is theorized that premotor cortex sends a 

forward model of the speech motor plan (i.e., efference copy) to auditory cortex where it 

generates a representation of the predicted auditory feedback (i.e., corollary discharge). This 

prediction is then compared to the actual auditory feedback, and when they match, the 

“prediction error” is minimized and the auditory cortical response is attenuated (8-13, 15, 

17, 18, 20, 23). In contrast, mismatches between the predicted and perceived auditory 

feedback result in prediction errors and enhanced auditory cortical responses (12, 16-18, 20, 

25-27). Prediction errors can be used to update and make online changes to motor plans, 

refine future predictions, and maintain vocalization quality (16, 17, 21, 22, 28, 29). In 

humans, speaking is over-learned, and the resulting sounds are highly predictable, making 

vocalization ideal for studying predictive coding in impaired populations where learning, 

attention, and motivation may be compromised.

Starting with Feinberg (30), and later Frith (31), it was hypothesized that schizophrenia may 

involve dysfunction of these mechanisms, giving rise to psychotic symptoms involving 

misattribution of self-generated thoughts and actions to external sources. Recent models 

extended these earlier theories within a broader predictive coding framework (32-36), 

incorporating evidence that schizophrenia involves a more general dysfunction of the neural 

mechanisms that allow predictions to be made and verified (25, 34, 37-39).

Many prior electroencephalographic (EEG) studies found that patients with schizophrenia 

exhibit reduced suppression of auditory cortical responses, specifically the N1 component of 

the auditory event-related brain potential (ERP), to self-produced speech sounds (14, 23-25, 

40-42). While these findings support deficits in cortical modulation of sensory responses to 

self-generated actions in schizophrenia, a broader range of studies implicate deficits in 

predictive coding based on recent sensory contextual information (37, 43-48). For example, 

the widely replicated deficit in mismatch negativity (MMN) (46), an ERP component 

elicited by deviant auditory stimuli in auditory oddball sequences, has been considered to 

reflect deficient predictive coding of recent contextual information in schizophrenia (33, 35, 

36, 43, 45, 48-52).

Several lines of evidence support the N-methyl-D-aspartate glutamate receptor (NMDAR) 

hypofunction model of schizophrenia (34, 53-57), including pharmacological (34, 53-56, 

58-62), genetic (63-65), neuroimaging (66, 67), and post-mortem (68, 69) studies. Given that 

sub-anesthetic doses of NMDAR antagonists, including ketamine, transiently induce 

schizophrenia-like positive, negative, and cognitive symptoms (53-55, 57, 62, 70-72), 

NMDAR antagonists provide a pharmacological tool for probing the potential role of 

NMDAR hypofunction in generating these symptoms in both animal (73-77) and human 

(53-56, 59-62, 78-82) studies. Such studies implicate NMDAR function in predictive 

coding-based learning and remembering the recent stimulus history (2, 34, 39, 52). 

Specifically, blocking NMDAR function with ketamine impedes prediction error-dependent 

associative learning (56) and promotes aberrant prediction error signals implicated in the 

development of delusions (34, 39). Moreover, in animal (73-75) and human (59, 78, 79, 

81-83) studies, NMDAR antagonists have disrupted MMN (35, 36, 49, 50, 52). While these 
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studies implicate NMDAR dysfunction in context-based predictive coding deficits, it is 

unknown whether NMDAR antagonists disrupt predictions of the sensory consequences of 

motor actions, as seen in schizophrenia patients during talking (14, 23, 25, 40-42, 84) and 

other motor acts (85-89).

In the present study, we examined the acute effect of ketamine on action-based predictive 

coding of self-generated speech sounds in healthy volunteers. In a randomized placebo-

controlled crossover study design, we compared the effect of intravenous ketamine vs. saline 

on the suppression of the speech sound-evoked auditory N1 ERP component elicited during 

vocalization relative to passive listening. In the Talk/Listen task, EEG was obtained as 

participants said the single vowel /a/ and then passively listened to playback of their speech. 

Based on previous studies (9-20, 38, 40, 84), we hypothesized that under saline infusion, 

participants would show robust N1 amplitude suppression to self-produced speech, whereas 

under ketamine infusion, this suppression would be attenuated. To enable comparison of the 

effects of ketamine to the effects of schizophrenia, the identical Talk/Listen task was also 

administered to a group of chronic schizophrenia patients and age-matched healthy 

comparison participants. We hypothesized that schizophrenia would be associated with 

attenuated suppression of the auditory N1 in response to self-produced speech sounds, 

replicating our prior studies (14, 23, 25, 40, 42, 84). By expressing N1 suppression effect 

sizes as deviations from either the saline condition in the ketamine study or healthy 

comparison participants in the schizophrenia study, we directly compared the effect sizes 

produced by ketamine and by schizophrenia.

2. Methods

Data were collected in parallel studies. The Talk/Listen experimental paradigm, EEG 

acquisition, and ERP analyses were identical for the two studies and are described below. 

The ketamine vs. saline infusion study was conducted on the Bio-Studies Unit at the VA 

Connecticut Healthcare System (VACHS) in West Haven, CT, and the study received 

approval from the Institutional Review Boards (IRB) of the VACHS and Yale University 

School of Medicine in New Haven, CT. The schizophrenia vs. healthy comparison study was 

conducted at both the VACHS/Yale and at the San Francisco Veterans Affairs Medical 

Center (SFVAMC)/University of California, San Francisco (UCSF). The study received IRB 

approval from all institutions. For both studies, participants provided written informed 

consent.

2.1 Ketamine vs. Saline Infusion Study

Participants were recruited via locally posted flyers and newspaper/online advertisements, 

and were paid for their participation. Participants were medically healthy by physical 

examination, history, electrocardiography, and laboratory testing. They had no history of a 

DSM-IV Axis-I disorder, no major current or recent (<6 weeks) life stressors, and no first-

degree relative with a history of psychosis. Screening procedures included the Structured 

Clinical Interview for DSM-IV (SCID) (90). Participants were instructed to refrain from 

psychoactive substances from one week prior to through completion of the study. A 

participant-identified outside informant was interviewed to corroborate information provided 
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by potential participants. Urine toxicology testing at screening ruled out recent illicit 

substance use and pregnancy. Participants were instructed to fast overnight prior to each test 

day.

Thirty-three participants completed both test days. While there were no serious adverse 

events, minor adverse events and study discontinuations were reported to the VACHS 

Human Studies Subcommittee. As with prior Bio-Studies Unit ketamine studies, clinical 

follow-ups indicated that all adverse events associated with acute ketamine resolved 

spontaneously without any late appearing or persistent adverse effects (91). There were no 

significant differences between study completers and non-completers in age, sex, or 

education. Two participants were excluded from the final analysis due to poor quality EEG 

data on both test days. Demographic data are presented in Table 1. There was no overlap 

between participants in the ketamine study and the schizophrenia study.

2.1.1. Methods: Ketamine vs. Saline Infusion Study—Across two days separated by 

on average 12.65 days (11.92 SD), healthy volunteers received ketamine and saline in a 

double-blind, randomized crossover design. Participants received 3 intravenous infusions of 

ketamine or saline; 0.23 mg/kg bolus over 1 minute, followed by 0.58 mg/kg/hour for 30 

minutes, followed by 0.29 mg/kg/hour for 50 minutes, similar to many prior studies (60, 61, 

80, 82, 91, 92). This infusion strategy produces stable plasma ketamine levels (61, 92), 

although only the bolus and first infusion rate coincided with the Talk/Listen paradigm.

Table 2 shows the timing of procedures. Behavioral ratings were obtained at baseline and 

repeated periodically after the infusion. EEG data were collected during the Talk/Listen 

paradigm administered just before (“Pre-infusion”; Time 1, T1) and 10 to 20 minutes after 

onset of the IV ketamine (or saline) bolus (“Infusion”; Time 2, T2).

2.1.1.1. Behavioral Measures: Ketamine vs. Saline Infusion Study: Clinical symptoms 

induced by ketamine (and saline) were assessed by a trained rater using the Clinician 

Administered Dissociative Symptoms Scale (CADSS) (93) and a subset of items from the 

Brief Psychiatric Rating Scale (BPRS; Positive Symptoms: Conceptual Disorganization, 

Unusual Thought Content, Grandiosity, Suspiciousness, Hallucinatory Behavior; Negative 

Symptoms: Emotional Withdrawal, Motor Retardation, Blunted Affect) (94).

2.2. Schizophrenia vs. Healthy Comparison Participants Study

Participants were 34 patients with schizophrenia or schizoaffective disorder (SZ) and 33 

healthy comparison participants (HC). All met DSM-IV criteria for schizophrenia or 

schizoaffective disorder (see Table 1) based either on a SCID interview (90) conducted by a 

psychiatrist or psychologist, or by consensus of a SCID administered by a trained research 

assistant and a clinical interview conducted by a psychiatrist or psychologist. All patients 

were on stable doses of antipsychotic medication (see Table 1) for at least two weeks prior to 

study entry.

HC were recruited by advertisements and word-of-mouth. Exclusion criteria for HC 

included a past or current DSM-IV major Axis I psychiatric disorder based on a SCID (non-

patient version) interview, or having a first-degree relative with a psychotic disorder. HC 
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were matched as a group to the SZ group for age, gender, handedness (95), and caretaker 

socioeconomic status (96).

Participants were excluded for 1) meeting DSM-IV criteria for alcohol or drug abuse within 

30 days of study entry or dependence within the past year, 2) significant head injury, 3) 

neurological disorders, or 4) other medical illnesses compromising the central nervous 

system.

2.2.1. Clinical Ratings—A trained research assistant, psychiatrist, or clinical psychologist 

rated SZ symptom severity during semi-structured interviews using the Positive and 

Negative Syndrome Scale (PANSS) (97), and the Scales for the Assessment of Negative 

Symptoms and Positive Symptoms (SANS and SAPS) (98, 99). Time between symptom 

interviews and ERP testing ranged between 0 to 14 days (mean= 2.1 days, SD= 5 days).

2.3. Common Methods

For a full description of the Talk/Listen EEG paradigm, including technical details 

associated with its instrumentation and vocalization training, see our previously published 

protocol (24). In brief, the paradigm involves EEG recording during two conditions: Talk 

and Listen. In the Talk condition, participants vocalized the vowel /a/ into a microphone 

every 1-2 seconds for 3 minutes. These speech sounds were instantaneously fed back to the 

participant via headphones and were digitally recorded. In the Listen condition, participants 

passively listened to the playback of their recorded speech sounds. Speech recording and 

playback were achieved using Presentation software (www.neurobs.com). Loudness was the 

same during Talk and Listen conditions based on equilibration of headphone audio output 

measured by a dB meter.

2.3.1. Data Acquisition and Pre-processing—EEG data were acquired (0.05-200Hz 

band pass filter, 1000Hz analog-to-digital conversion rate) from 28 scalp sites based on the 

International 10-20 System, referenced to the TP10 (right mastoid) electrode. Additional 

electrodes were placed on the inner and outer canthi of both eyes and above and below the 

right eye to measure eye movements and blinks (vertical and horizontal electro-oculogram; 

VEOG, HEOG). Continuous EEG data were 1Hz high-pass filtered and separated into 3s 

epochs time-locked to onset of the speech sound, with 1500ms before and after speech 

onset. The 100ms baseline preceding speech onset was subtracted from each EEG epoch 

after correction for eye movements and blinks using VEOG and HEOG in a regression-

based algorithm (100) in BrainVision Analyzer 2 (BrainProducts, Germany). Single trial 

EEG epochs were then exported for additional processing in Matlab (Mathworks, Inc).

Canonical correlation analysis (CCA) was used as a blind source separation technique to 

remove broadband or electromyographic noise from single trial EEG data, generating de-

noised EEG epochs. Our approach is similar to the CCA method described by others (101, 

102), with some important differences (see supplementary methods). Once a complete set of 

de-noised EEG epochs were generated for a participant, epochs were subjected to selected 

steps from the Fully Automated Statistical Thresholding for EEG artifact Rejection toolbox 

(103), as previously done (86). The method searches for statistical outliers (>±3 SD from 

mean) employing multiple descriptive measures.
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Outlier epochs were removed from the set of single trial epochs, and within an epoch, outlier 

channels were removed and interpolated. Surviving EEG epochs were baseline corrected 

again using the 100ms preceding speech onset and were averaged separately for Talk and 

Listen conditions, generating ERP waveforms separately for each participant and test 

session.

2.3.2. ERP Analysis—Prior to identification of the N1 component, participant-specific 

ERP waveforms were 30Hz low-pass filtered and averaged across all conditions (i.e., Talk 

and Listen for Schizophrenia vs. Healthy Comparison Participants Study; Talk and Listen 

from all Ketamine vs. Saline Study sessions) and re-referenced to an average mastoid 

reference (104). Resulting participant-specific grand average ERP waveforms were used to 

identify the N1 peak latency separately for Fz, FCz, and Cz, between 60 and 140 ms. The 

mean peak latency from these three electrodes was calculated, and then the N1 peak 

amplitude was defined by the microvolt value at this latency for each condition and 

electrode.

2.3.3. Statistical Analysis: Ketamine vs. Saline Infusion Study—N1 peak 

amplitudes were analyzed using a 5-way mixed model analysis of variance (ANOVA) with 

four within-subject factors including Time (T1: Pre-infusion vs. T2: Infusion), Anterior-

Posterior Electrode Site (AP; Fz, FCz, Cz), Ketamine/Saline (Ketamine vs. Saline) and Talk/

Listen (Talk vs. Listen) and between-subjects factor of Infusion Order (Day 1:Ketamine, 

Day 2:Saline vs. Day 1:Saline, Day 2:Ketamine) to test for possible drug infusion order 

effects. There was no significant effect of Infusion Order, nor did Infusion Order 

significantly interact with other factors in the model; to simplify the model, it was dropped 

from further analyses.

Pearson's correlation tests were used to assess the relationship between ketamine-related 

change (T2-T1) in symptoms and change (T2-T1) in N1 suppression (Talk-Listen, averaged 

across Fz, FCz, and Cz). Because there were 3 symptom domains (Table 3), our significance 

level was .05/3.

2.3.4. Statistical Analysis: Schizophrenia vs. Healthy Comparison Participants 
Study—N1 peak amplitudes were analyzed using a 3-way mixed model ANOVA with 

between-subjects factor of Group (SZ vs. HC), and within-subjects factors of AP and Talk/

Listen.

Pearson's correlation tests were used to assess the relationship between PANSS positive, 

negative, total scores and N1 suppression (Talk-Listen, averaged across Fz, FCz, and Cz). 

Because there were 3 symptom domains, our significance level was .05/3.

2.3.5. Statistical Analysis Comparing Ketamine and Schizophrenia Study 
Effect Sizes—N1 peak amplitudes from the ketamine infusion test day were converted to 

z-scores by subtracting the mean N1 peak amplitude from the saline day and dividing by the 

saline day SD. N1 peak amplitudes from SZ were converted to z-scores by subtracting the 

mean N1 peak amplitude from HC and dividing by HC group SD. This was done for N1 

peak amplitudes from the Talk and Listen conditions and for the Talk-Listen suppression 
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effect. Independent samples t-tests directly compared the ketamine z-scores from the healthy 

participants, expressing abnormalities relative to the saline test day, with the SZ z-scores, 

expressing abnormalities relative to the HC.

3. Results

3.1. Ketamine vs. Saline Infusion Study

3.1.1. Ketamine did not significantly affect task performance—To determine if 

ketamine affected the speech rate, the average number of vocalizations in 3 minutes was 

analyzed in 3-way mixed model ANOVA with Ketamine/Saline and Time as within-subject 

factors and Infusion Order as between-subjects factor. Though ketamine slowed speech rate 

(mean vocalizations/minute: preketamine = 37.5, ketamine = 33.8; pre-saline = 37.9, saline 

= 37.7), the Ketamine/Saline × Time interaction was not significant (p=.11). No main effects 

or interactions were significant.

Psychotomimetic effects of ketamine were measured using the BPRS and CADSS (see Table 

3). Pre-Ketamine Infusion vs. Ketamine Infusion paired t-tests showed a significant increase 

in symptom ratings, corresponding with ketamine significantly increasing symptoms: BPRS 

Total t=−11.915, p<.001, BPRS Positive t=−10.902, p<.001, CADSS t=−11.737, p<.001. 

Given symptom ratings were virtually identical without ketamine infusion, the 

psychotomimetic effects of ketamine were similarly evident when compared to the Pre-

Saline and Saline Infusion.

3.1.2. Ketamine significantly reduced N1 suppression—As can be seen in the 

grand average ERPs shown in Figure 1, N1 is relatively suppressed during Talk compared to 

Listen, and this suppression is attenuated during ketamine infusion. Results from the mixed 

model ANOVA (see Table 4) bear this out, showing a significant Talk/Listen × Ketamine/

Saline × Time interaction. This interaction was parsed several ways. First, a Talk/Listen × 

Ketamine/Saline ANOVA was run separately for T1 and T2. The Talk/Listen × Ketamine/

Saline interaction was significant at T2 (Infusion) but not at T1 (Pre-Infusion), indicating 

that the Talk-Listen N1 difference score was reduced during ketamine infusion relative to 

saline infusion. Further interrogation showed that despite attenuation of the Talk/Listen 

effect by ketamine, there was still a significantly smaller N1 during Talk than Listen during 

both ketamine and saline infusions. Moreover, separate tests of the T2 Ketamine/Saline 

effect for Talk and for Listen revealed that ketamine, relative to saline, significantly 

increased Talk N1 but had no significant effect on Listen N1.

Second, a Talk/Listen × Time ANOVA was run separately for the Ketamine and Saline 

Infusion days. There was a significant Talk/Listen × Time effect on the Ketamine day, but 

not on the Saline day, indicating that the Talk–Listen N1 difference score was significantly 

attenuated during ketamine infusion relative to pre-ketamine baseline. Nonetheless, the 

Talk–Listen difference was significant during ketamine infusion and pre-ketamine baseline 

assessment. Furthermore, relative to the pre-ketamine baseline, ketamine infusion 

significantly increased Talk N1 amplitude and non-significantly decreased Listen N1 

amplitude.
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Third, a Ketamine/Saline × Time ANOVA was run separately for Talk and Listen 

Conditions. For Talk, but not for Listen, there was a significant Ketamine/Saline × Time 

interaction. This interaction was driven by an increase in Talk N1 amplitude by ketamine 

relative to T1 pre-ketamine and relative to T2 saline infusion, as previously noted.

People whose N1 suppression was more attenuated by ketamine had more severe 

dissociative experiences reflected in the total CADSS score (r=−.36, p<.05), but this 

relationship did not meet our Bonferroni corrected significance level of p=.017. N1 

suppression was not related to BPRS Total (p=.27) or BPRS Positive (p=.14).

3.2. Schizophrenia vs. Healthy Comparison Participants Study

3.2.1. Groups did not differ in task performance—There was no difference in the 

rate of vocalizations produced by HC participants (mean = 32.3 vocalizations per minute) 

and SZ patients (mean = 32.7 vocalizations per minute) (p=.81).

3.2.2. Schizophrenia patients showed less N1 suppression than healthy 
comparison participants—Grand average ERP waveforms for SZ and HC showed N1 

amplitude suppression during talking compared to passive listening, with greater 

suppression evident in the HC (see Figure 2). Results from the repeated measures ANOVA 

in Table 5 showed a significant Talk/Listen by Group (SZ vs. HC) interaction, indicating that 

the Talk/Listen N1 effect was significantly greater in HC than SZ. Nonetheless, both groups 

showed significant N1 suppression in the Talk condition compared to the Listen condition. 

In addition, N1 in the Talk condition was significantly larger for SZ than for HC, whereas 

N1 during the Listen condition did not significantly differ between the groups.

None of the relationships between N1 suppression and PANSS (positive, negative, general) 

scores was significant.

3.3. Influence of ketamine on N1 compared to schizophrenia

Ketamine and SZ N1 amplitude z-scores, expressing deviations from N1 amplitudes 

observed during the Saline infusion and in HC, respectively, were used to directly compare 

the effects of ketamine and schizophrenia (see Figure 3). The effects of ketamine and 

schizophrenia on N1 amplitudes were significantly different during Talk (t63=−5.299, p < .

001) but not Listen (t63=−1.196, p=.236), nor did they differ for N1 Talk/Listen suppression 

effect (t63=−.337, p=.737).

4. Discussion

Suppression of the neural response to spoken sounds during vocalization reflects successful 

predictive coding of the sensory consequences of speaking. In this study, we have shown that 

transient blockade of NMDARs via infusion of the NMDAR antagonist ketamine disrupts 

predictive coding during vocalization by decreasing auditory cortical suppression to the 

spoken, and predicted, speech sound. The disturbance of predictive coding in healthy 

volunteers under the influence of ketamine mimics that seen in schizophrenia, with both 

groups showing a similar reduction in cortical suppression during talking relative to 

listening.
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These findings have important implications for understanding the pathophysiology of 

schizophrenia. This study shows, for the first time, that disrupting NMDAR function 

impedes the predictive coding of the over-learned sensations resulting from motor actions. 

The suppression of sensory cortical responses to self-generated stimuli provides a 

mechanism for distinguishing these stimuli from those arising from the environment, an 

essential part of self-monitoring (105). Disruption of this mechanism could result in the 

misattribution of self-generated sensations to external sources, which is hypothesized to 

underlie certain types of psychotic symptoms such as hallucinations and delusions of alien 

control (30, 31); however, our data do not corroborate these symptom relationships. We have 

shown that disruption of NMDARs is sufficient to create a deficit in cortical self-monitoring 

during vocalization in healthy volunteers that mimics the deficit observed in schizophrenia.

The results of this study add to the increasing evidence implicating NMDAR hypofunction 

in the pathophysiology of schizophrenia. NMDAR antagonists, including ketamine and 

phencyclidine, induce schizophrenia-like symptoms (53-55, 57, 62, 70-72). Alterations in 

both the NMDAR subunit composition and in specific NMDAR related post-synaptic 

proteins have been reported (68, 69). Positive genetic associations with schizophrenia have 

been reported for both the NR1 and NR2B subunits of the NMDAR (63-65). NMDAR 

function has been implicated in generating the MMN response to deviant auditory stimuli, a 

reflection of predictive coding in the auditory system that is based on recent contextual 

information (35, 36, 49-52). In particular, MMN deficits similar to those found in 

schizophrenia have been induced by ketamine in healthy volunteers (59, 78, 79, 81-83), 

rodents (75, 106), and non-human primates (73, 74). In addition, low-dose ketamine has 

been shown to disrupt prediction error responses during causal learning, and these aberrant 

responses trended towards predicting ketamine-induced delusional ideation (56). Moreover, 

larger baseline prediction error responses during causal learning as reflected by functional 

magnetic resonance imaging activation in prefrontal cortex (56), but smaller 

electrophysiological prediction error signals as reflected by the MMN (107), have been 

shown to predict severity of positive symptoms under higher-doses of ketamine in healthy 

volunteers.

Action-based predictive coding is a unique case of predictive coding. Unlike context-based 

predictive coding, the motor-sensory prediction originates from premotor cortex and 

involves multisensory integration (somatosensory and auditory during speech production). 

Furthermore, prediction errors can be used in real time to change the motor plan to correct 

any execution errors. We have shown that disrupting the NMDAR can transiently alter a 

motor predictive coding mechanism. Ketamine specifically altered the N1 response during 

self-produced vocalizations, but not during passive listening to playback of these 

vocalizations. Therefore, N1 suppression deficits were not due to changes in sensory 

perception, but to changes in predicting the sensory consequences of talking. These findings 

support hierarchical models of predictive coding (2, 39, 108) that posit a role of NMDARs in 

the representation of the prediction.

The current study has several limitations. First, we used one dose of ketamine, making a 

dose-response curve function impossible to estimate. Second, predictive coding deficits with 

ketamine and in schizophrenia were not related to dissociative or psychotic symptoms, 
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counter to expectations. Third, we could not compare context-based (e.g., MMN) and 

action-based (N1 suppression during talking) predictive coding effects because MMN was 

not collected in the ketamine study. Fourth, antipsychotic medications influence extracellular 

glutamate and potentially modulate NMDA receptor subunit composition (109). However, 

the N1 suppression deficit in schizophrenia is unlikely to be a consequence of antipsychotic 

medication; it is seen in unmedicated first-degree relatives (42) and individuals at clinical 

high risk for psychosis (40).

In conclusion, this study demonstrates that transient disruption of NMDARs via 

administration of ketamine impedes cortical self-monitoring of speech by decreasing cortical 

suppression (and correspondingly increasing the prediction error signal). Furthermore, we 

showed that this transient disruption mimics the deficits evident in schizophrenia. This work 

implicates NMDAR hypofunction as a contributor to action-based predictive coding deficits 

in schizophrenia, further motivating the development of interventions that target this putative 

pathophysiological mechanism.
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This study was supported by funding from AstraZeneca for an investigator-initiated study (DHM), and the National 
Institute of Mental Health (R01 MH-58262 to JMF; T32 MH089920 to NSK). Dr. Krystal was supported by the 
Yale Center for Clinical Investigation (UL1RR024139) and the US National Institute on Alcohol Abuse and 
Alcoholism (P50AA012879).

The authors thank Angelina Genovese, R.N.C., M.B.A.; Elizabeth O'Donnell, R.N.; Brenda Breault, R.N., B.S.N.; 
Sonah Yoo, R.Ph.; and Rachel Galvan, PharmD, BCPS of the Neurobiological Studies Unit at the VA Connecticut 
Healthcare System, West Haven Campus for their central contributions to the success of this project.

References

1. Shadmehr R, Krakauer JW. A computational neuroanatomy for motor control. Experimental brain 
research. 2008; 185:359–381. [PubMed: 18251019] 

2. Friston K. The free-energy principle: a unified brain theory? Nature reviews Neuroscience. 2010; 
11:127–138. [PubMed: 20068583] 

3. Crapse TB, Sommer MA. Corollary discharge across the animal kingdom. Nature reviews 
Neuroscience. 2008; 9:587–600. [PubMed: 18641666] 

4. Von Holst E, Mittelstaedt H. The principle of reafference. Naturwissenschaften. 1950; 37:464–476.

5. Sperry RW. Neural basis of the spontaneous optokinetic response produced by visual inversion. 
Journal of Comparative and Physiological Psychology. 1950; 43:482–489. [PubMed: 14794830] 

6. Solis MM, Brainard MS, Hessler NA, Doupe AJ. Song selectivity and sensorimotor signals in vocal 
learning and production. Proceedings of the National Academy of Sciences of the United States of 
America. 2000; 97:11836–11842. [PubMed: 11050217] 

7. Eliades SJ, Wang X. Sensory-motor interaction in the primate auditory cortex during self-initiated 
vocalizations. Journal of neurophysiology. 2003; 89:2194–2207. [PubMed: 12612021] 

8. Muller-Preuss P, Ploog D. Inhibition of auditory cortical neurons during phonation. Brain Research. 
1981; 215:61–76. [PubMed: 7260601] 

9. Houde JF, Nagarajan SS, Sekihara K, Merzenich MM. Modulation of the auditory cortex during 
speech: an MEG study. Journal of cognitive neuroscience. 2002; 14:1125–1138. [PubMed: 
12495520] 

Kort et al. Page 11

Biol Psychiatry. Author manuscript; available in PMC 2018 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



10. Flinker A, Chang EF, Kirsch HE, Barbaro NM, Crone NE, Knight RT. Single-trial speech 
suppression of auditory cortex activity in humans. The Journal of neuroscience : the official 
journal of the Society for Neuroscience. 2010; 30:16643–16650. [PubMed: 21148003] 

11. Greenlee JD, Jackson AW, Chen F, Larson CR, Oya H, Kawasaki H, et al. Human auditory cortical 
activation during self-vocalization. PloS one. 2011; 6:e14744. [PubMed: 21390228] 

12. Kort NS, Nagarajan SS, Houde JF. A bilateral cortical network responds to pitch perturbations in 
speech feedback. NeuroImage. 2014; 86:525–535. [PubMed: 24076223] 

13. Curio G, Neuloh G, Numminen J, Jousmaki V, Hari R. Speaking modifies voice-evoked activity in 
the human auditory cortex. Human Brain Mapping. 2000; 9:183–191. [PubMed: 10770228] 

14. Ford JM, Gray M, Faustman WO, Roach BJ, Mathalon DH. Dissecting corollary discharge 
dysfunction in schizophrenia. Psychophysiology. 2007; 44:522–529. [PubMed: 17565658] 

15. Wang J, Mathalon DH, Roach BJ, Reilly J, Keedy SK, Sweeney JA, et al. Action planning and 
predictive coding when speaking. NeuroImage. 2014; 91:91–98. [PubMed: 24423729] 

16. Sitek KR, Mathalon DH, Roach BJ, Houde JF, Niziolek CA, Ford JM. Auditory cortex processes 
variation in our own speech. PloS one. 2013; 8:e82925. [PubMed: 24349399] 

17. Niziolek CA, Nagarajan SS, Houde JF. What does motor efference copy represent? Evidence from 
speech production. The Journal of neuroscience : the official journal of the Society for 
Neuroscience. 2013; 33:16110–16116. [PubMed: 24107944] 

18. Chang EF, Niziolek CA, Knight RT, Nagarajan SS, Houde JF. Human cortical sensorimotor 
network underlying feedback control of vocal pitch. Proceedings of the National Academy of 
Sciences of the United States of America. 2013; 110:2653–2658. [PubMed: 23345447] 

19. Chen CM, Mathalon DH, Roach BJ, Cavus I, Spencer DD, Ford JM. The corollary discharge in 
humans is related to synchronous neural oscillations. Journal of cognitive neuroscience. 2011; 
23:2892–2904. [PubMed: 20946054] 

20. Heinks-Maldonado TH, Mathalon DH, Gray M, Ford JM. Fine-tuning of auditory cortex during 
speech production. Psychophysiology. 2005; 42:180–190. [PubMed: 15787855] 

21. Houde JF, Nagarajan SS. Speech production as state feedback control. Frontiers in human 
neuroscience. 2011; 5:82. [PubMed: 22046152] 

22. Hickok G, Houde J, Rong F. Sensorimotor integration in speech processing: computational basis 
and neural organization. Neuron. 2011; 69:407–422. [PubMed: 21315253] 

23. Ford JM, Mathalon DH. Corollary discharge dysfunction in schizophrenia: can it explain auditory 
hallucinations? Int J Psychophysiol. 2005; 58:179–189. [PubMed: 16137779] 

24. Ford JM, Roach BJ, Mathalon DH. Assessing corollary discharge in humans using noninvasive 
neurophysiological methods. Nature protocols. 2010; 5:1160–1168. [PubMed: 20539291] 

25. Heinks-Maldonado TH, Mathalon DH, Houde JF, Gray M, Faustman WO, Ford JM. Relationship 
of imprecise corollary discharge in schizophrenia to auditory hallucinations. Arch Gen Psychiatry. 
2007; 64:286–296. [PubMed: 17339517] 

26. Behroozmand R, Larson CR. Error-dependent modulation of speech- induced auditory suppression 
for pitch-shifted voice feedback. BMC neuroscience. 2011; 12:54. [PubMed: 21645406] 

27. Greenlee JD, Behroozmand R, Larson CR, Jackson AW, Chen F, Hansen DR, et al. Sensory-motor 
interactions for vocal pitch monitoring in non-primary human auditory cortex. PloS one. 2013; 
8:e60783. [PubMed: 23577157] 

28. Burnett TA, Freedland MB, Larson CR, Hain TC. Voice F0 responses to manipulations in pitch 
feedback. The Journal of the Acoustical Society of America. 1998; 103:3153–3161. [PubMed: 
9637026] 

29. Houde JF, Jordan MI. Sensorimotor adaptation in speech production. Science. 1998; 279:1213–
1216. [PubMed: 9469813] 

30. Feinberg I. Efference copy and corollary discharge: implications for thinking and its disorders. 
Schizophrenia bulletin. 1978; 4:636–640. [PubMed: 734369] 

31. Frith CD, Blakemore S, Wolpert DM. Explaining the symptoms of schizophrenia: abnormalities in 
the awareness of action. Brain research Brain research reviews. 2000; 31:357–363. [PubMed: 
10719163] 

Kort et al. Page 12

Biol Psychiatry. Author manuscript; available in PMC 2018 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



32. Fletcher PC, Frith CD. Perceiving is believing: a Bayesian approach to explaining the positive 
symptoms of schizophrenia. Nature reviews Neuroscience. 2009; 10:48–58. [PubMed: 19050712] 

33. Adams RA, Stephan KE, Brown HR, Frith CD, Friston KJ. The computational anatomy of 
psychosis. Frontiers in psychiatry. 2013; 4:47. [PubMed: 23750138] 

34. Corlett PR, Honey GD, Krystal JH, Fletcher PC. Glutamatergic model psychoses: prediction error, 
learning, and inference. Neuropsychopharmacology : official publication of the American College 
of Neuropsychopharmacology. 2011; 36:294–315. [PubMed: 20861831] 

35. Stephan KE, Baldeweg T, Friston KJ. Synaptic plasticity and dysconnection in schizophrenia. 
Biological psychiatry. 2006; 59:929–939. [PubMed: 16427028] 

36. Stephan KE, Friston KJ, Frith CD. Dysconnection in schizophrenia: from abnormal synaptic 
plasticity to failures of self-monitoring. Schizophrenia bulletin. 2009; 35:509–527. [PubMed: 
19155345] 

37. Ford JM, Roach BJ, Miller RM, Duncan CC, Hoffman RE, Mathalon DH. When it's time for a 
change: failures to track context in schizophrenia. Int J Psychophysiol. 2010; 78:3–13. [PubMed: 
20580752] 

38. Ford JM, Mathalon DH. Anticipating the future: automatic prediction failures in schizophrenia. Int 
J Psychophysiol. 2012; 83:232–239. [PubMed: 21959054] 

39. Corlett PR, Taylor JR, Wang XJ, Fletcher PC, Krystal JH. Toward a neurobiology of delusions. 
Progress in neurobiology. 2010; 92:345–369. [PubMed: 20558235] 

40. Perez VB, Ford JM, Roach BJ, Loewy RL, Stuart BK, Vinogradov S, et al. Auditory cortex 
responsiveness during talking and listening: early illness schizophrenia and patients at clinical 
high-risk for psychosis. Schizophrenia bulletin. 2012; 38:1216–1224. [PubMed: 21993915] 

41. Ford JM, Roach BJ, Faustman WO, Mathalon DH. Synch before you speak: auditory 
hallucinations in schizophrenia. The American journal of psychiatry. 2007; 164:458–466. 
[PubMed: 17329471] 

42. Ford JM, Mathalon DH, Roach BJ, Keedy SK, Reilly JL, Gershon ES, et al. Neurophysiological 
evidence of corollary discharge function during vocalization in psychotic patients and their 
nonpsychotic first-degree relatives. Schizophrenia bulletin. 2013; 39:1272–1280. [PubMed: 
23155183] 

43. Baldeweg T, Hirsch SR. Mismatch negativity indexes illness-specific impairments of cortical 
plasticity in schizophrenia: a comparison with bipolar disorder and Alzheimer's disease. Int J 
Psychophysiol. 2015; 95:145–155. [PubMed: 24681247] 

44. Barch DM, Carter CS, MacDonald AW 3rd, Braver TS, Cohen JD. Context-processing deficits in 
schizophrenia: diagnostic specificity, 4-week course, and relationships to clinical symptoms. 
Journal of abnormal psychology. 2003; 112:132–143. [PubMed: 12653421] 

45. Baldeweg T, Klugman A, Gruzelier J, Hirsch SR. Mismatch negativity potentials and cognitive 
impairment in schizophrenia. Schizophr Res. 2004; 69:203–217. [PubMed: 15469194] 

46. Erickson MA, Ruffle A, Gold JM. A Meta-Analysis of Mismatch Negativity in Schizophrenia: 
From Clinical Risk to Disease Specificity and Progression. Biological psychiatry. 2016; 79:980–
987. [PubMed: 26444073] 

47. Fogelson N, Litvak V, Peled A, Fernandez-del-Olmo M, Friston K. The functional anatomy of 
schizophrenia: A dynamic causal modeling study of predictive coding. Schizophr Res. 2014; 
158:204–212. [PubMed: 24998031] 

48. Rentzsch J, Shen C, Jockers-Scherubl MC, Gallinat J, Neuhaus AH. Auditory mismatch negativity 
and repetition suppression deficits in schizophrenia explained by irregular computation of 
prediction error. PloS one. 2015; 10:e0126775. [PubMed: 25955846] 

49. Garrido MI, Kilner JM, Stephan KE, Friston KJ. The mismatch negativity: a review of underlying 
mechanisms. Clinical neurophysiology : official journal of the International Federation of Clinical 
Neurophysiology. 2009; 120:453–463. [PubMed: 19181570] 

50. Haenschel C, Vernon DJ, Dwivedi P, Gruzelier JH, Baldeweg T. Event- related brain potential 
correlates of human auditory sensory memory-trace formation. The Journal of neuroscience : the 
official journal of the Society for Neuroscience. 2005; 25:10494–10501. [PubMed: 16280587] 

51. Strelnikov K. Can mismatch negativity be linked to synaptic processes? A glutamatergic approach 
to deviance detection. Brain and cognition. 2007; 65:244–251. [PubMed: 17513027] 

Kort et al. Page 13

Biol Psychiatry. Author manuscript; available in PMC 2018 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



52. Wacongne C, Changeux JP, Dehaene S. A neuronal model of predictive coding accounting for the 
mismatch negativity. The Journal of neuroscience : the official journal of the Society for 
Neuroscience. 2012; 32:3665–3678. [PubMed: 22423089] 

53. Javitt DC, Zukin SR, Heresco-Levy U, Umbricht D. Has an angel shown the way? Etiological and 
therapeutic implications of the PCP/NMDA model of schizophrenia. Schizophrenia bulletin. 2012; 
38:958–966. [PubMed: 22987851] 

54. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, et al. Subanesthetic 
effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, 
perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry. 1994; 51:199–214. 
[PubMed: 8122957] 

55. Krystal JH, D'Souza DC, Mathalon D, Perry E, Belger A, Hoffman R. NMDA receptor antagonist 
effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication 
development. Psychopharmacology. 2003; 169:215–233. [PubMed: 12955285] 

56. Corlett PR, Honey GD, Aitken MR, Dickinson A, Shanks DR, Absalom AR, et al. Frontal 
responses during learning predict vulnerability to the psychotogenic effects of ketamine: linking 
cognition, brain activity, and psychosis. Arch Gen Psychiatry. 2006; 63:611–621. [PubMed: 
16754834] 

57. Moghaddam B, Javitt D. From revolution to evolution: the glutamate hypothesis of schizophrenia 
and its implication for treatment. Neuropsychopharmacology : official publication of the American 
College of Neuropsychopharmacology. 2012; 37:4–15. [PubMed: 21956446] 

58. Krystal JH, Bennett A, Abi-Saab D, Belger A, Karper LP, D'Souza DC, et al. Dissociation of 
ketamine effects on rule acquisition and rule implementation: possible relevance to NMDA 
receptor contributions to executive cognitive functions. Biological psychiatry. 2000; 47:137–143. 
[PubMed: 10664830] 

59. Umbricht D, Schmid L, Koller R, Vollenweider FX, Hell D, Javitt DC. Ketamine-induced deficits 
in auditory and visual context-dependent processing in healthy volunteers: implications for models 
of cognitive deficits in schizophrenia. Arch Gen Psychiatry. 2000; 57:1139–1147. [PubMed: 
11115327] 

60. Anticevic A, Corlett PR, Cole MW, Savic A, Gancsos M, Tang Y, et al. N- methyl-D-aspartate 
receptor antagonist effects on prefrontal cortical connectivity better model early than chronic 
schizophrenia. Biological psychiatry. 2015; 77:569–580. [PubMed: 25281999] 

61. Driesen NR, McCarthy G, Bhagwagar Z, Bloch MH, Calhoun VD, D'Souza DC, et al. The impact 
of NMDA receptor blockade on human working memory-related prefrontal function and 
connectivity. Neuropsychopharmacology : official publication of the American College of 
Neuropsychopharmacology. 2013; 38:2613–2622. [PubMed: 23856634] 

62. Moghaddam B, Krystal JH. Capturing the angel in “angel dust”: twenty years of translational 
neuroscience studies of NMDA receptor antagonists in animals and humans. Schizophrenia 
bulletin. 2012; 38:942–949. [PubMed: 22899397] 

63. Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kavvoura FK, Khoury MJ, et al. Systematic 
meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene 
database. Nature genetics. 2008; 40:827–834. [PubMed: 18583979] 

64. Qin S, Zhao X, Pan Y, Liu J, Feng G, Fu J, et al. An association study of the N-methyl-D-aspartate 
receptor NR1 subunit gene (GRIN1) and NR2B subunit gene (GRIN2B) in schizophrenia with 
universal DNA microarray. European journal of human genetics : EJHG. 2005; 13:807–814. 
[PubMed: 15841096] 

65. Li D, He L. Association study between the NMDA receptor 2B subunit gene (GRIN2B) and 
schizophrenia: a HuGE review and meta-analysis. Genetics in medicine : official journal of the 
American College of Medical Genetics. 2007; 9:4–8. [PubMed: 17224684] 

66. Pilowsky LS, Bressan RA, Stone JM, Erlandsson K, Mulligan RS, Krystal JH, et al. First in vivo 
evidence of an NMDA receptor deficit in medication-free schizophrenic patients. Molecular 
psychiatry. 2006; 11:118–119. [PubMed: 16189506] 

67. Stone JM, Erlandsson K, Arstad E, Squassante L, Teneggi V, Bressan RA, et al. Relationship 
between ketamine-induced psychotic symptoms and NMDA receptor occupancy: a 
[(123)I]CNS-1261 SPET study. Psychopharmacology. 2008; 197:401–408. [PubMed: 18176855] 

Kort et al. Page 14

Biol Psychiatry. Author manuscript; available in PMC 2018 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



68. Kristiansen LV, Huerta I, Beneyto M, Meador-Woodruff JH. NMDA receptors and schizophrenia. 
Current opinion in pharmacology. 2007; 7:48–55. [PubMed: 17097347] 

69. Geddes AE, Huang XF, Newell KA. Reciprocal signalling between NR2 subunits of the NMDA 
receptor and neuregulin1 and their role in schizophrenia. Progress in neuro-psychopharmacology 
& biological psychiatry. 2011; 35:896–904. [PubMed: 21371516] 

70. Adler CM, Malhotra AK, Elman I, Goldberg T, Egan M, Pickar D, et al. Comparison of ketamine-
induced thought disorder in healthy volunteers and thought disorder in schizophrenia. The 
American journal of psychiatry. 1999; 156:1646–1649. [PubMed: 10518181] 

71. Lahti AC, Weiler MA, Tamara Michaelidis BA, Parwani A, Tamminga CA. Effects of ketamine in 
normal and schizophrenic volunteers. Neuropsychopharmacology : official publication of the 
American College of Neuropsychopharmacology. 2001; 25:455–467. [PubMed: 11557159] 

72. Morgan CJ, Mofeez A, Brandner B, Bromley L, Curran HV. Acute effects of ketamine on memory 
systems and psychotic symptoms in healthy volunteers. Neuropsychopharmacology : official 
publication of the American College of Neuropsychopharmacology. 2004; 29:208–218. [PubMed: 
14603267] 

73. Javitt DC, Steinschneider M, Schroeder CE, Vaughan HG Jr. Arezzo JC. Detection of stimulus 
deviance within primate primary auditory cortex: intracortical mechanisms of mismatch negativity 
(MMN) generation. Brain Res. 1994; 667:192–200. [PubMed: 7697356] 

74. Javitt DC, Steinschneider M, Schroeder CE, Arezzo JC. Role of cortical N-methyl-D-aspartate 
receptors in auditory sensory memory and mismatch negativity generation: implications for 
schizophrenia. Proceedings of the National Academy of Sciences of the United States of America. 
1996; 93:11962–11967. [PubMed: 8876245] 

75. Ehrlichman RS, Maxwell CR, Majumdar S, Siegel SJ. Deviance-elicited changes in event-related 
potentials are attenuated by ketamine in mice. Journal of cognitive neuroscience. 2008; 20:1403–
1414. [PubMed: 18303985] 

76. Ehrlichman RS, Gandal MJ, Maxwell CR, Lazarewicz MT, Finkel LH, Contreras D, et al. N-
methyl-d-aspartic acid receptor antagonist-induced frequency oscillations in mice recreate pattern 
of electrophysiological deficits in schizophrenia. Neuroscience. 2009; 158:705–712. [PubMed: 
19015010] 

77. Siegel SJ, Connolly P, Liang Y, Lenox RH, Gur RE, Bilker WB, et al. Effects of strain, novelty, and 
NMDA blockade on auditory-evoked potentials in mice. Neuropsychopharmacology : official 
publication of the American College of Neuropsychopharmacology. 2003; 28:675–682. [PubMed: 
12655312] 

78. Kreitschmann-Andermahr I, Rosburg T, Demme U, Gaser E, Nowak H, Sauer H. Effect of 
ketamine on the neuromagnetic mismatch field in healthy humans. Brain Res Cogn Brain Res. 
2001; 12:109–116. [PubMed: 11489614] 

79. Schmidt A, Diaconescu AO, Kometer M, Friston KJ, Stephan KE, Vollenweider FX. Modeling 
ketamine effects on synaptic plasticity during the mismatch negativity. Cerebral cortex. 2013; 
23:2394–2406. [PubMed: 22875863] 

80. Watson TD, Petrakis IL, Edgecombe J, Perrino A, Krystal JH, Mathalon DH. Modulation of the 
cortical processing of novel and target stimuli by drugs affecting glutamate and GABA 
neurotransmission. The international journal of neuropsychopharmacology / official scientific 
journal of the Collegium Internationale Neuropsychopharmacologicum. 2009; 12:357–370.

81. Knott V, Shah D, Millar A, McIntosh J, Fisher D, Blais C, et al. Nicotine, Auditory Sensory 
Memory, and sustained Attention in a Human Ketamine Model of Schizophrenia: Moderating 
Influence of a Hallucinatory Trait. Front Pharmacol. 2012; 3:172. [PubMed: 23060793] 

82. Gunduz-Bruce H, Reinhart RM, Roach BJ, Gueorguieva R, Oliver S, D'Souza DC, et al. 
Glutamatergic modulation of auditory information processing in the human brain. Biological 
psychiatry. 2012; 71:969–977. [PubMed: 22036036] 

83. Heekeren K, Daumann J, Neukirch A, Stock C, Kawohl W, Norra C, et al. Mismatch negativity 
generation in the human 5HT2A agonist and NMDA antagonist model of psychosis. 
Psychopharmacology. 2008; 199:77–88. [PubMed: 18488201] 

Kort et al. Page 15

Biol Psychiatry. Author manuscript; available in PMC 2018 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



84. Ford JM, Mathalon DH, Heinks T, Kalba S, Faustman WO, Roth WT. Neurophysiological 
evidence of corollary discharge dysfunction in schizophrenia. The American journal of psychiatry. 
2001; 158:2069–2071. [PubMed: 11729029] 

85. Ford JM, Roach BJ, Faustman WO, Mathalon DH. Out-of-synch and out of-sorts: dysfunction of 
motor-sensory communication in schizophrenia. Biological psychiatry. 2008; 63:736–743. 
[PubMed: 17981264] 

86. Ford JM, Palzes VA, Roach BJ, Mathalon DH. Did I do that? Abnormal predictive processes in 
schizophrenia when button pressing to deliver a tone. Schizophrenia bulletin. 2014; 40:804–812. 
[PubMed: 23754836] 

87. Blakemore SJ, Wolpert D, Frith C. Why can't you tickle yourself? Neuroreport. 2000; 11:R11–16. 
[PubMed: 10943682] 

88. Shergill SS, White TP, Joyce DW, Bays PM, Wolpert DM, Frith CD. Functional magnetic 
resonance imaging of impaired sensory prediction in schizophrenia. JAMA psychiatry. 2014; 
71:28–35. [PubMed: 24196370] 

89. Turken AU, Vuilleumier P, Mathalon DH, Swick D, Ford JM. Are impairments of action 
monitoring and executive control true dissociative dysfunctions in patients with schizophrenia? 
The American journal of psychiatry. 2003; 160:1881–1883. [PubMed: 14514505] 

90. First, MB., Spitzer, RL., Gibbon, M., Williams, JBW. Structured Clinical Interview for DSM-IV 
Axis I Disorders (SCID), Research Version, Patient Edition with Psychotic Screen. Biometrics 
Research, New York State Psychiatric Institute; New York: 1997. 

91. Perry EB Jr. Cramer JA, Cho HS, Petrakis IL, Karper LP, Genovese A, et al. Psychiatric safety of 
ketamine in psychopharmacology research. Psychopharmacology. 2007; 192:253–260. [PubMed: 
17458544] 

92. D'Souza DC, Ahn K, Bhakta S, Elander J, Singh N, Nadim H, et al. Nicotine fails to attenuate 
ketamine-induced cognitive deficits and negative and positive symptoms in humans: implications 
for schizophrenia. Biological psychiatry. 2012; 72:785–794. [PubMed: 22717030] 

93. Bremner JD, Krystal JH, Putnam FW, Southwick SM, Marmar C, Charney DS, et al. Measurement 
of dissociative states with the Clinician-Administered Dissociative States Scale (CADSS). Journal 
of traumatic stress. 1998; 11:125–136. [PubMed: 9479681] 

94. Overall JE, Gorham DR. The Brief Psychiatric Rating Scale. Psychological Reports. 1962; 10:799–
812.

95. Crovitz HF, Zener KA. Group test for assessing hand and eye dominance. American Journal of 
Psychology. 1962; 75:271–276. [PubMed: 13882420] 

96. Hollingshead, A., Redlich, F. Social Class and Mental Illness. John Wiley and Sons; New York: 
1958. 

97. Kay S, Fiszbein A, Opler L. The Positive and Negative Syndrome Scale (PANSS) for 
schizophrenia. Schizophrenia bulletin. 1987; 13:261–276. [PubMed: 3616518] 

98. Andreasen, NC. Scale for the Assessment of Positive Symptoms. University of Iowa; Iowa City, 
IA: 1984. 

99. Andreasen, NC. Scale for the Assessment of Negative Symptoms. University of Iowa; Iowa City, 
IA: 1983. 

100. Gratton G, Coles MGH, Donchin E. A new method for off-line removal of ocular artifact. 
Electroencephalography and Clinical Neurophysiology. 1983; 55:468–484. [PubMed: 6187540] 

101. De Clercq WV,A, Vanrumste B, Paesschen WV, Van Huffel S. Canonical correlation analysis 
applied to remove muscle artifacts from the electroencephalogram. IEEE Trans Biomed Eng. 
2006; 53:2583–2587. [PubMed: 17153216] 

102. Ries SJ,N, Burle B, Alario FX. Response-locked brain dynamics of word production. PloS one. 
2013; 8:e58197. [PubMed: 23554876] 

103. Nolan H, Whelan R, Reilly RB. FASTER: Fully Automated Statistical Thresholding for EEG 
artifact Rejection. Journal of neuroscience methods. 2010; 192:152–162. [PubMed: 20654646] 

104. Luck, SJ. An Introduction to the Event-Related Potential Technique. Second Edition ed.. The MIT 
Press; Cambridge, MA: 2014. 

Kort et al. Page 16

Biol Psychiatry. Author manuscript; available in PMC 2018 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



105. Frith CD, Blakemore SJ, Wolpert DM. Abnormalities in the awareness and control of action. 
Philosophical transactions of the Royal Society of London Series B, Biological sciences. 2000; 
355:1771–1788. [PubMed: 11205340] 

106. Tikhonravov D, Neuvonen T, Pertovaara A, Savioja K, Ruusuvirta T, Naatanen R, et al. Effects of 
an NMDA-receptor antagonist MK-801 on an MMN-like response recorded in anesthetized rats. 
Brain Res. 2008; 1203:97–102. [PubMed: 18325485] 

107. Umbricht D, Koller R, Vollenweider FX, Schmid L. Mismatch negativity predicts psychotic 
experiences induced by NMDA receptor antagonist in healthy volunteers. Biological psychiatry. 
2002; 51:400–406. [PubMed: 11904134] 

108. Adams RA, Shipp S, Friston KJ. Predictions not commands: active inference in the motor system. 
Brain structure & function. 2013; 218:611–643. [PubMed: 23129312] 

109. Isom AM, Gudelsky GA, Benoit SC, Richtand NM. Antipsychotic medications, glutamate, and 
cell death: a hidden, but common medication side effect? Medical hypotheses. 2013; 80:252–258. 
[PubMed: 23265349] 

Kort et al. Page 17

Biol Psychiatry. Author manuscript; available in PMC 2018 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Event-related potential (ERP) results for Talk and Listen for the saline and ketamine 
infusion days
A. Grand-average ERP waveforms for Talk (red) and Listen (blue) conditions during saline 

infusion (left) and during ketamine infusion (right). N1 during Talk is suppressed compared 

to N1 during Listen for the Time 2 saline infusion assessment (Left), as well as for the Time 

1 pre-infusion assessments on both saline and ketamine test days (waveforms not shown). 

N1 suppression during Talk relative to Listen is reduced during the Time 2 ketamine 

infusion assessment (Right).

B. Mean N1 peak amplitudes (averaged over electrodes Fz, FCz, and Cz) on the saline day 

and ketamine day at Time 1 (T1: Pre-infusion) and at Time 2 (T2: Infusion). Error bars 

represent standard errors.
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Figure 2. Event-related potential (ERP) results for Talk and Listen for healthy comparison 
participants and schizophrenia patients
A. Grand-average ERP waveforms for Talk (red) and Listen (blue) conditions for healthy 

comparison participants (left) and schizophrenia patients (right). N1 during Talk is 

suppressed compared to Listen in healthy comparison participants. The N1 suppression 

during Talk relative to Listen is attenuated in schizophrenia patients.

B. Mean N1 peak amplitudes averaged over electrodes Fz, FCz, and Cz for healthy 

comparison participants (left) and schizophrenia patients (right). Error bars represent 

standard errors.
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Figure 3. 
N1 amplitudes of schizophrenia patients z-scored to the N1 amplitudes of the healthy 

comparison participants (left), and N1 amplitudes during ketamine infusion z-scored to the 

N1 amplitudes during saline infusion (right) for Talk (red), Listen (blue), and Suppression 

(i.e., Talk-Listen; purple). The effect of ketamine on N1 amplitudes in healthy participants 

was similar to the effect of schizophrenia.
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Table 1

Group Demographic Data

Healthy 
Comparison 
Participants (n=33)

Schizophrenia Patients (n=34)
a Ketamine Study 

Participants 
(N=31)

Age (years) M (SD) 34.21 (8.99) 34.68 (9.79) 27.0 (4.3)

Handedness
∞ 32 Right/ 1 Left 30 Right/ 3 Left/ 1 Ambidextrous 31 Right

Gender 25 Male/ 8 Female 26 Male/ 8 Female 19 Male/ 12 Female

Education (years) M (SD)
* 16.1 (2.6) 13.15 (1.48) 15.6 (1.9)

SES
‡
 M (SD)

* 29.9 (11.5) 46.6 (12.0) 31.5 (8.9)

Caretaker SES
‡
 M (SD)

31.8 (13.6) 37.5 (17.1) 29.5 (12.5)

Chlorpromazine equivalents (mg) M (SD) 548.0 (532.9)

PANSS – Positive Symptoms, M (SD) 16.8 (6.9)

PANSS – Negative Symptoms, M (SD) 11.8 (4.7)

PANSS – General Symptoms, M (SD) 27.9 (7.3)

Antipsychotic Medication Type 27 second generation, 4 first generation, 2 both, 
1 none

Note. M = mean, SD = standard deviation. PANSS = Positive and Negative Syndrome Scale (132). DSM-IV = Diagnostic and Statistical Manual IV 
of the American Psychiatric Association.

*
p<0.001 for test of difference between schizophrenia patients and healthy comparison participants.

‡
SES = Socioeconomic status based on Hollingshead Scale (1961) (135); higher scores correspond to lower SES.

∞
Based on a quantitative handedness scale (136).

a
DSM-IV diagnoses: 29 schizophrenia (4 undifferentiated, 20 paranoid, 4 residual, 1 catatonic); 5 schizoaffective disorder (2 depressive type, 3 

bipolar type)

Biol Psychiatry. Author manuscript; available in PMC 2018 March 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kort et al. Page 22

Table 2

Study Procedures

Time (minutes) Procedure

−115 IV lines and EEG leads placed; BPRS, CADSS symptom ratings; VS; Urine toxicology screen.

−20 Check EEG impedances.

−15 EEG task instructions; Pre-infusion (T1) Talk-Listen ERP paradigm.

−5 VS

0 Ketamine (0.23 mg/kg) or saline 1 min IV bolus delivered.

+1 VS; Ketamine (0.58 mg/kg/hour) or saline IV infusion starts.

+5 VS

+10 Infusion (T2) Talk-Listen ERP paradigm.

+20
Other ERP tasks

a
.

+30 Reduced ketamine (0.29 mg/kg/hour) or saline IV infusion starts.

+35
VS and blood samples; eye-tracking task

a
.

+70
Other ERP tasks

a
.

+80 Terminate infusion; VS; retrospective BPRS, CADSS symptom ratings.

+100 VS

+120 VS; safety ratings (mental status exam, field test).

Note. IV = Intravenous; CADSS = Clinician Administered Dissociative Symptoms Scale (93); VS = Vital signs; BPRS = Brief Psychiatric Rating 
Scale (94).

a
Not analyzed in the current report.
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Table 3

Measures of psychotomimetic effects of ketamine.

Measure Pre-Saline Infusion mean 
(SD)

Saline Infusion mean 
(SD)

Pre-Ketamine Infusion 
mean (SD)

Ketamine Infusion mean 
(SD)

BPRS Total 8.03 (0.18) 8.06 (0.25) 8.06 (0.25) 20.52 (5.81)

BPRS Positive 4.03 (0.18) 4.01 (0.18) 4.03 (0.18) 11.06 (3.62)

CADSS 0.03 (0.18) 0.03 (0.18) 0.00 (0.00) 34.10 (16.17)

Note. SD=Standard deviation. BPRS=Brief Psychiatric Rating Scale. CADSS=Clinician Administered Dissociative Symptom Scale.
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Table 4

ANOVA of N1 amplitude during ketamine vs. saline experiment
*

Effect df F p-value Partial Eta Squared

Ketamine/Saline 1,30 3.11 0.088 0.094

Talk/Listen 1,30 100.33 <.0001 0.77

AP (Anterior-Posterior: Fz, FCz, Cz) 2,60 2.59 0.11 0.079

Time (Time 1 vs. Time 2) 1,30 0.06 0.80 0.002

Talk/Listen * Ketamine/Saline 1,30 3.06 0.09 0.093

Ketamine/Saline * AP 2,60 0.62 0.47 0.02

Talk/Listen * AP 2,60 13.69 <.0001 0.313

    AP: Talk Fz=FCz>Cz 2,60 4.40 0.04 0.13

    AP: Listen Fz<FCz=Cz 2,60 23.81 <.0001 0.44

Talk/Listen * Ketamine/Saline * AP 2,60 0.07 0.85 0.002

Ketamine/Saline * Time 1,30 5.26 0.03 0.149

Talk/Listen * Time 1,30 7.26 0.01 0.195

Talk/Listen * Ketamine/Saline * Time 1,30 15.90 <.0001 0.346

    Talk/Listen*Ketamine/Saline: Time 1 1,30 2.58 0.12 0.079

        Talk/Listen*Ketamine/Saline: Time 2 1,30 13.52 0.001 0.311

        Talk/Listen: Saline 1,30 71.43 <.0001 0.704

        Talk/Listen: Ketamine 1,30 19.14 <.0001 0.389

        Ketamine/Saline: Talk 1,30 13.27 0.001 0.307

        Ketamine/Saline: Listen 1,30 0.07 0.80 0.002

        Talk/Listen*Time: Ketamine 1,30 17.73 <.0001 0.371

        Time:Talk 1,30 11.38 0.002 0.275

        Time:Listen 1,30 2.87 0.10 0.087

    Talk/Listen*Time: Saline 1,30 2.23 0.15 0.069

        Ketamine/Saline × Time: Talk 1,30 15.88 <.001 0.35

        Ketamine/Saline: T1 1,30 0.67 0.42 0.02

        Ketamine/Saline: T2 1,30 13.27 <.001 0.31

    Ketamine/Saline × Time:Listen 1,30 0.88 0.36 0.03

AP * Time 2,60 6.18 0.01 0.171

Ketamine/Saline * AP * Time 2,60 0.33 0.64 0.011

Talk/Listen * AP * Time 2,60 0.18 0.73 0.006

Talk/Listen * Ketamine/Saline * AP * Time 2,60 0.45 0.55 0.015

*
Bold font indicates interactions with Talk/Listen that are parsed with follow-up tests.
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Table 5

Group analyses of N1 during Talking and Listening across SZ and HC.

Effect df F p-value Partial Eta Squared

Group 1,65 0.616 0.435 0.009

Talk/Listen 1,65 50.851 <.0001 0.439

Talk/Listen * Group (HC vs. SZ) 1,65 7.214 0.009 0.100

                Talk/Listen for HC 1,32 47.435 <.0001 0.597

                Talk/Listen for SZ 1,33 10.038 0.003 0.233

                Talk: Group (SZ>HC) 1,65 3.835 0.054 0.056

        Listen: Group (HC>SZ) 1,95 1.765 0.189 0.026

AP (Anterior-Posterior: Fz, FCz, Cz) 2,130 1.857 0.175 0.028

AP * Group 2,130 1.589 0.214 0.024

Talk/Listen * AP 2,130 6.701 0.004 0.093

    AP: Talk (n.s.) 2,130 2.91 .077 .043

    AP: Listen Fz<FCz>Cz; Fz=Cz 2,130 8.70 .002 .118

Condition * AP * Group 2,130 0.604 0.509 0.009
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