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ABSTRACT OF THE DISSERTATION

Construction of Weak Mirror Pairs by Deformations

by

Brian John Rolle

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2011

Dr. Yat Sun Poon, Chairperson

The central idea in weak mirror symmetry is relating a complex manifold and

a symplectic manifold by comparing their induced differential Gerstenhaber algebras

(DGAs). If they are quasi-isomorphic, we say the complex and symplectic manifold

form a weak mirror pair. Complex and symplectic manifold live in a larger category

of generalized complex manifolds. We can use the deformation theory of generalized

complex geometry to deform some complex manifolds into symplectic manifolds. It is

then natural to ask when the undeformed object and the deformed one form a weak

mirror pair. This thesis provides a sufficient condition for when a complex manifold can

be deformed to form a weak mirror pair. We also use this condition to determine when

complex symplectic algebras can be deformed to provide a weak mirror pair.
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Chapter 1

Introduction

Homological mirror symmetry came about as tool in string theory. It relates

field theories on two Calabi-Yau manifolds by matching the symplectic structure on

one with the complex structure on the other. This led mathematicians to examine

this pairing in general, relating symplectic manifold to complex manifolds by a quasi-

isomorphism. This is known as weak mirror symmetry, as developed by Merkulov in [13].

Weak mirror symmetry has been studied in many different cases. Most famously, there

is the SYZ conjecture, relating mirror symmetry to T-duality in [15]. Using this idea,

Cleyton, Lauret and Poon studied weak mirror symmetry on Lie algebras in [3]. Cley-

ton, Ovando and Poon also studied mirror symmetry by way of T-duality for complex

symplectic algebras in [4]. Additionally, Jian Zhou examined weak mirror symmetry for

various algebras in [16] and with Cao in [2].

Traditionally, symplectic manifolds and complex manifolds have been viewed as

unrelated objects, even though they have a few similarities. However Hitchin introduced

the notion of a generalized complex structures in [8], and his student Gualtieri developed

them further in his thesis [6]. These structure contain all complex manifolds and all

symplectic manifolds as examples. Thus, they provided a frame work for relating these

two objects.
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Generalized complex structures have a deformation theory, and so there is a

simple way to turn some complex manifolds into symplectic manifolds. The central

result of this thesis is a classification of when these deformations will yield weak mirror

pairs, Theorem 17.

In chapter 2, we present background information on generalized complex struc-

tures, differential Gerstenhaber algebras, and define the notion of a weak mirror pair.

Lie bi-algebroids and the Courant bracket are used extensively. Next, in chapter 3, we

examine certain deformations of generalized complex structures. We see which deforma-

tions can turn a complex structure into a symplectic structure. We also develop a chain

of isomorphisms that, if it exists, will make these complex and symplectic structures

into weak mirror pairs. Only one of the links in this chain can fail. Theorem 16 give

the sufficient conditions for this link to hold, the existence of what we call a compatible

pair. Then in chapter 4, we examine when a certain class of examples, complex sym-

plectic algebras, have compatible pairs. These algebras have been studied by Andrada

in [1] and Cleyton, Ovando and Poon in [4]. Thus we apply the work of the previous

chapter to say when complex symplectic algebras can be deformed to yield a mirror pair

in Theorem 29, and give these pairs an explicit formulation. We also look at a few low

dimensional examples. In chapter 5 we lay some preliminary ground work for future

work on principal tori bundles. Lastly, in chapter 6 we present some preliminary ideas

in how the framework developed here could be used on other classes of examples.
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Chapter 2

Preliminary Material

2.1 Generalized Complex Structures

The following section draws heavily on the material in [6].

Let M be a manifold of real dimension 2n, with tangent bundle TM and

cotangent bundle T ∗M . On (TM ⊕ T ∗M)C we define the following symmetric inner

product:

〈X + ξ, Y + η〉 =
1
2
(η(X) + ξ(Y )) (2.1)

where X and Y are vector fields and ξ and η are one-forms. The signature of

this operation is (2n, 2n). We also define the Courant bracket, first present by Courant

in [5]:

[X + ξ, Y + η] = [X, Y ] + LXη − LY ξ − 1
2
d(η(X)− ξ(Y )), (2.2)

where [X, Y ] is the usual Lie bracket of the vector fields X and Y and LXη is the Lie

derivative of η with respect to X.

We define a generalized complex structure on M in two different ways.

Let L < (TM ⊕T ∗M)C be a sub-bundle of the tangent plus cotangent bundle.

We say that L is isotropic if 〈l1, l2〉 = 0 for all l1, l2 ∈ L. L is maximally isotropic if

it is isotropic and not properly contained in any isotropic sub-bundle. If L ∩ L = {0}
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and L is maximally isotropic, then L is an almost generalized complex structure. The

integrability condition is that C∞(L) is closed under the Courant bracket. Therefore if

[l1, l2] ∈ C∞(L) for all l1, l2 ∈ C∞(L), then L is a generalized complex structure.

We also define generalized complex structures in a different way. Let

J : TM ⊕ T ∗M → TM ⊕ T ∗M . If J is a smooth bundle map with J ◦ J = −Id and

J∗ = −J , then J is an almost generalized complex structure. We say J is an generalized

complex structure is its Nijenhuis tensor vanishes for all smooth sections of TM ⊕T ∗M .

That is, for any l1, l2 ∈ C∞(TM ⊕ T ∗M), we have

NJ(l1, l2) = [l1, l2]− [Jl1, Jl2] + J([Jl1, l2] + [l1, Jl2]) = 0 (2.3)

We can view J as being made up of several parts based on the fact that is

exchanges some vectors for one-forms, while mapping other vectors to vectors.

J =

 A β

B −A∗


where A : TM → TM and A∗ : T ∗M → T ∗M is the adjoint of A defined by (A∗η)(X) =

η(AX) for a vector field X and a one-form η. Also B : TM → T ∗M and β : T ∗M → TM ,

with B∗ = −B and β∗ = −β. This means we can view B as a two-form.

These two definitions are equivalent. Given a J as above, we notice it has

eigenvalues ±i. Set L to be the +i eigenspace of J in (TM ⊕ T ∗M)C. Then L will be

totally real and maximally isotropic. The condition given by (2.3) is equivalent to the

closure of C∞(L) under the Courant bracket. This is analogous to the case in complex

geometry with an almost complex structure and the bundle T 1,0.

Any complex manifold and any symplectic manifold are also examples of gener-

alized complex manifolds. Let M a complex manifold with complex structure J . Then

the generalized complex structure is given by

JJ =

 J 0

0 −J ∗

 ,
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with LJ = T 1,0 ⊕ T ∗(0,1). The integrability of this generalized complex structure is

equivalent to the integrability of the complex structure J .

Let M be a symplectic manifold with symplectic form ω. We can view the

two-form ω as a map ω : TM → T ∗M , by ω(X)(Y ) = ω(X, Y ). Then the generalized

complex structure is given by

Jω =

 0 −ω−1

ω 0

 ,

with Lω = {X − iω(X) : X ∈ TMC}. In this case the integrability conditions for Lω is

equivalent to dω = 0.

We can view generalized complex structures as a bridge between complex and

symplectic structures. Let ρ : (TM ⊕ T ∗M)C → TMC by ρ(X + ξ) = X. We call this

map ρ the anchor map. Note that at a point p ∈ M , ρ(Lp) ⊂ TpMC is a subspace of

TpMC. We define the type of L at a point p to be the complex dimension of TpMC minus

the complex dimension of ρ(L) at p. The type may change from point to point over

a manifold. If the manifold has real dimension 2n, the type of a generalized complex

structure on it is an integer between 0 and n. As we can see from the examples above, a

complex manifold of real dimension 2n has type n, and a symplectic manifold has type

0.

The type of a generalized complex structure can change from point to point.

However, it can only change by an even number. Further, each point has a neighborhood

where the type does not increase. A point that has a neighborhood where the type is

constant is called regular.

As an example, let M = C2 with coordinates z1, z2. The coordinate tangent

vectors will be denoted by ∂zi , and the one-forms by dzi. Define

L = span{z1∂z1 − dz2, z1∂z2 + dz1, ∂z1 , ∂z2}. Then L is maximally isotropic. Also L is

involutive as the Courant bracket on these elements is trivial. If z1 6= 0, then ρ(L) =

span{∂z1 , ∂z2 , ∂z1 , ∂z2} = TMC and so when z1 6= 0, L has type 0. On the plane z1 = 0,

ρ(L) = span{∂z1 , ∂z2} = T 0,1, and so L has type 2. In fact, when z1 = 0 this is the

conjugate of the standard complex structure. However, when z1 6= 0, even though the
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generalized complex structure is type 0, it does not arise directly from a symplectic

structure. So we see here that the type jumps by 2 on the hyperplane z1 = 0. The

regular points are the ones with z1 6= 0.

Let B be a two-form on M . We define the B field transformation as a map

eB : (TM ⊕ T ∗M)C → (TM ⊕ T ∗M)C by eB(X + ξ) = X + ξ + B(X). Note that

eB([X + ξ, Y + η]) = [X, Y ] + LXη − LY ξ − 1
2d(η(X)− ξ(Y )) + B([X, Y ]), and

[eB(X + ξ), eB(Y + η)] = [X + ξ + B(X), Y + η + B(Y )]

= [X, Y ] + LXη − LY ξ − 1
2d(η(X)− ξ(Y ))

+LXB(Y )− LY B(X)− 1
2d(B(Y, X)−B(X, Y )).

These will be equal if

B([X, Y ]) = LXB(Y )− LY B(X)− 1
2
d(B(Y, X)−B(X, Y )). (2.4)

However the above equation is equivalent to the closure of B. Therefore, if L is a

generalized complex structure and B is closed, then eB([l1, l2]) = [eB(l1), eB(l2)] for any

l1, l2 ∈ C∞(L). This means that eBL = {X +ξ+B(X) : X +ξ ∈ L} is also a generalized

complex structure. Further, eB(L) and L have the same type at each point in M , since

ρ(eB(X + ξ)) = ρ(X + ξ + B(X)) = X = ρ(X + ξ).

In complex geometry we have the Newlander-Nirenburg theorem that describes

the local structure of complex manifolds, and in symplectic geometry we have Darboux’s

theorem for describing the local structure of symplectic manifolds. We have an analogous

theorem for generalized complex structures.

Theorem 1 (Generalized Darboux Theorem) Let M be a manifold with real di-

mension 2n. Let p ∈ M be a regular point of type k. Then there is a neighborhood U

of p and a closed two-form B such that eB(L|U ) ∼= Ck × (R2n−2k, ωk) where R2n−2k has

coordinates {x1, y1, . . . , xn−k, yn−k} and ωk = dx1 ∧ dy1 + · · · + dxn−k ∧ dyn−k and Ck

has the standard complex structure.
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This theorem only describes the local structure. However if the generalized

complex structure has type 0, we have a global result.

Proposition 2 Let L be a generalized complex structure on a manifold M . If L has

type 0, then L is the B-field transform of a symplectic generalized complex structure.

Proof. If L has type 0, then for all X ∈ TMC, there is a unique ξ ∈ T ∗MC

such that X + ξ ∈ L. We prove uniqueness by assuming X + ξ1, X + ξ2 ∈ L. Then

(X + ξ1) − (X + ξ2) = (ξ1 − ξ2) ∈ L. L is isotropic, so for any Y + η ∈ L, 0 =

2〈Y + η, ξ1 − ξ2〉 = (ξ1 − ξ2)(Y ), which implies ξ1 = ξ2.

Then L = {X + ξX : X ∈ TMC}, where ξX ∈ T ∗MC depends on X. We define

ε : TMC → T ∗MC by ε(X) = ξX . Note that if X is a vector field on M , then ξX is a

one-form on M , and so ε is smooth.

If X, Y ∈ TMC, then there exist ξX , ξY ∈ T ∗MC such that X +ξX , Y +ξY ∈ L.

Since (X + ξX) + (Y + ξY ) = (X + Y ) + (ξX + ξY ), ε(X + Y ) = ξX + ξY , and so ε is

linear.

Since L is isotropic, 0 = 2〈X + ξX , Y + ξY 〉 = ξY (X) + ξX(Y )

= ε(Y, X) + ε(X, Y ), so ε is skew. Therefore ε is a complex two-form on M .

As above with the B-field in equation (2.4), the condition that ε is closed is

equivalent to L being integrable, which is equivalent to C∞(L) being closed under the

Courant bracket.

We set Re(ε) = B and Im(ε) = −ω, so ε = B − iω, where B and ω are real

two-forms. Each is closed, since ε is closed.

Lastly we show ω is non-degenerate. For any real vector X ∈ TM , X +B(X)−

iω(X) ∈ L and X + B(X) + iω(X) ∈ L. If ω(X) = 0, then X + B(X) ∈ L ∩ L = {0},

and so X = 0. So ω is a symplectic form.

Therefore L = {X − iω(X) + B(X) : X ∈ TMC} = eBLω.
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2.2 Lie Bialgebroids

The theory of Lie bialgebriods is developed in [12]. Let L < (TM ⊕T ∗M)C be

an isotropic sub-bundle. Let ρ : L → TMC be the anchor map defined above. If X is a

vector and ξ is a one-form with X + ξ ∈ L, then ρ(X + ξ) = X.

Let [−,−] : C∞(L) × C∞(L) → C∞(L) be a bilinear map over R. The pair

(L, [−,−]) is a Lie algebroid if the following conditions hold for all l1, l2, l3 ∈ C∞(L) and

smooth functions f .

[l1, l2] = −[l2, l1]

[l1, f l2] = f [l1, l2] + (ρ(l1)f)l2

ρ([l1, l2]) = [ρ(l1), ρ(l2)]

[l1, [l2, l3]] + [l2, [l3, l1]] + [l3, [l1, l2]] = 0

The last equation is the Jacobi identity. Note that if L is a generalized complex

structure and the bracket is the Courant bracket, then these conditions will be satisfied,

even though the Courant bracket does not usually satisfy the Jacobi identity on

(TM ⊕T ∗M)C. We call any subbundle that is maximally isotropic with respect to (2.1)

whose smooth sections are closed under the Courant bracket a Dirac structure.

Let L∗ be the dual of L. We define the differential

δ : C∞(
∧n L∗) → C∞(

∧n+1 L∗) as follows. If l1, . . . , ln+1 ∈ C∞(L) and

σ ∈ C∞ (
∧n L∗), then

δσ(l1, . . . , ln+1) (2.5)

=
n+1∑
r=1

(−1)r+1ρ(lr)
(
σ(l1, . . . , l̂r, . . . , ln+1)

)
+

∑
r<s

(−1)r+sσ([lr, ls], l1, . . . , l̂r, . . . , l̂s, . . . , ln+1).

where l̂r denotes that lr is omitted.
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We also define the Lie derivative L. If l ∈ C∞(L), then

Ll : C∞(
∧n L∗) → C∞(

∧n L∗). If σ ∈ C∞ (
∧n L∗) and l1, . . . , ln ∈ C∞(L), then

(Llσ)(l1, . . . , ln) = ρ(l) (σ(l1, . . . , ln))−
n∑

r=1

σ (l1, . . . , [l, lr], . . . , ln) .

Next we define the interior product ι. If l ∈ C∞(L), then

ιl : C∞(
∧n+1 L∗) → C∞(

∧n L∗). If σ ∈ C∞
(∧n+1 L∗

)
and l1, . . . , ln ∈ C∞(L), then

(ιlσ)(l1, . . . , ln) = σ(l, l1, . . . , ln).

The above operations satisfy the following relationships for all smooth functions

f and smooth sections l, li of L.

Proposition 3 Basic formula for Lie algebroid calculus.

1. ιl(fσ) = fιlσ;

2. ιflσ = fιl(σ);

3. Ll(fσ) = fLlσ + (ρ(l)f) σ;

4. L[l1,l2] = Ll1 ◦ Ll2 − Ll2 ◦ Ll1 ;

5. Ll = ιl ◦ δ + δ ◦ ιl;

6. Ll ◦ δ = δ ◦ Ll;

7. Ll1 ◦ ιl2 − ιl2 ◦ Ll1 = ι[l1,l2];

8. (Lflσ) (l1, . . . , ln) = f (Llσ) (l1, . . . , ln)−
n∑

r=1

(−1)r (ρ(lr)f) (ιlσ)(l1, . . . , l̂r, . . . , ln).

Let L and K be two Dirac structures with L ⊕ K = (TM ⊕ T ∗M)C. Since

K ∩L = {0}, we can identify K with L∗ by k(l) = 2〈l, k〉. Then L is identified with K∗

as well. With this we can define a differential for K by

(δK l)(k1, k2) = 2
(
ρ(k1)〈l, k2〉 − ρ(k2)〈l, k1〉 − 〈l, [k1, k2]〉

)
. (2.6)
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Note that δK : C∞(
∧n K∗) → C∞(

∧n+1 K∗), so δK acts on L. We are most interested

in the case where K = L. Then we use ∂ to denote δL and ∂ to denote δL. In this case,

when l ∈ L and l ∈ L, we define,

l(l) = 2〈l, l〉 = l(l) (2.7)

We will frequently use the following computational lemma in later sections.

Lemma 4 Let l ∈ C∞(L), Λ ∈ C∞(
∧2 L) and l1, l2 ∈ C∞(L), then

[Λ, l](l1, l2) = −ρ(l)(l1(Λ(l2)))− l1([Λ(l2), l]) + l2([Λ(l1), l]). (2.8)

Proof.

By the linearity of [−,−] it is sufficient to prove the claim when Λ = l1 ∧ l2.

We have that (l1 ∧ l2)(l) = ((l1(l))l2 − (l2(l))l1). Then the left side of equation (2.8) is

[l1 ∧ l2, l](l1, l2) = (l1 ∧ [l2, l])(l1, l2)− (l2 ∧ [l1, l])(l1, l2)

= l1(l1)[l2, l](l2)− l1(l2)[l2, l](l1)− l2(l1)[l1, l](l2) + l2(l2)[l1, l](l1)

The right side of equation (2.8) is

−ρ(l)(l1((l1 ∧ l2)(l2)))− l1([(l1 ∧ l2)(l2), l]) + l2([(l1 ∧ l2)(l1), l])

= −ρ(l)((l1(l2))(l1(l2))) + ρ(l)((l2(l2))(l1(l1)))− l1([(l1(l2))l2, l]) + l1([(l2(l2))l1, l])

+ l2([(l1(l1))l2, l])− l2([(l2(l1))l1, l])

= −ρ(l)(l1(l2))l1(l2)− l1(l2)ρ(l)(l1(l2)) + ρ(l)(l2(l2))l1(l1) + l2(l2)ρ(l)(l1(l1))

− l1((l1(l2))[l2, l]) + l1(ρ(l)(l1(l2))l2) + l1((l2(l2))[l1, l])− l1(ρ(l)(l2(l2))l1)

+ l2((l1(l1))[l2, l])− l2(ρ(l)(l1(l1))l2)− l2((l2(l1))[l1, l]) + l2(ρ(l)(l2(l1))l1)

= −l1((l1(l2))[l2, l]) + l1((l2(l2))[l1, l]) + l2((l1(l1))[l2, l])− l2((l2(l1))[l1, l]).

So the left side and the right side are equal.
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2.3 Differential Gerstenhaber Algebras

The definitions in this section are also given by Poon in [14] for the Schouten

bracket.
(∧

L, [ , ],∧, ∂
)

is a differential Gerstenhaber algebra if the following axioms

hold for all l1 ∈ C∞(
∧a L), l2 ∈ C∞(

∧b L) and l3 ∈ C∞(
∧c L).

[Li, Lj ] ⊂ Li+j−1 (2.9)

[l1, l2] = (−1)ab+a+b[l2, l1] (2.10)

[l1, [l2, l3]] = [[l1, l2], l3]− (−1)ab+a+b[l2, [l1, l3]] (2.11)

Li ∧ Lj ⊂ Li+j (2.12)

l1 ∧ l2 = (−1)abl2 ∧ l1 (2.13)

[l1 ∧ l2, l3] = l1 ∧ [l2, l3] + (−1)abl2 ∧ [l1, l3] (2.14)

∂Li ⊂ Li+1 (2.15)

∂ ◦ ∂ = 0 (2.16)

∂[l1, l2] = [∂l1, l2]− (−1)a[l1, ∂l2] (2.17)

∂(l1 ∧ l2) = (∂l1) ∧ l2 + (−1)al1 ∧ (∂l2) (2.18)

If instead only (2.12), (2.13), (2.15), (2.16) and (2.18), we say
(∧

L,∧, ∂
)

is a

differential exterior algebra. If only (2.9), (2.10), (2.11), (2.12), (2.13) and (2.14) hold,

we have a Gerstenhaber algebra. We include some explicit forms for the differential in

the complex and symplectic case.

Proposition 5 If M is a complex manifold, let L = T 1,0 ⊕ T ∗(0,1). If {X1, . . . , Xn}

is a local frame for T 1,0 and {ξ1, . . . , ξn} is the dual local frame for T ∗(1,0), then the

differential ∂ : L →
∧2 L can be expressed as

∂Y =
∑n

j=1[Y, Xj ]1,0 ∧ ξ
j (2.19)

∂η = (dη)0,2. (2.20)
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Proof. Equation (2.6) shows that ∂Y (Z1, Z2) = 0 and ∂Y (α1, α2) = 0 for

any Z1, Z2 ∈ C∞(T 0,1) and α1, α2 ∈ C∞(T ∗(1,0)). So ∂Y ∈ C∞(T 1,0 ∧ T ∗(0,1)) and we

contract with a (1, 0) form β and a (0, 1) vector Z.

(∑n
j=1[Y,Xj ]1,0 ∧ ξ

j
)

(β, Z) =
∑n

j=1 β([Y, Xj ]1,0)ξj(Z)

=
∑n

j=1 β(ξj(Z)[Y, Xj ]) =
∑n

j=1 β([Y, ξ
j(Z)Xj ]− (Y (ξj(Z)))Xj)

=
∑n

j=1 β([Y, ξ
j(Z)Xj ]) = β([Y,

∑n
j=1 ξ

j(Z)Xj ]) = β([Y, Z])

= −Z(β(Y )) + [Z, β](Y ) = 2(ρ(β)〈Y, Z〉 − ρ(Z)〈Y, β〉 − 〈Y, [β, Z]〉) = ∂Y (β, Z)

This proves equation (2.19). Equation (2.6) shows that ∂η(Z, α1) = 0 and

∂Y (α1, α2) = 0 for any Z ∈ C∞(T 0,1) and α1, α2 ∈ C∞(T ∗(1,0)). So

∂η ∈ C∞(T ∗(0,1) ∧ T ∗(0,1)) and we contract with Z1, Z2 ∈ C∞(T 0,1).

(dη)0,2(Z1, Z2) = dη(Z1, Z2) = Z1η(Z2)− Z2η(Z1)− η([Z1, Z2])

= 2(ρ(Z1)〈η, Z2〉 − ρ(Z2)〈η, Z1〉 − 〈η, [Z1, Z2]〉) = ∂η(Z1, Z2)

This proves equation (2.20).

Proposition 6 If M is a symplectic manifold with symplectic form ω, let

L = {X − iω(X) : X ∈ TM}. Then the differential ∂ : L →
∧2 L can be expressed as

∂(X − iω(X)) = −2id(ω(X)).

12



Proof. Let Y1 + iω(Y1), Y2 + iω(Y2) ∈ C∞(L).

∂(X − iω(X))(Y1 + iω(Y1), Y2 + iω(Y2))

= 2(ρ(Y1 + iω(Y1))〈X − iω(X), Y2 + iω(Y2)

−ρ(Y2 + iω(Y2))〈X − iω(X), Y1 + iω(Y1)〉

−〈X − iω(X), [Y1 + iω(Y1), Y2 + iω(Y2)]〉)

= Y1(−iω(X, Y2) + iω(Y2, X))− Y2(−iω(X, Y1) + iω(Y1, X))

−2〈X − iω(X), [Y1, Y2] + iLY1ω(Y2)− iLY2ω(Y1)− 1
2d(iω(Y2, Y1)− iω(Y1, Y2))〉

= −2iY1(ω(X, Y2)) + 2iY2(iω(X, Y1)) + iω(X, [Y1, Y2])

−i(LY1ω(Y2))X + i(LY2ω(Y1))X − iXω(Y1, Y2)

= −2iY1(ω(X, Y2)) + 2iY2(iω(X, Y1)) + 2iω(X, [Y1, Y2])

= −2id(ω(X))(Y1, Y2) = −2id(ω(X))(Y1 + iω(Y1), Y2 + iω(Y2))

Where ω(X, [Y1, Y2]) = −(LY1ω(Y2))X +(LY2ω(Y1))X−Xω(Y1, Y2) since ω is closed.

13



2.4 Weak Mirror Pairs

Introductory material in weak mirror symmetry can be found in [14]. Given a

differential Gerstenhaber algebra
(∧

L, [ , ],∧, ∂
)
, we can define

Zn = {A ∈
∧n L : ∂A = 0} and Bn = {A ∈

∧n L : A = ∂B, B ∈
∧

L}. The axioms for

a DGA imply that
⊕

n

Zn and
⊕

n

Bn are Gerstenhaber algebras under the [−,−] and

∧ operations. Since ∂ ◦ ∂ = 0, we also have that Bn ⊂ Zn.

Let Hn = Zn/Bn = ker ∂/ Im ∂. Let H =
⊕

n

Hn. Then (H, [−,−],∧) is the

Gerstenhaber algebra of
(∧

L, [ , ],∧, ∂
)

with the inherited [−,−] and ∧ operations.

Let L1 and L2 be generalized complex structures with associated Gerstenhaber

algebras (H1, [−,−],∧) and (H2, [−,−],∧), respectively. Let

Φ :
(∧

L1, [ , ],∧, ∂1

)
→

(∧
L2, [ , ],∧, ∂2

)
be a DGA homomorphism. Then

there is an induces homomorphism Φ̃ : (H1, [−,−],∧) → (H2, [−,−],∧). If Φ̃ is an

isomorphism, we say Φ is a quasi-isomorphism and that the DGA’s are quasi-isomorphic.

In the case where L1 is a complex structure and L2 is a symplectic structure, we say(∧
L1, [ , ],∧, ∂1

)
and

(∧
L2, [ , ],∧, ∂2

)
form a weak mirror pair.

14



Chapter 3

Weak Mirror Pairs by

Deformations

In this chapter, we outline how we can construct weak mirror pairs by deform-

ing generalized complex structures. First we will examine deformations of generalized

complex structures, and see how they can change type. Then we will examine the

DGA’s of these deformed structures, and examine isomorphisms between the deformed

and undeformed structures and present a theorem stating when they will be isomorphic.

3.1 Deformation of Generalized Complex Structures

Let L be a generalized complex structure on a manifold M . Recall that its

conjugate L is also its dual. Let Γ ∈ C∞(
∧2 L). Then Γ : L → L. We will use Γ to

deform L to LΓ = {l + Γ(l) : l ∈ L}.

We need to examine whether LΓ is even a generalized complex structure. First

we will see if it is isotropic. Let l1, l2 ∈ L. Then l1 + Γ(l1), l2 + Γ(l2) ∈ LΓ, and

〈l1 + Γ(l1), l2 + Γ(l2)〉 = 〈l1, l2〉+ 〈l1,Γ(l2)〉+ 〈Γ(l1), l2〉+ 〈Γ(l1),Γ(l2)〉

= 〈l1,Γ(l2)〉+ 〈Γ(l1), l2〉 = 1
2(l1(Γ(l2)) + Γ(l1)(l2)) = 1

2(Γ(l2, l1) + Γ(l1, l2)) = 0,

where we use equation (2.7) and the fact that Γ is skew, as well as the fact that L and

L are isotropic. So LΓ is isotropic.
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The maximality of LΓ follow from the maximality of L. Suppose LΓ is a

proper subset of an isotropic bundle K. Then L is a proper subset K−Γ and K−Γ is still

isotropic. This contradicts the maximality of L. Therefore LΓ is maximally isotropic.

We also need LΓ ∩ LΓ = 0. Note that LΓ = {l + Γ(l) : l ∈ L}

= {l+Γ(l) : l ∈ L} = LΓ. Suppose l1, l2 ∈ L are non-zero and l1+Γ(l1) = l2+Γ(l2) ∈ LΓ.

Then we have that l1 = Γ(l2) and l2 = Γ(l1), or Γ(Γ(l1)) = l1, or ΓΓ has a non-trivial

fixed point. This gives us our first non-trivial condition for LΓ to be a generalized

complex structure.

Proposition 7 Let Γ : L → L and its conjugate Γ : L → L, then ΓΓ : L → L. If ΓΓ

has no non-trivial fixed points, then LΓ ∩ LΓ = 0.

If ΓΓ = 0, then it will have no non-trivial fixed points. In practice, this will

always be satisfied when we are trying to build weak mirror pairs, due to our choice of

Γ.

The last condition we have to satisfy is that LΓ is involutive, or

[C∞(LΓ), C∞(LΓ)] ⊂ C∞(LΓ). For this we refer to Theorem 6.1 in [12], where 3.1 is

Maurer-Cartan equation.

Theorem 8 Let L be a generalized complex structure. Then LΓ is involutive if and only

if

∂Γ +
1
2
[Γ,Γ] = 0 (3.1)

We prove a special case of this theorem in Proposition (19).

Now we have can state the following theorem.

Theorem 9 Let L be a generalized complex structure and Γ ∈ C∞(
∧2 L). If ΓΓ = 0

and ∂Γ + 1
2 [Γ,Γ] = 0, then LΓ = {l + Γ(l) : l ∈ L} is a generalized complex structure.

The theorem stated above is for arbitrary deformations of arbitrary generalized

complex structures. However, our goal is to build weak mirror pairs. To do this, we

will start with a complex manifold M of real dimension 2n. Our generalized complex

structure will be L = T 1,0 ⊕ T ∗(0,1), which has type n. Our goal is to deform to
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a symplectic structure, which will have type 0. This leads to some restrictions on our

choice of Γ as well. Since L = T 0,1⊕T ∗(1,0), we can view Γ : T 1,0⊕T ∗(0,1) → T 0,1⊕T ∗(1,0)

as Γ = Γ1 + Γ2 + Γ3 + Γ4, with

Γ1 : T 1,0 → T 0,1

Γ2 : T (1,0) → T ∗(1,0)

Γ3 : T ∗(0,1) → T 0,1

Γ4 : T ∗(0,1) → T ∗(1,0)

In order to decrease the type of L, we need to add in vectors that are in T 0,1.

This means only using Γ1 and Γ3. So we can set Γ2 = Γ4 = 0. As for Γ1 we note that

ρ(L) = T 1,0 and ρ(LΓ1
) = {Z + Γ1(Z)|Z ∈ T 1,0}. Since these spaces have the same

dimension, L and LΓ1
have the same type. So we also set Γ1 = 0.

However, LΓ3
= T 1,0 ⊕ {ξ + Γ(ξ)|ξ ∈ T ∗(0,1)}, and so ρ(LΓ3

)

= T 1,0 ⊕ {Γ(ξ)|ξ ∈ T ∗(0,1)}. If Γ(ξ) is non-zero, then it is a (0,1) vector, so Γ3 can

decrease type. Also, Γ3 : T ∗(1,0) → T 1,0, meaning that Γ3Γ3 = 0 trivially. So Γ3 is

the only part of Γ we want. We shall change notation and set Γ = Γ3 = Λ where

Λ ∈ C∞(T 0,1 ∧ T 0,1).

We can now update theorem 8. Before we do though, note that

∂Λ ∈ C∞(T 0,1 ∧ T 0,1 ∧ T 1,0) when we use the ∂ for a complex structure defined in the

Proposition 5, and [Λ,Λ] ∈ C∞(T 0,1 ∧ T 0,1 ∧ T 0,1). Therefore ∂Λ + 1
2 [Λ,Λ] = 0 if and

only if ∂Λ = 0 and [Λ,Λ] = 0. So theorem 8 is now as follows.

Theorem 10 Let M be a complex manifold and L = T 1,0 ⊕ T ∗(0,1) and let

Λ ∈ C∞(T 0,1 ∧ T 0,1). If ∂Λ = 0 and [Λ,Λ] = 0, then

LΛ = {X + ξ + Λ(ξ) : X ∈ T 1,0, ξ ∈ T ∗(0,1)} is a generalized complex structure.

Now we examine how the Λ changes the type of L. Note that

ρ(LΛ) = T 1,0 ⊕ {Λ(ξ)|ξ ∈ T ∗(0,1)}. Since Λ : T ∗(0,1) → T 0,1 is skew, it has even rank.

So the complex dimension of {Λ(ξ)|ξ ∈ T ∗(0,1)} is even. This means that the Λ changes

the type of L by an even number.
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If we want to deform from complex to symplectic, we need the complex di-

mension of our complex manifold to be even. Also, we need Λ : T ∗(0,1) → T 0,1 to be

non-degenerate. Under these conditions we have the following theorem.

Theorem 11 Let M be a complex manifold of real dimension 4n and let Λ ∈ C∞(T 0,1∧

T 0,1) be non-degenerate as a map Λ : T ∗(0,1) → T 0,1. Then L = T 1,0 ⊕ T ∗(0,1) has type

2n. If ∂Λ = 0 and [Λ,Λ] = 0, then LΛ = {X + ξ + Λ(ξ) : X ∈ T 1,0, ξ ∈ T ∗(0,1)} is a

generalized complex structure of type 0.

This is almost what we want. Every type 0 generalized complex structure is

the B-field transformation of a symplectic structure, as proved in Proposition 2. Using

this, we now have a theorem describing when we can deform from a complex structure

to a symplectic structure.

Theorem 12 Let M be a complex manifold of real dimension 4n and let Λ ∈ C∞(T 0,1∧

T 0,1) be non-degenerate as a map Λ : T ∗(0,1) → T 0,1. Let L = T 1,0 ⊕ T ∗(0,1). If ∂Λ = 0

and [Λ,Λ] = 0, then there is a closed two-form B on M such that eBLΛ is a symplectic

structure.
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3.2 B-field Isomorphism

Now, we show that the DGA of a generalized complex structure L is isomorphic

to the DGA of any B-field transformation eBL by a closed two-form B.

Define the map eB : L → eBL by eB(X + ξ) = X + ξ + B(X) where X

is a vector field and ξ is a one-form. We extend this map to eB :
∧

L →
∧

L by

eB(l1 ∧ · · · ∧ ln) = (eBl1) ∧ · · · ∧ (eBln). By the discussion of B-field transformation in

section (2.1), we know that eB([l1, l2]) = [eBl1, e
Bl2] if and only if B is closed.

Note that (eBL)∗ = eBL, since B is a real form. In order for (
∧

L, [−,−],∧, δ)

to be isomorphic to (
∧

eBL, [−,−],∧, δB), we need the following diagram to commute.

∧nL
δ−→ ∧n+1L

eB ↓ ↓ eB

∧neBL
δB−→ ∧n+1eBL

.

This means we need eBδ = δBeB. The right-hand side is

δ(X + ξ + B(X))(Y 1 + η1 + B(Y 1), Y 2 + η2 + B(Y 2))

= 2(Y 1〈X + ξ + B(X), Y 2 + η2 + B(Y 2)〉

−Y 2〈X + ξ + B(X), Y 1 + η1 + B(Y 1)〉

−〈X + ξ + B(X), [Y 1 + η1 + B(Y 1), Y 2 + η2 + B(Y 2)])〉

= 2(Y 1〈X + ξ, Y 2 + η2〉+ Y 1(B(Y 2, X) + B(X, Y 2))

−Y 2〈X + ξ, Y 1 + η1〉 − Y 2(B(Y 1, X) + B(X, Y 1))

−〈X + ξ + B(X), [Y 1 + η1, Y 2 + η2] + B([Y1, Y2])〉)

= 2(Y 1〈X + ξ, Y 2 + η2〉 − Y 2〈X + ξ, Y 1 + η1〉 − 〈X + ξ, [Y 1 + η1, Y 2 + η2]〉

−(B([Y 1, Y 2], X) + B(X, [Y 1, Y 2])))

= δ(X + ξ)(Y 1 + η1, Y 2 + η2).
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We have repeatedly used the fact that B is skew, and eB([l1, l2]) = [eBl1, e
Bl2].

So we see that δ(eBl)(eBl1, e
Bl2) = δl(l1, l2). Also note that

(eBl)(eBk) = 2〈X + ξ + B(X), Y + η + B(Y )〉

= 2〈X + ξ, Y + η〉+ B(Y ,X) + B(X, Y ) = l(k),

and so,

(eB(l1 ∧ l2))(eBk1, e
Bk2) = ((eBl1) ∧ (eBl2))(eBk1, e

Bk2)

= ((eBl1)(eBk1))((eBl2)(eBk2))− ((eBl1)(eBk2))((eBl2)(eBk1))

= l1(k1)l2(k2)− l1(k2)l2(k1) = (l1 ∧ l2)(k1, k2).

Since eB is linear and δl ∈ C∞(
∧2 L), we have (eB(δl))(eBl1, e

Bl2) = δl(l1, l2)

= (δB(eBl))(eBl1, e
Bl2), and the diagram above commutes. Since we can extend this to

higher powers by induction, we have that (
∧

L, [−,−],∧, δ) and (
∧

eBL, [−,−],∧, δB)

are isomorphic.
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3.3 Deformed Lie Bialgebroids

As we saw in section 2.2, the pair (L, [−,−],∧, ∂) and (L, [−,−],∧, ∂) form

a Lie bialgebroid for any generalized complex structure L. We can also form a Lie

bialgebroid out of LΓ and LΓ when these are generalized complex structures, that is

when ∂Γ + 1
2 [Γ,Γ] = 0. The differentials will be given by equation (2.5).

Our goal in this section is to build an isomorphism from the DGA defined by

LΓ with its natural differential to one defined by L with a different differential. This

will let us change the problem from one about deformed spaces to one about deformed

differentials.

Let Γ ∈ C∞(
∧2 L). Define AΓ : L⊕ L → L⊕ L by AΓ(l) = l + Γ(l) for l ∈ L

and AΓ(l) = l + Γ(l) for l ∈ L. Then AΓ(L) = LΓ and AΓ(L) = LΓ. Let δ be the

differential for LΓ defined by formula (2.5) using (LΓ)∗ = LΓ.

Theorem 13 If ∂Γ+ 1
2 [Γ,Γ] = 0, then AΓ : (

∧∗ L, [−,−],∧, ∂Γ) → (
∧∗ LΓ, [−,−],∧, δ)

is an isomorphism, where

∂Γl = ∂l + [Γ, l].

Proof. We are extending AΓ to the wedge product by AΓ(l1 ∧ l2) = (AΓl1) ∧ (AΓl2).

For the bracket we need [l1 + Γ(l1), l2 + Γ(l2)] = l3 + Γ(l3) for some l3 ∈ L.

This is a equivalent to ∂Γ + 1
2 [Γ,Γ] = 0, as in Theorem (8).

In order for (
∧∗ L, [−,−],∧, ∂Γ) to be a differential Gerstenhaber algebra, we

need to show that ∂Γ conditions (2.16), (2.17) and (2.18). That is

∂Γ ◦ ∂Γ = 0,

∂Γ[l1, l2] = [∂Γl1, l2]− (−1)a[l1, ∂Γl2],

∂Γ(l1 ∧ l2) = (∂Γl1) ∧ l2 + (−1)al1 ∧ (∂Γl2),

where l1 ∈ C∞ (
∧a L). To prove that ∂Γ◦∂Γ = 0, we first note that [[Γ,Γ], l] = 2[Γ, [Γ, l]]
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by the Jacobi identity, equation (2.11). So

∂Γ∂Γl = ∂Γ(∂l + [Γ, l]) = ∂∂l + ∂[Γ, l] + [Γ, ∂l] + [Γ, [Γ, l]]

= [∂Γ, l]− [Γ, ∂l] + [Γ, ∂l] + 1
2 [[Γ,Γ], l] = [∂Γ + 1

2 [Γ,Γ], l].

Therefore ∂Γ∂Γl = 0 if ∂Γ + 1
2 [Γ,Γ] = 0. The other two conditions are proved by

straightforward computation.

The last thing we need to prove is that δ ◦AΓ = AΓ ◦ ∂Γ, or that the diagram

below commutes.

∧n L
∂Γ−→

∧n+1 L

AΓ ↓ ↓ AΓ∧n LΓ
δ−→

∧n+1 LΓ

.

This is true by theorem 6.1 in [12]. A special case of this is proved in Proposition

20. Therefore AΓ is an isomorphism of differential Gerstenhaber algebras.
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3.4 Construction of Weak Mirror Pairs

On a complex manifold M with real dimension 4n, let L = T 1,0 ⊕ T ∗(0,1), let

Λ ∈ C∞(T 0,1 ∧ T 0,1) be non-degenerate. Then LΛ is a generalized complex structure of

type 0. We want to find conditions that will guarantee that the DGA’s defined by L

and LΛ are isomorphic. Since every isomorphism is a quasi-ismorphism, we will have a

weak mirror pair.

Our goal in this section is to build an isomorphism from (
∧

L, [−,−],∧, ∂Λ) to

(
∧

L, [−,−],∧, ∂). Since (
∧

L, [−,−],∧, ∂Λ) is isomorphic to (
∧

LΛ, [−,−],∧, δ), we will

have an isomorphism from the complex (
∧

L, [−,−],∧, ∂) to (
∧

LΛ, [−,−],∧, δ), which

will be the B-field transform of a symplectic structure if Λ satisfies the conditions in

Theorem 12. We will now derive conditions for (
∧

L, [−,−],∧, ∂Λ) and (
∧

L, [−,−],∧, ∂)

to be isomorphic. We will assume ∂Λ = 0 and [Λ,Λ] = 0, where Λ ∈ C∞(T 1,0 ∧ T 1,0) so

that LΛ is a generalized complex structure and ∂Λ is a differential, and that AΛ is an

isomorphism of DGA’s as in Theorem 13. Let Φ : L → L be an isomorphism. We will

extend Φ to the wedge product by

Φ(l1 ∧ l2) = Φ(l1) ∧ Φ(l2). (3.2)

We assume Φ is a DGA isomorphism, then

[Φ(l1),Φ(l2)] = Φ([l1, l2]). (3.3)

Also, the following diagram will commute.

∧nL
∂Λ−→ ∧n+1L

Φ ↓ ↓ Φ

∧nL
∂−→ ∧n+1L

.

This means that ∂Λ = Φ−1∂Φ, or that for any A ∈
∧∗ L,

∂A + [Λ, A] = Φ−1(∂(Φ(A))). (3.4)
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To better understand this equation, we will consider a family of deformations,

tΛ. Then, for all t, tΛ satisfies [tΛ, tΛ] = t2[Λ,Λ] = 0 and ∂(tΛ) = t∂Λ = 0. Therefore

tΛ defines an integrable deformation for all t. For each t, there will be a different Φt for

the above equation. Equation(3.4) becomes,

∂A + [tΛ, A] = Φ−1
t (∂(Φt(A))). (3.5)

When t = 0, the deformation is trivial and ∂0Λ = ∂, so Φ0 = Id. When we differentiate

equation (3.5) with respect to t, we get,

[Λ, A] =
dΦ−1

t

dt
(∂(Φt(A))) + Φ−1

t

(
∂

(
dΦt

dt
(A)

))
. (3.6)

We define φ :=
dΦt

dt

∣∣∣∣
t=0

, then
dΦ−1

t

dt

∣∣∣∣
t=0

= −φ. Evaluating equation (3.6) at t = 0 yields

[Λ, A] = −φ(∂(A)) + ∂(φ(A)). (3.7)

Differentiating equation (3.2) yields,

dΦt

dt
(l1 ∧ l2) =

d

dt
(Φt(l1) ∧ Φt(l2)) =

(
dΦt

dt
(l1)

)
∧ Φt(l2) + Φt(l1) ∧

(
dΦt

dt
(l2)

)
.

Evaluating this at t = 0 yields,

φ(l1 ∧ l2) = (φ(l1)) ∧ l2 + l1 ∧ (φ(l2)). (3.8)

A similar computation on equation (3.3) yields

φ([l1, l2]) = [φ(l1), l2] + [l1, φ(l2)] (3.9)

Obviously φ depends on the choice of Λ, and so we make the following definition.

Definition 14 Let L = T 1,0 ⊕ T ∗(0,1) and let Λ ∈ C∞(T 1,0 ∧ T 1,0) and φ : L → L be

a vector bundle homomorphism. We call Λ and φ a compatible pair if the following
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conditions hold for all l, l1, l2 ∈ C∞(L):

∂Λ = 0 and [Λ,Λ] = 0 (3.10)

φ(l1 ∧ l2) = (φ(l1)) ∧ l2 + l1 ∧ (φ(l2)) (3.11)

φ([l1, l2]) = [φ(l1), l2] + [l1, φ(l2)] (3.12)

∂(φ(l))− φ(∂(l)) = [Λ, l] (3.13)

Theorem 15 Let Φ : (
∧

L, [−,−],∧, ∂Λ) → (
∧

L, [−,−],∧, ∂) be a DGA isomorphism

with ∂Λ = 0 and [Λ,Λ] = 0. Then there exists a φ : L → L such that φ and Λ are a

compatible pair.

Our goal now is to prove the converse of this theorem. If Λ and φ are a

compatible pair, we would like to be able to find an isomorphism Φ. Before we do that,

we will investigate φ, much in the same way we looked at Γ, and reduced it to a (0, 2)

field.

Since φ : T 1,0 ⊕ T ∗(0,1) → T 1,0 ⊕ T ∗(0,1), we have φ = φ1 + φ2 + φ3 + φ4, where

φ1 : T 1,0 → T 1,0

φ2 : T 1,0 → T ∗(0,1)

φ3 : T ∗(0,1) → T 1,0

φ4 : T ∗(0,1) → T ∗(0,1).

We now check which of these maps works with equation (3.13). Since

l ∈ C∞(T 1,0⊕T ∗(0,1)), we can examine when l = X ∈ C∞(T 1,0) and l = ξ ∈ C∞(T ∗(0,1)).

We note that [Λ, X] ∈ C∞(
∧2 T 1,0) and [Λ, ξ] ∈ C∞(T 1,0∧T ∗(0,1)). This means, in order

for φ and Λ to be compatible, we need ∂(φ(X))− φ(∂(X)) ∈ C∞(
∧2 T 1,0) and

∂(φ(ξ))− φ(∂(ξ)) ∈ C∞(T 1,0 ∧ T ∗(0,1)).
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Also, ∂X ∈ C∞(T 1,0 ∧ T ∗(0,1)) and ∂ξ ∈ C∞(
∧2 T ∗(0,1)). So, using equation

(3.11),

∂φ1(X)− φ1(∂X) ∈ C∞(T 1,0 ∧ T ∗(0,1))

∂φ1(ξ)− φ1(∂ξ) = 0

∂φ2(X)− φ2(∂X) ∈ C∞(T ∗(0,1) ∧ T ∗(0,1))

∂φ2(ξ)− φ2(∂ξ) = 0

∂φ3(X)− φ3(∂X) ∈ C∞(T 1,0 ∧ T 1,0)

∂φ3(ξ)− φ3(∂ξ) ∈ C∞(T 1,0 ∧ T ∗(0,1))

∂φ4(X)− φ4(∂X) ∈ C∞(T 1,0 ∧ T (1,0))

∂φ4(ξ)− φ4(∂ξ) = C∞(T ∗(0,1) ∧ T ∗(0,1)).

So for φ and Λ to be compatible, we need φ = φ3, or φ : T ∗(0,1) → T 1,0. With this, we

can now prove the converse to theorem (15).

Theorem 16 Let L = T 1,0 ⊕ T ∗(0,1) and Λ ∈ C∞(
∧2 T 1,0) and let φ : T ∗(0,1) → T 1,0 be

a vector bundle homomorphism. Let Φ : L → L be defined by Φ = 1+φ. If Λ and φ are a

compatible pair, then Φ : (
∧

L, [−,−],∧, ∂Λ) → (
∧

L, [−,−],∧, ∂) is DGA isomorphism.

Proof. For Φ to be a DGA isomorphism, we must show that, for all l, l1, l2 ∈ C∞(L),

Φ(l1 ∧ l2) = Φ(l1) ∧ Φ(l2) (3.14)

Φ([l1, l2]) = [Φ(l1),Φ(l2)] (3.15)

Φ(∂Λl) = ∂(Φ(l)) (3.16)

Since φ : T ∗(0,1) → T 1,0, φ ◦ φ = 0. When we use equation (3.11), the left side of (3.14)

is,

Φ(l1 ∧ l2) = l1 ∧ l2 + φ(l1 ∧ l2) = l1 ∧ l2 + (φ(l1)) ∧ l2 + l1 ∧ (φ(l2)).
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The right side is,

Φ(l1) ∧ Φ(l2) = (l1 + φ(l1)) ∧ (l2 + φ(l2)) = l1 ∧ l2 + (φ(l1)) ∧ l2 + l1 ∧ (φ(l2))

+ (φ(l1)) ∧ (φ(l2)).

So for these to be equal, we need (φ(l1))∧ (φ(l2)) = 0. However, by equation (3.11), we

have

φ((φ(l1)) ∧ l2) = (φ(φ(l1))) ∧ (φ(l2)) + (φ(l1)) ∧ (φ(l2)) = (φ(l1)) ∧ (φ(l2)),

and

φ(l1 ∧ (φ(l2))) = (φ(l1)) ∧ (φ(l2)) + (φ(l1)) ∧ (φ(φ(l2))) = (φ(l1)) ∧ (φ(l2)),

so

2((φ(l1)) ∧ (φ(l2))) = φ((φ(l1)) ∧ l2) + φ(l1 ∧ (φ(l2)))

= φ((φ(l1)) ∧ l2 + l1 ∧ (φ(l2))) = φ(φ(l1 ∧ l2)) = 0.

Therefore, Φ(l1∧ l2) = Φ(l1)∧Φ(l2). A similar computation using equation (3.12) shows

that [φ(l1), φ(l2)] = 0, and so

Φ([l1, l2]) = [l1, l2] + φ([l1, l2]) = [l1, l2] + [φ(l1), l2] + [l1, φ(l2)]

= [l1, l2] + [φ(l1), l2] + [l1, φ(l2)] + [φ(l1), φ(l2)]

= [l1 + φ(l1), l2 + φ(l2)] = [Φ(l1),Φ(l2)]

Now we examine equation (3.16). Using equation (3.13), we see

Φ(∂Λl) = Φ(∂l + [Λ, l]) = ∂l + [Λ, l] + φ(∂l) + φ([Λ, l])

= ∂l + ∂φ(l) + φ([Λ, l]) = ∂(Φ(l)) + φ([Λ, l]).
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So for equation (3.16) to hold, we need φ([Λ, l]) = 0. Evaluating φ on equation

(3.13) yields φ([Λ, l]) = φ(∂(φl))−φ(φ(∂l)) = φ(∂(φl)). Replacing l with φ(l) in equation

yields

[Λ, φ(l)] = ∂(φ(φ(l)))− φ(∂(φ(l))) = −φ(∂(φ(l))).

Together, these computations show that

φ([Λ, l]) = −[Λ, φ(l)]. (3.17)

Now, let v, w be (1,0) vector fields. Then φ(v) = 0 = φ(w) and,

φ([v ∧ w, l]) = φ(v ∧ [w, l]− w ∧ [v, l])

= φ(v) ∧ [w, l] + v ∧ φ([w, l])− φ(w) ∧ [v, l]− w ∧ φ([v, l])

= v ∧ [φ(w), l] + v ∧ [w, φ(l)]− w ∧ [φ(v), l]− w ∧ [v, φ(l)]

= v ∧ [w, φ(l)]− w ∧ [v, φ(l)] = [v ∧ w, φ(l)].

By the linearity of [−, l], we have,

φ([Λ, l]) = [Λ, φ(l)]. (3.18)

Therefore, by equations (3.17) and (3.18), φ([Λ, l]) = 0, and equation (3.16) holds.

While equations (3.14), (3.15) and (3.16) are only in degree one they hold in

higher degrees as well when φ is extended so that φ(l1 ∧ l2 ∧ · · · ln) = φ(l1) ∧ l2 ∧ · · · ln

+ l1 ∧ φ(l2) ∧ · · · ln + · · ·+ l1 ∧ l2 ∧ · · ·φ(ln). Therefore Φ is a DGA homomorphism.

Lastly, we look at the kernel and image of Φ = 1 + φ. If X ∈ T 1,0 and

ξ ∈ T ∗(0,1), then Φ(X + ξ) = X + ξ + φ(X) + φ(ξ) = X + φ(ξ) + ξ, where φ(ξ) ∈ T 1,0.

If X + φ(ξ) + ξ = 0, then ξ = 0, which means φ(ξ) = 0, and so X = 0. So ker Φ = {0}.

Also, if X ∈ T 1,0, then Φ(X) = X + φ(X) = X. If η ∈ T ∗(0,1), let Y = φ(η). Then

Φ(−Y + η) = −Y + η − φ(Y ) + φ(η) = −Y + η + Y = η. So Φ is surjective. Therefore,

Φ is an isomorphism.
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3.5 Main Theorem

Our original goal was to build weak mirror pairs, and we are now in a position to

do that. Let L = T 1,0⊕T ∗(0,1) be a generalized complex structure defined on a complex

manifold M with real dimension 4n. Then the type of L is 2n. Let Λ ∈ C∞(
∧2 T 0,1). If

∂Λ = 0 and [Λ,Λ] = 0, then LΛ is a generalized complex structure. If Λ : T ∗(0,1) → T 0,1

is non-degenerate, then the LΛ has type 0. So, by Proposition 2 there will be a closed

two-form B so that eBLΛ is symplectic.

If there exists φ compatible with Λ, then Φ = 1+φ will be a DGA isomorphism,

and we will have the following chain of isomorphisms.

(
∧

L, [−,−],∧, ∂)

Φ−1 ↓

(
∧

L, [−,−],∧, ∂Λ)

AΛ ↓

(
∧

LΛ, [−,−],∧, δ)

eB ↓

(
∧

eBLΛ, [−,−],∧, δB)

Therefore (
∧

L, [−,−],∧, ∂) and (
∧

eBLΛ, [−,−],∧, δB) define a weak mirror

pair, since every isomorphism is a quasi-isomorphism. The only isomorphism in this

chain that is non-trivial is Φ, and we can express the existence of this chain in terms

of the existence of Φ. It should be noted that Φ−1 = 1 − φ, since (1 + φ) ◦ (1 − φ) =

1 ◦ 1 + 1 ◦ (−φ) + φ ◦ 1 + φ ◦ (−φ) = 1− φ + φ− φ ◦ φ = 1.

Theorem 17 Let L = T 1,0 ⊕ T ∗(0,1) be a generalized complex structure defined on a

complex manifold M of real dimension 4n. Let Λ ∈ C∞(
∧2 T 1,0) be non-degenerate as

a map Λ : T ∗(1,0) → T 1,0. Let φ : T ∗(0,1) → T 1,0 be a vector bundle isomorphism. If Λ

and φ satisfy the following conditions for all l, l1, l2 ∈ C∞(L),
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∂Λ = 0 and [Λ,Λ] = 0

φ(l1 ∧ l2) = (φ(l1)) ∧ l2 + l1 ∧ (φ(l2))

φ([l1, l2]) = [φ(l1), l2] + [l1, φ(l2)]

∂(φ(l))− φ(∂(l)) = [Λ, l],

then there exists a closed two-form B such that (
∧

L, [−,−],∧, ∂) and

(
∧

eBLΛ, [−,−],∧, δB) are a weak mirror pair.

This reduces the problem of finding weak mirror pairs to the problem of finding

compatible pairs. In general, the existence of Λ has studied been studied by Hitchin [9]

and Gualtieri [7]. Such Λ are examples of holomorphic Poisson bi-vector fields.

In practice below, we will start with a canonical choice of Λ and solve for a

compatible φ. The nature of this φ, as well the B and symplectic form, will hopefully

be significant to the problem in question.
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3.6 Additional Calculations

In this section we show that the Maurer-Cartan equation implies that our

deformation above are integrable, and that the deformed differential is a differential.

We restrict our attention to the cases that are most important to this thesis. In this

section L = T 1,0 ⊕ T ∗(0,1) is generalized complex structure defined by an integrable

complex structure, and Λ ∈ C∞(T 1,0∧T 1,0) with ∂Λ = 0 and [Λ,Λ] = 0. First we prove

a useful computational result.

Lemma 18

[Λ,Λ](ξ1
, ξ

2
, ξ

3) = 2ξ
1([Λ(ξ2),Λ(ξ3)])− 2(Λ(ξ1)(Λ(ξ2

, ξ
3))) + c.p.

where the cyclic permutations are in ξ
1
, ξ

2
, ξ

3.

Proof. Look at

[Λ, X1 ∧X2](ξ
1
, ξ

2
, ξ

3)

= −X1 ∧ [Λ, X2](ξ
1
, ξ

2
, ξ

3) + X2 ∧ [Λ, X1](ξ
1
, ξ

2
, ξ

3)

= −ξ
1(X1)[Λ, X2](ξ

2
, ξ

3) + ξ1(X2)[Λ, X1](ξ
2
, ξ

3) + c.p.

= ξ
1(X1)(X2(ξ

2(Λ(ξ3))) + ξ
2([Λ(ξ3), X2])− ξ

3([Λ(ξ2), X2]))

−ξ
1(X2)(X1(ξ

2(Λ(ξ3)))− ξ
2([Λ(ξ3), X1]) + ξ

3([Λ(ξ2), X1])) + c.p.

= (ξ1(X1)X2 − ξ
1(X2)X1)(ξ

2(Λ(ξ3)))

+ξ
2(ξ1(X1)[Λ(ξ3), X2]− ξ

1(X2)[Λ(ξ3), X1])

−ξ
3(ξ1(X1)[Λ(ξ2), X2]− ξ

1(X2)[Λ(ξ2), X1]) + c.p.

= ((X1 ∧X2)(ξ
1))(ξ2(Λ(ξ3)))

+ξ
2([Λ(ξ3), ξ1(X1)X2]− [Λ(ξ3), ξ1(X2)X1])

−ξ
2((Λ(ξ3)(ξ1(X1)))X2 − ((Λ(ξ3))(ξ1(X2))X1))

−ξ
3([Λ(ξ2), ξ1(X1)X2]− [Λ(ξ2), ξ1(X2)X1])

+ξ
3((Λ(ξ2)(ξ1(X1)))X2 − ((Λ(ξ2))(ξ1(X2))X1)) + c.p.
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= ((X1 ∧X2)(ξ
1))(ξ2(Λ(ξ3)))

+ξ
2([Λ(ξ3), (X1 ∧X2)(ξ

1)])− ξ
3([Λ(ξ2), (X1 ∧X2)(ξ

1)])

−(Λ(ξ3)(ξ1(X1)))(ξ
2(X2)) + (Λ(ξ3)(ξ1(X2)))(ξ

2(X1))

+(Λ(ξ2)(ξ1(X1)))(ξ
3(X2))− (Λ(ξ2)(ξ1(X2)))(ξ

3(X1)) + c.p.

Focusing on last two lines shows,

−(Λ(ξ3)(ξ1(X1)))(ξ
2(X2)) + (Λ(ξ3)(ξ1(X2)))(ξ

2(X1))

+(Λ(ξ2)(ξ1(X1)))(ξ
3(X2))− (Λ(ξ2)(ξ1(X2)))(ξ

3(X1)) + c.p.

= −(Λ(ξ3)(ξ1(X1)))(ξ
2(X2)) + (Λ(ξ3)(ξ1(X2)))(ξ

2(X1))

+(Λ(ξ2)(ξ1(X1)))(ξ
3(X2))− (Λ(ξ2)(ξ1(X2)))(ξ

3(X1))

−(Λ(ξ1)(ξ2(X1)))(ξ
3(X2)) + (Λ(ξ1)(ξ2(X2)))(ξ

3(X1))

+(Λ(ξ3)(ξ2(X1)))(ξ
1(X2))− (Λ(ξ3)(ξ2(X2)))(ξ

1(X1))

−(Λ(ξ2)(ξ3(X1)))(ξ
1(X2)) + (Λ(ξ2)(ξ3(X2)))(ξ

1(X1))

+(Λ(ξ1)(ξ3(X1)))(ξ
2(X2))− (Λ(ξ1)(ξ3(X2)))(ξ

2(X1))

= −Λ(ξ1)((X1 ∧X2)(ξ
2
, ξ

3))− Λ(ξ2)((X1 ∧X2)(ξ
3
, ξ

1))

−Λ(ξ3)((X1 ∧X2)(ξ
1
, ξ

2)) = −Λ(ξ1)((X1 ∧X2)(ξ
2
, ξ

3)) + c.p.

Therefore,

[Λ, X1 ∧X2](ξ
1
, ξ

2
, ξ

3) = ((X1 ∧X2)(ξ
1))(ξ2(Λ(ξ3)))

+ξ
2([Λ(ξ3), (X1 ∧X2)(ξ

1)])− ξ
3([Λ(ξ2), (X1 ∧X2)(ξ

1)])

−Λ(ξ1)((X1 ∧X2)(ξ
2
, ξ

3)) + c.p.
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and

[Λ,Λ](ξ1
, ξ

2
, ξ

3) = Λ(ξ1)(Λ(ξ3
, ξ

2)) + ξ
2([Λ(ξ3),Λ(ξ1)])

−ξ
3([Λ(ξ2),Λ(ξ1)])− Λ(ξ1)(Λ(ξ2

, ξ
3)) + c.p.

= −2Λ(ξ1)(Λ(ξ2
, ξ

3)) + ξ
2([Λ(ξ3),Λ(ξ1)])− ξ

3([Λ(ξ2),Λ(ξ1)])

−2Λ(ξ2)(Λ(ξ3
, ξ

1)) + ξ
3([Λ(ξ1),Λ(ξ2)])− ξ

1([Λ(ξ3),Λ(ξ2)])

−2Λ(ξ3)(Λ(ξ1
, ξ

2)) + ξ
1([Λ(ξ2),Λ(ξ3)])− ξ

2([Λ(ξ1),Λ(ξ3)])

= 2ξ
1([Λ(ξ2),Λ(ξ3)])− 2Λ(ξ1)(Λ(ξ2

, ξ
3)) + c.p.

Also, we have the following two formulas,

∂Λ(z, ξ1, ξ2) = z(Λ(ξ1, ξ2))− Λ([z, ξ1], ξ2) + Λ([z, ξ2], ξ1)

∂Λ(z, ξ
1
, ξ

2) = z(Λ(ξ1
, ξ

2))− Λ([z, ξ
1], ξ2) + Λ([z, ξ

2], ξ1)

= −z(Λ(ξ1
, ξ

2))− ξ
1([z, Λξ

2]) + ξ
2([z, Λξ

1])

Proposition 19 If L = T 1,0 ⊕ T ∗(0,1) and ∂Λ = 0 and [Λ,Λ] = 0, then C∞(LΛ) is

closed under the Courant bracket.

Proof. Since LΛ is maximally isotropic, we need to show that

〈[l1 + Λl1, l2 + Λl2], l3 + Λl3〉 = 0 for all l1, l2, l3 ∈ C∞(L). We break this condition in to

all possible cases where li = zi or li = ξ
i. We list the non-trivial cases below.

Case:(l1 = z1, l2 = ξ
2
, l3 = ξ

3)

2〈[z1, ξ
2 + Λξ

2], ξ3 + Λξ
3〉 = ξ

3([z1,Λξ
2]) + [z1, ξ

2](Λξ
3)

= z1(ξ
2(Λξ

3))− ξ
2([z1,Λξ

3]) + ξ
3([z1,Λξ

2])

= −z1(Λ(ξ2
, ξ

3))− ξ
2([z1,Λξ

3]) + ξ
3([z1,Λξ

2])

= ∂Λ(z1, ξ
2
, ξ

3) = 0.
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Case:(l1 = ξ
1
, l2 = ξ

2
, l3 = ξ

3)

2〈[ξ1 + Λξ
1
, ξ

2 + Λξ
2], ξ3 + Λξ

3〉

= ξ
3([Λξ

1
,Λξ

2]) + [Λξ
1
, ξ

2](Λξ
3)− [Λξ

2
, ξ

1](Λξ
3)

= ξ
3([Λξ

1
,Λξ

2]) + Λξ
1(ξ2(Λξ

3))− ξ
2([Λξ

1
,Λξ

3])− 1
2Λξ

3(ξ2(Λξ
1))

−Λξ
2(ξ1(Λξ

3)) + ξ
1([Λξ

2
,Λξ

3]) + 1
2Λξ

3(ξ1(Λξ
2))

= ξ
3([Λξ

1
,Λξ

2])− Λξ
1(Λ(ξ2

, ξ
3)) + ξ

2([Λξ
3
,Λξ

1])

−Λξ
3(Λ(ξ1

, ξ
2))− Λξ

2(Λ(ξ3
, ξ

1)) + ξ
1([Λξ

2
,Λξ

3])

= 1
2 [Λ,Λ](ξ1

, ξ
2
, ξ

3) = 0.

All other cases are trivially satisfied, so LΛ is involutive under the Courant bracket.

Proposition 20 If L = T 1,0 ⊕ T ∗(0,1) and ∂Λ = ∂ + [Λ,−] for Λ ∈ C∞(T 2,0), then the

diagram below commutes, ∧n L
∂Λ−→

∧n+1 L

AΛ ↓ ↓ AΛ∧n LΛ
δ−→

∧n+1 LΛ

. (3.19)

where δ is defined by equation (2.5).

Proof. We prove this by induction. When n = 1, then let l ∈ C∞(L). Note that

AΛ∂Λl(l1 + Λl1, l2 + Λl2)

= (∂l + [Λ, l] + Λ∂l + Λ[Λ, l])(l1 + Λl1, l2 + Λl2)

= ∂l(l1, l2) + [Λ, l](l1, l2) + Λ∂l(Λl1,Λl2) + Λ[Λ, l](Λl1,Λl2)

and

δAΛl(l1 + Λl1, l2 + Λl2)

= δ(l + Λl)(l1 + Λl1, l2 + Λl2)
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Since [Λ, z] ∈ T (2,0) and [Λ, ξ] ∈ T 1,0 ∧ T ∗(0,1), Λ[Λ, l] = 0 for all l ∈ T 1,0 ⊕ T ∗(0,1). So

we need to show that,

∂l(l1, l2) + [Λ, l](l1, l2) + Λ∂l(Λl1,Λl2) = δ(l + Λl)(l1 + Λl1, l2 + Λl2) (3.20)

for all l ∈ C∞(L) and l1, l2 ∈ C∞(L). We examine the cases where l = z or l = ξ, and

li = zi or li = ξi. Also note that Λz = 0 = Λzi and Λ∂l(l1 + Λl1, l2 + Λl2) = 0, due to

type considerations.

Case: (l = z, l1 = z1, l2 = z2)

AΛ∂Λ(z)(z1, z2) = ∂z(z1, z2) + [Λ, z](z1, z2) = 0

δAΛz(z1, z2) = δz(z1, z2) = 2
(
z1〈z, z2〉 − z2〈z, z1〉 − 〈z, [z1, z2]〉

)
= 0

So AΛ∂Λ(z)(z1, z2) = δAΛz(z1, z2).

Case: (l = z, l1 = z1, l2 = ξ2)

AΛ∂Λ(z)(z1, ξ
2 + Λξ2) = ∂z(z1, ξ

2) + [Λ, z](z1, ξ
2) = ∂z(z1, ξ

2)

= z1ξ
2(z)− [z1, ξ

2](z)

δAΛz(z1, ξ
2 + Λξ2) = δz(z1, ξ

2 + Λξ2)

= z1ξ
2(z)− [z1, ξ

2](z)

So AΛ∂Λ(z)(z1, ξ
2 + Λξ2) = δAΛz(z1, ξ

2 + Λξ2).

Case: (l = z, l1 = ξ1, l2 = ξ2)

AΛ∂Λ(z)(ξ1 + Λξ1, ξ2 + Λξ2) = ∂z(ξ1, ξ2) + [Λ, z](ξ1, ξ2)

= z(Λ(ξ1, ξ2))− ξ1([Λ(ξ2), z]) + ξ2([Λ(ξ1), z])
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δAΛz(ξ1 + Λξ1, ξ2 + Λξ2) = δz(ξ1 + Λξ1, ξ2 + Λξ2)

= Λξ1(ξ2(z))− Λξ2(ξ1(z))− [ξ1 + Λξ1, ξ2 + Λξ2]z

= Λξ1(ξ2(z))− Λξ2(ξ1(z))− Λξ1(ξ2(z)) + ξ2([Λξ1, z])

+Λξ2(ξ1(z))− ξ1([Λξ2, z]) + zΛ(ξ1, ξ2)

= ξ2([Λξ1, z])− ξ1([Λξ2, z]) + zΛ(ξ1, ξ2)

So AΛ∂Λ(z)(ξ1 + Λξ1, ξ2 + Λξ2) = δAΛz(ξ1 + Λξ1, ξ2 + Λξ2).

Case: (l = ξ, l1 = z1, l2 = ξ2)

AΛ∂Λ(ξ)(z1, ξ
2 + Λξ2) = ∂ξ(z1, ξ

2) + [Λ, ξ](z1, ξ
2)

= −[Λξ2, ξ](z1) = −Λξ2(ξ(z1)) + ξ([Λξ2, z1])

δAΛξ(z1, ξ
2 + Λξ2) = δ(ξ + Λξ)(z1, ξ

2 + Λξ2)

= −Λξ2(ξ(z1))− ξ([z1,Λξ2])− [z1, ξ
2](Λξ)

= −Λξ2(ξ(z1))− ξ([z1,Λξ2])

So AΛ∂Λ(ξ)(z1, ξ
2 + Λξ2) = δAΛξ(z1, ξ

2 + Λξ2).

Case: (l = ξ, l1 = ξ1, l2 = ξ2)

AΛ∂Λ(ξ)(ξ1 + Λξ1, ξ2 + Λξ2)

= ∂ξ(ξ1, ξ2) + [Λ, ξ](ξ1, ξ2) + Λ∂ξ(Λξ1,Λξ2) = 0

δAΛξ(ξ1 + Λξ1, ξ2 + Λξ2) = δ(ξ + Λξ)(ξ1 + Λξ1, ξ2 + Λξ2)

= Λξ1(ξ(Λξ2) + ξ2(Λξ))− Λξ1(ξ(Λξ2) + ξ2(Λξ))

−2〈ξ + Λξ, [ξ1 + Λξ1, ξ2 + Λξ2]〉 = 0

So AΛ∂Λ(ξ)(ξ1 + Λξ1, ξ2 + Λξ2) = δAΛξ(ξ1 + Λξ1, ξ2 + Λξ2).
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So we have AΛ∂Λ(l) = δAΛl for all l ∈ L = T 1,0⊕T ∗(0,1). This is the base step

for our induction. Assuming AΛ∂Λ(l1 ∧ · · · ∧ ln) = δAΛ(l1 ∧ · · · ∧ ln) for li ∈ L, then,

AΛ∂Λ(l0 ∧ l1 ∧ · · · ∧ ln)

= AΛ((∂Λl0) ∧ l1 ∧ · · · ∧ ln − l0 ∧ ∂Λ(l1 ∧ · · · ∧ ln))

= (AΛ∂Λl0) ∧AΛ(l1 ∧ · · · ∧ ln)− (AΛl0) ∧ (AΛ∂Λ)(l1 ∧ · · · ∧ ln)

= (δAΛl0) ∧AΛ(l1 ∧ · · · ∧ ln)− (AΛl0) ∧ (δAΛ)(l1 ∧ · · · ∧ ln)

= δ((AΛl0) ∧AΛ(l1 ∧ · · · ∧ ln)) = δAΛ(l0 ∧ l1 ∧ · · · ∧ ln)

Therefore diagram (3.19) commutes.
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Chapter 4

Complex Symplectic Algebras

In this chapter, we apply the Theorem 17 to a specific class of examples, com-

plex symplectic algebras. We find a compatible pair and outline the construction of

weak mirror pairs. We also will look at four dimensional examples of complex symplec-

tic algebras. These algebra were studied by Andrada in [1] and Cleyton, Ovando and

Poon in [4].

4.1 Definition

Let g be a real Lie algebra, and let ω be a symplectic form on g. Let V be the

underlying vector space of g. Let γ : g → End(V ) satisfy the following properties,

Torsion-free: γ(x)y − γ(y)x = [x, y],

Symplectic: ω(γ(x)y, z) + ω(y, γ(x)z) = 0,

Flat: γ([x, y]) = γ(x)γ(y)− γ(y)γ(x).

Then γ is a symplectic representation on g. Also, we can view γ as a flat, symplectic

invarient connection on G, a Lie group with Lie algebra g. We use this representation

to define semi-direct product h = g n V , with Lie bracket defined by

[(x, 0), (y, 0)] = ([x, y], 0) for all x, y ∈ g,

[(x, 0), (0, v)] = (0, γ(x)v) for all x ∈ g, v ∈ V.
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On h, we can define a complex structure J defined by

J(x, u) = (−u, x).

This structure is integrable for any g by the torsion-free condition, and so h is a complex

algebra. With this complex structure, the (1,0) vectors are h1,0 = {(x,−ix) : x ∈ g}

and the (1,0) forms are h∗(1,0) = {(β, iβ) : β ∈ g∗}. Also, define

E(x, u) = (u, x).

Then E ◦E = Id, so E is a product structure. It is also integrable since γ is torsion-free.

Also, J ◦ E = −E ◦ J and so h is hypersymplectic under (J,E), as studied by Hitchin

in [8] and Andrada in [1].

Next we define the following two-forms on h,

Ω1((x, u), (y, v)) := −ω(x, v)− ω(u, y),

Ω2((x, u), (y, v)) := ω(x, y)− ω(u, v),

Ω3((x, u), (y, v)) := ω(x, y) + ω(u, v).

Since ω is closed and non-degenerate on g, for i = 1, 2, 3, Ωi : h → h∗ are each non-

degenerate and closed, each Ωi is a symplectic form on h. Let Ωc = Ω1 + iΩ2. Then Ωc

is a closed (2,0) form. Also, Ω3 is a closed (1,1) form. As maps,

Ωc : h1,0 → h∗(1,0) and Ω3 : h1,0 → h∗(0,1)

are non-degenerate. Then J and Ωc form a complex symplectic structure on h.

We introduce one new form as well. Let h = g n V be a complex symplectic

algebra. Let g be a non-degenerate, symmetric bilinear form on V , the underlying vector

space of g. We define the following non-degenerate (1,1) form.

Ω4((x, u), (y, v)) := g(x, v)− g(y, u).
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Lemma 21 Ω4 is closed if and only if

g(γ(x)y, w)− g(γ(y)x,w)− g(x, γ(y)w) + g(y, γ(x)w) = 0 for all x, y, w ∈ g.

Proof.

dΩ4((x, u), (y, v), (z, w))

= −Ω4([(x, u), (y, v)], (z, w))− Ω4([(y, v), (z, w)], (x, u))− Ω4([(z, w), (x, u)], (y, v))

= −Ω4(([x, y], γ(x)v − γ(y)u), (z, w))− Ω4(([y, z], γ(y)w − γ(z)v), (x, u))

−Ω4(([z, x], γ(z)u− γ(x)w), (y, v))

= −g([x, y], w) + g(z, γ(x)v)− g(z, γ(y)u)

−g([y, z], u) + g(x, γ(y)w)− g(x, γ(z)v)

−g([z, x], v) + g(y, γ(z)u)− g(y, γ(x)w)

= −g(γ(x)y, w) + g(γ(y)x,w) + g(x, γ(y)w)− g(y, γ(x)w)

−g(γ(z)x, v) + g(γ(x)z, v) + g(z, γ(x)v)− g(x, γ(z)v)

−g(γ(y)z, u) + g(γ(z)y, u) + g(y, γ(z)u)− g(z, γ(y)u)

where [x, y] = γ(x)y− γ(y)x. Since the last three lines are cyclic permutations

of (x, u), (y, v) and (z, w), if one of these lines is 0, all three equal 0 and therefore

dΩ4 = 0. Conversely, if dΩ4 = 0, set z = u = v = 0. Then the last two lines equal 0,

and so −g(γ(x)y, w) + g(γ(y)x,w) + g(x, γ(y)w)− g(y, γ(x)w) = 0.

We now prove a few computational lemmas, which will be used in solving for

φ.

Lemma 22 Ω3(a,−ia) = Ω4(−ig−1ω(a),−g−1ω(a)) and

Ω3(a, ia) = Ω4(ig−1ω(a),−g−1ω(a)).

Proof. Ω3((a,−ia), (n, in)) = ω(a, n) + ω(−ia, in) = 2ω(a, n) and

Ω4((−ig−1ω(a),−g−1ω(a)), (n, in)) = g(−ig−1ω(a), in)− g(−g−1ω(a), n)

= 2g(g−1ω(a), n) = 2ω(a, n) for all (0,1) vectors (n, in). So

Ω3(a,−ia) = Ω4(−ig−1ω(a),−g−1ω(a)), and the second equality in the lemma is the

conjugate of the first.
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Lemma 23 Ωc(a,−ia) = Ω4(−2g−1ω(a),−2ig−1ω(a)).

Proof. Ωc((a,−ia), (n,−in)) = −ω(a,−in) − ω(−ia, n) + i(ω(a, n) − ω(−ia,−in)) =

4iω(a, n) and also Ω4((−2g−1ω(a),−2ig−1ω(a)), (n,−in))

= g(−2g−1ω(a),−in) − g(−2ig−1ω(a), n) = 4ig(g−1ω(a), n) = 4iω(a, n) for all (1,0)

vectors (n,−in). So Ωc(a,−ia) = Ω4(−2g−1ω(a),−2ig−1ω(a)).

Lemma 24 [(a,−ia), (b, ib)](1,0) = (−γ(b)(a), iγ(b)(a)) and

[(a,−ia), (b, ib)](0,1) = (γ(a)(b), iγ(a)(b))

Proof.

[(a,−ia), (b, ib)] = ([a, b], γ(a)(ib)− γ(b)(−ia))

= (γ(a)(b)− γ(b)(a), iγ(a)(b) + iγ(b)(a))

= (γ(a)(b), iγ(a)(b)) + (−γ(b)(a), iγ(b)(a))

where (−γ(b)(a), iγ(b)(a)) is a (1,0) vector and (γ(a)(b), iγ(a)(b)) is a (0,1) vector.
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4.2 Choice of Λ

Our goal is to build a compatible pair on complex symplectic h, using Ωc, Ω3

and Ω4. Since g is symplectic, it will have even real dimension 2n. V will also have

dimension 2n and so h will have dimension 4n.

We need Λ : h∗(1,0) → h1,0 as part of our compatible pair. We have

Ωc : h1,0 → h∗(1,0) as a non-degenerate map from above. So we set Λ = Ω−1
c .

Proposition 25 The tensor Λ satisfies the following conditions.

1. For any α, β ∈ h∗(1,0), Λ(α, β) = −Ωc(Ω−1
c (α),Ω−1

c (β)).

2. Λ ∈ ∧2h1,0.

3. [Λ,Λ] = 0.

4. ∂Λ = 0.

Proof. For A,B ∈ h1,0 we set α = Ωc(A) and β = Ωc(B). Then for part 1 we

see that Λ(α, β) = Λ(α)(β) = ιA(β) = ιAΩc(B) = Ωc(B,A)

= Ωc(Ω−1
c (β),Ω−1

c (α)) = −Ωc(Ω−1
c (α),Ω−1

c (β)). For part 2, note that Λ is antisymmet-

ric by the antisymmetry of Ωc, and since Λ(α) = 0, Λ ∈ ∧2h1,0.

For part 3, first note that for any V1, V2 ∈ h1,0

[Λ, V1 ∧ V2](α, β, γ) = ([Λ, V1] ∧ V2 − [Λ, V2] ∧ V1)(α, β, γ)

= [Λ, V1](α, β)γ(V2) + [Λ, V1](β, γ)α(V2) + [Λ, V1](γ, α)β(V2)

−[Λ, V2](α, β)γ(V1)− [Λ, V2](β, γ)α(V1) + [Λ, V2](γ, α)β(V1)
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which by Lemma 2.8

= −α([Λ(β), V1])γ(V2) + β([Λ(α), V1])γ(V2)− β([Λ(γ), V1])α(V2)

+γ([Λ(β), V1])α(V2)− γ([Λ(α), V1])β(V2) + α([Λ(γ), V1])β(V2)

+α([Λ(β), V2])γ(V1)− β([Λ(α), V2])γ(V1) + β([Λ(γ), V2])α(V1)

−γ([Λ(β), V2])α(V1) + γ([Λ(α), V2])β(V1)− α([Λ(γ), V2])β(V1)

= (LΛ(β)α)(V1)γ(V2)− (LΛ(α)β)(V1)γ(V2) + (LΛ(γ)β)(V1)α(V2)

−(LΛ(β)γ)(V1)α(V2) + (LΛ(α)γ)(V1)β(V2)− (LΛ(γ)α)(V1)β(V2)

−(LΛ(β)α)(V2)γ(V1) + (LΛ(α)β)(V2)γ(V1)− (LΛ(γ)β)(V2)α(V1)

+(LΛ(β)γ)(V2)α(V1)− (LΛ(α)γ)(V2)β(V1) + (LΛ(γ)α)(V2)β(V1)

= (V1 ∧ V2)(LΛ(β)α, γ)− (V1 ∧ V2)(LΛ(α)β, γ) + (V1 ∧ V2)(LΛ(γ)β, α)

−(V1 ∧ V2)(LΛ(β)γ, α) + (V1 ∧ V2)(LΛ(α)γ, β)− (V1 ∧ V2)(LΛ(γ)α, β)

Where we use the fact that

α([Λ(β), V1]) = LΛ(β)(α(V1))− (LΛ(β)α)(V1) = −(LΛ(β)α)(V1) (4.1)

By the linearity of the bracket, we see that,

[Λ,Λ](α, β, γ) = Λ(LΛ(β)α, γ)− Λ(LΛ(α)β, γ) + Λ(LΛ(γ)β, α)

−Λ(LΛ(β)γ, α) + Λ(LΛ(α)γ, β)− Λ(LΛ(γ)α, β)

= −Ωc(Ω−1
c (LΛ(β)α),Ω−1

c (γ)) + Ωc(Ω−1
c (LΛ(α)β),Ω−1

c (γ))

−Ωc(Ω−1
c (LΛ(γ)β),Ω−1

c (α)) + Ωc(Ω−1
c (LΛ(β)γ),Ω−1

c (α))

−Ωc(Ω−1
c (LΛ(α)γ),Ω−1

c (β)) + Ωc(Ω−1
c (LΛ(γ)α),Ω−1

c (β))

= Ωc(Ω−1
c (LΛ(α)β − LΛ(β)α),Ω−1

c (γ)) + Ωc(Ω−1
c (LΛ(β)γ − LΛ(γ)β),Ω−1

c (α))

+Ωc(Ω−1
c (LΛ(γ)α− LΛ(α)γ),Ω−1

c (β))
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By (4.1),

(LAβ − LBα)C = α([Λ(β), C])− β([Λ(α), C]) = Ωc(A, [B,C])− Ωc(B, [A,C])

= −Ωc([B,C], A)− Ωc([C,A], B) = Ωc([A,B], C) = Ωc([Λ(α),Λ(β)], C)

since dΩc(A,B, C) = 0. Therefore,

Ω−1
c (LΛ(α)β − LΛ(β)α) = [Λ(α),Λ(β)] (4.2)

and so,

[Λ,Λ](α, β, γ)

= Ωc([Λ(α),Λ(β)],Λ(γ)) + Ωc([Λ(β),Λ(γ)],Λ(α)) + Ωc([Λ(γ),Λ(α)],Λ(β))

= dΩc(Λ(α),Λ(β),Λ(γ)) = 0

For part 4, first we note that [X,α]Y = −α([X,Y ]) = −Ωc(A, [X,Y ])

= −Ωc([Y, A], X)− Ωc([A,X], Y ) = Ωc([X,A], Y ) where Ωc([Y, A], X) = 0 since Ωc is a

(2,0) form. So Λ([X,α]) = [X,Λ(α)].

Also since Λ ∈ h1,0 ∧ h1,0, ∂Λ ∈ h∗0,1 ∧ h1,0 ∧ h1,0 so we consider

∂Λ(X,α, β) = −Λ([X,α], β)− Λ([α, β], X)− Λ([β, X], α)

= Λ([X,β], α)− Λ([X,α], β) = β([Λ(α), X])− α([Λ(β), X])

= (LΛ(α)β − LΛ(β)α)(X) = Ωc([Λ(α),Λ(β)], X) = 0.

So Λ is a valid choice for our compatible pair. Let L = h1,0 ⊕ h∗(0,1). Then the

type of the generalized complex structure L is 2n. Also, LΛ is a generalized complex

structure, since ∂Λ + 1
2 [Λ,Λ] = 0. Since Ωc is non-degenerate, Λ is non-degenerate. So

the type of LΛ is 0. Λ gives us the kind of deformation we want. Now our goal is to find

a compatible φ and use Theorem 17.
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4.3 Choice of φ

Given g as above with dΩ4 = 0, let φ = λΩ−1
3 + µΩ−1

4 . We seek λ and µ such

that,

φ([l1, l1]) = [φl1, l2] + [l1, φl2] and (4.3)

∂φl − φ∂l = [Λ, l], (4.4)

for all l, l1, l2 ∈ L = h1,0 ⊕ h∗(0,1). The first equation is linear, so we can set φ =

cΩ−1
3 + Ω−1

4 where c = λ
µ , if µ 6= 0.

If l1, l2 ∈ h1,0, equation (4.3) is trivially satisfied.

If l1 = A = (a,−ia) ∈ h(1,0) and l2 = β ∈ h∗(0,1), equation (4.3) reduces to

φ([A, β]) = [A,φβ]. If β = Ω3(b,−ib), then β = Ω4(−ig−1ω(b),−g−1ω(b)), by lemma

(22). Since Ω−1
3 ([A, β]), Ω−1

4 ([A, β]), [A, Ω−1
3 β] and [A,Ω−1

4 β] are all (1,0) vectors, we

contract with a (1,0) form η = Ω3(n, in) = Ω4(ig−1ω(n),−g−1ω(n)). Then equation

(4.3) becomes,

0 = η(φ([A, β])− [A,φβ])

= cη(Ω−1
3 ([A, β])) + η(Ω−1

4 ([A, β]))− cη([A,Ω−1
3 β])− η([A,Ω−1

4 β])

= cΩ3((n, in),Ω−1
3 ([A, β])) + Ω4((ig−1ω(n),−g−1ω(n)),Ω−1

4 ([A, β]))

−cΩ3((n, in), [(a,−ia), (b,−ib)])

−Ω4((ig−1ω(n),−g−1ω(n)), [(a,−ia), (−ig−1ω(b),−g−1ω(b))])

= −c[A, β](n, in)− [A, β](ig−1ω(n),−g−1ω(n))− cΩ3((n, in), ([a, b],−i[a, b]))

−Ω4((ig−1ω(n),−g−1ω(n)), (−i[a, g−1ω(b)],−[a, g−1ω(b)]))
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= cβ((γ(a)n, iγ(a)n)) + β((iγ(a)g−1ω(n),−γ(a)g−1ω(n)))

−cΩ3((n, in), ([a, b],−i[a, b]))

−Ω4((ig−1ω(n),−g−1ω(n)), (−i[a, g−1ω(b)],−[a, g−1ω(b)]))

= cΩ3((b,−ib), (γ(a)n, iγ(a)n))

+Ω4((−ig−1ω(b),−g−1ω(b)), (iγ(a)g−1ω(n),−γ(a)g−1ω(n)))

−cΩ3((n, in), ([a, b],−i[a, b]))

−Ω4((ig−1ω(n),−g−1ω(n)), (−i[a, g−1ω(b)],−[a, g−1ω(b)]))

Using the definitions for Ω3 and Ω4,

0 = 2cω(b, γ(a)n) + 2ig(g−1ω(b), γ(a)g−1ω(n))

−2cω(n, [a, b]) + 2ig(g−1ω(n), [a, g−1ω(b)])

= 2c(−ω(γ(a)b, n) + ω(γ(a)b− γ(b)a, n)) + 2ig(g−1ω(b), γ(a)g−1ω(n))

+2ig(g−1ω(n), γ(a)g−1ω(b))− 2ig(g−1ω(n), γ(g−1ω(b))a)

= −2cω(γ(b)a, n) + 2ig(a, γ(g−1ω(b))g−1ω(n))

where the last equality is by Lemma 21. Then by equation (4.1),

0 = −2cω(γ(b)n, a) + 2ig(γ(g−1ω(b))g−1ω(n), a).

Since this must hold for and a, b, n ∈ g,

cg−1ω(γ(b)n) = iγ(g−1ω(b))(g−1ω(n)) (4.5)

If l1 = α ∈ h∗(0,1) and l2 = β ∈ h∗(0,1), equation (4.3) is 0 = [φα, β]+ [α, φβ]. If

α = Ω3(a,−ia) and β = Ω3(b,−ib), then by Lemma (22) α = Ω4(−ig−1ω(a),−g−1ω(a))

and β = Ω4(−ig−1ω(b),−g−1ω(b)). Since [φα, β]and [α, φβ] are (0,1) forms, we contract

with a (0,1) vector (n, in).
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0 = c[Ω−1
3 α, β](n, in) + [Ω−1

4 α, β](n, in)− c[Ω−1
3 β, α](n, in)− [Ω−1

4 β, α](n, in)

= c[(a,−ia), β](n, in) + [(−ig−1ω(a),−g−1ω(a)), β](n, in)

−c[(b,−ib), α](n, in)− [(−ig−1ω(b),−g−1ω(b)), α](n, in)

= −cβ([(a,−ia), (n, in)](0,1))− β([(−ig−1ω(a),−g−1ω(a)), (n, in)](0,1))

+cα([(b,−ib), (n, in)](0,1)) + α([(−ig−1ω(b),−g−1ω(b)), (n, in)](0,1))

= −cΩ3((b,−ib), (γ(a)n, iγ(a)n)) + cΩ3((a,−ia), (γ(b)n, iγ(b)n))

−Ω4((−ig−1ω(b),−g−1ω(b)), (−iγ(g−1ω(a))n, γ(g−1ω(a)n)))

+Ω4((−ig−1ω(a),−g−1ω(a)), (−iγ(g−1ω(b))n, γ(g−1ω(b))n))

Using the definition for Ω3 and Ω4, along with Lemma 21 and equation (4.1) yields,

0 = −2c(ω(b, γ(a)n)− ω(a, γ(b)n))

+2i(g(g−1ω(b), γ(g−1ω(a))n)− g(g−1ω(a), γ(g−1ω(b))n))

= 2c(ω(γ(a)b, n)− ω(γ(b)a, n))

+2i(g(γ(g−1ω(b))(g−1ω(a)), n)− g(γ(g−1ω(a))(g−1ω(b)), n))

= 2cω([a, b], n)− 2ig([g−1ω(a), g−1ω(b)], n)

Since this must hold for all a, b, n ∈ g,

cg−1ω([a, b]) = i[g−1ω(a), g−1ω(b)] (4.6)

However, this is implied by the previous condition, equation (4.5), so we have the fol-

lowing proposition.
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Proposition 26 If g is an invariant non-degenerate symmetric form on g and

Ω4((x, u), (y, v)) = g(x, v)− g(y, u) is closed, and if there is a c ∈ C such that

cg−1ω(γ(a)b) = iγ(g−1ω(a))(g−1ω(b)) for all a, b ∈ g, then

φ = cµΩ−1
3 + µΩ−1

4 satisfies φ([l1, l2]) = [φ(l1), l2] + [l1, φ(l2)] for all

l1, l2 ∈ h(1,0) ⊕ h∗(0,1) for any µ ∈ C.

Now we seek conditions on φ = cµΩ−1
3 +µΩ−1

4 so that ∂φl−φ∂l = [Λ, l] where

l ∈ h(1,0) ⊕ h∗(0,1). With this φ equation (4.4) becomes,

∂φl − φ∂l = [Λ, l]

cµ∂Ω−1
3 (l) + µ∂Ω−1

4 (l)− cµΩ−1
3 ∂(l)− µΩ−1

4 ∂(l) = [Λ, l]

cµ(∂Ω−1
3 (l)− Ω−1

3 ∂(l)) + µ(∂Ω−1
4 (l)− Ω−1

4 ∂(l)) = [Λ, l]

When l = z ∈ h1,0, ∂Ω−1
3 (z) = ∂Ω−1

4 (z) = 0. The other parts of the equation are (2, 0)

bivectors, so we contract with α, β ∈ h∗(1,0), with

α = Ωc(a,−ia) = Ω4(−2g−1ω(a),−2ig−1ω(a)) and β = Ωc(b,−ib)

= Ω4(−2g−1ω(b),−2ig−1ω(b)). Equation (4.4) reduces to,

cµ(−Ω−1
3 ∂(z)) + µ(−Ω−1

4 ∂(z))(α, β) = [Λ, z](α, β) (4.7)

Then, by Lemma 13, the right hand side of (4.7) is

[Λ, z](α, β) = −α([Λ(β), z]) + β([Λ(α), z]) = −α([B, z]) + β([A, z])

= −Ωc(A, [B, z]) + Ωc(B, [A, z]) = Ωc(z, [A,B])

since dΩc(A,B, z) = 0. Letting A = (a,−ia) and B = (b,−ib) and

z = (x,−ix), we get
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[Λ, z](α, β) = Ωc(z, [A,B]) = Ωc((x,−ix), [(a,−ia), (b,−ib)])

= Ωc((x,−ix), [a, b]− iγ(a)b + iγ(b)a) = Ωc((x,−ix), ([a, b],−i[a, b]))

= Ω1((x,−ix), ([a, b],−i[a, b])) + iΩ2((x,−ix), ([a, b],−i[a, b]))

= −ω(x,−i[a, b])− ω(−ix, [a, b]) + iω(x, [a, b])− iω(−ix,−i[a, b])

= 4iω(x, [a, b])

Therefore,

[Λ, z](α, β) = 4iω(x, [a, b]) (4.8)

For each part of left hand side of equation (4.7), we use the differential formula

(2.19) with basis elements αj = (ej ,−iej) and zj = 1
2(ej , iej), with basis elements ej ∈ g,

ej ∈ g∗ and ei(ej) = δi
j . The the first term in the left hand side of equation (4.7) is,

−Ω−1
3 ∂z(α, β) =

∑
[z, zj ]1,0 ∧ Ω−1

3 (αj)(β, α)

=
∑

(β([z, zj ])α(Ω−1
3 (αj))− α([z, zj ])β(Ω−1

3 (αj)))

=
∑

(β([z, zj ])Ω3(Ω−1
3 (α),Ω−1

3 (αj))− α([z, zj ])Ω3(Ω−1
3 (β),Ω−1

3 (αj)))

=
∑

(β([(x,−ix), 1
2(ej , iej)])(−4iej(a))− α([(x,−ix), 1

2(ej , iej)])(−4iej(b)))

= −2i
∑

(β([(x,−ix), (ej(a)ej , ie
j(a)ej)])− α([(x,−ix), (ej(b)ej , ie

j(b)ej)]))

= −2i(β([(x,−ix), (a, ia)])− α([(x,−ix), (b, ib)]))

= −2i(β([x, a], iγ(x)a + iγ(a)x)− α([x, b], iγ(x)b + iγ(b)x))

= −2i(Ωc((b,−ib), ([x, a], iγ(x)a + iγ(a)x))− Ωc((a,−ia), ([x, b], iγ(x)b + iγ(b)x)))
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= −2i(−ω(b, iγ(x)a + iγ(a)x)− ω(−ib, [x, a]) + iω(b, [x, a])

−iω(−ib, iγ(x)a + iγ(a)x) + ω(a, iγ(x)b + iγ(b)x)

+ω(−ia, [x, b])− iω(a, [x, b]) + iω(−ia, iγ(x)b + iγ(b)x))

= −4(ω(b, γ(x)a + γ(a)x)− ω(b, [x, a])− ω(a, γ(x)b + γ(b)x) + ω(a, [x, b]))

= −8(ω(b, γ(a)x)− ω(a, γ(b)x))

= 8(ω(γ(a)b, x)− ω(γ(b)a, x)) = 8(ω(γ(a)b− γ(b)a, x)) = 8ω([a, b], x)

After noting that ω(b, γ(a)x) = −ω(γ(a)b, x), since γ is symplectic. So,

−Ω−1
3 ∂z(α, β) = −8ω(x, [a, b]) (4.9)

The second term in the left hand side of equation (4.7) is,

−Ω−1
4 ∂(z)(α, β) = −Ω−1

4

∑
([z, zj ] ∧ αj)(α, β) = −

∑
([z, zj ] ∧ Ω−1

4 (αj))(α, β)

= −
∑

(α([z, zj ])β(Ω−1
4 (αj))− β([z, zj ])α((Ω−1

4 (αj))))

=
∑

(α([z, zj ](1,0))Ω4(Ω−1
4 (αj), (−2g−1ω(b),−2ig−1ω(b)))

−β([z, zj ](1,0))Ω4(Ω−1
4 (αj), (−2g−1ω(a),−2ig−1ω(a))))

=
∑

(α(1
2(−γ(ej)x, iγ(ej)x))ej(−4g−1ω(b))

−β(1
2(−γ(ej)x, iγ(ej)x))ej(−4g−1ω(a)))

= −2(α((−γ(g−1ω(b))x, iγ(g−1ω(b))x))− β((−γ(g−1ω(a))x, iγ(g−1ω(a))x)))

= 2(Ω4((−2g−1ω(a),−2ig−1ω(a)), (γ(g−1ω(b))x,−iγ(g−1ω(b))x))

−Ω4((−2g−1ω(b),−2ig−1ω(b)), (γ(g−1ω(a))x,−iγ(g−1ω(a))x)))

= −4(−2ig(g−1ω(a), γ(g−1ω(b))x) + 2ig(g−1ω(b), γ(g−1ω(a))x))

Now, using Lemma 21 and equation (4.5), we see this equals

= 8i(g(γ(g−1ω(a))(g−1ω(b)), x)− g(γ(g−1ω(b))(g−1ω(a)), x))

= 8ig([g−1ω(a), g−1ω(b)], x) = 8cg(g−1ω([a, b], x)) = −8cω(x, [a, b])
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This means,

−Ω−1
4 ∂(z)(α, β) = −8cω(x, [a, b]) (4.10)

So, using equations (4.8), (4.9) and (4.10), equation (4.7) becomes,

cµ(−Ω−1
3 ∂(z)(α, β)) + µ(−Ω−1

4 ∂(z)(α, β)) = [Λ, z](α, β)

−16cµω(x, [a, b]) = 4iω(x, [a, b])

−4cµω(x, [a, b]) = iω(x, [a, b])

This will be satisfied when cµ = λ = − i
4 .

When l = α ∈ h∗(0,1), equation (4.4) becomes

cµ(∂Ω−1
3 (α)− Ω−1

3 ∂(α)) + µ(∂Ω−1
4 (α)− Ω−1

4 ∂(α)) = [Λ, α]. (4.11)

Each part is in h1,0 ∧ h∗(0,1), so we evaluate on a (1,0) form β and a (0,1) vector z. By

Lemma 4,

[Λ, α](β, z) = −β([Λ(z), α]) + z([Λ(β), α])

= z([Λ(β), α]) = dα(Λ(β), z) = −α([Λ(β), z])

We set α = Ω3(a,−ia) = (ω(a),−iω(a)) = Ω4(−ig−1ω(a),−g−1ω(a)), β = Ωc(b,−ib)

= 2i(ω(b), iω(b)) so Λ(β) = Ω−1
c (β) = (b,−ib) and Ω−1

3 β = 2i(b, ib) = 2iB̄, where

B̄ = (b, ib). Then β = Ω4(−2g−1ω(b),−2ig−1ω(b)). Also we set z = (x, ix). So right

hand side of equation (4.11) becomes,

[Λ, α](β, z) = −α([Λ(β), z]) = −(ω(a),−iω(a))([(b,−ib), (x, ix)])

= −(ω(a),−iω(a))([b, x], iγ(b)x + iγ(x)b) = −2ω(a, γ(b)x)

This gives,

[Λ, α](β, z) = −2ω(a, γ(b)x) (4.12)
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The left hand side of equation (4.11) has four parts. We will examine each of

them.

∂Ω−1
3 (α)(β, z) = −Ω−1

3 (α)([β, z]) = −Ω−1
3 (α)([β, z]) = dβ((x, ix), (a,−ia))

= −β([(x, ix), (a,−ia)]) = −2i(ω(b), iω(b))([x, a],−iγ(x)a− iγ(a)x)

= −2i(ω(b, [x, a]) + iω(b,−iγ(x)a− iγ(a)x)) = −4iω(b, γ(x)a)

So we have,

∂Ω−1
3 (α)(β, z) = −4iω(b, γ(x)a) (4.13)

For ∂Ω−1
4 (α), we have,

∂Ω−1
4 (α)(β, z) = −[β, z](Ω−1

4 (α)) = β([Ω−1
4 (α), z](1,0))

= β([(−ig−1ω(a),−g−1ω(a)), (x, ix)](1,0))

= Ω4((−2g−1ω(b),−2ig−1ω(b)), (iγ(x)(g−1ω(a)), γ(x)(g−1ω(a))))

= −4g(g−1ω(b), γ(x)(g−1ω(a))).

So we have,

∂Ω−1
4 (α)(β, z) = −4g(g−1ω(b), γ(x)(g−1ω(a))). (4.14)

For the other two parts, we note that ∂α is a (0,2) form, so it is a sum of terms

of the form θ1 ∧ θ2 where θ1 and θ2 are (0,1) forms. As before, for i = 3, 4, we extend

Ω−1
i :

∧2 L →
∧2 L by Ω−1

i (l1 ∧ l2) = (Ω−1
i (l1))∧ l2 + l1 ∧ (Ω−1

i (l2)). Since Ω−1
3 and Ω−1

4

are linear, we examine −Ω−1
i (θ1 ∧ θ2)(β, z).

−Ω−1
3 (θ1 ∧ θ2)(β, z) = (−Ω−1

3 (θ1) ∧ θ2 − θ1 ∧ Ω−1
3 (θ2))(β, z)

= −β(Ω−1
3 (θ1))θ2(z) + θ1(z)β(Ω−1

3 (θ2)) = −β(Ω−1
3 (θ1))θ2(z) + β(Ω−1

3 (θ2))θ1(z)

= −Ω3(2iB̄,Ω−1
3 (θ1))θ2(z) + Ω3(2iB̄,Ω−1

3 (θ2))θ1(z)

= (θ1)(2iB)θ2(z)− (θ2)(2iB)θ1(z) = (θ1 ∧ θ2)(2iB̄, z) = (θ1 ∧ θ2)(Ω−1
3 β, z).
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So,

−Ω−1
3 (∂α)(β, z) = (∂α)(Ω−1

3 β, z). (4.15)

Also,

−Ω−1
4 (θ1 ∧ θ2)(β, z) = (−Ω−1

4 (θ1) ∧ θ2 − θ1 ∧ Ω−1
4 (θ2))(β, z)

= −β(Ω−1
4 (θ1))θ2(z) + θ1(z)β(Ω−1

4 (θ2)) = −β(Ω−1
4 (θ1))θ2(z) + β(Ω−1

4 (θ2))θ1(z)

= −Ω4(−2g−1ω(b),−2ig−1ω(b))(Ω−1
4 (θ1))θ2(z)

+Ω4(−2g−1ω(b),−2ig−1ω(b))(Ω−1
4 (θ2))θ1(z)

= θ1((−2g−1ω(b),−2ig−1ω(b)))θ2(z)− θ2((−2g−1ω(b),−2ig−1ω(b)))θ1(z)

= (θ1 ∧ θ2)(Ω−1
4 β, z).

So,

−Ω−1
4 (∂α)(β, z) = (∂α)(Ω−1

4 β, z). (4.16)

Using equation (4.15) shows,

−Ω−1
3 (∂α)(β, z) = (∂α)(Ω−1

3 β, z) = −α([Ω−1
3 β, z]) = −α([2i(b, ib), (x, ix)])

= −2i(ω(a),−iω(a))([b, x], i[b, x]) = −4iω(a, [b, x]).

Yielding,

−Ω−1
3 (∂α)(β, z) = −4iω(a, [b, x]). (4.17)

Also, using equation (4.16) yields,

−Ω−1
4 ∂(α)(β, z) = ∂α(Ω−1

4 β, z) = ∂α((−2g−1ω(b),−2ig−1ω(b)), (x, ix))

= −α([(−2g−1ω(b),−2ig−1ω(b)), (x, ix)])

= 2Ω4((−ig−1ω(a),−g−1ω(a)), ([g−1ω(b), x], i[g−1ω(b), x]))

= 4g(g−1ω(a), [g−1ω(b), x])

So,

−Ω−1
4 ∂(α)(β, z) = 4g(g−1ω(a), [g−1ω(b), x]). (4.18)
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Using equations (4.13) and (4.17) yields,

∂Ω−1
3 (α)(β, z)− Ω−1

3 ∂(α)(β, z) = −4iω(b, γ(x)a)− 4iω(a, [b, x])

= −4iω(b, γ(x)a)− 4iω(a, γ(b)x) + 4iω(a, γ(x)b)

Using equations (4.14) and (4.18), as well as lemma (21) (with y = g−1ω(b),

w = g−1ω(a) and x = x), and equation (4.5) yields,

∂Ω−1
4 (α)(β, z)− Ω−1

4 ∂(α)(β, z)

= −4g(g−1ω(b), γ(x)(g−1ω(a))) + 4g(g−1ω(a), [g−1ω(b), x])

= −4(g(g−1ω(b), γ(x)(g−1ω(a)))− g(g−1ω(a), γ(g−1ω(b))x)

+g(g−1ω(a), γ(x)g−1ω(b)))

= −4g(x, γ(g−1ω(b))g−1ω(a)) = −4g(x,−icg−1ω(γ(b)a))

= 4ic(g(g−1ω(γ(b)a)))(x) = 4icω(γ(b)a, x)

Combining these results with with equation (4.12), as well as the property that γ is

symplectic, in equation (4.11) yields,

∂φα(β, z)− φ∂α(β, z) = [Λ, α](β, z)

cµ(∂Ω−1
3 (α)− Ω−1

3 ∂(α))(β, z) + µ(∂Ω−1
4 (α)− Ω−1

4 ∂(α))(β, z) = [Λ, α](β, z)

−4icµω(b, γ(x)a)− 4icµω(a, γ(b)x) + 4icµω(a, γ(x)b) + 4icµω(γ(b)a, x)

= −2ω(a, γ(b)x)

−4icµω(a, γ(x)b)− 4icµω(a, γ(b)x) + 4icµω(a, γ(x)b)− 4icµω(a, γ(b)x)

= −2ω(a, γ(b)x)

4icµω(a, γ(b)x) = ω(a, γ(b)x)

This will be satisfied when cµ = λ = − i
4 , just as in the case where l = z. Combining

this with Proposition 26 gives the following proposition.
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Proposition 27 If g is an invariant, non-degenerate, symmetric bi-linear form on g

and

Ω4((x, u), (y, v)) = g(x, v)− g(y, u) is closed, and if there is a c ∈ C such that

cg−1ω(γ(a)b) = iγ(g−1ω(a))(g−1ω(b)) for all a, b ∈ g, then

φ = − i
4Ω−1

3 − i
4cΩ

−1
4 satisfies φ([l1, l2]) = [φ(l1), l2] + [l1, φ(l2)] and

∂φ(l)− φ∂(l) = [Λ, l] for all l, l1, l2 ∈ h(1,0) ⊕ h∗(0,1).
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4.4 Weak Mirror Pair

Let φ = − i
4Ω−1

3 − i
4cΩ

−1
4 for some c ∈ C. If we define the convention

Ω−1
i (l1∧l2) = Ω−1

i (l1)∧l2+l1∧Ω−1
i (l2), then φ(l1∧l2) = φ(l1)∧l2+l1∧φ(l2). Combining

propositions (25) and (27) yields the following proposition.

Proposition 28 If g is a symmetric bi-linear form on g and

Ω4((x, u), (y, v)) = g(x, v)− g(y, u) is closed, and if there is a c ∈ C such that

cg−1ω(γ(a)b) = iγ(g−1ω(a))(g−1ω(b)) for all a, b ∈ g, then Λ = Ω−1
c and

φ = − i
4Ω−1

3 − i
4cΩ

−1
4 form a compatible pair.

Since we have a compatible pair, we should have a weak mirror pair. Now we

examine what that pair is. If L = h1,0 ⊕ h∗(0,1), then LΛ = h1,0 ⊕ {ξ + Λ(ξ)|ξ ∈ h∗(0,1)},

where Λ = Ω−1
c . Since LΛ is a generalized complex structure of type 0, LΛ = eBLσ

for some closed two-form B and symplectic form σ. Lσ = {X − iσ(X)|X ∈ h}, so

eBLσ = {X − iσ(X) + B(X)|X ∈ h}. For an arbitrary X ∈ h1,0 and Y ∈ h0,1,

the corresponding element in eBLσ is X + Y − iσ(X) − iσ(Y ) + B(X) + B(Y ). The

corresponding elements in LΛ is X + Ωc(Y ) + Λ(Ωc(Y )) = X + Y + Ωc(Y ). Since Ω is

a (0,2) form, Ωc(Y ) = Ωc(X + Y ) = Ω1(X) + Ω1(Y )− iΩ2(X)− iΩ2(Y ). So,

X + Y − iσ(X)− iσ(Y ) + B(X) + B(Y ) = X + Y + Ω1(X) + Ω1(Y )− iΩ2(X)− iΩ2(Y ).

Therefore, σ = Ω2 and B = Ω1, and we have the following theorem.

Theorem 29 Let (g, ω) be a symplectic Lie algebra and let h = g n V be a complex

symplectic algebra with Ω1 and Ω2 defined as above. If g is a symmetric bi-linear form

on g and Ω4((x, u), (y, v)) = g(x, v) − g(y, u) is closed, and if there is a c ∈ C such

that cg−1ω(γ(a)b) = iγ(g−1ω(a))(g−1ω(b)) for all a, b ∈ g, then the DGA’s of L =

h1,0 ⊕ h∗(0,1) and eΩ1LΩ2 form a weak mirror pair.
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4.5 Examples

There are 3 non trivial examples of 4 dimensional complex symplectic algebras

on g n V , where g = 〈e1, e2〉 and V = 〈v1, v2〉. These are given by Clayton, Ovando and

Poon in [4], based off of Andrada’s work in [1]. In these examples

Ω1 = −e1∧v2+e2∧v1 = 1
2(z1∧z2−z1∧z2) and Ω2 = e1∧e2−v1∧v2 = 1

2(z1∧z2+z1∧z2)

where z1 = 1
2(e1 − iv1) and z2 = 1

2(e2 − iv2) are the (1,0) vectors and z1 = e1 + iv1 and

z2 = e2 + iv2 are the (1,0) forms. This means that Ωc = iz1 ∧ z2 and so Λ = iz1 ∧ z2.

Also Ω3 = e1 ∧ e2 + v1 ∧ v2 = 1
2(z1 ∧ z2 + z1 ∧ z2) and so Ω−1

3 = 2(z2 ∧ z1 + z2 ∧ z1).

Ω−1
3 (z1) = −2z2 and Ω−1

3 (z2) = 2z1.

In these examples we choose g such that g(ei, ej) = 1 is i 6= j and g(ei, ei) = 0.

So g−1ω(e1) = e1 and g−1ω(e2) = −e2. With this g, Ω4 = e1 ∧ v2 − v1 ∧ e2

= i
2(z1∧z2−z1∧z2) and so Ω−1

4 = 2i(z2∧z1−z2∧z1). Therefore Ω−1
4 (z2) = 0 = Ω−1

4 (z2),

Ω−1
4 (z1) = −2iz2 and Ω−1

4 (z2) = −2iz1
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Example 1: The structure equations for the first algebra are:

[e1, v1] = v2

When translated into complex coordinates, this yields,

[z1, z
2] = −1

2z1, ∂z1 = 1
2z1 ∧ z2

We can see that ∂Λ = 0 and [Λ,Λ] = 0. We set φ = λΩ−1
3 + µΩ−1

4 , where µ = λ
c = − i

4c .

The representation is γ is given by:

γ(e1)v1 = v2

We check if there is a c ∈ C such that cg−1ω(γ(a)b) = iγ(g−1ω(a))(g−1ω(b)). When

a = e1, b = v1:

cg−1ω(γ(e1)v1) = cg−1ω(v2) = −cv2

= iγ(g−1ω(e1))(g−1ω(v1)) = iγ(e1)(v1) = iv2

When a = e1, b = v2:

cg−1ω(γ(e1)v2) = cg−1ω(0) = c0

= iγ(g−1ω(e1))(g−1ω(v2)) = iγ(e1)(v2) = i0

When a = e2, b = v1:

cg−1ω(γ(e2)v1) = cg−1ω(0) = c0

= iγ(g−1ω(e2))(g−1ω(v1)) = iγ(−e2)(v1) = i0
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When a = e2, b = v2:

cg−1ω(γ(e2)v2) = cg−1ω(0) = c0

= iγ(g−1ω(e2))(g−1ω(v2)) = iγ(−e2)(−v2) = i0

So all of these equations are satisfied when c = −i. Therefore µ = 1
4 and

φ = λΩ−1
3 + µΩ−1

4 = − i
42(z2 ∧ z1 + z2 ∧ z1) + 1

42i(z2 ∧ z1 − z2 ∧ z1) = −iz2 ∧ z1. Λ and

this φ are a compatible pair for this algebra.
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Example 2: The structure equations for the second algebra are:

[e1, e2] = e2, [e1, v1] = −v1, [e1, v2] = v2

When translated into complex coordinates, this yields,

[z1, z2] = 1
2z2, [z1, z

1] = 1
2z1, [z1, z

2] = −1
2z2

∂z1 = −1
2z1 ∧ z1, ∂z2 = 1

2z1 ∧ z2, ∂z2 = −1
2z1 ∧ z2

We can see that ∂Λ = i∂z1 ∧ z2 = i(∂z1) ∧ z2 − iz1 ∧ (∂z2)

= − i
2z1∧z1∧z2− i

2z1∧z1∧z2 = 0 and [Λ,Λ] = [iz1∧z2, iz1∧z2] = 2z1∧z2∧ [z1, z2] = 0.

We set φ = λΩ−1
3 + µΩ−1

4 , where µ = λ
c = − i

4c . The representation is γ is given by:

γ(e1)v1 = −v1, γ(e1)v2 = v2

We check if there is a c ∈ C such that cg−1ω(γ(a)b) = iγ(g−1ω(a))(g−1ω(b)). When

a = e1, b = v1:

cg−1ω(γ(e1)v1) = cg−1ω(−v1) = −cv1

= iγ(g−1ω(e1))(g−1ω(v1)) = iγ(e1)(v1) = −iv1

When a = e1, b = v2:

cg−1ω(γ(e1)v2) = cg−1ω(v2) = −cv2

= iγ(g−1ω(e1))(g−1ω(v2)) = iγ(e1)(−v2) = −iv2

When a = e2, b = v1:

cg−1ω(γ(e2)v1) = cg−1ω(0) = c0

= iγ(g−1ω(e2))(g−1ω(v1)) = iγ(−e2)(v1) = i0
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When a = e2, b = v2:

cg−1ω(γ(e2)v2) = cg−1ω(0) = c0

= iγ(g−1ω(e2))(g−1ω(v2)) = iγ(−e2)(−v2) = i0

So all of these equations are satisfied when c = i. Therefore, µ = −1
4 and

φ = λΩ−1
3 + µΩ−1

4 = − i
42(z2 ∧ z1 + z2 ∧ z1)− 1

42i(z2 ∧ z1 − z2 ∧ z1) = −iz2 ∧ z1. So Λ

and this φ are a compatible pair for this algebra.
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Example 3: The structure equations for the third algebra are:

[e1, e2] = e2, [e1, v1] = −1
2
v1, [e1, v2] =

1
2
v2, [e2, v1] = −1

2
v2

When translated into complex coordinates, this yields,

[z1, z2] = 1
2z2, [z1, z

1] = 1
4z1, [z1, z

2] = −1
4z2, [z2, z

2] = 1
4z1

∂z1 = −1
4z1 ∧ z1 − 1

4z2 ∧ z2, ∂z2 = 1
4z1 ∧ z2, ∂z2 = −1

2z1 ∧ z2

We can see that ∂Λ = i∂z1 ∧ z2 = i(∂z1) ∧ z2 − iz1 ∧ (∂z2)

= − i
4(z1 ∧ z1 + z2 ∧ z2) ∧ z2 − i

4z1 ∧ z1 ∧ z2 = 0 and [Λ,Λ] = [iz1 ∧ z2, iz1 ∧ z2]

= −2z1 ∧ z2 ∧ [z1, z2] = 0. We set φ = λΩ−1
3 + µΩ−1

4 , where µ = λ
c = − i

4c . The

representation is given by:

γ(e1)v1 = −1
2v1, γ(e1)v2 = 1

2v2, γ(e2)v1 = −1
2v2

We check if there is a c ∈ C such that cg−1ω(γ(a)b) = iγ(g−1ω(a))(g−1ω(b)). When

a = e1, b = v1:

cg−1ω(γ(e1)v1) = cg−1ω(−1
2v1) = −c1

2v1

= iγ(g−1ω(e1))(g−1ω(v1)) = iγ(e1)(v1) = −i1
2v1

When a = e1, b = v2:

cg−1ω(γ(e1)v2) = cg−1ω(1
2v2) = −c1

2v2

= iγ(g−1ω(e1))(g−1ω(v2)) = iγ(e1)(−v2) = −i1
2v2

When a = e2, b = v1:

cg−1ω(γ(e2)v1) = cg−1ω(−1
2v2) = c1

2v2

= iγ(g−1ω(e2))(g−1ω(v1)) = iγ(−e2)(v1) = i1
2v2
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When a = e2, b = v2:

cg−1ω(γ(e2)v2) = cg−1ω(0) = c0

= iγ(g−1ω(e2))(g−1ω(v2)) = iγ(−e2)(−v2) = i0

So all of these equations are satisfied when c = i. Therefore, µ = −1
4 and

φ = λΩ−1
3 + µΩ−1

4 = − i
42(z2 ∧ z1 + z2 ∧ z1)− 1

42i(z2 ∧ z1 − z2 ∧ z1) = −iz2 ∧ z1.

However Λ and φ are not a compatible pair for this algebra, because Ω4 is not

closed, by Lemma 21. We can see this, as g(γ(e2)e1, e1)−g(γ(e1)e2, e1)−g(e2, γ(e1)e1)+

g(e1, γ(e2)e1) = −1 6= 0. Due to this φ([l1, l1]) 6= [φ(l1), l2]+[l1, φ(l2)] and so Φ([l1, l2]) 6=

[Φ(l1),Φ(l2)].

We can show that there is no φ compatible with Λ = iz1∧z2. If there was such

a φ, then Φ = 1 + φ would have to be of the following form:

Φ(z1) = z1

Φ(z2) = z2

Φ(z1) = z1 + az1 + bz2

Φ(z2) = z2 + cz1 + dz2.

Using the structure equations and the formula Φ([l1, l2]) = [Φ(l1),Φ(l2)] to solve for

a, b, c and d shows the following:

Φ([z1, z
1]) =

1
4
Φ(z1) =

1
4
(z1 + az1 + bz2)

[Φ(z1),Φ(z1)] = [z1, z
1 + az1 + bz2] =

1
4
z1 +

b

2
z2

Φ([z1, z
2]) = −1

4
Φ(z2) = −1

4
(z2 + cz1 + dz2)

[Φ(z1),Φ(z2)] = [z1, z
2 + cz1 + dz2] = −1

4
z2 +

d

2
z2

The first two equations imply that a = 0 = b and the second two equations show that

c = 0 = d. So our only choice is Φ = 1 the identity. So the condition Φ(∂Λl) = ∂(Φ(l))
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becomes ∂l = ∂Λl = ∂l+[Λ, l], or [Λ, l] = 0 for all l ∈ L. However, [Λ, z1] = [iz1∧z2, z
1] =

− i
4z2 ∧ z1 6= 0. So there is no isomorphism between the DGA’s of L and LΛ.
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Chapter 5

Principal Torus Bundles

In this chapter, we examine how the integrability of a generalized complex

structure on a principal T 2n bundle effects the connection on that bundle. This is

preliminary work in a effort to apply theorem 17 to principal bundles. The primary

reference for this chapter is Kobayashi and Nomizu [10].

Let P be a principle fiber bundle with even dimensional base manifold M

and π : P → M . The fibers will be T 2n, the torus with real dimension 2n. We

assume a connection on P , which defines horizontal vector fields and horizontal forms.

If X ∈ C∞(TP ), then X = V +H, where V is a vertical vector field and H is a horizontal

vector field. Also, if ξ ∈ C∞(T ∗P ), then ξ = ν + h, where ν is a vertical form and h

is a horizontal form. Therefore TP = V ⊕ H and T ∗P = V∗ ⊕ H∗, where C∞(V) are

the vertical vector fields, C∞(V∗) are the vertical one-forms, C∞(H) are the horizontal

vector fields and C∞(H∗) are the horizontal one-forms.

If V1 and V2 are vertical vector fields, then [V1, V2] is also vertical. However, if

H1 and H2 are horizontal vector fields, [H1,H2] is not required to be horizontal. The

vertical portion of [H1,H2] depends on the curvature of the connection.

T 2n acts freely and transitively on P . Every vertical vector at a point p ∈ P

corresponds to an element in g, the Lie algebra of the fibers. As in [10], we call a vertical

vector field V fundamental if V (p) corresponds to the same element of g for all p. We

will extend the definition of fundamental to include more than just vertical vector fields.

A horizontal vector field will be fundamental if it is invariant under the group action
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on P . Then there is a one to one correspondence between fundamental horizontal field

and lifts of vector fields on the base manifold. A vertical form ν will be fundamental if,

whenever V is a fundamental, vertical vector field, ν(V ) is constant on P . A horizontal

form h will be fundamental if, whenever H is a fundamental, horizontal vector field,

h(H) is constant on each fiber. Note that every fundamental object is invariant under

the group action, and every horizontal object that is invariant under the group action

is fundamental, but there are vertical objects that are invariant under the group action

that are not fundamental.

For any fundamental vertical field V and fundamental horizontal field H,

[V,H] = 0. As such, [V, h] = 0 and [H, ν] = 0 where h is a fundamental horizontal

form and ν is a fundamental vertical form.

Any fundamental vertical field corresponds to an element of the Lie algebra

for the fiber. Therefore [V1, V2] = 0, since the the Lie algebra for T 2n is abelian. This

means [V, ν] = 0 as well.

Let J : TP ⊕T ∗P → TP ⊕T ∗P be a generalized complex structure. Then, for

all l1, l2 ∈ TP ⊕ T ∗P , the generalized Nijenhuis tensor vanishes. That is,

NJ(l1, l2) = [Jl1, Jl2]− [l1, l2]− J [Jl1, l2]− J [l1, Jl2] = 0. (5.1)

Let l1, l2 ∈ C∞(TP ⊕ T ∗P ). Then at a point p ∈ P there exist l̃1, l̃2 ∈ C∞(TP ⊕ T ∗P )

such that l̃1, l̃2 are fundamental and l̃i(p) = li(p). Since NJ is a tensor, NJ(l̃1, l̃2)(p)

= NJ(l1, l2)(p). As such, we will only consider fundamental objects in this chapter.

We will make two further assumptions, so that J respects the fibration. First,

that J(V ⊕ V∗) ⊂ V ⊕ V∗ and J(H ⊕ H∗) ⊂ H ⊕ H∗. Then J = JH + JV , where

JH vanishes on vertical objects and JV vanishes on horizontal objects. JH and JV are

almost generalized complex structures, whose integrability needs to be checked.

Second, we assume that if X + ξ is fundamental, then J(X + ξ) is fundamental

as well. Since every horizontal object is the lift an object on the base manifolds, JH is

the lift of an almost generalized complex structure on the base manifold. We can write

JH in matrix form as
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JH =

 A β

B −A∗

 =

 π−1
∗ 0

0 π∗


 Ã β̃

B̃ −Ã∗


 π∗ 0

0 (π∗)−1


where the middle matrix acts on TM ⊕ T ∗M , π∗ is the pushforward of vectors and π∗

is the pullback of forms. If we only consider horizontal objects, π∗ is well-defined. As

such, we will use

JH =

 A β

B −A∗


on the total space and on the base manifold.

For everything below, Hi will be a fundamental horizontal vector, Vi will be

a fundamental vertical vector, hi will be a fundamental horizontal form, and νi will be

a fundamental vertical form. We will now see what conditions equation (5.1) imposes

on JV , JH and the connection on P . We will examine NJ(l1, l2) = 0, letting li vary

between horizontal and vertical vectors and forms.

Since [V + ν, H + h] = 0 for fundamental objects, NJ(l1, l2) = 0 is trivial when

l1 ∈ V ⊕ V∗ and l2 ∈ H ⊕H∗.

Since [V1+ν1, V2+ν2] = 0 for fundamental objects, NJV
vanishes on each fiber.

So we have the following proposition.

Proposition 30 JV is integrable on each fiber.

This now leaves only the horizontal conditions. Let li = Hi+hi be fundamental

horizontal objects. Let [l1, l2]V be the vertical part of [l1, l2] and [l1, l2]H be the horizontal

part of [l1, l2]. Then

0 = NJ(l1, l2) = [Jl1, Jl2]− [l1, l2]− J([Jl1, l2] + [l1, Jl2])

= [JH l1, JH l2]H − [l1, l2]H − JH([JH l1, l2] + [l1, JH l2])

[JH l1, JH l2]V − [l1, l2]V − JV ([JH l1, l2] + [l1, JH l2]).
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Requiring the horizontal part to be 0 yields,

[JH l1, JH l2]H − [l1, l2]H − JH([JH l1, l2]H + [l1, JH l2]H) = 0. (5.2)

Requiring the vertical part to be 0 yields,

[JH l1, JH l2]V − [l1, l2]V − JV ([JH l1, l2]V + [l1, JH l2]V ) = 0. (5.3)

Equation (5.2) gives the following proposition.

Proposition 31 JH is integrable on the base manifold M .

Lastly, we seek to understand equation (5.3). Since we have a connection, we

have a connection form θ : TP → g, where g is the Lie algebra for the fibers. For any

basis {ei} of g, we have θ =
∑

θiei, where θi are fundamental vertical one-forms on P .

If V is a vertical vector field and H is a horizontal vector field, then at a point p ∈ P ,

θ(V +H)(p) is the element of g corresponding to Ṽ , where Ṽ is fundamental and vertical

and V (p) = Ṽ (p). Then Ω, the curvature of θ is,

Ω(X, Y ) = dθ(X, Y ) +
1
2
[θ(X), θ(Y )] (5.4)

For l1, l2 ∈ C∞(TP ⊕ T ∗P ), we extend Ω as Ω(l1, l2) = Ω(ρ(l1), ρ(l2)) where ρ : TP ⊕

T ∗P → TP is the anchor map. We make the following definition.

Definition 32 Ω is type (1,1) with respect to J if Ω(l1− iJ(l1), l2− iJ(l2)) = 0 for all

l1, l2 ∈ C∞(TP ⊕ T ∗P ).

When J comes from a complex structure, this definition is equivalent to Ω being type

(1,1) in the classical sense.
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If lj is horizontal, then JH(lj) is horizontal and θ(lj − iJH(lj)) = 0. If Ω is

type (1,1), then

0 = Ω(l1 − iJH(l1), l2 − iJH(l2))

= dθ(l1 − iJH(l1), l2 − iJH(l2))

= −θ([l1 − iJH(l1), l2 − iJH(l2)]V )

= −θ([l1, l2]V ) + θ([JH l1, JH l2]V )

+i(θ([l1, JH(l2)]V ) + θ([JH(l1), l2]V ))

= θ([JH l1, JH l2]V − [l1, l2]V )

+i(θ([l1, JH(l2)]V + [JH(l1), l2]V ))

We note that θ is defined by {θi}, and so θi([l1, JH(l2)]+[JH(l1), l2]) = 0. Since

{θi} is a basis for fundamental vertical forms, if ν is a fundamental vertical form then

ν([l1, JH(l2)] + [JH(l1), l2]) = 0. Equivalently, ν([l1, l2]− [JH(l1), J(l2)]) = 0. Since Ω is

a tensor, we only consider fundamental objects.

Proposition 33 Ω is type (1,1) if and only if ν([l1, JH(l2)] + [JH(l1), l2]) = 0 for all

fundamental vertical forms ν and fundamental horizontal objects lj.

We now examine equation (5.3) in several different cases. In each case, we will

examine equation (5.3) for each combination of horizontal vectors Hi and horizontal

forms hi. As a reminder, the Courant bracket of two one-forms is always 0.

First we assume that JV is of complex type. Then J(V) = V and J(V∗) = V∗.

If JH is complex, so that B = 0 and β = 0 in the matrix form of J , then we

have the following conditions.

[AH1, AH2]V − [H1,H2]V − JV ([AH1,H2]V + [H1, AH2]V ) = 0

−[AH1, A
∗h2]V − [H1, h2]V − JV ([AH1, h2]V − [H1, A

∗h2]V ) = 0
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In this case, A is an integrable complex structure. Contracting the second

condition with a fundamental vertical vector V and recalling from above that

[H,V ] = 0 show that the second condition is always satisfied. However, it is interesting

to note that when we contract with a vertical vector V , the second equation reduces to

h2(A([AH1, V ] + [H1, JV V ]− [AH1, JV ] + [H1, V ])) = 0. The first condition is satisfied

when Ω is type (1,1).

If JH is symplectic instead, so that A = 0 and A∗ = 0, then we have the

following conditions.

−[H1,H2]V − JV ([BH1,H2] + [H1, BH2]) = 0

[BH1, βh2]− [H1, h2]V − JV ([H1, βh2]V ) = 0

[βh1, βh2]− JV ([βh1, h2] + [h1, βh2]) = 0

These terms are all equivalent, after substitution. The vector part of each condition

is [H1,H2]V = 0, which implies that Ω = 0, and the connection is flat. Since JH is

integrable, B is viewed as the lift of a symplectic form on the base manifold. The form

part of the above conditions is satisfied since B is closed.

Now we assume JV is symplectic, so that J(V) = V∗ and J(V∗) = V. The

conditions will look similar to the ones above, but the reduce nicely.

If JH is complex, we have the following conditions.

[AH1, AH2]V − [H1,H2]V − JV ([AH1,H2]V + [H1, AH2]V ) = 0

−[AH1, A
∗h2]V − [H1, h2]V − JV ([AH1, h2]V − [H1, A

∗h2]V ) = 0

The vector part of the first equation is [AH1, AH2]V − [H1,H2] = 0 and the form part is

JV ([AH1,H2]V + [H1, AH2]V ) = 0, which implies [AH1,H2]V + [H1, AH2]V = 0. These

conditions are equivalent to Ω being type (1,1).
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Lastly, if JH is symplectic, we have,

−[H1,H2]V − JV ([BH1,H2] + [H1, BH2]) = 0

[BH1, βh2]V − [H1, h2]V − JV ([H1, βh2]V ) = 0

[βh1, βh2]V − JV ([βh1, h2]V + [h1, βh2]V ) = 0

The symplectic form is given by B(H) = ω(H,−) and

0 = dω(H1,H2, V ) = B([H1, V ])H2 − B([H2, V ])H1 = ([BH1,H2] + [H1, BH2])(V ), so

we get that [H1,H2]V = 0 and the connection is flat.

This tells us about the structure of some basic types of generalized complex

structures on principal tori bundles which we summarize below.

Theorem 34 Let P be a principal tori bundle. Let J be a generalized complex structure

on P that preserves horizontal and vertical objects and is invariant under the T 2n action.

Then J = JH + JV , where JH is the lift of a generalized complex structure on the base

manifold and JV is a generalized complex structure on the fibers.

If JH is symplectic and JV is complex or symplectic, the connection is flat.

If JH is complex and JV is complex, the connection is type (1,1).

If JH and JV are complex, we have a condition on the curvature that is satisfied if the

curvature is type (1,1).
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Chapter 6

Future Agenda

In this chapter we outline some possible applications of the results of this thesis.

Starting with a complex manifold, Theorem 17 gives the sufficient conditions

for there to be a deformation to a symplectic manifold with an isomorphic DGA. The

condition is the existence of a compatible pair. In the work on complex symplectic

algebras, one part of this pair was defined canonically, our Λ. We then solved for φ.

This seems likely to be the best approach, and so a starting point for future work is to

ask the following:

Which complex manifolds (of even complex dimension) have a non-degenerate

(2,0) vector field Λ satisfying ∂Λ = 0 and [Λ,Λ] = 0?

Any such manifold is a good candidate for the machinery of this thesis, and

there are a lot of them. If we drop the non-degeneracy condition, such Λ are called

holomorphic Poisson fields and have been studied by Hitchin in [9], Gaultieri in [7] and

Laurent-Gengoux, Stienon and Xu in [11]. As we saw in Proposition 25, if a manifold has

a closed, non-degenerate two-form Ω, then Λ = Ω−1 will satisfy ∂Λ = 0 and [Λ,Λ] = 0.

In particular, any principal T 2n fiber bundle over a manifold M of real dimen-

sion 2n where the complex structure is totally real with respect to the connection for

the fibration could have a non-degenerate (2,0) field. Whether or not such a complex

structure exists would depend on the base manifold M . This is somewhat more general

that the work we did on complex symplectic manifolds.
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Also a generalized complex structure on a principal tori bundle could respect

the fibration, so that it decomposes into a structure on the fibers and one that projects

to the base manifold. We have done some preliminary work on generalized complex

structures on principal tori bundles and what restrictions they place on the connection

and its curvature in chapter 5. Deformations of these structures would be interesting as

well.

Some K3 surfaces, Calabi-Yau manifolds and hyper-Kahler manifolds are holo-

morphic Poisson. While Calabi-Yau 3-folds are of most interest to physicists, the meth-

ods of this thesis cannot work directly on them, as they have complex dimension 3.

However, maybe when viewed as part of something else, particularly as the base mani-

fold of a bundle, some other method might be found. In all these cases, while there may

be obvious choices for Λ, finding φ is where the challenge will be.

Most work on weak mirror symmetry involves a concept called T-duality as in

[15]. This is how Clayton, Ovando and Poon studied mirror symmetry in [4]. T-duality

is generally applied larger class of examples, as it does not require the weak mirror pair

to have the same base manifold. In the cases where T-duality does yield the same base

manifold, it would be interesting to understand how those weak mirror pairs relate to

mirror pairs created by deformations.

Finally, most of the results in this thesis are specific to deformations of complex

structure to symplectic structures. It is still interesting to look at deformations of

arbitrary generalized complex structures, and see when the DGA’s are preserved. Some

preliminary work has been done with Yat Sun Poon and Daniele Grandini at UCR.
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