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A B S T R A C T

Background: Current assessment of dietary carbohydrates does not adequately reflect the nutritional properties and effects on gut microbial
structure and function. Deeper characterization of food carbohydrate composition can serve to strengthen the link between diet and
gastrointestinal health outcomes.
Objectives: The present study aims to characterize the monosaccharide composition of diets in a healthy US adult cohort and use these
features to assess the relationship between monosaccharide intake, diet quality, characteristics of the gut microbiota, and gastrointestinal
inflammation.
Methods: This observational, cross-sectional study enrolled males and females across age (18-33 y, 34–49 y, and 50–65 y) and body mass
index (normal, 18.5–24.99 kg/m2; overweight, 25–29.99 kg/m2; and obese, 30–44 kg/m2) categories. Recent dietary intake was assessed by
the automated self-administered 24-h dietary recall system, and gut microbiota were assessed with shotgun metagenome sequencing. Di-
etary recalls were mapped to the Davis Food Glycopedia to estimate monosaccharide intake. Participants with >75% of carbohydrate intake
mappable to the glycopedia were included (N ¼ 180).
Results: Diversity of monosaccharide intake was positively associated with the total Healthy Eating Index score (Pearson’s r ¼ 0.520, P ¼
1.2 � 10�13) and negatively associated with fecal neopterin (Pearson’s r ¼ -0.247, P ¼ 3.0 � 10�3). Comparing high with low intake of
specific monosaccharides revealed differentially abundant taxa (Wald test, P < 0.05), which was associated with the functional capacity to
break down these monomers (Wilcoxon rank-sum test, P < 0.05).
Conclusions: Monosaccharide intake was associated with diet quality, gut microbial diversity, microbial metabolism, and gastrointestinal
inflammation in healthy adults. As specific food sources were rich in particular monosaccharides, it may be possible in the future to tailor
diets to fine-tune the gut microbiota and gastrointestinal function. This trial is registered at www.clinicaltrials.gov as NCT02367287.
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Introduction

Dietary carbohydrates have a considerable range in their de-
gree of polymerization, conformational structure, and sugar
composition, and each affects physiological handling by the host
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and their gut microbiota. However, assessment of carbohydrate
intake is limited to a few broad categories to describe these pa-
rameters: dietary fiber, starches, and simple sugars. Recent ad-
vances in analytical chemistry have made it possible to analyze
the monosaccharide composition of foods in high-throughput and
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expand the assessment of carbohydrate intake [1]. Typical car-
bohydrate intake provides a significant source of calories from
starches and sugars and the main carbon source for our gut mi-
crobes from fermentable dietary fiber. As such, dietary carbohy-
drates can be operationally defined as either available or resistant
carbohydrates based on their glycosidic linkages, which de-
termines the capacity for digestion and absorption in the host [2].
Additionally, the molecular properties of the sugar monomers that
comprise these structures impact physiological handling based on
the presence of pathways for carbohydrate metabolism [3, 4].

The inter- and intravariability in structures of dietary fiber
across carbohydrate-rich foods lends itself to the complexity in
understanding the relationship between diet and gut microbial
ecology [5]. Fiber supplementation studies have aimed at
isolating the impact of specific fiber types, e.g., inulin [6], pectin
[7], and resistant starch [8], on health outcomes mediated
through the gut microbiota. Given the interest in this area of
research, a comprehensive database of intervention studies on
fiber and health outcomes has been developed to summarize the
literature on this topic [9]. Additionally, the study of whole plant
foods provides another perspective on diet-based modulation of
gut microbiota [10]. However, diets are not single foods nor
specific fibers; they consist of a range of nondigestible carbo-
hydrates that act in concert to affect the gut microbiota structure
and function. Thus, identifying the glycomic signature of food is
imperative in predicting diet-induced shifts in the gut microbiota
and related health outcomes. We recently published a novel food
glycan database (Davis Food Glycopedia) which describes the
abundances of 10 monosaccharides in over 800 foods [1].
Leveraging fine-scale food carbohydrate data is needed in the
effort to accurately capture the structural diversity and molecu-
lar detail of our diet and describe the relationship between diet
and health outcomes for the advancement of precision nutrition.

Here, we characterize the comprehensive monosaccharide
composition of recent dietary intake from healthy US adults.
These data represent the monomeric composition (10 mono-
saccharides) of carbohydrate intakes from foods in the Davis
Food Glycopedia. Our goal is to determine the levels of mono-
saccharides consumed by adults and the relationship between
their consumption, diet quality, i.e., the 2015 Healthy Eating
Index (HEI) [11], the gut microbiota, and gastrointestinal health.
This is the first study to investigate population-based dietary
intake at this resolution of food glycan composition and connect
these dietary features to gut microbiota composition and
markers of gastrointestinal health.

Subjects and Methods

Study population
During the period betweenMay 2015 and July 2019, a total of

393 subjects were enrolled in the cross-sectional, observational
USDA Nutritional Phenotyping Study (clinicaltrials.gov identi-
fier: NCT02367287) conducted in Davis, California [12]. Briefly,
subjects were recruited in an 18-bin sampling scheme balanced
for age, sex, and BMI. Male and female subjects were individu-
ally recruited into 3 bins for age (18–33, 34–49, and 50–65 y)
and 3 BMI categories (normal, 18.5–24.99 kg/m2; overweight,
25–29.99 kg/m2; and obese, 30–44 kg/m2). From the initial
enrollment, 358 subjects successfully completed the study and
343 had 2 or more complete Automated Self-Administered 24-h
107
dietary recall (ASA24) questionnaires. Participants with >75%
of total carbohydrate intake mappable to the glycopedia were
included in the analysis, resulting in a final sample size of 180. A
flow chart of participant inclusion is shown in Figure 1A.

Primary and secondary trial outcomes
The primary outcome for this study was gut microbial α di-

versity assessed by observed taxa (number of detectable gut taxa)
and the Shannon diversity index. Secondary outcomes included
HEI score and markers of gastrointestinal health: fecal calpro-
tectin, myeloperoxidase (MPO), neopterin, and plasma
lipopolysaccharide-binding protein (LBP). Exploratory analyses
included differential abundance of gut microbial taxa across in-
dividual monosaccharide intake and microbial genes related to
metabolism of these monosaccharides.

Food glycopedia
Currently, the Davis Food Glycopedia consists of 913 foods

across 9 food groups with absolute quantities of 10 mono-
saccharides: D-glucose, D-galactose, D-fructose, L-arabinose, D-
xylose, D-mannose, L-rhamnose, L-fucose, D-ribose, and D-gal-
acturonic acid (GalA). Selection of foods for the Davis Food Gly-
copedia was based in part on foods most commonly consumed by
the USDA Nutritional Phenotyping Study cohort used in the pre-
sent study. Further details on food selection as well as methods of
sample preparation and analysis are described in Castillo et al. [1].

Dietary assessment
Recent dietary intake was assessed using the ASA24, versions

2014 and 2016 [13]. Participants received e-mail prompts to
complete dietary recalls on 2 weekdays and 1 weekend during
the interim of the 2 study visits (between 10–14 d). Subjects
completed 1 training recall with a study staff member, and
subsequently, 3 were completed at home in response to un-
scheduled prompts. The 24-h recalls used in the current study
were at-home recalls that passed quality control [14]. Nutrient
densities were calculated per 1000 kcal. Diet quality was esti-
mated using the HEI. HEI scores were based on individuals with
2 or 3 at-home dietary recalls.

“Ingredientization” of dietary intake data
Food items in the Davis Food Glycopedia consist mainly of

single-ingredient foods rather than multi-ingredient foods (which
could be of infinite varieties). Ingredientization of diet recall data
and integration with the Davis Food Glycopedia was performed
using custom python scripts. Diet recalls passing quality control
were converted from Food and Nutrition Database for Dietary
Studies (FNDDS) versions 4.1 and 2011–2012 [15] (correspond-
ing to ASA24 versions 2014 and 2016, respectively) to version
2017–2018 to retrieve ingredient level information. FoodCodes
that were missing or discontinued across versions of FNDDS were
manually curated with the closest suitable description with 2
foods having no match. Ingredient codes that were represented as
an 8-digit FoodCode were iteratively remapped to obtain the
corresponding ingredient code(s). This process reduced the
number of unique food descriptions from 2284 to 1199
single-ingredient foods (Figure 1B). Preprocessing of food recall
data including conversion of discontinued FoodCodes, ingre-
dientization of FoodCodes, and final mappings of ingredients to
the Davis Food Glycopedia are included in the online Supple-
mental Materials (Supplemental File 1).

http://clinicaltrials.gov


FIGURE 1. Flowcharts for (A) CONSORT diagram and (B) the process of converting dietary recalls to foods and ingredients for mapping to the
glycopedia. Participants with less than 75% of calories from carbohydrates mappable to the glycopedia were excluded in the final dataset.
Ingredient level information was extracted to increase coverage of diet recalls mappable to the glycopedia. Details for processing and mapping diet
recall data can be found in Supplemental File 1. CHO, carbohydrate; CONSORT, Consolidated Standards of Reporting Trials; FNDDS, Food and
Nutrient Database for Dietary Studies.
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Assessment of monosaccharide intake
Diet recall data from the ASA24 and monosaccharide values

from the Davis Food Glycopedia were merged to link mono-
saccharide content with foods and ingredients consumed by in-
dividuals in the cohort. The ‘ingredientized’ list of food recalls
were merged with the Davis Food Glycopedia by manual
matching to ensure accuracy for each individual food/ingre-
dient. Following removal of participants with <75% of total
carbohydrate intake mappable to the glycopedia, 465 unique
foods/ingredients were mapped to 241 foods in the glycopedia.
Figure 1B shows the process of converting diet recalls to foods
and ingredients for mapping to the glycopedia. Supplemental
File 1 lists food and ingredient descriptions for mapping across
FNDDS versions and the Davis Food Glycopedia.

Monosaccharide intakes per ingredient were calculated by
first taking the proportion of the ingredient in a multi-ingredient
food (Equation 1). These proportions were multiplied by Foo-
dAmt, the total amount consumed of the multi-ingredient
food, to yield the gram quantities of consumed ingredients
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(Equation 2). Last, the quantity of ingredient consumed was
multiplied by the concentration of monosaccharide for the
matching food item in the Davis Food Glycopedia (Equation 3).

Proportion of ingredeient

¼ Ingredient weight ðgÞ
sumðIngredients in multi� ingredient food ðgÞÞ

(1)

Ingredient consumed ðgÞ
¼FoodAmt ðgÞ � Proportion of ingredient

(2)
Glucoseintake ðgÞ¼ Ingredient consumed ðgÞ�
g
� (3)
� Glucoseglycopedia g

Stool collection and processing
One stool specimen was collected within 3 days of the second

study visit at the end of the 10–14 day dietary recall period and
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processed as described previously [12]. Briefly, stool samples
were kept on blue ice and transported to the research center as
soon as possible for same-day processing. A Stomacher paddle
blender was used to homogenize samples prior to freezing at
�80�C [12].
DNA extraction, library preparation, and
sequencing

DNA was isolated using the ZymoBiomics DNA miniprep kit
(Zymo Research) from 100 mg of homogenized stool as
described in detail before [16]. Quality of the eluted DNA was
assessed with Nanodrop (ThermoFisher), and the majority
(>95%) of samples had A260/280 and A260/230 ratios above 1.80,
with the lowest ratios of sequenced samples at 1.78 and 1.72,
respectively. Representative DNA samples were confirmed to be
intact and RNA-free prior to library construction by gel electro-
phoresis. DNA preps were quantified with the Qubit
double-stranded DNA (dsDNA) broad-range assay (Thermo-
Fisher), and all samples were diluted to 100 ng/μL.

Library preparation for shotgun genome sequencing, quality
control, quantification, and pooling were performed by DNA
Technologies and Expression Analysis Core Laboratory at the
University of California at Davis, Genome and Biomedical Sci-
ences Facility as previously described [16].
Metagenomic sequence analysis
BMTagger [17] was used to remove reads that aligned to the

human genome version GRCh38.p13 [18]. Following this, reads
were trimmed and adapter sequences removed with Trimmo-
matic version 0.33 [19] as described previously [20]. Reads were
deduplicated using FastUniq version 1.1 with default settings
[21]. Paired-end reads were then assembled using FLASH
version 1.2.11 [22], setting overlapping length to 10 and 100 bp
and mismatch ratio to 0.1. Taxonomy profiling was performed
with Kraken2 [23] and aligned to a custom database [release 95
(13.07.2020)] using Sturo [24]. Kraken2mpa.py from Kra-
kenTools was used to format Kraken outputs for downstream
analysis, and taxa with only 1 sequence read were dropped.

Paired-end deduplicated reads were mapped against the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database
release 2019/10 to obtain KEGG ortholog (KO) counts [25]. Raw
KO counts were normalized to reads per kb per genome equiv-
alent [RPKG; RPKG ¼ raw counts / (gene length � genome
equivalent)], where genome equivalents based on the total
paired-end, deduplicated reads for each sample were estimated
using MicrobeCensus version 1.1.1 [26].
Markers of gastrointestinal inflammation and
plasma LBP

Plasma LBP, fecal calprotectin, and fecal MPO were measured
with enzyme-linked immunosorbent assays ELISAs as described
previously [16]. The following kits were used: LBP (Human)
ELISA (Abnova catalog number KA0448), Calprotectin ELISA
(Immundiagnostik catalog number K6927), and MPO ELISA
(Immundiagnostik catalog number KR6630). In order to measure
fecal neopterin, approximately 100 mg of sample was taken from
frozen homogenized stool specimens, weighed in tared tubes,
and the exact sample weights were recorded. Fecal aliquots were
extracted into 1 mL sterile 0.9% NaCl saline solution by
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vortexing at maximum speed for 30 min on a Vortex Genie 2
(Scientific Industries) equipped with a multiple tube holder
adaptor. Extracts were then centrifuged at 1200� g for 20 min to
clarify, and the supernatants were kept frozen at -20�C for up to 4
days. Neopterin in undiluted fecal extracts was assayed with
ELISAs (B⋅R⋅A⋅H⋅M⋅S/ThermoFisher catalog number
14-HD-99.1), and neopterin concentrations in the original stool
samples were determined using the exact sample weights.
Statistical analyses
All statistical analyses and graphics were generated using R

version 4.1.0. Partial Pearson’s correlationswere used to assess the
relationship between monosaccharide intake variables and mea-
sures of microbial diversity and gastrointestinal markers of
inflammation, adjusted for age, sex, and BMI. For continuous var-
iables, normality was assessed by the Shapiro-Wilk test and
observing deviations in the residuals of quantile-quantile plots. For
nonnormally distributed data, appropriate transformations were
used to approximate normal distributions. Mean centered values
for the covariates age and BMI were used to estimate β coefficients
for linearmodels of individualmonosaccharide intake regressedon
demographic variables. Alpha-diversity formonosaccharide intake
and gut microbiota were calculated using the vegan package
version 2.5-7 [27]. The vegan package was also used to assess
β-diversity with PERMANOVA (permutational multivariate anal-
ysis of variance) by the adonis function with default parameters
after checking for differences in group dispersion with betadisper.
Differential abundance of microbial taxa was analyzed using the
Wald test and likelihood ratio testwithDeSeq2version1.34.0 [28].
Raw count data of genus level taxa were used as inputs filtered to
include observations in the top and bottom quartiles of intake for a
given monosaccharide. Wilcoxon rank-sum test was used for
comparing genes from KOs across high comparedwith low intakes
of monosaccharides. Samples for gut markers of inflammation
were excluded if processed more than 24 h from sample collection
or collected after the second study visit. For any given analysis, the
maximum number of samples available were included. P values
were adjusted for multiple comparisons using the
Benjamini-Hochbergmethod, and statistical significancewas set at
P < 0.05.

Results

Participant characteristics
The demographic characteristics of the cohort included in this

substudy (n ¼ 180, Figure 1) are summarized in Table 1 and
Supplemental Figure 1. The target population of the USDA
Nutritional Phenotyping Study, from which these participants
are sourced, were generally healthy individuals. Thus, subjects
were excluded if they had recently undergone surgery, received
antibiotic therapy, or had a recent hospitalization. Individuals
taking medication for a diagnosed chronic illness were also
excluded. A complete list of exclusion criteria can be found in
Baldiviez et al. [12].
Validation of the Davis Food Glycopedia to assess
dietary carbohydrates

Food composition databases traditionally calculate total car-
bohydrate in a food using the “by difference” method that takes



TABLE 1
Demographic characteristics of the participants

Male Female All

Participants, n (%) 83 (46.1) 97 (53.9) 180 (100)
Age, y (mean � SD) 40.7 � 13.9 41.6 � 13.4 41.4 � 13.6
BMI, kg/m2 (mean � SD) 26.0 � 4.2 27.2 � 5.5 26.6 � 5.0
Ethnicity, n (%)1

Asian 12 (15.0) 10 (10.3) 22 (12.4)
Black 2 (2.5) 4 (4.1) 6 (3.4)
Hispanic 12 (15.0) 12 (12.4) 24 (13.6)
White 54 (67.5) 71 (73.2) 125 (70.6)

1 n ¼ 177; participants with ethnicity data and 75% of carbohydrate
intake mappable to the Davis Food Glycopedia.
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the difference between 100 and the sum of the percentages of the
other measurable components. In comparison, the total mono-
saccharide abundances are absolute, analytically derived values
that approximate the total carbohydrate intake. Given these
differences in methodology, we compared total carbohydrate
intake by taking the total intake averaged across recalls using “by
difference” values reported in USDA FoodData Central [29] and
the monosaccharide data. Total carbohydrate values from the 2
methods were highly correlated (Figure 2, Pearson’s r¼ 0.954, P
< 6.9 x 10-95), providing assurance for the novel method.
Monosaccharide composition of diets in a healthy
US cohort

Glucose comprised the majority of dietary monosaccharides
consumed by the cohort [83.4% � 5.3%, mean � standard de-
viation (SD)] followed by fructose (5.9% � 2.9%), galactose
(4.7%� 2.7%), arabinose (2.1%� 0.9%), xylose (1.3%� 0.4%),
GalA (1.2% � 0.8%) and mannose (0.8% � 0.6%) as shown in
Figure 3A. Ribose, fucose and rhamnose were consumed at <
0.5% of mean intake. Aggregation of monosaccharide con-
sumption by food group revealed glucose as the major (>50%)
constituent apart from 2 groups: Eggs, and Fats, Oils, and Salad
FIGURE 2. Pearson’s correlation representing the relationship be-
tween carbohydrate and monosaccharide intake across the cohort
(n ¼ 180). Each point represents one participant’s mean intake across
diet recalls. Carbohydrate intakes are based on the Standard Reference
value from FNDDS whereas monosaccharide intakes from the Davis
Food Glycopedia are analytically derived by HPLC/MS. FNDDS, Food
and Nutrient Database for Dietary Studies; HPLC/MS, high perfor-
mance liquid chromatography/mass spectroscopy.
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Dressings (Figure 3B). Overall, grains represented the largest
contributors of monosaccharide intake.

Excluding glucose from total monosaccharides (total non-
glucose monosaccharides, Figure 3C) provided qualitative in-
sights on the monosaccharide composition that reflect fiber
content in the food categories. Both Vegetables and Fruits were
abundant in GalA, reflecting the pectin content of these foods,
whereas Grain Products contained the most arabinose and
xylose, indicative of the arabinoxylan fibers in wheat. The
category “Sugars, Sweets, and Beverages” contained the greatest
amount of mannose from which coffee is a principal source in
this cohort. Monosaccharide intake at the level of food category
(mean � SD) is provided in Supplemental Table 1.

The top food sources of individual monosaccharides were also
examined (Figure 4). As expected, dairy products were the major
source of galactose, whereas fruits and/or high-fructose bever-
ages were the major source of fructose. Contributions to minor-
abundance monosaccharides were more surprising. Coffee was
the top contributor of mannose (199 � 282 mg/d/1000 kcal);
avocados were the largest source of GalA (201� 341mg/d/1000
kcal); and the meat products, chicken, and beef, were the main
contributors of ribose at 68 � 81 mg/d/1000 kcal and 32 � 41
mg/d/1000 kcal, respectively. Table sugar appeared as a top
contributor to fucose intake; however, this result is likely to be
an artifact of the data considering refined table sugar is virtually
pure sucrose (glucose and fructose).
Dietary monosaccharide intake by participant
characteristics

Monosaccharide intake was examined in relationship to age,
sex, and BMI using multiple linear regression (Table 2). Overall,
men consumed more glucose than women, and there was a slight
increase in the consumption of several monosaccharides with
age: fructose, arabinose, xylose, fucose, rhamnose, and GalA.
With increasing BMI, there were small decreases in arabinose,
xylose, and GalA intake, whereas intake of mannose and ribose
increased with increasing BMI.
Dietary monosaccharide diversity and diet quality
assessment

A diet high in simple sugars is likely to be a poor diet.
Therefore, we hypothesized that a diverse monosaccharide diet
would be positively correlated with diet quality. Given the
distinct composition of monosaccharides across foods, we
calculated the Shannon diversity index for total monosaccharide
and nonglucose monosaccharide intake to assess the relationship
between monosaccharide diversity and diet quality. Using the
HEI score as a measure of diet quality, a statistically significant
correlation was observed between total monosaccharide di-
versity and diet quality after adjusting for age, sex, and BMI
(Figure 5A, Pearson’s r ¼ 0.52, P < 1.2 � 10�13). However, no
relationship was observed between HEI score and diversity of
nonglucose monosaccharide intake (Supplemental Figure 2).
Dietary monosaccharide diversity and microbial
diversity

Given that dietary fiber provides a major source of
fermentable substrates for the gut microbiota, identifying re-
lationships between the monosaccharide constituents, dietary
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FIGURE 3. Mean monosaccharide intakes per participant (n ¼ 180). (A) Pie chart representing the mean intake (mean � SD) across diet recalls of
the 7 most abundant monosaccharides consumed. Three additional monosaccharides with mean intake of less than 0.5% are not shown. (B)
Stacked bar plots show the energy adjusted mean monosaccharide intake mappable to the glycopedia across diet recalls by food categories for all
monosaccharides and (C) nonglucose monosaccharides.
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fiber, and gut microbial diversity could provide additional
insight into dietary influence on the gut microbiota in a free-
living community. Total monosaccharide intake had a
weaker association with dietary fiber intake derived from the
ASA24 diet recalls (Pearson’s r ¼ 0.314, P ¼ 1.8 � 10�5)
compared with nonglucose monosaccharide intake (Pearson’s
r ¼ 0.702, P ¼ 2.2 � 10�16) (Supplemental Figure 3A, B).
Moreover, a strong relationship between glucose mono-
saccharide intake and nonfiber carbohydrate intake (total
carbohydrate – total dietary fiber) was observed (Pearson’s r ¼
0.875, P ¼ 6.7 � 10�58) (Supplemental Figure 3C).Given this
observation, and the understanding that our monosaccharide
data from certain food sources are not a component of fiber
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(e.g., glucose in the form of starch or table sugar), we esti-
mated the α diversity from nonglucose monosaccharide intake
and found that the Shannon diversity of nonglucose mono-
saccharides was predictive of observed gut microbial taxa
(Figure 5B, Pearson’s r ¼ 0.205, P ¼ 0.012). However, there
was no statistically significant relationship between observed
taxa and the diversity of total monosaccharide intake or be-
tween the Shannon diversity of the gut microbiome and di-
versity of total or nonglucose monosaccharide intake
(Supplemental Figure 4A–C).

We next examined β diversity of gut microbiota across quar-
tiles of monosaccharide intake. No differences were observed for
either total monosaccharide intake (Pairwise betadisper, P >



FIGURE 4. Top contributors to monosaccharide intakes by food and ingredient (n ¼ 180). Bar plots represent the mean intake (mean � SD) for
the top 3 foods or ingredients contributing to a given monosaccharide intake. For each item, the mean is calculated by first summing unique foods
or ingredients for each participant recall and dividing by the mean of that item for all participant recalls (n ¼ 532).
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0.83; PERMANOVA, P ¼ 0.766) or total nonglucose mono-
saccharide intake (Pairwise betadisper, P > 0.29; PERMANOVA,
P ¼ 0.304) (Supplemental Figure 4D, E).
Specific monosaccharide intake is associated with
gut microbial structure and function

As the data in the current version of the Davis Food Glycopedia
do not yet provide information on glycosidic linkages, we selected
112
the 3 most abundant monosaccharides: arabinose, xylose, and
GalA, that are only present in the form of dietary fibers (i.e, not
found in foods as mono-, di-, or trisaccharides and resistant to
digestion) to investigate their effect on the gut microbiota.

Using DeSeq2 to identify taxa associated with consumption of
specific monosaccharides, participants were split into high and
low consumers based on the top and bottom quartiles of intake.
Figure 6 shows the top 10 most abundant genera that are
significantly differentially abundant (Wald test, P< 0.05) in high



TABLE 2
Coefficients for monosaccharide intake regressed on age, BMI, and sex1

Monosaccharide Age2 BMI2 Sex (Male) Transformation

β (SE) P β (SE) P β (SE) P
Glucose �0.038 (0.097) 0.701 �0.243 (0.269) 0.367 5.825 (2.659) 0.03 None
Fructose 0.004 (0.001) 0.004 �0.006 (0.004) 0.141 0.024 (0.037) 0.511 Log10
Galactose 0.002 (0.001) 0.126 �0.003 (0.003) 0.414 �0.064 (0.034) 0.06 Log10
Arabinose 0.002 (0.001) 0.045 �0.007 (0.002) 0.005 �0.018 (0.024) 0.46 Log10
Xylose 0.002 (0.001) 0.044 �0.007 (0.002) 0.002 0.011 (0.023) 0.635 Log10
Fucose 0.003 (0.001) 0.007 �0.003 (0.003) 0.312 �0.024 (0.025) 0.343 Log10
Rhamnose 0.004 (0.001) 0.01 �0.007 (0.004) 0.064 �0.061 (0.037) 0.099 Log10
GalA 0.003 (0.001) 0.032 �0.012 (0.004) 0.004 �0.057 (0.041) 0.161 Square root
Mannose 0.002 (0.001) 0.096 0.006 (0.003) 0.049 �0.015 (0.029) 0.597 Log10
Ribose �0.0006 (0.0004) 0.094 0.002 (0.001) 0.028 0.01 (0.01) 0.338 Square root

1 n ¼ 180.
2 Mean centered continuous variable.

FIGURE 5. Associations between diversity of monosaccharide intake, diet quality, and gut microbial diversity. (A) Partial Pearson’s correlation
between diversity of monosaccharide intake calculated by the Shannon index and the total HEI score while controlling for the effects of age, sex,
and BMI (n ¼ 180). (B) Partial Pearson’s correlation between diversity of nonglucose monosaccharide intake and the number of observed gut
microbial taxa while controlling for the effects of age, sex, and BMI (n ¼ 152). HEI, Healthy Eating Index.
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compared to low consumers of arabinose, xylose, and GalA. The
most abundant genera in the high monosaccharide consumers
were Ruminiclostridium_E, CAG-180 [Acutalibacteraceae], and
Lachnospira for arabinose, xylose, and GalA respectively. In
contrast, the most abundant genera in the low monosaccharide
intake groups were Blautia for arabinose and xylose, and Faeca-
litalea in participants consuming low amounts of GalA.

We then investigated the microbiota for the functional ca-
pacity to break down and metabolize monosaccharides. KOs
were selected that corresponded to microbial genes involved in
the cleavage and metabolism of arabinose, xylose, and GalA. The
sum of all microbial genes across high compared with low con-
sumers for each of the arabinose, xylose, and GalA degradation
pathways exhibited no statistically significant differences.
However, genes in the GalA degradation pathway mapping to
Lachnospira, the most abundant taxon across high and low GalA
consumers, were significantly increased in the participants with
the highest quartile of GalA intake relative to the lowest quartile
(Wilcoxon rank-sum test, P < 0.05) (Figure 7). Mapping genes to
the most abundant taxon discriminating high to low consump-
tion of arabinose, Ruminiclostridium_E, to the KEGG taxonomy
revealed no differences in the arabinose degradation pathway
across high compared with low intakes of arabinose (Supple-
mental Figure 5). However, participants within the highest
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quartile of xylose intake had a significantly greater abundance of
Ruminococcus-derived xylose isomerase, a rate limiting enzyme
in bacterial xylose catabolism (Wilcoxon rank-sum test, P <

0.05) (Supplemental Figure 5). Overall, while global changes in
microbial genes in metabolic pathways for monosaccharide
metabolism were not significantly affected by dietary mono-
saccharide intake, detection of species-specific gene enrichment,
i.e., genes from Lachnospira involved in the metabolism of GalA,
was observed.
Monosaccharide intake and markers of gut
inflammation

Intake of nondigestible carbohydrates promotes gut health. We
next examined the relationship between monosaccharide intake
and diversity with markers of gut inflammation. Although no
relationship was found with fecal calprotectin or MPO, fecal neo-
pterin showed a positive trend with total monosaccharide intake
(Figure 8A, r ¼ 0.147, P ¼ 0.076), which appears to be largely
driven by glucose intake (Figure 8B). Conversely, fecal neopterin
was negatively correlated with monosaccharide intake diversity
(Figure 8C, r ¼ �0.247, P ¼ 0.003) but uncorrelated with non-
glucose monosaccharide intake diversity (Supplemental Figure 6).

A similar finding was observed for plasma LBP, a plasma
biomarker used as a proxy for gut barrier function as it is an



FIGURE 6. Differential abundance of microbial taxa across high and low consumers (n ¼ 152) of specific monosaccharides arabinose, xylose, and
GalA. The Wald test was used to detect pairwise differences in taxa between high and low consumers (top and bottom quartiles) for (A) arabinose,
(B) xylose, and (C) GalA. Taxa are arranged from high to low abundance for each panel with positive log2 fold change being enriched in the top
quartile and negative log2 fold change enriched in the bottom quartile of intake. Only the top 10 statistically significant, differentially abundant
taxa for arabinose and xylose intake are shown. Unclassified taxa are annotated with the lowest annotated taxonomic rank shown in brackets. All
taxa shown are statistically significant at P < 0.05 after adjusting for multiple comparisons. GalA, galacturonic acid.
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indicator of the amount of lipopolysaccharide absorbed from the
intestinal lumen. Total monosaccharide intake had a positive cor-
relation with plasma LBP (Figure 8D, r ¼ 0.184, P ¼ 0.014),
whereas the associationwith othermonosaccharide intakemetrics
were not statistically significant (Supplemental Figure 6). These
observations suggest that specific constituents of carbohydrate
intake have modest yet variable associations with markers of gut
health.

Discussion

This study provides a quantitative characterization of mono-
saccharide intakes from healthy US adults by “ingredientizing”
diets and leveraging a novel food glycan database. Herein, we
explored associations between dietary intake of monosaccharides
and diet quality, characteristics of the gutmicrobiota, andmarkers
of gut inflammation. Our method of ingredientizing the ASA24
recall data to map to a special interest database, the Davis Food
Glycopedia, is novel and our data offer new perspectives on the
dietary assessment of usual intake in free-living participants.

From a food composition perspective, the total mono-
saccharide and carbohydrate content are equivalent. However,
the methodology used to assess these components differ. Given
that this is the first instance of using the Davis Food Glycopedia
database for nutrient assessment, we evaluated the relationship
between total carbohydrate intake and total monosaccharide
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intake to validate its applicability in estimating carbohydrate
consumption. Quantities of monosaccharides in foods were
assessed by a recently developed liquid chromatography-mass
spectroscopy platform [1] and were compared with the USDA
Standard Reference values for carbohydrate that are based on a
“by difference” calculation. The strong correlation suggests a
high correspondence across various levels of intake; however,
the estimate of the monosaccharide content of foods is consis-
tently lower than that of carbohydrates. The carbohydrate esti-
mate is based on the “by difference” method and is prone to
overestimate this quantity as it will count the mass of compo-
nents other than water, fat, protein, ash, and alcohol toward the
total estimate. Additionally, the inclusion criteria; a minimum of
75% of calories from carbohydrates mappable to the glycopedia,
would tend to underestimate the overall monosaccharide intake.
Given these considerations, the data suggest that the Davis Food
Glycopedia can be used for the assessment of carbohydrate
intake in this cohort with the caveat that monosaccharide con-
tent will be systematically underestimated until all food in-
gredients are included in the database.

In the diets of these free-living adults, we observed patterns of
food monosaccharide composition consistent with known food
chemistry, which improves our confidence in the results: high
GalA content from pectin fibers in fruits and vegetables [30],
greater amounts of arabinose and xylose from arabinoxylans in
grain products [31], and high galactose in dairy products. Several



FIGURE 7. Metabolism of galacturonic acid (GalA) by Lachnospira across high and low consumers of GalA (n ¼ 152). Metagenome data were
mapped to Kyoto Encyclopedia of Genes and Genomes orthologs to obtain genes in the metabolic pathway, and counts were normalized to reads
per kb per genome equivalent (RPKG). Wilcoxon rank-sum tests were performed to assess differences in genes from Lachnospira involved in the
degradation of GalA. * P < 0.05, ** P < 0.01.
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insightful patterns were observed from the contribution of indi-
vidual foods to monosaccharide intakes. Coffee was the top
contributor of mannose intake whereas avocado was the greatest
source GalA. Thus, a few key food sources like coffee and avocado
may have an outsized role in providing diverse carbon sources for
the gut microbiota. Given this data, diets could be tailored to
include foods that are rich sources of specific monosaccharides
known to support the growth of particular gut microbes.

The Dietary Guidelines for Americans recommends incorpo-
rating a variety of foods within and across food groups to in-
crease diet quality and nutritional adequacy [32]. Similarly, we
hypothesized that a diet with diverse sources of mono-
saccharides, compared to a diet high in simple sugars (i.e.,
glucose and fructose) would track with diet quality. To address
this, the Shannon diversity of monosaccharide intake was
calculated, thereby providing a metric based on the relative
proportion of monosaccharides consumed. Using the HEI score, a
composite score that measures how well a diet aligns with the
Dietary Guidelines for Americans, we found a positive correla-
tion between monosaccharide intake diversity and HEI score,
suggesting that a diet more varied in monosaccharide content
corresponds to a healthier eating pattern. As dietary fiber is a
significant determinant of gut microbiota composition, we pre-
dicted that a more diverse intake of monosaccharides would
correspond to increased gut microbial diversity. However, we
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found that the Shannon diversity of the nonglucose mono-
saccharide intake, rather than total monosaccharide intake, was
associated with α diversity. Glucose in the form of nonresistant
starch, sucrose, and other simple sugars is largely absorbed in the
small intestine, having minimal impact on the distal gut micro-
biota. As such, we observed a greater effect on gut community
composition from nonglucose monosaccharides. However, the
distinction between resistant and nonresistant starch deserves
consideration. Our database does not distinguish the types of
carbohydrate polymers in foods, including various types of
starch. Collecting data on the food composition of resistant
starch would benefit future analyses that examine the impact of
glucose intake from these forms on gut microbial composition.

Previous observational studies have demonstrated the influ-
ence of diet on the gut microbiota; however, the small effect sizes
may, in part, reflect the low resolution of traditional dietary
predictors such as food groups and dietary fiber [33–35]. In our
analyses, specific monosaccharides were used as predictors to
discriminate microbial taxa across high and low intakes. Partic-
ipants in the top quartiles of arabinose and xylose consumption
relative to the bottom quartile had microbiota enriched in
CAG-353, an unclassified member of the Ruminococcaceae fam-
ily. This increase may reflect the higher consumption of whole
grains, providing arabinoxylans as substrates to support the
growth of this taxon. A previous study in which subjects



FIGURE 8. Associations between monosaccharide intake and diversity with markers of gastrointestinal health. (A–C) Partial Pearson’s correla-
tions between metrics of monosaccharide intake and fecal neopterin adjusted for the effects of age, sex, and BMI (n ¼ 151). (D) Partial Pearson’s
correlation between mean monosaccharide intake and plasma lipopolysaccharide-binding protein (LBP) adjusted for the effects of age, sex, and
BMI (n ¼ 180).
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consumed 100 g/d of wheat and barley for 2 months resulted in a
statistically significant increase in gut ruminococci [36]. Simi-
larly, providing 30 subjects classified as overweight or obese
(BMI 25–40 kg/m2) with 10.4 g/d of arabinoxylan oligosac-
charides for 4 weeks resulted an increased abundance of
Ruminococcus sp. [37]. Our study found that participants
grouped as high arabinose consumers had an increased repre-
sentation of Ruminiclostridium in their gut microbiota relative
to the low arabinose consumers. In support of the Ruminiclos-
tridium-arabinose interaction, a recent study of 18 subjects fed a
fiber snack containing pea protein with high arabinose content
(22.4% arabinose w/w) resulted in a greater amount of Rumi-
niclostridium after 6 weeks of intervention [38].

In our study, participants consuming the largest amount of
GalA had significantly higher representation of Lachnospira in
their gut microbiota compared to those consuming the lowest
amount of GalA. A common source of GalA is pectin fibers, which
predominantly consist of a GalA backbone with a degree of
esterified methyl or acetyl groups [39]. The complexity of pectin
fibers varies based on the plant source and can include branching
chains of xylose, apiose, arabinose, and other sugars. Several in
vitrohuman fecal fermentation studies have consistently observed
a bloom in Lachnospira when pectin is provided as a substrate [5,
40–42]. Moreover, our previous study of the USDA Nutritional
Phenotyping Study cohort found a positive association between
Lachnospira abundance and fruit consumption [43]. Dietary in-
terventions inhuman trials haveobserved similar effects. A trial of
24 subjects consuming a snack containing orange pulp fiber high
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in GalA (42.9% GalA w/w) resulted in statistically significant
enrichment of several Lachnospira species [38]. Additionally, a
randomized control trial that followed 163 men and women
consuming isocaloric meals with and without avocado for 12
weeks detected a statistically significant increase in Lachnospira
abundance [44]. Notably, avocadowas the greatest contributor to
dietary GalA in our study, further substantiating the link between
the monosaccharide composition of dietary fiber and the gut
microbiota. Although we found coffee to be a major source of
mannose in this cohort, we did not find a significant association
between coffee, specifically mannose intake, and the gut micro-
biota. Other studies have found associations between coffee
consumption and the gutmicrobiome [33],which, in part,may be
related to the polyphenol and alkaloid content in coffee [45].

Next, we examined the associations between gut microbial
composition and microbial genes involved in the breakdown and
metabolism of monosaccharides. Notably, participants in the
highest quartile of GalA intake had a greater abundance of genes
specific to Lachnospira in the GalA degradation pathway. These
results suggest that the gut microbial function has the potential
to be tuned by dietary intake. However, microbial genes in the
saccharolytic pathways for arabinose and xylose (except xylose
isomerase) were no different across high and low consumers.
This may be, in part, due to the lack of correspondence between
taxonomic groups for our metagenomic data and the KEGG or-
ganism database. Together, our data provides a high-resolution
glycomic signature of the diet that can help link usual, free-
living diets to gut microbiota composition and function.
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Lastly, we examined the association between monosaccharide
intake and markers of gut inflammation. Although we found no
statistically significant relationships between fecal calprotectin or
MPO with monosaccharide intake, the association between fecal
neopterin and mean monosaccharide intake trended toward sta-
tistical significance. Mean nonglucose monosaccharide intake
was not associatedwith fecal neopterin, indicating glucose intake
as a significant component in this association. By far, grain
products were the major source of glucose intake across the
cohort. Previous reports have shown that consumption of whole
grains, compared to refined grains, resulted in modest improve-
ments to immune function that may be linked to changes in gut
microbiota composition [46–48]. Fecal neopterin was negatively
associated with the diversity of monosaccharides in the diet. This
finding supports the idea that consumption of diverse sources of
nondigestible carbohydrates are less inflammatory compared to a
diet higher in simple sugars such as glucose and fructose.

In summary, our study delves into the nutritional “dark
matter” of carbohydrates by examining their fine-scale molecu-
lar composition and characterizing the monosaccharide intakes
of healthy US adults. We found associations between diversity of
monosaccharide intake with diet quality, gut microbial diversity,
and gut inflammation. Moreover, taxonomic differences in the
gut microbiota across high and low GalA intake were linked to
the functional capacity to metabolize these monosaccharides.

However, some limitations should be acknowledged. The
data presented here represent the monosaccharides present in
foods and not the glycan structures bound by glycosidic link-
ages. Hence, we are not able to draw inferences on the poly-
saccharide structures naturally found in foods. Additionally,
although the Davis Food Glycopedia is the largest mono-
saccharide food composition database to date, the mapping of
diets to the glycopedia represent, at minimum, 75% of the total
carbohydrate intake, and this lack of complete dietary infor-
mation is not fully representative in some individuals. More-
over, foods selected for inclusion in the Davis Food Glycopedia
prioritized more commonly consumed items based on diet recall
data from both the USDA Nutritional Phenotyping Study and
What We Eat in America Database, which could explain the
predominance of individuals that identified as White (~70%).
Because the diets of individuals consuming uncommon in-
gredients could not be mapped to the Glycopedia foods, the
impact of the most diverse monosaccharide profiles may not be
fully investigated by this analysis. Additional foods that reflect
cultural and ethnic choices need to be added to provide an equal
representation of ethnicities and help generalize underrepre-
sented populations.

In contrast, the quantitative monosaccharide intake data
paired with markers of gut inflammation and assessment of the
microbiota is a major strength of this study, providing a link
between diet and gut microbiota composition and function. Di-
etary assessment in observational studies is constrained by the
nutrients available in food composition databases. As such,
public databases are limited to estimating total carbohydrate,
fiber, simple sugars, and starch, which do not account for the
specificity by which these sugar constituents are metabolized by
the gut microbiota. Examining carbohydrate intake through the
lens of monosaccharide composition can aid in the discovery of
specific diet–health relationships that are less sensitive to tradi-
tional markers of carbohydrate intake. Future work will be
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needed to resolve the glycosidic linkages in foods to further
uncover the complex diet–gut microbiome relationship.
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