
UCLA
UCLA Electronic Theses and Dissertations

Title
Dissecting the role of cell physical properties in the invasion of pancreatic ductal 
adenocarcinoma

Permalink
https://escholarship.org/uc/item/2sz0s13b

Author
Nguyen, Angelyn Thuy An Vu

Publication Date
2017
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2sz0s13b
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA 

Los Angeles 

 

 

 

Dissecting the role of cell physical properties in 

the invasion of pancreatic ductal adenocarcinoma 

 

 

A dissertation submitted in partial satisfaction of the 

requirements for the degree Doctor of Philosophy 

in Molecular, Cellular, and Integrative Physiology 

 

by 

 

Angelyn Thuy An Vu Nguyen 

 

 

 

2017 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Angelyn Thuy An Vu Nguyen 

2017 



 ii 

ABSTRACT OF THE DISSERTATION 

 

Dissecting the role of cell physical properties in 

the invasion of pancreatic ductal adenocarcinoma 

 

by 

 

Angelyn Thuy An Vu Nguyen 

Doctor of Philosophy in Molecular, Cellular, and Integrative Physiology 

University of California, Los Angeles, 2017 

Professor Amy Catherine Rowat, Chair 

 

Metastasis is a physical process in which cells are required to deform through narrow 

gaps and generate forces as they invade surrounding tissues. Understanding the relationship 

between invasion and cell physical properties, such as deformability and contractility, can impart 

knowledge that guides the development of new therapeutics, yet the physical properties of 

pancreatic cancer cells are still poorly understood. In many cancers, more invasive cells are more 

deformable than less invasive cells. However, using atomic force microscopy, I discovered that 

more invasive pancreatic ductal adenocarcinoma (PDAC) cells tend to have a higher Young’s 

modulus, indicating that they are stiffer. This finding challenges the oversimplified notion that 

decreased cell stiffness is a hallmark of cancer invasion. To gain a more complete understanding 

of why stiffer PDAC cells are more invasive, I examine the ability of PDAC cells to actively 

generate forces through actomyosin contractility and actin polymerization, as both processes 
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have been associated with cancer cell invasion and stiffness. Using pharmacologic inhibitors, I 

determined that actomyosin contractility (inhibited with blebbistatin), as well as the 

polymerization of actin by Arp2/3 (inhibited with CK-666) and formin (inhibited with SMIFH2), 

contribute to the stiffness of PDAC cells. Interestingly, I observe that these inhibitors are cell 

line specific, indicating that different PDAC cell lines may rely on different modes of motility to 

invade the extracellular matrix. In addition, using measurements of cell physical phenotypes 

obtained by microfluidic quantitative deformability cytometry, my collaborators and I define a 

minimal set of physical phenotypes that can predict PDAC cell invasion. Taken together, my 

dissertation work provides valuable insight into the physical mechanisms of cancer cell invasion, 

and establishes a physical model that can predict cell invasion based on single-cell physical 

phenotypes including cell stiffness. My results provide the foundation for future studies into the 

relationship between cell physical properties and the tumor microenvironment, which undergoes 

substantial physical changes throughout PDAC progression. 
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Chapter I: Introduction 

 Pancreatic ductal adenocarcinoma (PDAC) is the cancer of the exocrine ductal cells of 

the pancreas, and represents 90% of all pancreatic cancers. This devastating disease has a five-

year survival rate of 8% (1) and is the fourth leading cause of cancer-related deaths in the United 

States (2). The National Cancer Institute estimates that 53,670 new cases of pancreatic cancer 

will be diagnosed in 2017 (1). With the strong research efforts of the last few decades, significant 

advances have been made in understanding the mechanisms involved in the progression of 

PDAC, and the development of new therapeutics (3). Yet, despite these advances, even with the 

most recent and sophisticated surgical treatments and chemotherapy regimens, patients 

diagnosed with advanced disease have a median survival rate of only 1 year (4). The current 

statistics on pancreatic cancer, along with the lack of effective treatments, clearly communicate 

the strong need for additional research on this disease.  

 PDAC is a stroma-rich cancer. It is not uncommon for stromal components to outnumber 

tumor cells. This dense tumor microenvironment consists of extracellular matrix (ECM) 

components, as well as noncancerous cells including fibroblasts and immune cells. The 

development of extensive ECM and fibrosis, termed desmoplasia, is a result of the deposition of 

collagen, fibronectin, proteoglycans and hyaluronic acid, as well as proteinases (5). Increased 

fibrosis contributes to tumor rigidity, or stiffness (6). A recent study shows that patients with 

impaired epithelial transforming growth factor-β (TGF-β) signaling have high epithelial STAT3 

activity and increased fibrosis, which is associated with shorter patient survival (7). Further, this 

study shows that PDAC tumor cells can sense the stiff ECM, and through mechanosignaling, or 

signaling induced by external mechanical stimuli, activate a positive feedback loop that increases 

fibrosis and tissue tension. Thus, there is evidence that the stiffness of the microenvironment 
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contributes to disease progression. Yet, while tumor cells sense and changes their physical 

properties in response to their physical surroundings, it is unclear how the physical phenotypes 

of PDAC cells play a role in PDAC progression.  

  Ninety percent of cancer deaths are related to metastasis, a process in which cells of the 

primary tumor invade the extracellular matrix, transverse through blood vessels, and establish 

secondary tumor sites. Invasion and metastasis are inherently physical processes since cells must 

deform through pores of the extracellular matrix and capillaries, which are typically smaller than 

the diameter of a cell. The ability of cancer cells to invade and metastasize also requires them to 

generate physical forces to push and pull on the surrounding microenvironment. The majority of 

biophysical studies in breast, ovarian, and prostate cancers find that more deformable cells tend 

to be more invasive (8-14). This is thought to be beneficial to cancer cells since a cell must 

deform through small spaces to invade and metastasize. However, some studies using lung 

cancer cells and breast cancer cells treated with a beta-adrenergic receptor agonist find that 

stiffer cells are more invasive (15,16). The apparent discrepancies in the relationship between 

cell stiffness and invasion may stem from differences in intrinsic tissue properties: different 

tissues have inherently different physical properties, which could result in differential alterations 

in stiffness during cancer progression. For example, bone and cartilage is an order of magnitude 

stiffer than brain tissue (17). Therefore, bone cells may need to become more deformable to be 

more invasive, while brain tissue may need to become stiffer. Given the varied observations in 

the deformability of invading cancer cells in different cancer types and the importance of cell 

physical properties in hallmark cancer phenotypes, such as invasion, it is imperative to 

understand the physical properties of individual cancer types, including PDAC. 
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 Cell deformability is influenced by a number of intrinsic and extrinsic factors. Extrinsic 

factors include soluble factors and the physical properties of the surrounding microenvironment 

(9, 15, 18). Two major intrinsic factors that contribute to the stiffness of a cell are structural 

proteins and its ability to actively generate forces. 

Structural proteins. The mechanical phenotype, or mechanotype, of a cell dictates its ability to 

deform through narrow pores. Major determinants of mechanotype are the structural proteins 

within the cell, including vimentin, actin, and lamin A/C (19). Vimentin is a type III intermediate 

filament that plays a role in supporting and anchoring organelles in the cell cytoplasm, as well as 

resisting physical stresses. Vimentin is overexpressed in many cancers and considered a 

biomarker of epithelial-to-mesenchymal transition (20). Actin is a major component of the cell 

cytoskeleton. The monomeric form of this protein polymerizes to form actin filaments that are 

important in cell structure and the generation of contractile forces. Actin has also been 

implicated in cancer, since actomyosin contractions and the formation of protrusive forces are 

required for cell motility (21, described in more detail below). Lamin A, and its isoform lamin C, 

are type V intermediate filaments located in the nuclear lamina, which is found near the inner 

nuclear membrane (22). Alterations in lamin A expression have been implicated in cancer (23).  

Active force generation. While structural proteins of the cytoskeleton and nucleus are major 

contributors to cell stiffness, mechanotype is also regulated by active force generation. The 

generation of contractile and protrusive forces are two main contributors to the forces that cells 

produce. Contractile forces, which contribute to actomyosin contractility, are a result of the 

interaction between myosin II with actin filaments, or F-actin, and the conversion of ATP into a 

mechanical energy. This process takes place in almost every cell in the human body, and is 

implicated in the motility of cells, including cancer cells (24). The generation of protrusions, 
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such as invadopodia and lamellipodia, are driven by actin polymerization and contribute to some 

forms of cell migration. The two main pathways involved in the generation of protrusive forces 

are the WASP-Arp2/3 and formin pathways (25). Arp2/3 is responsible for actin nucleation and 

branching, which are essential for lamellipodia and invadopodia formation (26). The 

overexpression of Arp2/3, which leads to more actin polymerization and protrusion formation, is 

associated with breast, colorectal and lung cancers, as well as head and neck squamous cell 

carcinoma (27). Formins are involved in a secondary pathway for actin nucleation and protrusion 

formation. The inhibition of formins leads to a reduction in polarized cell growth, stress fiber 

formation, and invadopodia formation (28, 29). Further, formins have been implicated in 

epithelial-to-mesenchymal transition (29), and the overexpression of formins has been 

established in breast cancer and oral squamous cell carcinoma (30, 31). Since proteins that 

regulate cell mechanical properties and active force generation also mediate cell motility and 

invasion, determining the molecular alterations that influence the changes in cancer cell 

deformability can provide targets for novel therapeutics or co-treatments that improve the 

efficacy of existing drugs. 

 Collectively, gaining a deeper understanding of the physical phenotypes of PDAC cells 

will establish the foundation for future studies that link our understanding of cell physical 

properties and those of the surrounding microenvironment. This more complete knowledge of 

PDAC biophysics may lead to improvements in the sensitivity and efficacy of current drugs, as 

well as the development of novel therapeutics, in order to improve disease burden and decrease 

mortality rates. 
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Stiffness of pancreatic cancer cells is associated
with increased invasive potential†

Angelyn V. Nguyen,a Kendra D. Nyberg,ab Michael B. Scott,a Alia M. Welsh,c

Andrew H. Nguyen,d Nanping Wu,d Sophia V. Hohlbauch,e Nicholas A. Geisse,e

Ewan A. Gibb,f A. Gordon Robertson,f Timothy R. Donahuedg and Amy C. Rowat*abg

Metastasis is a fundamentally physical process in which cells are required to deform through narrow

gaps as they invade surrounding tissues and transit to distant sites. In many cancers, more invasive cells

are more deformable than less invasive cells, but the extent to which mechanical phenotype, or

mechanotype, can predict disease aggressiveness in pancreatic ductal adenocarcinoma (PDAC) remains

unclear. Here we investigate the invasive potential and mechanical properties of immortalized PDAC cell

lines derived from primary tumors and a secondary metastatic site, as well as noncancerous pancreatic

ductal cells. To investigate how invasive behavior is associated with cell mechanotype, we flow cells

through micron-scale pores using parallel microfiltration and microfluidic deformability cytometry; these

results show that the ability of PDAC cells to passively transit through pores is only weakly correlated

with their invasive potential. We also measure the Young’s modulus of pancreatic ductal cells using

atomic force microscopy, which reveals that there is a strong association between cell stiffness and

invasive potential in PDAC cells. To determine the molecular origins of the variability in mechanotype

across our PDAC cell lines, we analyze RNAseq data for genes that are known to regulate cell

mechanotype. Our results show that vimentin, actin, and lamin A are among the most differentially

expressed mechanoregulating genes across our panel of PDAC cell lines, as well as a cohort of

38 additional PDAC cell lines. We confirm levels of these proteins across our cell panel using

immunoblotting, and find that levels of lamin A increase with both invasive potential and Young’s

modulus. Taken together, we find that stiffer PDAC cells are more invasive than more compliant cells,

which challenges the paradigm that decreased cell stiffness is a hallmark of metastatic potential.

Insight, innovation, integration
Pancreatic ductal adenocarcinoma (PDAC) cells sense and respond to the increased stiffness of their microenvironment and deform through narrow gaps
during metastasis. While physical processes are implicated in the progression of PDAC, the mechanical phenotype, or mechanotype, of tumor cells is poorly
understood. Here we show that stiffer PDAC cells have a greater invasive potential than more deformable cells. We also investigate mechanoregulating proteins
that contribute to the variability in mechanotype that we observe across different PDAC cell lines. Taken together, our findings provide insight into the
mechanome of PDAC cells and suggest that the current paradigm of cell deformability as a hallmark of metastatic potential depends on cancer type.

Introduction

Pancreatic ductal adenocarcinoma (PDAC) remains one of the
most aggressive and lethal cancers.1,2 A major factor in the
progression of this disease is the interaction between tumor
cells and their microenvironment.3,4 For example, mechanical
cues activate signalling pathways, such as the JAK-STAT3 and
integrin-FAK-ROCK axes, which promote cancer by triggering
a positive feedback loop that results in increased ECM
deposition,4 fibrosis, and stiffness of the extracellular matrix
(ECM).5 In turn, cells respond to the stiffness of their substrate
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by altering their mechanical phenotype,6,7 or mechanotype.
A deeper knowledge of PDAC cell mechanotype and its under-
lying molecular components would provide a more complete
understanding of how cells sense and transduce mechanical
cues, and may ultimately identify molecules in mechanosignaling
pathways that could be targeted to impede disease progression.

Cell mechanotype is linked to invasive potential in several
types of cancers, including breast and ovarian.8–10 The current
paradigm is that more invasive or metastatic cancer cells are
more deformable than their benign or less invasive counter-
parts.8–17 A more deformable cell may have a selective advantage
for metastasis, which requires individual tumor cells to transit
through narrow vessels of the vasculature and extravasate to
secondary tumor sites. However, there is also evidence that
stiffer cancer cells are more invasive. For example, stiffer lung
cancer cells and transformed fibroblasts are more motile in
in vitro invasion assays.18,19 While metastasis is the leading
cause of death in PDAC and invasion is linked to cell mechanical
properties in other cancers, the mechanotype of PDAC cells is not
well understood.

Since metastasis requires cells to invade through the extra-
cellular matrix and deform during transit through the vasculature,
studies aiming to understand the possible roles of cell deform-
ability in PDAC can benefit from complementary methods that
measure cells in attached and suspended states. The use of
multiple methods can also provide insight into the molecular
mechanisms that determine cell mechanotype: different methods
enable deformations over varying length scales, which determine
the subcellular structures that contribute to the deformation
response. For example, fluidic methods, such as micropipette
aspiration and microfluidic deformability cytometry, measure
cells in a suspended state, where cortical actin20 and the
nucleus21,22 contribute to the deformation of cells through
micron-scale pores. By contrast, in methods that induce local,
10 nm to 1 mm deformations on cells adhered to their substrate,
such as atomic force microscopy (AFM)23 and magnetic twisting
cytometry,24 actin can organize into stress fibers,25 which have
a marked effect on cell stiffness. Adhered cells also generate
traction stresses, which result in increased cell stiffness26 and
enhanced invasive behavior of cancer cells.27 For all of these
reasons, comparisons of the same types of PDAC cells using
multiple, complementary methods should provide more detailed
insights into cancer cell mechanotype.

Here we investigate the invasive behavior and mechanotype
of four immortalized pancreatic ductal cell lines, including cell
lines derived from primary PDAC malignancies (MIA PaCa-2
and PANC-1) and a metastatic pleural effusion (Hs766T), as well
as a nontransformed control cell line (HPDE). While the PDAC
cell lines in our panel are derived from different sites, they all
have similar founder mutations,28 including alterations in
KRAS, TP53, and P16. To determine the invasive potential of
these cells, we perform a modified scratch wound invasion
assay with Matrigel overlay to simulate the ECM. We also use
a transwell migration assay without Matrigel to probe how
effectively cells can migrate through narrow gaps independently
of proteolytic matrix degradation. To assess how the deformability

of PDAC cells is associated with their invasive potential, we use
complementary mechanotyping methods to measure cells in both
suspended and adhered states. We use parallel microfiltration
(PMF)15 and single-cell microfluidic deformability cytometry29 to
measure the deformability of suspended cells, and atomic force
microscopy (AFM) to determine the Young’s modulus of adhered
cells. By analyzing gene expression data across our 3 PDAC cell
lines, as well as data from 38 additional PDAC cell lines, we
identify lamin A as a possible mechanoregulating protein that
may contribute to the variability we observe in pancreatic ductal
cell mechanotype. Taken together, our results show that stiffer
PDAC cells are more invasive than more compliant PDAC cells,
demonstrating that the relationship between cell invasive potential
and mechanotype may vary for different types of cancers.

Results
Invasive behavior varies across pancreatic ductal
adenocarcinoma cell lines

As cell mechanotype is associated with the invasive potential of
cancer cells,8–10 we first determine the invasion efficiency of
PDAC cells derived from both primary and secondary sites, as
well as that of noncancerous pancreatic ductal cells. To quantify
cell invasion, we measure wound confluence using a modified
scratch wound invasion assay where cells are overlaid with a
B1.5 mm-thick layer of Matrigel, a protein mixture that recapitulates
the ECM (Fig. 1B); this setup requires cells to invade through a 3D
matrix.30,31 Our results show that there is variability in how
quickly pancreatic ductal cells move into the wound gap. At
72 hours, the wound confluence across PDAC cells lines varies
from 33 to 60% (Fig. 1A and B), indicating that cells with similar
founder mutations28 (Table S1, ESI†) have different invasion
efficiencies. The MIA PaCa-2 and PANC-1 cells, which are
derived from primary tumors, show increased invasion compared
to the noncancerous HPDE cells (MIA PaCa-2: 33 � 1%, PANC-1:
40 � 2%, HPDE: 22 � 4%; pMIA–HPDE = 8.5 � 10�2, pPANC–HPDE =
3.5 � 10�3). PANC-1 cells also show a significantly greater
wound confluence than MIA PaCa-2 cells ( pMIA–PANC = 4.0 � 10�2).
The Hs766T cells, which are derived from metastatic pleural
effusion, exhibit the greatest invasive potential with a wound
confluence of 60 � 5%, which is B2-fold higher than both
the PANC-1 ( pHs766T–PANC = 5.8 � 10�3) and MIA PaCa-2 cells
( pHs766T–MIA = 9.9 � 10�4).

Since the speed at which cells migrate on a 2D surface could
influence the observed differences in invasive potential, we repeat
the scratch wound migration assays without a 3D Matrigel matrix
(Fig. S1, ESI†). These results show that the cancerous cell lines
have a significantly lower wound confluence than the HPDE cells
after 24 hours (HPDE: 86 � 6%, PDAC cell lines: 29 � 4% to
34 � 6%; pHPDE–PDAC o 3.6 � 10�3), but there are no significant
differences in migration efficiency between PDAC cell lines
( p > 0.05 for all pairwise comparisons). Overall, we observe no
significant correlation between migration and invasion potential
(R = �0.15), indicating that our modified scratch wound invasion
assay does not simply reflect differences in cell motility.
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Cell proliferation can also impact wound confluence. To
exclude cell proliferation as a factor in our invasion results, we
track the density of pancreatic ductal cell lines over 120 hours
by time-lapse imaging (Fig. S2A–C, ESI†). We find that the
Hs766T cells, which are the most invasive, have the lowest
confluence of the four pancreatic ductal cell lines at 72 hours
(47 � 2%), indicating that these cells have the slowest pro-
liferation rate. Conversely, the MIA PaCa-2 cells, which are the
slowest PDAC cells to invade, show the highest confluence,

which indicates that they proliferate most quickly. Across our 3
pancreatic cell lines, proliferation does not correlate with cell
invasive potential (R = �0.097). We also track the proliferation
of cells overlaid with Matrigel, as in our invasion assay (Fig. S2D
and E, ESI†). We find that there is only a B4–6% difference in
proliferation across PDAC cell lines after 72 h. By contrast,
we observe up to a 27% difference in invasion at the same
time point (Fig. 1A and B). Furthermore, while apoptosis
could influence differences in measurements of cell invasion,

Fig. 1 Invasive behavior of pancreatic ductal adenocarcinoma cell lines. (A) Time series of images showing scratch wound invasion of pancreatic ductal
cells through Matrigel. Wound confluence is the percentage of wound area covered by cells. Color legend: green is the wound area, blue shows wound
confluence in the wound area, and grey represents the confluent cells outside of the wound area. Scale, 300 mm. (B) Schematic illustration showing the
modified scratch wound assay. Cells are plated on a layer of thin Matrigel and invade into the thick 3D matrix of overlaid Matrigel that fills the scratch
wound. The line plot shows quantification of wound confluence over time. The dotted line indicates the 72 h time point, which we use to compare
wound confluence values for statistical significance. The bar plot represents wound confluence at the 72 h time point. Pairwise p-values are determined
by a Student’s t-test. *p o 0.05. (C) Schematic illustration showing the transwell migration assay. Cells migrate through the 8 mm pores of a
polycarbonate membrane in response to a chemoattractant on the opposite side of the membrane. Images of transwell migration assays showing
DRAQ5-labeled nuclei of cells that migrate through the 8 mm pores of a polycarbonate membrane after 12 hours. Scale, 50 mm. Pairwise p-values are
determined by a Student’s t-test. *p o 0.05. All error bars represent standard errors. The significance of pairwise comparisons between cell lines is shown
in panels B and C by the initial(s) of the cell lines that are significantly different where H: HPDE, Hs: Hs766T, M: MIA PaCa-2, and P: PANC-1. For example,
in panel B, HPDE is significantly different (*p o 0.05) from Hs766T (Hs) and PANC-1 (P).
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we observe no significant differences in apoptosis across PDAC
cell lines with Matrigel overlay (Fig. S3, ESI†). Taken together,
these results indicate that differences in cell doubling rates
across our cell lines cannot explain the differences in invasion
efficiencies that we observe.

PDAC cell migration through membrane pores is consistent
with invasion through Matrigel

Invasion depends on the ability of cells to deform through
narrow gaps, as well as their ability to degrade the surrounding
protein matrix with secreted matrix metalloproteases (MMPs).32–34

Degradation of the ECM results in an increased pore size, which
can enhance invasion.35 Thus, the variable expression and activity
of secreted MMPs across PDAC cell lines36–38 could influence our
measurements of cell invasion through a protein matrix. To assess
the contribution of cell deformability to invasion independently of
MMP activity, we use a transwell migration assay, in which cells
must actively deform through pores of a polycarbonate membrane.
After 12 hours, MIA PaCa-2 cells have a lower percent migration
than PANC-1 cells (MIA PaCa-2: 5 � 3%, PANC-1: 11 � 5%;
p = 1.1 � 10�16), while the Hs766T cells show a statistically higher
transwell migration efficiency compared to the two other PDAC
cells (Hs766T: 62 � 5%; pHs766T–MIA = 2.0 � 10�6, pHs766T–PANC-1 =
2.4� 10�6) (Fig. 1C). These transwell migration data are consistent
with the data from our modified scratch wound invasion assay
with Matrigel (R = 0.99; Fig. 5 and Table S2, ESI†), indicating that
the variations in PDAC invasive potential are consistent with the
ability of cells to migrate through narrow gaps.

PDAC cells vary in their ability to passively deform through
micron-scale pores

During metastasis, cells must deform through micron-scale
gaps in the ECM and basement membrane. Since more invasive
cancer cells are generally more deformable than less invasive
cells,8–10 we next ask whether the differences in invasive
potential between cell lines can be attributed to differences in
the ability of cells to passively deform through pores. Here we
refer to ‘deformability’ as the ability of cells to flow through
pores when driven by an applied pressure.

To measure the deformability of pancreatic ductal cells, we
use parallel microfiltration (PMF).15 In PMF, we flow a suspension
of cells across a porous membrane by applying air pressure for a
defined time and then quantify the retention, or the volume of
fluid that is retained above the membrane. Higher retention
indicates that a larger fraction of cells has occluded the pores.
In contrast, lower retention indicates that cells can passage
more easily through the pores and thereby enable more fluid to
flow across the membrane. Prior to PMF, cell suspensions are
filtered through a 35 mm mesh filter to reduce aggregates; we
confirm that our samples contain over 98% single cells using
image analysis (Fig. S4, ESI†). MIA PaCa-2 cells exhibit a lower
retention of 40� 10% compared to the HPDE noncancerous control
cells (HPDE: 57 � 7%, pMIA–HPDE = 8.0 � 10�4) (Fig. 2A). In contrast,
the PANC-1 cells exhibit a significantly increased retention (88� 8%)
compared to both the noncancerous control ( pPANC–HPDE =
2.0 � 10�5) and the MIA PaCa-2 cells ( pPANC–MIA = 1.2 � 10�7).

The Hs766T cells show a marginally higher retention than the
HPDE control cells (Hs766T: 60� 11%, pHs766T–HPDE = 5.5� 10�2).

Since the ability of cells to occlude pores can depend on
both cell deformability and cell size, we next measure the size
of cells in suspension using imaging flow cytometry (Fig. S5A
and B, ESI†) and plot percent retention as a function of cell
diameter (Fig. 2B). Overall, we observe that there is a positive
correlation between retention and cell size (R = 0.72), indicating
that cell size could influence retention. While the observed
relationship between cell size and retention may explain the
higher retention of the larger PANC-1 cells, the other pancreatic
ductal cell lines have similar size distributions yet show significant
differences in retention. For example, the MIA PaCa-2 have a slightly
larger size compared to the Hs766T cells, yet exhibit a significantly
lower retention, which indicates that these cells occlude fewer
pores and are therefore more deformable. In addition to cell
size, nuclear size can also impact occlusion of pores and
channels.21,22 The median diameter of nuclei in our pancreatic
ductal cells is 11–16 mm (Fig. S5A and C, ESI†), suggesting that
some nuclear deformation is also required for cells to deform
through micron-scale pores. We observe moderate correlations
between nuclear size and transit time (R = 0.86), as well as
nuclear size and retention (R = 0.62). However, there is a very
strong correlation between cell and nuclear size (R = 0.99 for
cells in suspension). Therefore, our cell deformability measure-
ments by PMF and microfluidic deformability cytometry could
be influenced by both the cytoskeleton and nucleus.

As an independent measure of how cells transit through
narrow gaps, we use microfluidic deformability cytometry. This
method enables us to measure the timescale, or transit time,
for single cells to deform through micron-scale channels while
simultaneously characterizing their size. Cells that have larger
elastic moduli tend to have longer transit times.29,39 When
considering the entire population, the PANC-1 cells have a
similar median transit time as the HPDE control (bootstrapped
median transit time � confidence interval, PANC-1: 18 � 5.3 ms,
HPDE: 18 � 2.0 ms; pPANC–HPDE = 2.8 � 10�2). Consistent with our
retention data, the MIA PaCa-2 cells have a lower transit time
compared to the HPDE cells (MIA PaCa-2: 4.0 � 0.0 ms,
pMIA–HPDE E 0.0), substantiating that these cells are more deform-
able than the noncancerous controls. In addition, we observe that
the Hs766T cells have significantly lower median transit times than
the HPDE cells (Hs766T: 4.8 � 0.5 ms, pHPDE–Hs766T E 0.0).

To determine the role of cell size in transit time, we gate for
cells of a similar size and compare their transit time distributions
(Fig. S6, ESI†). Here we focus our analysis on the size bins of the
largest (PANC-1) and smallest (Hs766T) cells of our panel. For
example, we first compare transit time distributions for cells
that are within 5 mm of the PANC-1 median cell size of 24 mm
(Fig. S6D, ESI†). While the non-gated data show that PANC-1 and
HPDE cells have similar median transit times across the entire
population (Fig. 2C and D), our size-gated data reveal that the
PANC-1 cells have a shorter median transit time than HPDE cells
(PANC-1: 19� 8.5 ms, HPDE: 26� 5.0 ms; pPANC–HPDE = 4.8� 10�6),
suggesting that PANC-1 cells are more deformable than the
HPDE control cells when accounting for differences in cell size.
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Since the Hs766T cells are significantly smaller than the HPDE
cells (Fig. 2D and Fig. S5A, B, ESI†), we also compare transit time
distributions across cell lines within the median size range of the
Hs766T cells (18.3 � 2.5 mm) (Fig. S6B, ESI†). Our results show
that even for cells of similar sizes, the Hs766T cells have a
significantly reduced transit time (Hs766T: 4.8 � 0.5, HPDE:
9.8 � 1.5 ms; pHPDE–Hs766T = 1.2 � 10�67), indicating that these
cells are more deformable than the noncancerous HPDE cells.
Thus, while both cell size and deformability can impact how cells
deform through narrow gaps, our size-gated data show that even
for cells of similar size, there are differences in transit time,
reflecting the variability in cell mechanotype across our PDAC cell
lines, both within and between populations. Collectively, our
fluidic assays show that the MIA PaCa-2 cells passively deform
through narrow gaps most readily, as indicated by their low
retention and transit time. Interestingly, while the MIA PaCa-2
cells are the most deformable, they show a slightly lower invasive

potential compared to the PANC-1 cells (Fig. 1), which have
higher retention and transit times. By contrast, the Hs766T cells
are the most invasive but have similar transit times and increased
retention compared to the MIA PaCa-2 cells. Overall, for the three
PDAC cell lines tested, we observe weak correlations between
PDAC cell invasive potential and the deformability of suspended
cells as measured using our fluidic assays [RInvasion–Retention =
0.21, RTranswell–Retention = 0.05, RInvasion–Transit Time = �0.24;
RTranswell–Transit Time = �0.39] (Fig. 5 and Table S2, ESI†).
Our results contrast previous studies showing that lung, breast
and ovarian cancer cells with higher invasive potential have
shorter transit times14,16 and transformed ovarian cells have a
lower retention.15

Stiffer pancreatic cancer cells tend to be more invasive

Before cancer cells reach circulation, they adhere to fibers and other
cells as they disseminate and invade into surrounding tissues.

Fig. 2 Deformability of pancreatic ductal cells. (A) Retention as measured by parallel microfiltration (PMF). A suspension of cells that more effectively
occludes the 10 mm pores of the membrane in response to external air pressure will exhibit a higher retention. Inset shows schematic of cells passing
through a porous membrane. Boxes represent the 25th and 75th percentiles, whiskers represent the 10th and 90th percentiles, and horizontal lines
represents the means. (B) Retention as a function of cell diameter. Data points represent the means and the error bars represent the standard deviations
for both axes. (C) Transit time is measured using microfluidic deformability cytometry and reveals the timescale required for single cells to deform
through a channel with a 9 mm � 10 mm diameter, as illustrated in the inset. Cells that are less deformable have longer transit times than cells that are
more deformable. For each cell line, n > 2200 cells. Boxes represent the 25th and 75th percentiles, whiskers represent the 10th and 90th percentiles, and
horizontal lines represent the bootstrapped medians. Size-gated transit time data is shown in Fig. S6 (ESI†). (D) Density scatterplots show the transit time
of single cells as a function of cell size. Statistical significance of the deformability cytometry results is calculated using a Mann–Whitney U test. All other
statistical significances is calculated with a Student’s t-test. *p-value o 0.05. The significance of pairwise comparisons between cell lines is shown in
panels A and C by the initial(s) of the cell lines that are significantly different where H: HPDE, Hs: Hs766T, M: MIA PaCa-2, and P: PANC-1. For example, in
panel A, HPDE is significantly different (*p o 0.05) from MIA PaCa-2 (M) and PANC-1 (P).
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Therefore, we next use atomic force microscopy (AFM) to
measure the Young’s modulus of the central cytoplasmic region
of pancreatic ductal cells in an adhered state. Our data show
that the MIA PaCa-2 and PANC-1 cells have significantly lower
median Young’s moduli than the noncancerous HPDE cells
(bootstrapped mean � confidence intervals: MIA PaCa-2: 1.7 �
1.0 kPa, PANC-1: 2.4� 1.1 kPa, HPDE: 3.7� 1.2 kPa; pMIA–HPDE =
1.6 � 10�5, pPANC–HPDE = 1.3 � 10�3) (Fig. 3A–C). The PANC-1
cells show a statistically significant 1.4� increase in the average
Young’s modulus compared to MIA PaCa-2 cells ( p = 2.7 � 10�2).
In contrast, the Hs766T cells have an average Young’s modulus
that is higher than both the MIA PaCa-2 and PANC-1 cells (Hs766T:
3.0 � 2.0 kPa; pHs766T–MIA = 1.2 � 10�4, pHs766T–PANC = 5.0 � 10�3),
but similar to that of the HPDE cells ( pHs766T–HPDE = 9.7 � 10�1)
(Fig. 3C). Compared to the other pancreatic ductal cancer cell
lines, the stiffer Hs766T cells have a significantly greater invasive
potential (Fig. 1). These data demonstrate that pancreatic cancer
cells with a higher Young’s modulus are more invasive than cancer
cells that are more compliant (RInvasion–Young’s Modulus = 0.97;
RTranswell–Young’s Modulus = 0.92), which contrasts previous studies
that show more invasive breast and ovarian cancer cells have a
lower Young’s modulus than their benign and less invasive
counterparts.9,10

Lamin A is associated with variability in PDAC cell
mechanotype

To investigate the molecular origins underlying the observed
differences in cell mechanotype of PDAC cells, we compile a list
of genes that regulate cell mechanical properties,40–45 which we
collectively refer to as the ‘mechanome’. Using publicly avail-
able RNAseq data,46 we identify mechanome genes that have
the greatest differential expression across our PDAC cell lines
(Fig. 4A). The four genes that exhibit the largest standard
deviation are VIM, ACTB, ACTG1, and LMNA. These genes also
show the highest standard deviations across a cohort of 41
PDAC cell lines (Fig. S8, ESI†). Vimentin (VIM) is a cytoplasmic

intermediate filament protein that contributes to the mechanical
properties of various cell types.47–49 Reduced levels of vimentin
are associated with decreased stiffness of mouse embryo
fibroblasts50,51 and breast cancer cells.52 Vimentin is also a
biomarker for epithelial-to-mesenchymal transition (EMT): cells
with increased levels of vimentin tend to be more motile and
invasive.53 Our previous work shows that EMT-transformed
ovarian cancer cells are more deformable than epithelial-type
cells.15 ACTB and ACTG1 form protein products that polymerize
to form filamentous (F)-actin, which is a well-established
regulator of cell mechanotype and motility.54,55 We prioritize
ß-actin for further analysis, as this protein is implicated in
cancer progression.54–56 We also investigate LMNA, which
encodes lamin A; this nuclear-specific intermediate filament
protein underlies the inner nuclear membrane, and is important
in essential processes including chromatin organization, gene
transcription, and DNA repair.57 Lamin A is a key determinant
of the shape stability of the cell nucleus,58 and contributes to the
mechanical properties of different cell and tissue types.21,22,45,58,59

Therefore, we focus on validating the role of vimentin, ß-actin,
F-actin, and lamin A in the mechanotypic variability of our
pancreatic ductal cells.

We first quantify levels of vimentin by immunoblotting,
revealing that there is significant variability across cell lines
(Fig. 4B and C). MIA–PaCa-2 cells have the highest levels of
vimentin, which are approximately 2-fold greater than levels in
PANC-1 ( p = 0.08). By contrast, HS766T and HPDE have no
detectable vimentin. While the variability in vimentin levels
across the cell lines is significant, it does not appear to explain
the variability that we observe in cell mechanotype and invasive
behavior, as the MIA PaCa-2 cells are the most deformable of
our PDAC cell lines, and cells that are deficient in vimentin are
typically more deformable.50–52

Our data show that ß-actin levels do not significantly vary
across our panel of pancreatic ductal cells (0.9 to 1.2 fold-
change; p > 0.05 for all pairwise comparisons) (Fig. 4D and E).

Fig. 3 Stiffness of pancreatic ductal cells. (A) Representative image of atomic force microscopy (AFM) tip over the cytoplasmic region of an HPDE cell.
Scale, 40 mm. (B) Representative force curves from each cell line. Hertz–Sneddon fits are shown in Fig. S7 (ESI†). (C) Young’s modulus of each cell type is
measured by AFM. Stiffer cells have a larger Young’s modulus than more compliant cells. n > 28 for all cell lines. Boxes represent the 25th and 75th
percentiles, whiskers represent the 10th and 90th percentiles, and the horizontal line represents the bootstrapped median. Significance calculated by a
Mann–Whitney U test between medians. *p o 0.05. The significance of pairwise comparisons between cell lines is shown in panel C by the initial(s) of
the cell lines that are significantly different where H: HPDE, Hs: Hs766T, M: MIA PaCa-2, and P: PANC-1. For example, HPDE is significantly different
(*p o 0.05) from MIA PaCa-2 (M) and PANC-1 (P).
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To quantify F-actin levels, we use imaging flow cytometry,
which enables us to characterize large populations of single
cells. While there is a slight decrease in F-actin levels for PDAC
cell lines compared to the HPDE control, there is less than a
2-fold difference across our 4 pancreatic cell lines (Fig. 4F and G).

By contrast, we observe up to a 5-fold difference in lamin A
levels across our panel of cells, as measured by immuno-
blotting (Fig. 4D and E). Hs766T cells have the highest content
of lamin A, which is approximately 5� greater than in HPDE
cells (Hs766T: 5.3 � 2.5, HPDE: 1.0 � 0.3; pHs766T–HDPE =
9.2 � 10�2). The MIA PaCa-2 cells have similar lamin A levels
as the HPDE control cells (MIA PaCa-2: 1.1 � 0.5; pMIA–HPDE =
7.8� 10�1), while the PANC-1 cells have intermediate levels of lamin
A (PANC-1: 3.3 � 1.9; pPANC–HPDE = 1.7 � 10�1) (Fig. 4D and E).
Lamin C, which is a splice variant of lamin A, shows a much
smaller B2-fold variation across cell lines. Overall, for the three
PDAC cell lines tested, our data reveal a positive trend between
protein levels of lamin A and cell mechanotype (RLaminA–Retention =
0.48, RLaminA–Youngs Modulus = 1.0) (Fig. 5 and Table S2, ESI†).
Intriguingly, we also find a positive association between
lamin A and cancer cell invasion (RLaminA–Invasion = 0.96,
RLaminA–Transwell Migration = 0.90). Taken together, our data suggest
that Young’s modulus and invasive behavior are more strongly
associated with lamin A than with ß-actin, F-actin, or lamin C.

Discussion
More invasive PDAC cells are stiffer than less invasive PDAC cells

Across many cancer types, in both cell lines and patient samples,
cancer cells that are more deformable are more invasive or have
higher metastatic potential than stiffer cells.8–17,60 By contrast, we
show here that more invasive PDAC cells have a higher Young’s

Fig. 4 Structural proteins in pancreatic ductal cell lines. (A) Bar plot
showing standard deviation in expression levels of mechanoregulating
genes across our three PDAC cell lines as determined by RNAseq analysis.
(B) Immunoblot of vimentin and GAPDH. (C) Fold-change in protein levels
compared to the MIA–PaCa2 cells, as HPDE cells show no detectable
vimentin. Values are first normalized to the loading control, GAPDH.
(D) Immunoblot of lamin A, lamin C, ß-actin, and GAPDH. (E) Fold-
change in protein levels compared to HPDE cells. Values are first normal-
ized to the loading control, GAPDH. (F) Imaging flow cytometry images of
cells stained with phalloidin to label F-actin. Scale, 15 mm. (G) Quantifica-
tion of images shows bootstrapped median fluorescence intensity of
F-actin. Statistical significance for immunoblotting results is determined
by a Student t-test. Statistical significance for imaging flow cytometry
results is determined by a Mann Whitney U test. *p o 0.05. Significance is
shown for cell line with the star to the cell line denoted by the initial(s). The
significance of pairwise comparisons between cell lines is shown in panels
C, E, and G by the initial(s) of the cell lines that are significantly different
where H: HPDE, Hs: Hs766T, M: MIA PaCa-2, and P: PANC-1.

Fig. 5 Pearson’s correlations (R) between cancer cell behaviors, mechano-
type measurements, and levels of structural proteins for PDAC cells. Invasion
is determined from modified scratch wound invasion assays as percent
confluence at 72 hours. Transwell migration assays measure the ability of cells
to migrate through 8 mm pores after 12 hours. Young’s modulus is obtained
using AFM. Retention is determined by PMF. Transit time is measured using
microfluidic deformability cytometry. F-actin levels are measured for fixed,
phalloidin-labeled cells in suspension by imaging flow cytometry. Vimentin,
ß-actin, and lamin A/C levels are measured by quantitative immunoblotting.
Colors are based on R-values that are obtained by calculating Pearson’s
correlation coefficients across the three cancerous PDAC cell lines
(Hs766T, PANC-1, and MIA PaCa-2) in our panel.

Integrative Biology Paper

View Article Online

15

http://dx.doi.org/10.1039/c6ib00135a
http://dx.doi.org/10.1039/c6ib00135a


Integr. Biol. This journal is©The Royal Society of Chemistry 2016

modulus. The Hs766T cells, which are derived from a malignant
pleural effusion, are the stiffest and also the most invasive of the
cell lines in our panel (Fig. 1 and 3). Of the two cell lines derived
from primary tumors, PANC-1 cells are slightly more invasive and
have a higher Young’s modulus than MIA PaCA-2 cells. Our
observations that more invasive pancreatic ductal cells tend to be
stiffer suggest that the relationship between cancer cell mechanotype
and invasive potential may depend on cancer type. While many
studies identify more compliant breast and ovarian cancer cells as
more invasive,9,10 stiffer lung cancer and transformed skin cells have
greater invasive potential.18,19 Indeed, more invasive or metastatic
cancer cell lines that generate greater traction stresses27,61 and more
contractile cells have a higher apparent stiffness.62

Cell mechanotype shows promise as an emerging biomarker
that could be used to aid pathologists in achieving more
accurate prognoses.13,63 Our data highlight that the association
between mechanotype and disease aggressiveness may vary for
different tissue types. For example, while the increased deform-
ability of breast and ovarian cancer cells may predict increased
invasive behavior, our results suggest that more invasive PDAC
cells could be detected or classified based on their increased
stiffness. Developing a framework across different types of
cancers that classifies disease aggressiveness based on cell
mechanotype could provide clinically valuable information for
prognosis or identifying appropriate therapeutic treatments.

An integrated understanding of cell mechanotype

Across three different mechanotype measurements, we find
different trends between cell lines. Our AFM data show that
the stiffest to most compliant cell lines are Hs766T = HPDE >
PANC-1 > MIA PaCa-2. With PMF, we find that retention from
highest to lowest is PANC-1 > Hs766T = HPDE > MIA PaCa-2.
Our microfluidic deformability cytometry data show that transit
times from longest to shortest are HPDE = PANC-1 > Hs766T >
MIA PaCa-2. Overall we find that there is a strong, positive
correlation between our microfluidic and PMF data (Fig. 5 and
Table S2, ESI†). However, there is only a moderate to weak
association between AFM and our fluidic assays. One possible
explanation for the difference we see across methods may be a result
of measuring bulk populations versus single cells. For example, the
PANC-1 cells have a similar median transit time as the HPDE cells,
but exhibit a greater range of transit times; the PANC-1 cells that
have longer transit times are more likely to occlude pores in our PMF
assay, and may thereby contribute to the marked increase in
retention that we observe for PANC-1 compared to HPDE cells.

The different trends in cell mechanotype that we observe
may also stem from the different length scales of deformation
between the techniques: in our fluidic assays, cells are subject
to global deformations on the order of 10 mm whereas with AFM
we probe the cell with local, B0.5 to 1 mm indentations. The
deformation length scale determines which subcellular structures
are primary contributors to the measured cell deformability.
For example, the nucleus may dominate our fluidic deform-
ability measurements as the nuclei of our pancreatic ductal
cells have a diameter of 11 to 16 mm and the pores used in our
PMF and transit time assays have a diameter of 9 to 10 mm.

Therefore, the nucleus must deform in order for the whole cell
to passage through a pore. As the nucleus rate-limits the transit
of cells through pores much smaller than the diameter of the
nucleus,21 contributions of nuclear mechanical properties to
our fluidic measurements may be more significant than the
cytoskeleton. However, we observe only weak correlations
between retention and transit time with levels of the nuclear
envelope protein lamin A (Fig. 5 and Table S2, ESI†), suggesting
that both nuclear and cytoskeletal structures may contribute to
transit time and retention measurements. With AFM, we
induce local deformations of the cytoplasmic region of adhered
cells, thus we expect that these measurements reflect cytoske-
letal architecture. We note that adhered cells also exhibit stress
fibers, which can be anchored at focal adhesions where cells
attach to their substrate;25 the associated stress fibers may also
contribute to the deformability of adhered cells. We note that
the nucleus could additionally contribute to our AFM measurements
of the cytoplasmic region. The cytoskeleton is physically connected
to the nucleus through LINC protein complexes that span the
nuclear envelope and interact with actin and intermediate filaments;
thus, mechanical stresses applied during deformation of the
cytoplasm may be transduced to the nucleus.64

Adhered cells can also generate intracellular tension or
‘prestress’ when they are attached to a Matrigel-coated substrate.
As higher levels of prestress are reflected in AFM measurements
of Young’s modulus,65 the increased stiffness of Hs766T cells
may additionally reflect increased intracellular tension of these
cells. Moreover, adhered cells are prestressed materials with actin
stress fibers66 and the nucleus under tension.67–69 We speculate
that higher levels of lamin A could also enable cells to achieve
higher levels of prestress, and thereby contribute to the stiffer
cytoplasmic region that we observe by AFM. Therefore, a higher
density of lamin A in the nucleus could result in a smaller deforma-
tion of the cytoplasmic region for a given applied force; consistent
with this, Hs766T cells have the highest levels of lamin A (Fig. 4D
and E) largest Young’s modulus as measured by AFM (Fig. 3C).

Given these differences between cells that are adhered versus
suspended, as well as differences between the deformation
length scales of mechanotyping techniques, such complementary
methods could provide information that may be relevant in the
context of distinct physical processes in metastasis and invasion,
from circulation through vasculature to extravasation into distant
sites. While our retention and transit time results do not strongly
correlate with cell invasive potential (Fig. 5 and Table S2, ESI†),
the ability of PDAC cells to passively deform may influence their
ability to transit through narrow capillaries of the vasculature during
metastasis. Our retention measurements may also have physiological
disease relevance: it is intriguing to speculate that the occlusion of
cells in micron-scale capillaries of the pulmonary bed could increase
the probability that a secondary cancer site will be established.

The molecular origins of variability in cell mechanotype

Here we show that there is a 5-fold difference in lamin A protein
levels across 4 pancreatic ductal cell lines. Our results also
show a strong correlation between lamin A levels and Young’s
modulus as measured by AFM (Fig. 5 and Table S2, ESI†),
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indicating that this key structural protein of the cell nucleus
may contribute to the observed variability in mechanotype that
we observe across the PDAC cell lines. Our results are consistent
with previous findings showing that lower levels of lamin A
result in more deformable cells.21,58,70

We also observe that cells with higher levels of lamin A tend
to be more invasive (Fig. 5). For example, the Hs766T cells have
the highest expression of lamin A (1.6 to 5.3-fold increase
compared to the other pancreatic ductal cells lines) (Fig. 4D
and E) and are the most invasive (20 to 38% higher wound
confluence at 72 hours than the other pancreatic ductal cell
lines, Fig. 1). These findings contrast previous studies that
show increased levels of lamin A can impede the active migration
and passive transit of cells through narrow pores that are B50%
smaller than the diameter of their nuclei.21,22 However, cells with
reduced levels of lamin A exhibit increased frequency of nuclear
envelope rupture,71,72 apoptosis, and cell death22 when migrating
through micron-scale pores and 3D collagen gels. Thus, while a
more compliant nucleus, with lower lamin A levels, can enable
changes in shape that are required for deformation through
narrow gaps, a threshold level of lamin A and/or mechanical
stability appears to be necessary to prevent cell death and
excessive nuclear rupture events, which ultimately cause DNA
damage. Further, a stiffer nucleus could provide other advantages
during invasion. Because polymerizing actin bundles generate
forces and push against the nucleus during invadopodia
formation,73 we speculate that a stiffer nucleus with higher levels
of lamin A could provide more resistance to the forces exerted by
growing invadopodia and thereby enhance the ability of cells to
penetrate and invade into the surrounding matrix. Indeed, lamin
A-deficient mouse embryo fibroblasts cells show reduced
protrusions while migrating through a collagen matrix, as well
as lower 3D migration speeds.74 Thus, both lower and higher
levels of lamin A may offer distinct advantages for cancer cells.

While lamin A appears to be implicated in the progression of
some types of cancer, there is currently no consensus on the
role of lamin A in cancer progression or prognosis.75 Lamin A
overexpression is correlated to increased growth and invasion
in prostate cancer,76 while reduced lamin A levels are linked to
poor prognosis in gastric and squamous cell carcinoma, as well
as some skin cancers.77 The variability in mechanotype that we
observe could stem from other differences between cell lines.
Although the cell lines in our panel are all pancreatic ductal
cells, they are derived from different sites, including primary
tumors and pleural effusion. Despite their different origins, all
three PDAC cell lines have mutations in KRAS, TP53, and p16.
The Hs766T cells have an additional SMAD4 mutation (Table
S1, ESI†), which could contribute to its increased invasive
potential.78,79 In addition to these founder mutations, other
genetic alterations could affect mechanotype. Future studies
measuring the deformability of primary cells with well-
characterized genetic mutations may address the link between
genotype, mechanotype, and invasive behavior.

We also find that there is significant variability in vimentin
levels across PDAC cell lines (Fig. 4B and C), and that cells with
higher vimentin levels are more compliant and less invasive.

This apparent discrepancy with previous mechanical studies of
cells with decreased vimentin levels50–52 may be due to the fact
that we investigate endogeneous vimentin levels across different cell
lines, rather than specifically manipulating vimentin levels by knock-
down or overexpression. However, during epithelial-to-mesenchymal
transition (EMT), cells tend to express increased levels of vimentin
and become more motile and invasive;53 our previous work shows
that EMT-transformed ovarian cancer cells are more deformable
than epithelial-type cells.15 Our current study also reveals that
pancreatic cancer cells with higher vimentin levels are more deform-
able, although they are less invasive. It will be interesting to more
thoroughly investigate the role of vimentin in the mechanical
properties and invasion of pancreatic cancer cells in future work.

Our bioinformatics analysis highlights additional mechanome
genes that could regulate PDAC cell mechanotype. For example, we
observe that components of the Rho/ROCK pathway also exhibit
significant variability across PDAC cell lines. These proteins, such
as RhoA, are implicated in cell contractility,80–82 and may thus
impact cancer cell invasion, response to stiffer extracellular
matrices, and metastasis. Further investigations should provide
deeper insight into the molecular basis of how cells regulate their
mechanotype to adapt to a microenvironment of a particular
stiffness, and how such changes in cell mechanotype may affect
cancer behaviors, from invasion to proliferation. It is thought that
more compliant cells could more easily transit narrow channels of
the vasculature and metastasize to distant sites; however, stiffer
cells may be better able to sustain the physical forces in the
microenvironment and generate greater contractile forces that
enable invasion into surrounding tissues. Such studies would also
provide deeper insight into the open question of whether tumor
cell mechanotype contributes to cancer progression, or is a
byproduct that accompanies disease progression.

Towards clinical benefit

We anticipate that expanding our knowledge of the PDAC cell
mechanome could identify novel drug targets. One of the greatest
challenges in PDAC treatment is the development of effective
therapies that impede metastasis, as metastatic tumor burden is
thought to be responsible for over 70 percent of PDAC-related
deaths.83 Knowledge of the PDAC mechanome could provide
insight into how cells alter mechanosignaling pathways in
response to the stiffness of their microenvironment. Targeting
the molecular components that are triggered by mechanical cues
may impede cancer progression by interrupting the positive
feedback loop that drives cells to generate more ECM, which
results in a stiffer tumor and increases PDAC progression.4

Insights into cell physical properties and their contributions to
the complex cancer phenotype are thus urgently needed for
improving the prognosis of patients with pancreatic cancer.

Experimental methods
Cell culture

The nontransformed human pancreatic ductal epithelial (HPDE)
cell line is from Ming-Sound Tsao from the Department of
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Laboratory Medicine and Pathobiology at the Ontario Cancer
Institute (University Health Network-Princess Margaret Hospital,
Toronto) and the Department of Medical Biophysics (University
of Toronto, Ontario, Canada). The pancreatic ductal adeno-
carcinoma (PDAC) cell lines (Hs766T, MIA PaCa-2, and PANC-1)
are from the American Type Culture Collection (ATCC). HPDE
cells are cultured in Keratinocyte-SFM (Life Technologies)
supplemented with prequalified human recombinant Epidermal
Growth Factor 1-53 (Life Technologies), Bovine Pituitary Extract
(Life Technologies), and 1% v/v penicillin–streptomycin (Gemini
BioProducts). Hs766T, MIA PaCa-2, and PANC-1 cells are grown
in high glucose, L-glutamine Dulbecco’s Modified Eagle Medium
(DMEM) (Life Technologies) with 10% fetal bovine serum and
1% v/v penicillin–streptomycin (Gemini BioProducts). Cells are
cultured at 5% CO2 and 37 1C.

Scratch wound invasion, migration, and proliferation assays

We perform invasion, migration, and proliferation assays using
the IncuCyte time-lapse imaging system (EssenBioscience). To
measure cell invasion through a 3D matrix, we perform modified
scratch wound invasion assays with an overlay of Matrigel to
simulate the ECM.30,31,84 We plate cells in the wells of a 96-well
plate with a thin Matrigel (100 mg ml�1) layer for cell attachment
at 95% confluency, create a scratch wound, overlay the scratch
with a B1.5 mm-thick layer of 8 mg ml�1 Matrigel (Corning), and
perform time-lapse imaging using the IncuCyte Zoom (Essen
Bioscience) at 5% CO2 and 37 1C. Phase contrast images of cells
are acquired every 2 hours for 120 hours. We determine the
confluence of cells in the wound area at each time point using
quantitative image analysis (Essen Bioscience). To assay the
ability of cells to migrate on a 2D substrate, we perform this
same assay without Matrigel and image every 2 hours for 72 hours.
Since both scratch wound invasion and migration assays may be
influenced by cell proliferation, we also measure percent con-
fluence by sparsely plating cells (2000 cells per well of a 96-well
plate) and acquiring phase contrast images every 2 hours for
120 hours. We also determine proliferation and apoptosis rates
of cells with a Matrigel overlay. Cells are prepared as described
above for a proliferation assay. Prior to overlay with Matrigel
(8 mg ml�1), cells were stained with 3 mM DRAQ7, a cell
impermeable nuclear dye that only intercalates into the DNA
of apoptosed cells.

Transwell migration

To assay the ability of cells to migrate through 8 mm pores, we
use 24-well uncoated transwell inserts with porous polycarbonate
membranes (Costar, Corning). For 1 hour prior to the experiments,
we hydrate each well in serum-free DMEM media. We then load
150 ml of a suspension of 6.7 � 105 cells per ml into each well and
incubate at 5% CO2, 37 1C for 12 hours. After the incubation period,
cells remaining on the top side of each membrane are removed with
a cotton swab; all of the cells that have migrated to the bottom of
the membrane are fixed in 100% methanol, stained with Hoechst
33342 (Life Technologies), and washed with 1� PBS (Corning).
Imaging of stained cells is performed using a fluorescent micro-
scope (Zeiss EC Plan-Neofluar 20� objective; NA 0.5/Ph2 M27).

The number of cells that migrate to the bottom of the membrane is
determined by counting the number of nuclei from images of the
bottom membrane. Transwell migration efficiency is determined
by the number of migrated cells divided by the total number of
cells loaded.

Parallel microfiltration (PMF)

The PMF method is described previously in detail.15 In brief, we
assemble the device with a polycarbonate membrane that has
pores of 10 mm diameter (Isopore, Millipore). To minimize cell-
surface interactions, we incubate each well with 1% w/v bovine
serum albumin (BSA) (Fisher Scientific) for 1 hour at 37 1C. The
BSA solution is then removed and wells are air dried for at least
1 hour before each experiment. Cell suspensions are prepared
at a concentration of 6.0 � 105 cells per ml and filtered through
a 35 mm mesh filter to reduce the number of cell aggregates.
To measure cell number and size, we use an automated cell
counter (TC20, BioRad); this also confirms that over 98% of
cells are single cells (Fig. S4, ESI†). Using compressed air as a
pressure source, we apply 14 kPa for 50 s. We determine the
percentage (%) retention by collecting the cell suspension that
remains in the top well and measuring its mass using a
precision balance (Northeast Scale Inc.); retention is defined
as massfinal/massinitial. We load samples into at least three wells
per cell line per experiment, and at least ten wells over three
independent experiments are measured for each cell line.

Microfluidic deformability cytometry

To evaluate the ability of single cells to passively deform through
micron-scale pores, we use microfluidic devices with channels
that have a smallest dimension of 9 mm� 10 mm (width� height),
which we fabricate using standard soft photolithography
techniques.85 To pattern the device design onto a silicon master,
SU-8 3010 negative photoresist (MicroChem) is spincoated onto a
400 silicon wafer and exposed to UV light through a photomask.
Polydimethylsiloxane (Sylgard 184 silicone elastomer, Dow
Corning) is mixed with a 10 : 1 ratio of base to crosslinker, poured
over the silicon master, and cured at 80 1C for 1 hour. A biopsy
punch is used to create inlets and outlets. The PDMS is bonded to
#1.5-thickness glass coverslips using plasma corona discharge
and baked at 80 1C for 20 minutes to ensure bonding. To
minimize cell-wall interactions, we add Pluronic F-127 surfactant
(0.1 w/v%) (Sigma-Aldrich) to the cell suspension.29 Cell suspensions
are flowed through the microfluidic device using pressure-driven
flow (10 psi).86 We image cells that deform through the narrow
channels by acquiring images at 2000 frames per second using a
CMOS camera (Miro eX1, Vision Research) mounted on an inverted
microscope. For each cell line, we obtain videos over three
independent experiments. To determine the timescale for
single cells to transit through the 9 mm constriction, or transit
time, we perform post-acquisition analysis using a custom
MATLAB script (Mathworks).

Atomic force microscopy (AFM)

AFM is performed using the MFP-3D-BIO system (Asylum
Research, Oxford Instruments). Cells are probed with the ‘‘C’’
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tip of an MLCT probe (Bruker) at room temperature. The sensitivity
and spring constant of each probe (11.5 to 14.5 mN m�1) are
calibrated before each experiment. Cells are plated on a polystyrene
petri dish coated with a thin layer of Matrigel (100 mg ml�1)
approximately 24 hours prior to each experiment. Force curves are
acquired by indenting the central cytoplasmic region of 25 to
35 cells for each cell line. To avoid possible contribution of
adjacent cells, only single cells were probed. Approach and
retract speeds for all experiments are 5 mm s�1. The elastic
modulus for each cell is determined by fitting force curves with
the Hertz–Sneddon model87,88 using Asylum Research software.

Gene expression and bioinformatics analysis

We use publicly available RNA-seq data for 41 PDAC cell lines
for gene expression analysis.46 Using STAR v.2.4.2a,89 we align
RNA sequence reads to the human reference genome (hg38)
with Ensembl v.82 gene annotations. STAR is run with the
following parameters: minimum/maximum intron sizes are set
to 30 and 500 000; noncanonical, unannotated junctions are
removed; maximum tolerated mismatches is set to 10; and the
outSAMstrandField intron motif option is enabled. To quantify
per-sample read abundances we use the Cuffquant command
included with Cufflinks v.2.2.1,90 with fragment bias correction
and multiread correction enabled. All other options are set to
default. Finally, fragments per kilobase of exon per million
fragments mapped (FPKM) are calculated using the Cuffnorm
command with default parameters. We use these FPKM values
to compare expression levels of genes whose protein products
are implicated in regulation of cell mechanical properties.40–45

To identify the mechanoregulating genes with the highest
variability in expression across PDAC cell lines, we calculate
the standard deviation of mRNA levels for genes that encode
proteins that are implicated in mechanotype.

Imaging flow cytometry

To visualize F-actin, cells are fixed with 4% paraformaldehyde
(Sigma) in 1� PBS (Corning), permeabilized with 0.3% Triton
X-100 in 1� PBS (Corning), and stained with phalloidin con-
jugated to AlexaFluor488 (1 : 100 in 0.3% Triton X-100 in
1� PBS; Life Technologies) at room temperature for 30 minutes.
To image the nucleus, cells are stained with DRAQ5 (1 : 250 in
0.3% Triton X-100 in 1� PBS; ThermoFisher) at room temperature
for 20 minutes. Images of individual cells in suspension are
acquired using imaging flow cytometry (Amnis ImageStream,
Millipore). Quantification of F-actin intensity, cell size, and nuclear
size is conducted using the IDEAS software (Amnis, Millipore).

Western blots

Western blots are performed as previously described21 with
slight modifications. Cell lysates are prepared from 2 � 106 cells
with 100 ml urea lysis buffer that has a final concentration of
9 M urea, 10 mM Tris–HCl (pH 8), 10 mM EDTA, 500 mM phenyl-
methylsulfonyl fluoride, 20 ml of b-mercaptoethanol (Sigma),
and protease inhibitor at the suggested working concentration
(cOmplete ULTRA tablets). Proteins are separated on a 4–12%
Bis-Tris gel (Life Technologies) with 1� MES running buffer

(Life Technologies) and then transferred to nitrocellulose
membranes, blocked with 5% fat-free milk, and labeled with
primary antibodies against vimentin (MS-129-P0, Thermo-
Fisher), b-actin (MA5-15739, ThermoFisher), lamin A/C (sc-6215,
Santa Cruz Biotech), and GAPDH (MA5-15738, ThermoFisher) as a
loading control. Membranes are then incubated with host-specific
secondary antibodies conjugated to horseradish peroxidase (HRP)
(Abcam) and imaged using chemiluminescence (ThermoFisher)
on a digital imaging system (AlphaImager IS-1000, Alpha Innotech
Corporation). Expression levels are quantified by analysis of
optical density in the linear regime using ImageJ software
(National Institutes of Health).

Statistical analysis

All data are obtained from at least 3 independent experiments.
For data with normal distributions, we determine statistical
significance using a Student’s t-test (Excel, Microsoft). For data
that exhibit a non-normal distribution, we perform bootstrapping
to obtain the bootstrapped median and confidence intervals; we
then use the Mann–Whitney U test to determine statistically
significant differences between non-normal distributions the
Statistical and Machine Learning Toolbox in MATLAB (Mathworks)
and Origin (OriginLab). Density scatter plots for transit time data
are plotted using the dscatter function (Richard Henson,
MathWorks File Exchange) in MATLAB (Mathworks).
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28 E. L. Deer, J. González-Hernández, J. D. Coursen, J. E. Shea,
J. Ngatia, C. L. Scaife, M. A. Firpo and S. J. Mulvihill,
Pancreas, 2010, 39, 425–435.

29 K. D. Nyberg, M. B. Scott, S. L. Bruce, A. B. Gopinath,
D. Bikos, T. G. Mason, W. Kim, H. Sung and A. C. Rowat,
Lab Chip, 2016, 16, 3330–3339.

30 M. Unbekandt, D. R. Croft, D. Crighton, M. Mezna,
D. Mcarthur, P. Mcconnell, A. W. Schüttelkopf, S. Belshaw,
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76 L. Kong, G. Schäfer, H. Bu, Y. Zhang, Y. Zhang and
H. Klocker, Carcinogenesis, 2012, 33, 751–759.

Integrative Biology Paper

View Article Online

21

http://dx.doi.org/10.1039/c6ib00135a
http://dx.doi.org/10.1039/c6ib00135a


Integr. Biol. This journal is©The Royal Society of Chemistry 2016

77 M. Prokocimer, M. Davidovich, M. Nissim-Rafinia,
N. Wiesel-Motiuk, D. Z. Bar, R. Barkan, E. Meshorer and
Y. Gruenbaum, J. Cell. Mol. Med., 2009, 13, 1059–1085.

78 S. Zhao, Y. Wang, L. Cao, M. M. Ouellette and J. W. Freeman,
Int. J. Cancer, 2010, 127, 2076–2087.

79 Y.-W. Chen, P.-J. Hsiao, C.-C. Weng, K.-K. Kuo, T.-L. Kuo, D.-C.
Wu, W.-C. Hung and K.-H. Cheng, BMC Cancer, 2014, 14, 181.

80 M. Amano, M. Nakayama and K. Kaibuchi, Cytoskeleton,
2010, 67, 545–554.

81 S. Sharma, C. Santiskulvong, J. Rao, J. K. Gimzewski and
O. Dorigo, Integr. Biol., 2014, 6, 611–617.

82 I. Aifuwa, A. Giri, N. Longe, S. H. Lee, S. S. An and D. Wirtz,
Oncotarget, 2015, 6, 30516–30531.

83 S. Yachida, S. Jones, I. Bozic, T. Antal, R. Leary, B. Fu,
M. Kamiyama, R. H. Hruban, J. R. Eshleman, M. A. Nowak,
V. E. Velculescu, K. W. Kinzler, B. Vogelstein and C. A. Iacobuzio-
Donahue, Nature, 2010, 467, 1114–1117.

84 C. A. Sartorius, C. T. Hanna, B. Gril, H. Cruz, N. J. Serkova,
K. M. Huber, P. Kabos, T. B. Schedin, V. F. Borges,
P. S. Steeg and D. M. Cittelly, Oncogene, 2015, 35, 2881–2892.

85 D. C. Duffy, J. C. McDonald, O. J. A. Schueller and
G. M. Whitesides, Anal. Chem., 1998, 70, 4974–4984.

86 D. J. Hoelzle, B. A. Varghese, C. K. Chan and A. C. Rowat,
J. Visualized Exp., 2014, 91, e51474.

87 I. N. Sneddon, Int.J. Eng. Sci., 1965, 3, 47–57.
88 V. M. Laurent, S. Kasas, A. Yersin, T. E. Schäffer, S. Catsicas,
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Supplemental Figure 1

Migration behavior of pancreatic ductal cell lines. A. Time series of images showing scratch wound migration of 
pancreatic ductal cells without Matrigel. Wound confluence is the percentage of wound area covered by cells. Color 
legend: green is the wound area, grey represents the confluent cells outside of the wound area, and blue shows 
wound confluence in the wound area.  Scale, 300 µm. B. Quantification of migration across three independent 
experiments. Dotted line indicates the 24-hour time point, which we use compare wound confluence values for 
statistical significance. C. Bar plot of migration data after 24 hours. Error bars represent standard error. P-values 
determined by student’s T-test. *p < 0.05. The significance of pairwise comparisons between cell lines is shown in 
panel C by the initial(s) of the cell lines that are significantly different where H: HPDE, Hs: Hs766T, M: MIA PaCa-2, 
and P: PANC-1. For example, HPDE is significantly different (*p < 0.05) from Hs766T (Hs), MIA PaCa-2 (M), and 
PANC-1 (P).
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Supplemental Figure 2

Proliferation of pancreatic ductal cell lines. A. Time series of images showing confluence of pancreatic ductal 
cells. Scale, 300 µm. B. Representative quantification from one experiment of percent confluence, which denotes the 
percentage area coverage of cells plated on a thin layer of Matrigel. Dotted line indicates the 72-hour time point, 
which we use compare confluence values for statistical significance. C. Bar plot of confluence data after 72 hours 
averaged across three individual experiments. Error bars represent standard error. P-values determined by student’s 
T-test. None of the pairwise comparisons between pancreatic ductal cell lines are significant (p > 0.05). D. 
Representative quantification from one experiment of percent confluence of cells plated on a thin layer of Matrigel 
and overlaid with a thick layer of Matrigel. Dotted line indicates the 72-hour time point, which we use compare 
confluence values for statistical significance. E. Bar plot of confluence data after 72 hours averaged across three 
individual experiments. The significance of pairwise comparisons between cell lines is shown in panel E by the 
initial(s) of the cell lines that are significantly different where H: HPDE, Hs: Hs766T, M: MIA PaCa-2, and P: PANC-1. 
For example, HPDE is significantly different (*p < 0.05) from Hs766T (Hs), MIA PaCa-2 (M), and PANC-1 (P).
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Supplemental Figure 3

Apoptosis of pancreatic ductal cell lines with Matrigel overlay. Representative images of cells stained with 
DRAQ7 to quantify apoptosis: A. positive control (HPDE cells treated with DMEM, which is causes these cells to 
undergo apoptosis) and B. HPDE cells with a Matrigel overlay after 72 hours. Scale, 350 µm. C. Data of apoptosis 
across 4 pancreatic ductal cell lines over 3 independent experiments. Data points represent average % apoptosis 
over 3 independent experiments and error bars represent standard deviation. Dotted line indicates the 72-hour time 
point, which we use compare % apoptosis for statistical significance. D. Bar plot of apoptosis data after 72 hours 
averaged across three individual experiments. Error bars represent standard deviation. Statistical significance 
determined using a Student’s t-test. *p < 0.05. The significance of pairwise comparisons between cell lines is shown 
in panel C by the initial(s) of the cell lines that are significantly different where H: HPDE, Hs: Hs766T, M: MIA PaCa-2, 
and P: PANC-1. For example, HPDE is significantly different (*p < 0.05) from Hs766T (Hs), MIA PaCa-2 (M), and 
PANC-1 (P). 
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Supplemental Figure 4

Cell suspensions for PMF assay contain over 98% single cells. A. Representative images of cell suspensions 
prior to PMF. Scale, 300 µm. B. Quantification of single cells determined by image analysis. Bar plot represents the 
average from 3 independent experiments. Error bars represent standard deviation. Statistical significance determined 
using a Student’s t-test. No significance is observed (p > 0.05) for all pairwise comparisons between cell lines.
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Supplemental Figure 5

Cell and nuclear size of PDAC cells. A. Imaging flow cytometry of HPDE and PDAC cells that are fixed in a 
suspended state. Nuclei are labeled with DRAQ5. Scale, 15 µm. We use this data to quantify B. Cell size and C. 
Nuclear size. D. Images of adhered pancreatic ductal cells obtained by confocal microscopy. From this data, we 
measure E. Cell size and F. Nuclear size. Boxes represent the 25-75 percentile, whiskers represent the 10-90 
percentile, and the horizontal line represents the median. P-values are calculated with a Mann-Whitney U test. *p < 
0.05. All error bars represent standard errors. The significance of pairwise comparisons between cell lines is shown in 
panels B, C, E, and F by the initial(s) of the cell lines that are significantly different where H: HPDE, Hs: Hs766T, M: 
MIA PaCa-2, and P: PANC-1. For example, in panel B, HPDE is significantly different (*p < 0.05) from Hs766T (Hs), 
MIA PaCa-2 (M) and PANC-1 (P).
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Supplemental Figure 6
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Microfluidics data gated for cell size. Each plot shows transit time data obtained by microfluidic deformability 
cytometry for pancreatic ductal cell lines within a 5 µm range of the median size of each cell line: A. HPDE, B. 
Hs766T, C. MIA PaCa-2, and D. PANC-1. Boxes represent the 25th and 75th percentiles, whiskers represent the 10th 
and 90th percentiles, and the horizontal line represents the median. n > 350 cells for each box. The significance of 
pairwise comparisons between cell lines is shown in panels B, C, E, and F by the initial(s) of the cell lines that are 
significantly different where H: HPDE, Hs: Hs766T, M: MIA PaCa-2, and P: PANC-1. For example, in panel A, HPDE 
is significantly different (*p < 0.05) from Hs766T (Hs), MIA PaCa-2 (M), and PANC-1 (P).
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Supplemental Figure 7

A HPDE B Hs766T

C MIA PaCa-2 D PANC-1

Hertz-Sneddon fits for AFM force curves. Each plot shows an example force curve obtained by atomic force 
microscopy (AFM) for pancreatic ductal cell lines: A. HPDE, B. Hs766T, C. MIA PaCa-2, and D. PANC-1. Hertz-
Sneddon fits are indicated by black dashed lines.

29



Supplemental Figure 8
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RNAseq analysis of mechanome proteins across cohort of 41 pancreatic cancer cell lines. Bar plot represents 
the standard deviation in gene expression levels of proteins that contribute to cell mechanotype.
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Supplemental Table 1. Founder mutations in PDAC cell lines. 
Adapted from Deer, E. L., González-Hernández, J., Coursen, J. D., Shea, J. E., Ngatia, J., Scaife, C. L., … Mulvihill, 
S. J. (2010). Phenotype and genotype of pancreatic cancer cell lines. Pancreas, 39(4), 425–35.

HPDE AsPC-1 HPAF MIA PaCa-2 PANC-I Hs766T
WT Mut Mut Mut Mut Mut
WT Mut Mut Mut Mut Mut

CDKN2A/p16 WT Mut Mut Mut Mut Mut
SMAD4/DPC4 WT WT WT WT WT Mut

Gene HPDE AsPC-1 HPAF MIA PaCa-2 PANC-I
KRAS WT Mut Mut Mut Mut
TP53 WT Mut Mut Mut Mut
CDKN2A/p16 WT Mut Mut Mut Mut
SMAD4/DPC4 WT WT WT WT WT

Supplemental Table 2. Pearson’s values (top) and significance values (bottom) for correlation 
heat map as shown in Figure 5.

PEARSON'S 
CORRELATIONS

Invasion Transwell 
Migration

Young's 
Modulus

Retention Transit 
Time

Vimentin F-actin Beta-actin Lamin A Lamin C

Invasion 1 0.98711 0.97116 0.2098 -0.23968 0.62 -0.94657 0.99489 0.95849 0.55184

Transwell Migration 0.98711 1 0.92047 0.0506 -0.39198 0.73759 -0.88274 0.99823 0.90049 0.41124

Young's Modulus 0.97116 0.92047 1 0.43688 -0.00128 0.41505 -0.99616 0.94211 0.99883 0.73476

Retention 0.2098 0.0506 0.43688 1 0.89896 -0.63706 -0.51392 0.10998 0.47987 0.93117

Transit Time -0.23968 -0.39198 -0.00128 0.89896 1 -0.91033 -0.08623 -0.33651 0.04709 0.67738

Vimentin 0.62 0.73759 0.41505 -0.63706 -0.91033 1 -0.33384 0.69608 0.37056 -0.31218

F-actin -0.94657 -0.88274 -0.99616 -0.51392 -0.08623 -0.33384 1 -0.90915 -0.99923 -0.7913

Beta-actin 0.99489 0.99823 0.94211 0.10998 -0.33651 0.69608 -0.90915 1 0.92479 0.46479

Lamin A 0.95849 0.90049 0.99883 0.47987 0.04709 0.37056 -0.99923 0.92479 1 0.76671

Lamin C 0.55184 0.41124 0.73476 0.93117 0.67738 -0.31218 -0.7913 0.46479 0.76671 1

SIGNIFICANCE Invasion Transwell 
Migration

Young's 
Modulus

Retention Transit 
Time

Vimentin F-actin Beta-actin Lamin A Lamin C

Invasion -- 0.10234 0.15327 0.86544 0.84591 0.57426 0.20905 0.06441 0.18407 0.62786

Transwell Migration 0.10234 -- 0.2556 0.96777 0.74358 0.47192 0.31139 0.03793 0.28641 0.73019

Young's Modulus 0.15327 0.2556 -- 0.71217 0.99918 0.72753 0.05578 0.21767 0.0308 0.47459

Retention 0.86544 0.96777 0.71217 -- 0.28865 0.5603 0.65639 0.92984 0.68137 0.23758

Transit Time 0.84591 0.74358 0.99918 0.28865 -- 0.27165 0.94503 0.78151 0.97001 0.52623

Vimentin 0.57426 0.47192 0.72753 0.5603 0.27165 -- 0.78331 0.50986 0.75833 0.79788

F-actin 0.20905 0.31139 0.05578 0.65639 0.94503 0.78331 -- 0.27346 0.02498 0.4188

Beta-actin 0.06441 0.03793 0.21767 0.92984 0.78151 0.50986 0.27346 -- 0.24848 0.69226

Lamin A 0.18407 0.28641 0.0308 0.68137 0.97001 0.75833 0.02498 0.24848 -- 0.44378

Lamin C 0.62786 0.73019 0.47459 0.23758 0.52623 0.79788 0.4188 0.69226 0.44378 --
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Chapter III: Myosin II, Arp2/3, and formin activity contribute to cancer cell 

stiffness and invasion 
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Abstract 

Metastasis is a fundamentally physical process in which cells are required to deform through 

narrow gaps and generate forces to invade surrounding tissues. In many cancers, more invasive 

cells are more deformable than less invasive cells, but we previously found that more invasive 

pancreatic ductal adenocarcinoma (PDAC) cells are stiffer than less invasive PDAC cells. Here 

we investigate potential factors that contribute to the simultaneous increase in cell stiffness and 

invasion, including actomyosin contractility and actin polymerization. To measure the invasive 

potential of PDAC cells, we use a scratch wound invasion assay with Matrigel overlay. To 

measure the stiffness of PDAC cells, we perform atomic force microscopy (AFM). We use the 

pharmacological inhibitor blebbistatin to perturb actomyosin contractility, and CK-666 and 

SMIFH2 to inhibit actin polymerization through the Arp2/3 and formin pathways, respectively. 
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The results of this study show that both actomyosin contractility and actin polymerization 

contribute to the stiffness of pancreatic cancer cells but that the invasion potential of different 

PDAC cell lines is differentially affected by inhibitors to myosin II and actin polymerization, 

suggesting that different PDAC cell lines may require different mechanisms to invade. 

 

Introduction 

Cell physical phenotypes, including deformability, adhesion, and contractility, are critical in cell 

invasion (1–3). The physical phenotypes of tumor cells may also be implicated in metastasis; to 

spread to distant sites, cells invade into the extracellular matrix, intravasate, and extravasate, 

which all require movement through micron-scale pores smaller than the size of their own 

diameter (3, 4). Cancer cell phenotypes such as deformability and adhesion are emerging as 

label-free, complementary biomarkers for cancer diagnosis (5). Since the proteins and pathways 

that regulate cell physical phenotypes also contribute to cell invasion (1–3), 

mechanotransduction (6–10), and chemoresistance (11, 12), understanding the molecular origins 

of physical phenotypes can provide mechanistic insight into cancer progression and new 

therapeutic strategies. For example, the contractility of cells is reduced with treatment of the 

Rho-associated protein kinase (ROCK) inhibitor fasudil (13); this drug also decreases the 

physical tension within the tumor, leading to increased drug sensitivity, as well as reduced cancer 

cell invasion in vitro and metastasis in vivo (12). With a deeper knowledge of the relationship 

between cell physical phenotypes and clinically relevant metrics, such as invasion, we could 

identify additional therapeutic strategies to improve patient outcomes. 
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The mechanical phenotype, or mechanotype, of cancer cells shows strong associations with in 

vitro measurements of cell invasion (2, 14–20), which reflect the ability of cells to metastasize in 

vivo (21). Mechanotype is a physical property of cells that describes the extent to which a cell 

deforms in response to mechanical stresses. A frequently observed trend is that more invasive 

tumor cells are more deformable; this has been shown across prostate, ovarian, and breast cancer 

cell lines in vitro (2, 14–16), as well as the tumor cells of human breast biopsies in situ (22, 23). 

Since increased deformability enables cells to more readily deform through narrow gaps (24, 25), 

a more compliant mechanotype could provide a selective advantage in metastasis. Conversely, 

cells with increased cellular and nuclear stiffness are more likely to occlude narrow gaps (24, 25) 

and exhibit reduced cell invasion (2, 26–28). However, there are examples where more invasive 

cells are stiffer, including lung cancer cells (18), pancreatic ductal adenocarcinoma cells (19), 

fibroblasts with genetic alterations that result in oncogenic transformation (17), and cancer cells 

with increased beta-adrenergic signaling (20). While decreased cellular and nuclear 

deformability can explain why stiffer cells exhibit increased occlusion of pores and reduced 

invasion, it remains poorly understood what factors contribute to the simultaneous increase in 

cell stiffness and invasion. With a greater understanding of why stiffer cells are more invasive, 

we can advance mechanotype as a clinical biomarker and gain insights into novel therapeutic 

targets.  

 

Cells are complex, dynamic materials whose mechanotype is determined by both intrinsic and 

extrinsic factors. Intrinsic determinants of cell mechanotype include levels and subcellular 

organization of cytoskeletal proteins, such as actin and microtubules. Cell mechanotype is also 

determined by the forces that cells generate in response to extrinsic factors, such as soluble 
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molecules and the physical properties of the microenvironment. The intrinsic and extrinsic 

factors that determine cell physical properties also mediate cell invasion (29–32). For example, 

actin is a key structural protein that is also crucial in dynamic cellular behaviors, such as the 

generation of force through the conversion of ATP into mechanical energy. Both the structural 

organization of actin and its contribution to the generation of contractile and protrusive forces 

influence cell stiffness (26, 33–35). In addition to its contribution to mechanotype, the generation 

of contractile and protrusive forces that result for actin dynamics increases cell invasion (36, 37). 

For example, reducing contractile actomyosin activity by pharmacologic inhibition of myosin II 

results in decreased cell migration and invasion (38, 39), as well as decreased stiffness of 

fibroblasts and ovarian cancer cells (26, 35). The protrusive forces generated by actin nucleation 

and polymerization, which are mediated by the Arp2/3 complex and formins such as diaphanous 

proteins, are also critical for certain modes of cancer cell motility and invasion: reducing the 

activity of Arp2/3 and formins diminishes the formation of lamellipodia and invadopodia (36, 

40, 41), and decrease the invasion of head and neck squamous cancer cells (42). The activity of 

Arp2/3 and formins also contribute to cancer cell stiffness (43). We previously investigated 

whether levels of beta-actin and filamentous actin contribute to the increased stiffness of more 

invasive PDAC cells (19). However, we found no significant differences in the levels of actin 

across cell lines with varying stiffness and invasive potential, suggesting that the levels of actin 

cannot fully explain the contribution of this protein to cancer cell behaviors. 

 

Here we test the hypothesis that more invasive cancer cells are stiffer due to active force 

generation that is mediated by myosin II, Arp2/3, and formins. We use a panel of PDAC cell 

lines as a model system, as they have well-defined mechanotype and invasive potential (19); this 
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allows us to investigate factors that contribute to stiffer cells being more invasive across cell 

lines with similar genetic background and tissue origin (44). We measure cell stiffness using 

atomic force microscopy (AFM) and invasion using a 3D scratch-wound assay. We determine 

contributions of myosin II, Arp2/3, and formin activity to cell stiffness and invasion using 

pharmacologic inhibitors. While there is a strong, positive correlation between stiffness and 

invasion of the untreated PDAC cell lines, we find that the relationship between stiffness and 

invasion is weaker when the activity of myosin II, Arp2/3, and formins is pharmacologically 

inhibited. In addition, we find that the activity of myosin II, Arp2/3, and formins have different 

levels of contribution to invasion across our cell panel, indicating that different PDAC cell lines, 

despite similar tissue origins, may rely on different mechanisms for invasion. Our results 

highlight how a deeper understanding of the pathways that regulate cell mechanotype and 

invasion could provide valuable information for the use of physical phenotypes as biomarkers 

and the development multi-target therapeutics for improved clinical benefit. 

 

Results 

To investigate the relationship between cell stiffness, actomyosin contractility or protrusive 

forces, and invasion, we use three immortalized PDAC cell lines: Hs766T, MIA PaCa-2, and 

PANC-1. The MIA PaCa-2 and PANC-1 cell lines have similar founder mutations (Kras, TP53, 

and CDKN2A), while the Hs766T cell line has an additional SMAD4 mutation (44). We 

previously determined that across our panel of PDAC cell lines, more invasive cells tend to be 

stiffer (19). The Hs766T cells are the stiffest and most invasive of these three cell lines, while the 

MIA PaCa-2 are the most deformable and least invasive (19). 
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Myosin II activity is critical for the invasion of MIA PaCa-2 and PANC-1 cells but not 

Hs766T cells. Myosin II is essential to both the generation of forces involved in motility (45) 

and cell stiffness (26, 46). Therefore, we first investigated the role of myosin II in the increased 

stiffness of more invasive PDAC cells. To test our hypothesis, we first determine the effect of 

myosin II activity on PDAC cell invasion using a 3D scratch-wound assay overlaid with a 

Matrigel protein matrix. To reduce the activity of myosin II, we treat cells with blebbistatin, a 

small molecule inhibitor that binds to the myosin-ADP-Pi complex, which is the actin-detached 

state of myosin (47). When we treat our panel with the DMSO vehicle control, we observe that 

invasion varies across PDAC cell lines, with the order from most to least invasive being Hs766T 

> PANC1 > MiAPaCa-2 (Fig. 3-1); these results are consistent with our previous findings (19). 

Interestingly, we find that blebbistatin has cell line-dependent effects on PDAC invasion (Fig. 3-

1). Both PANC-1 and MIA PaCa-2 show significant, dose-dependent decreases in invasion with 

increasing concentrations of blebbistatin. For example, at 72 hours, MIA PaCa-2 cells show an 

8% reduction in invasion from 19% ± 2% to 11% ± 1% with a 50 µM blebbistatin treatment (P = 

2.1 x 10-4). Similarly, the PANC-1 cells show a 15% reduction from 30% ± 1% to 13% ± 2% (P 

= 5.9 x 10-10). Our results showing reduced invasion potential for the MIA PaCa-2 and PANC-1 

cells with blebbistatin treatment are consistent with other studies that observe reduced invasion 

with decreased actomyosin activity (39, 48), as well as studies that inhibit targets from other 

pathways involved in actomyosin contractility (49–51). By contrast, Hs766T cells show no 

significant change in invasion with 50 µM blebbistatin treatment when compared to the vehicle 

control at 72 hours (50% ± 2% versus 52% ± 3%, p = 6.1 x 10-1). Since changes in proliferation 

rates between cells and treatment conditions can impact invasion results, we also measure cell 

proliferation by tracking confluence over time. We find that treatment with 50 µM blebbistatin 
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decreases the confluence of MIA PaCa-2 cells by 41% after 72 hours. Although the observed 

decrease in MIA PaCa-2 proliferation may contribute to the reduced invasion that we observe in 

the scratch-wound assay, the proliferation of PANC-1 cells is not altered despite the decreased 

invasion (Supp. Fig. 3-1). In addition, the Hs766T cells exhibit no significant changes in 

invasion but show a decrease in proliferation with 50 µM blebbistatin treatment, suggesting that 

the unaltered invasion of Hs766T cells cannot be simply explained by the insensitivity of these 

cells to blebbistatin treatment. Taken together, the differences we observe in PDAC cell 

proliferation cannot explain the differences observed in invasion when our cell panel is treated 

with the myosin II inhibitor blebbistatin (Supp. Fig. 3-1, R2 = 0.04). Therefore, our data suggest 

that while myosin II activity is required for the invasion of the MIA PaCa-2 and PANC-1 cells, 

other factors govern the invasion of Hs766T cells. 

 

 

Figure 3-1. Myosin II activity is required for the invasion of MIA PaCa-2 and PANC-1 cells, but not Hs766T 

cells. (A) Invasion through Matrigel is measured by wound confluence in 3D scratch wound invasion assays. Scatter 

plot shows the quantification of wound confluence over time. The dashed line indicates the 72 h time point, which 

we use to compare wound confluence values for statistical significance. Cells are treated with blebbistatin or DMSO 

(ctrl) from t = 0. (B) Bar plot shows average wound confluence at the 72 h time point. Error bars represent standard 

error from 3 independent experiments. Pairwise p-values are determined by a student’s t-test. *p < 0.05.  
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The inhibition of myosin II slows the rate of PDAC cell rounding. To further evaluate the 

contributions of myosin II to the ability of cells to generate forces, we perform a cell rounding 

assay by detaching cells from their substrate with trypsin and measuring the rate of cell rounding 

(Fig. 3-2). Cells with higher levels of myosin II activity will have a faster rounding time 

compared to cells with reduced myosin II activity (52). After our invasion experiments without 

drug treatments (19), we anticipated that the Hs766T cells would have a fastest rounding time 

since they invade more quickly than the other two cell lines. However, the null effects of 

blebbistatin on the invasion of Hs766T cells (Fig. 3-1) led us to hypothesize that the MIA PaCa-

2 and PANC-1 cells may be more dependent on myosin II activity, and may thus round faster 

with the addition of trypsin. We find that MIA PaCa-2 cells have the slowest cell rounding rate, 

as indicated by the highest rounding time constant of 119 s; this is consistent with the Mia PaCa-

2 cells being the least invasive cells. By contrast, the Hs766T and PANC-1 cells round more 

quickly, as indicated by the shorter rounding time constants of 73 s and 45 s (Fig. 3-2B). With 

blebbistatin treatment, the cell rounding rate is reduced most significantly for the MIA PaCa-2 

and PANC-1 cells: the MIA PaCa-2 have a 909% increase in rounding time constants, while the 

PANC-1 show a larger 1670% increase. Interestingly, the Hs766T cells show a much smaller 

241% increase in the rounding time constant with blebbistatin treatment. The reduced effects of 

blebbistatin on the rounding rate of the Hs766T cells compared to the MIA PaCa-2 and PANC-1 

cells corroborates out invasion results with blebbistatin treatment, further substantiating that both 

invasion and cell rounding of MIA PaCa-2 and PANC-1 cells are more dependent on myosin II 

activity than the Hs766T cells.  These findings further underscore the differential effects of 

myosin II inhibition across different cell lines. 
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Figure 3-2. Contributions of myosin II to cell rounding rate vary across cell lines. A. Representative images 

show time sequence of cell shape change following trypsin treatment. Scale, 10 µm. B. Quantification of cell area as 

a function of time for cells treated with DMSO (ctrl) and 50 µM blebbistatin. Curves are fit using an exponential 

function. C. Time constants are extracted from fitting an exponential function to area data, as shown in panel B. 

Cells are treated with 50 µM blebbistatin for 30 min. Data shows averages and error bars represent at least 21 cells 

across 3 independent experiments.  

 

PANC-1 cells exert increased traction stresses compared to Hs766T cells. The ability of cells 

to generate forces and pull on the surrounding extracellular matrix is critical during invasion, a 

process that is dependent on the activity of myosin II (53). To corroborate our cell rounding 

results, we next quantify the traction stresses that cells exert on their substrate using a micropillar 

assay, which also requires myosin II-dependent force generation. In our micropillar assay, cells 

are plated on polydimethylsiloxane (PDMS) micropillars that have a well-characterized elastic 

modulus and an average force per square area exerted by cells is extracted by measuring the 

resultant pillar displacements (Fig. 3-3A). Here we focus on Hs766T and PANC-1 cells, which 

are not only both stiffer and more invasive than the MIA PaCa-2 cells but also the two cell lines 

that are most differentially affected by blebbistatin treatment in our cell rounding assay. Since 

the PANC-1 cells round the most quickly in our myosin II-dependent cell rounding assay, we 
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hypothesize that PANC-1 cells will exert higher traction stresses than the Hs766T cells because 

traction stresses are also dependent on myosin II activity (54, 55). Our results show that the 

average traction stress exerted by the PANC-1 cells is 44 ± 7 nN/µm2 while the Hs766T cells 

have a 38% lower average traction stress of 27 ± 7 nN/µm2 (p = 2.0 x 10-2) (Fig. 3-3B, 3-3C). 

These findings are consistent with the cell rounding data, which reveal that the PANC-1 cells 

round more quickly than the Hs766T cells. To determine the contributions of myosin II to the 

forces measured in our micropillar assay, we next measure traction stresses following 

blebbistatin treatment. For the PANC-1 cells, we find that the average traction stress 

significantly decreases by 30% (p = 2.7 x 10-1) (Fig. 3-3B, 3-3C); these results are consistent 

with previous studies showing that myosin II activity is a major contributor to cellular traction 

stresses (54, 55). By contrast, the average traction stress exerted by the Hs766T cells do not 

show any significant change with pharmacologic inhibition of myosin II (26 ± 7 nN/µm2 for the 

vehicle control cells vs. 28 ± 7 nN/µm2 for the blebbistatin-treated cells, p = 2.7 x 10-1) (Fig. 3-

3B, 3-3C). Our findings reveal the differential contributions of myosin II activity to the traction 

stresses generated by the PANC-1 and Hs766T cells, and further suggest that Hs766T cells may 

be using a myosin-II-independent strategy to invade.  

 

Myosin II activity contributes to PDAC cell stiffness. We next determine the extent to which 

myosin II activity contributes to the stiffness of the most invasive PDAC cells of our panel, 

Hs766T and PANC-1. Using atomic force microscopy (AFM), we measure the elastic modulus, 

E, of PDAC cells with and without the myosin II inhibitor blebbistatin (Fig. 3-4A). We find that 

pharmacological inhibition of myosin II activity significantly reduces the stiffness (E) of Hs766T 

and PANC-1 cells: Hs766T cell stiffness decreases 3.1-fold from 3.5 kPa to 1.1 kPa (p = 3.0 x 
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10-6), while PANC-1 cell stiffness decreases 2.9-fold from 2.0 kPa to 0.7 kPa (p = 2.5 x 10-4). 

Our results are consistent with other reports that blebbistatin makes adherent cells more 

deformable (26). Interestingly, while we found myosin II had no significant effect on the 

invasion or traction stresses of Hs766T cells, we do find a significant decrease in cell stiffness, 

which suggests that cell stiffness is not always coupled to invasive potential. Since myosin II 

contributes to both the generation of contractile (56, 57) and the crosslinking of actin (58), 

inhibition of myosin II could decrease cell stiffness by decreasing the crosslinking density of the 

actomyosin network in Hs766T cells, and thereby show more subtle effects on invasion. 

 

Figure 3-3. PANC-1 cells exert increased traction stresses compared to Hs766T cells. (A) Schematic illustration 

of the micropillar assay with device dimensions. d = distance between pillars, r = radius of pillar, h = height of 

pillar. (B) Representative force map. (C) Box plots quantifying the traction stresses exerted by Hs766T and PANC-1 

cells, with and without blebbistatin treatment. Boxes represent the 25th and 75th percentiles, whiskers represent the 

10th and 90th percentiles, and the horizontal line represents the median. Average force per pillar is determined by 

analysis of the displacement of each gold-coated micropillar 18 hours after plating of cells. Cells are treated with 50 

µM blebbistatin for 30 min immediately before fixation. P-values are determined by a student’s t-test. *p < 0.05. We 

measure the traction stresses of at least 18 cells across 3 independent experiments.  
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To evaluate the relationship between cell stiffness and invasion in more detail, we perform linear 

regression to generate R2-values across our PDAC cell lines with blebbistatin treatment and the 

DMSO vehicle control. While we previously found a strong correlation between the stiffness and 

invasion of untreated PDAC cell lines (R2 = 1.00) (19), we find only a weak correlation between 

cell stiffness and invasion when cells are treated with blebbistatin (R2 = 0.37) (Fig. 3-4B). The 

moderate correlation can largely be attributed to the Hs766T cells treated with blebbistatin; this 

outlier reduces the R2 from 1.00. Overall, our data revealing the differential effects of 

blebbistatin on the stiffness and invasion of PDAC cell lines highlight that while there are shared 

molecular mediators of both cell stiffness and invasion, the factors that determine stiffness and/or 

invasion in a particular cell type may not operate with the same proportions across all cell types. 

 

Figure 3-4. Myosin II activity contributes to PDAC cell stiffness. (A) Elastic modulus (E) of PDAC cells that are 

adhered to a glass surface coated with Matrigel and treated with DMSO (ctrl) or 50 µM blebbistatin for 30 min. 

Boxes represent the 25th and 75th percentiles, whiskers represent the 10th and student’s t-test. *p < 0.05. Data 

represents 22-37 cells per treatment measured over 3 independent experiments. (B) Linear regression of elastic 

modulus obtained by AFM versus invasion measured as wound confluence by 3D scratch-wound invasion at 72 

hours for PDAC cells treated with blebbistatin. R = Pearson’s correlation coefficient. 
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Invasion is not altered by matrix metalloproteinase inhibition. We next investigate the 

activity of matrix metalloproteinases (MMPs) across PDAC cells as a possible explanation of 

why Hs766T cells are stiffer, most invasive, and do not rely on myosin II for invasion. MMPs 

provide major contributions to cancer cell invasion as these enzymes degrade the surrounding 

protein matrix and thereby enlarge the size of gaps that cells must deform into during invasion 

(59). The secretion of MMPs is also regulated/mediated by invadopodia, which generate forces 

as they protrude from the plasma membrane (60); thus, MMP production could also contribute to 

cell stiffness and provide an explanation of why stiffer cells are more invasive. To determine if 

Hs766T cells have increased levels of MMPs, we first analyze RNAseq data of our 3 PDAC cell 

lines. The Hs766T cells have a 145-fold and 36-fold higher in MMP14 compared to MIA PaCa-2 

and PANC-1 cells, as well as a 1716-fold and 1274-fold higher in MMP28 expression levels 

(Supp Fig 3-3A). PANC-1 cells have a 4-fold and 425-fold higher expression of MMP2 

compared to the other two cell lines (Supp Fig 3-3A). MMP2, MMP14, MMP28 have all been 

implicated in the invasive potential of PDAC cells (61–64). However, MMP activity depends on 

secretion and activation of the proteinases, and thus cannot be predicted by transcript levels 

alone. Therefore, we next measure the activity of MMPs secreted from our PDAC cell lines 

using a Fluorescence Resonance Energy Transfer (FRET)-based MMP activity assay. We 

observe that Hs766T cells exhibits a 2.9-fold increase in MMP activity compared to MIA PaCa-2 

(p = 7.5 x 10-8) cells and a 1.5-fold increase compared to PANC-1 cells (p = 1.2 x 10-5), while 

the PANC-1 cells have a 1.9-fold increase in MMP activity compared to the MIA paCa-2 cells (p 

= 2.0 x 10-9) (Supp Fig 3-3B). To determine the contributions of MMP activity to cell invasion, 

we next performed 3D invasion assays in the presence of the broad-spectrum MMP inhibitor 

GM6001. While treatment with 10 or 25 µM GM6001 significantly decreased MMP activity 
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across all three PDAC cell lines (Supp Fig 3-3B), we observe no significant effect of MMP 

inhibition on the invasion of the Hs766T, MIA PaCa-2, or PANC-1 cells (Supp Fig 3-3C). These 

results indicate that the invasion of these PDAC cell lines – as measured by this 3D scratch-

wound invasion assay – is not predominantly driven by MMPs. Thus, the increased invasion of 

Hs766T cells cannot be explained by increased MMP activity.   

 

Arp2/3 and formin activity contribute to the invasion of Hs766T cells. While myosin II 

activity may explain why PANC-1 cells are stiffer and more invasive (Ref. 19, Fig. 3-1), it is still 

unclear what contributes to the concurrent increase in stiffness and invasion of the Hs766T cells. 

We hypothesized that Hs766T cells may utilize alternative, mechanisms for invasion that do not 

strongly rely on myosin II (65). For example, the generation of protrusive forces is critical for the 

formation of lamellipodia and invadopodia, structures that are implicated in cell invasion (40, 

42). Two of the main components required for the formation of protrusions are formins and 

Arp2/3, which mediate actin nucleation and branching. Therefore, we hypothesize that the 

invasion of Hs766T cells relies on the activity Arp2/3 and formins, while myosin II dependent 

forces are more critical for the invasion of MIA PaCa-2 and PANC-1 cells.  

 

A characteristic hallmark of myosin II-independent invasion is the formation of protrusions at 

the leading edge of an invading cell. We first evaluate differences in the morphology of our cell 

panel using confocal microscopy, and find that the Hs766T cells are much more elongated and 

polarized that the MIA Paca-2 and PANC-1 cells (data not shown). We next quantify the length 

of the front of invading cells in the 3D scratch wound invasion assays: a longer front length  
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Figure 3-5. Activity of Arp2/3 and formin, which mediate actin nucleation and polymerization, are critical for 

the invasion of Hs766T cells. To assay invasion, we measure the wound confluence during a 3D scratch wound 

invasion assay. Scatter plot shows the quantification of wound confluence over time when cells are treated either 

with (A) CK-666 or (C) SMIFH2. Bar plots show quantification of wound confluence at 24 h for (B) CK-666 or (D) 

SMIFH2. The dotted line indicates the 24 h time point, which we use to compare wound confluence values for 

statistical significance. Pairwise p-values are determined by a student’s t-test. *p < 0.05. Data shows average values 

over 3 experiments. Error bars represent standard errors.  

 

indicates a higher number and/or length of protrusions, while a shorter front length reflects that 

the invading cell front exhibits fewer and/or shorter protrusions. We find that the Hs766T cells 

have an average invasion front length of 6283 ± 1461 µm compared 3680 ± 454 µm and 3119 ± 
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574 µm for the MIA PaCa-2 and PANC-1 cells (Supp. Fig. 3-2). These data suggest that Hs766T 

cells have increased protrusion formation compared to the MIA PaCa-2 and PANC-1 cells, 

which is consistent with invasion that depends on Arp2/3 and formin activity.  

 

To define the role of actin nucleation and polymerization in PDAC cell invasion, we next 

determine the effect of Arp2/3 activity on PDAC cell invasion. We use the Arp2/3 inhibitor, CK-

666, which is a small molecule inhibitor that stabilizes the inactive state of the complex by 

stopping the movement of the Arp2 and Arp3 subunits (66). We first determine how CK-666 

affects cell proliferation, which can contribute to decreased invasion in this 3D scratch wound 

invasion assay. While we observe an overall decrease in cell proliferation at longer time points 

(Supp. Fig. 4), there are no effects on proliferation at time points less than 24 h. Interestingly, we 

find no significant differences in the invasion of PANC-1 and MIA PaCa-2 cells following 24 h 

of CK-666 treatment (Fig. 3-5A, 3-5B), suggesting that Arp2/3 inhibition does not significantly 

contribute to the invasion of these cell types through a Matrgiel protein matrix. However, we 

observe a significant decrease in invasion of the Hs766T cells with increasing CK-666 

concentration (Fig. 3-5A, 3-5B). For example, Hs766T cells treated with 50 µM CK-666 have a 

wound confluence of 14% compared to 23% for untreated cells at 24 h (p = 2.1 x 10-4). These 

findings suggest that Arp2/3 activity is a major contributor to the invasion of Hs766T cells, while 

myosin II is a major contributor to the invasion of the MIA PaCa-2 and PANC-1 cells. 

 

We next investigate how the activity of formins contributes to PDAC cell invasion since these 

proteins are integral in actin nucleation and polymerization (67). To evaluate how formin activity 

impacts PDAC cell invasion, we treat cells with the formin inhibitor SMIFH2, which is proposed 
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to inhibit formin activity by binding to the FH2 domain of formins (68, 69). We find there is no 

significant difference in the invasion of MIA PaCa-2 and PANC-1 cells with SMIFH2 treatment 

compared to vehicle control (for 50 µM at 24 h, pMIA = 0.23 pPANC = 0.91) (Fig. 3-5C, 3-5D). 

However, we observe a small but statistically significant difference in Hs766T cells treated with 

SMIFH2 (Fig 3-5C, 3-5D). The Hs766T cells exhibit a wound confluence of 12% if treated with 

50 µM SMIFH2 compared to 16% if treated with the DMSO vehicle control at 24 h (p = 2.6 x 

10-2). Collectively, our results show that Hs766T cell invasion relies on the activity of Arp2/3 

and formins, while the contributions of Arp2/3 and formins are less essential to the invasion of 

MIA PaCa-2 and PANC-1 cells. 

 

Inhibition of actin filament formation decreases cell stiffness. We next perform AFM to 

determine whether actin filament formation plays a role in cell stiffness. To perturb actin 

filament formation, we treat the Hs766T and PANC-1 cells, the most invasive and stiffest PDAC 

cell lines of our panel, with either CK-666 to inhibit Arp2/3 or SMIFH2 to inhibit formins. As 

we observed with blebbistatin, both drugs also significantly decrease the Young’s modulus of 

our PDAC cells (Fig. 3-6A, 3-6C), except when the PANC-1 cells are treated with CK-666. This 

treatment shows a 12%, but insignificant, decrease in Young’s modulus. Our data confirm that 

PDAC cell stiffness is influenced by actin filament formation. 

 

We again perform linear regression to evaluate the relationship between cell stiffness and 

invasion when PDAC cells are treated with CK-666 and SMIFH2. The R2-values across for these 

drug treatments is much higher than those for blebbistatin treated PDAC cells (CK-666: R2 = 

0.79, SMIFH2: R2 = 0.75, Blebbistatin: R2 = 0.37) (Fig. 3-4B, 3-6B, 3-6D). These results 

49



highlight that the relationship between cell stiffness and invasion may be context-dependent, and 

that stiffness may only be a good indicator of cell invasion for certain conditions. 

 

 

 

Figure 3-6. Arp2/3 and formin activity influence PDAC cell stiffness. The elastic modulus, E, of PDAC cells 

adhered to Matrigel-coated glass is measured using atomic force microscopy (AFM) when cells are treated with (A) 

50 µM CK-666 or (C) 50 µM SMIFH2 for 30 minutes. Boxes represent the 25th and 75th percentiles, whiskers 

represent the 10th and 90th percentiles, and the horizontal line represents the median. Statistical significance 

calculated with Mann Whitney U test. *p < 0.05. Linear regression of elastic modulus versus invasion, as measured 

by wound confluence using a 3D scratch-wound invasion (Fig. 5-5) for (B) CK-666 and (D) SMIFH2. R = Pearson’s 

correlation coefficient. 
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Discussion 

Here we show that the activity of three proteins involved in active force generation – myosin II, 

Arp2/3, and formins – provide a possible explanation for why stiffer PDAC cells are more 

invasive. Our measurements of stiffness with the inhibition of myosin II, Arp2/3, and formins 

show marked reductions in cell stiffness, suggesting that a decrease in actomyosin contractility 

and actin polymerization cause cells to be more compliant; these findings are consistent with in 

vitro studies of cultured cells (26, 35, 42), as well as studies that quantify the stiffness of isolated 

protein networks.  

 

Our three cancer cell lines – the Hs766T, MIA PaCa-2, and PANC-1 – are all pancreatic ductal 

cells that have undergone oncogenic transformation. Each cell line of this panel carries three 

common founder mutations (KRAS, TP53, and CDKN2A), while the Hs766T cells have an 

additional SMAD4 mutation (44). The Cancer Cell Line Encyclopedia (CCLE) (70) provides full 

genetic profiles and transcriptomics data for each of our three cell lines, yet analysis of the 

available RNAseq data does not fully predict the physical phenotype of our PDAC cells. For 

example, analysis of actin mRNA levels revealed that across the Hs766T, MIA PaCa-2, and 

PANC-1 cells, this protein is one of the most differentially expressed. Yet upon analysis of actin 

levels with western blotting, we found less than a 2-fold differences in protein levels (19). 

Further, RNA-seq analysis of MMPs predicted that Hs766T cells have a ~3-fold higher 

expression level of MMPs (Supp. Fig. 5-3A) but when we measure the MMP activity across our 

PDAC cell lines, we find that MMP activity is only ~30% greater in Hs766T cells compared to 

PANC-1 cells. Similarly, expression analysis of myosin proteins (Supp. Fig. 5-5) show that the 

Hs766T cells have the highest expression of MYH9 and MYH10, yet the PANC-1 cells exert a 
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higher level of contractile forces as measured by our cell rounding and micropillar assays (Fig. 5-

2, 5-3). Thus, our RNA-seq analysis suggests that that physical phenotypes that are influenced by 

proteins of the mechanome and contractome, cannot be fully explained by analysis of genetics or 

transcriptomics alone, as these physical phenotypes may be influenced by post-translational 

modifications, as well as higher-order protein structure or dynamics and remodeling, that 

contribute to cellular phenotypes and behaviors. 

 

Context-dependent relationship between cell stiffness and invasion. Our results highlight the 

context-dependent relationship between cell stiffness and invasion. While we previously found a 

strong correlation between the stiffness and invasion of untreated PDAC cell lines (R2 = 1.00) 

(19), we find only a moderate correlation between cell stiffness and invasion when cells are 

treated with blebbistatin, CK-666, or SMIFH2 (R2 = 0.45) (Fig. 5-7A). Since cell stiffness and 

invasion are not strongly correlated in all contexts, the analysis of multiple physical phenotypes, 

such as adhesion and contractility, may provide stronger indicators of invasion or metastatic 

potential than single parameters, such as deformability. Multivariate analysis of physical 

phenotypes enhances cell classification (71). Therefore, measurements of additional physical 

phenotypes may enhance the applicability of physical phenotypes as a biomarker for cancer cell 

invasion across PDAC samples, as well as different tissue types. 

 

The origin of the weakened correlation reflects the differential effects of drugs, such as 

blebbistatin, on the invasion of different cell lines. For example, while blebbistatin treatment 

decreases the stiffness of both Hs766T and PANC-1 cells, only the invasion potential of PANC-1 

cells decreases. The differential effect across cell lines may stem from the multiple roles of 

52



proteins involved in cell stiffness and invasion. For instance, in addition to its contribution to 

actomyosin contractility, myosin II also acts as an actin crosslinker (58). We speculate that 

blebbistatin treatment decreases the crosslinking density of actin in the Hs766T cells, thus also 

decreases stiffness, yet only has a subtle effect on invasion since the Hs766T cells may use 

alternative modes of invasion. Therefore, while the inhibition of myosin II activity decreases the 

invasion of MIA PaCa-2 and PANC-1 cells, it appears to be less essential for the invasion of 

Hs766T cells. Similarly, Arp2/3 and formin activity are major contributors to the invasion of 

Hs766T but not MIA PaCa-2 and PANC-1 cells, yet still decreases the stiffness of PANC-1 cells. 

While the regulation of invasion by different modes is well described (72, 73), how these 

mechanisms determine cell stiffness are not as well defined. Our data suggest that while there are 

common proteins involved in cell stiffness and invasion, individual proteins may not effect each 

phenotype equally, and that different cell lines may utilize proteins to different extents.  

 

It is important to acknowledge how cell mechanotype may be affected by the measurement 

method, which can vary in the time and lengthscales of deformation as well as state of cells 

during measurement. In this study, we use AFM to measure the stiffness of cells that are adhered 

to a Matrigel-coated surface, revealing that the stiffest to most compliant cells are Hs766T> 

PANC-1 > MIA PaCa-2. We previously measured these same cells in a suspended state using the 

microfluidic-based method, quantitative deformability cytometry (q-DC) (19, 74). Interestingly, 

we found that the ranking of cell stiffness using q-DC was PANC-1 > Hs766T> MIA PaCa-2. 

While there are differences in the time and lengthscale of deformations between AFM and q-DC 

– nanometer-scale deformations over seconds by AFM versus micron-scale deformations over 

milliseconds in q-DC – there are also clear differences in both intrinsic and extrinsic factors that 

determine cell mechanotype when cells are in an adhered versus suspended state. For example, 
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when cells are adhered to their substrate via integrins and focal adhesion, cells exert traction 

stresses, which promote the activity of myosin II and increases the generation of contractile 

forces and intracellular tension. Tractions stresses in turn increase the stiffness (75) and invasive 

behavior of cancer cells (76). By contrast, fluidic methods, such as microfluidic q-DC, measure 

cells in a suspended state, where cortical actin (77) and the nucleus (24, 25) contribute to the 

deformation of cells through micron-scale pores. Thus, the mechanotype of suspended cells may 

be less dependent on intracellular tension and more predominantly reflect intrinsic factors, such 

as levels of cytoskeletal proteins. Comparisons of the same types of PDAC cell lines using 

multiple, complementary methods provides more detailed insights into cancer cell mechanotype.  

  

 

Figure 3-7. Linear regression of elastic modulus versus invasion, as measured as wound confluence by 3D 

scratch-wound invasion for untreated PDAC cells, as well as PDAC cells treated with blebbistatin, CK-666, or 

SMIFH2. R = Pearson’s correlation coefficient. 
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Strategies of invasion.  

Our results showing the differential effects of myoII, Arp2/3, and formin inhibitors on different 

cell types suggest that cancer cells may have alternative strategies for invasion. Interestingly the 

PDAC cells we investigate are derived from similar tissue sources. The different physical 

phenotypes that we observe across cell lines could thus represent both intra-tumor and inter-

patient heterogeneity, which could be attributed to genetic variations or phenotypic variability of 

isogenic cells. For example, the PANC-1 and MIA PaCa-2 cell lines have similar genetic 

background but differing invasion potential. The Hs766T cells have an additional SMAD4 

mutation, which could contribute to additional variability in the physical phenotypes across 

Hs766T, MIA PaCa-2 and PANC-1 cells. 

  

We previously found that the stiffest, most invasive cells, Hs766T, have higher levels of lamin A 

compared to other PDAC cell lines. While high levels of lamin A associated with decreased 

ability of cells to deform through narrow gaps (24, 25), low levels of lamin A can promote 

nuclear rupture and DNA damage (27, 28). The ability of the cell nucleus to resist deformation 

may also enhance invadopodia formation (60). It is intriguing to speculate that cells with higher 

levels of lamin A use different modes of force generation to optimize invasion, or protect the 

nucleus from shape changes and DNA damage.  

 

Why understanding mechanotype is valuable.  

Our analysis of cell mechanotype during pharmacological inhibition of active force generation 

provides deeper insights into functional behaviors, such as invasion. While cell mechanical 

properties, including deformability and contractility, are regulated by similar sets of proteins that 
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also regulate motility, we find that some drug treatments result in decreased cell stiffness without 

a significant change to cell invasion, suggesting that different PDAC cell lines may use different 

mechanisms to invade. Given the heterogeneity of cancer cells within a single patient and across 

different patients, it may be an important clinical strategy to devise a multi-arm treatment plan to 

inhibit cell invasion and metastasis since blocking a single pathway may cause cells to adapt to 

another. Collectively, we find that the relationship between stiffness and invasion is complex and 

requires deeper mechanistic studies before application in a clinical setting yet establish the 

foundation to more deeply understand the physical phenotypes of PDAC cells. 

 

Experimental Methods 

Cell Culture 

Pancreatic ductal adenocarcinoma (PDAC) cell lines (Hs766T, MIA PaCa-2, and PANC-1) are 

from the American Type Culture Collection (ATCC). Cells are cultured at 5% CO2 and 37C in 

high glucose, L-glutamine Dulbecco’s Modified Eagle Medium (DMEM) (Life Technologies) 

with 10% fetal bovine serum and 1% v/v penicillin-streptomycin (Gemini BioProducts). To 

inhibit myosin II, Arp2/3, and formins, cells are treated with either vehicle control (DMSO), 20 

µM, or 50 µM of blebbistatin, CK-666, and SMIFH2. For AFM and micropillar experiments, 

cells are treated with drugs for 30 min; for scratch-wound invasion experiments, cells are treated 

for 5 days. To inhibit matrix metalloproteinases (MMPs), cells are treated for 48 h with 10 or 25 

µM GM6001.  
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Atomic Force Microscopy (AFM) 

AFM is performed as previously described (19) using the MFP-3D-BIO system (Asylum 

Research, Oxford Instruments). Cells are probed with the “C” tip of an MLCT probe (Bruker). 

The sensitivity and spring constant of each probe are calibrated before each experiment. Force 

curves are acquired by indenting the cytoplasmic region of 20 to 30 cells for each cell line and 

drug treatment. Approach and retract speeds for all experiments are 5 µm/s. The elastic modulus 

for each cell is determined by fitting force curves to the Hertz-Sneddon model using Asylum 

Research software. 

 

Scratch Wound Invasion and Proliferation Assays 

We perform invasion and proliferation assays using the IncuCyte time-lapse imaging system 

(EssenBioscience). To measure cell invasion through a 3D matrix, we perform scratch wound 

invasion assays with Matrigel to simulate the ECM. We plate cells in the wells of a 96-well plate 

at 95% confluency, create a scratch wound (EssenBioscience WoundMaker), overlay the scratch 

with 8 mg/ml Matrigel (Corning), and perform time-lapse imaging using the IncuCyte Zoom at 

5% CO2 and 37C. Phase contrast images of cells are acquired every 4 hours for 120 hours. We 

determine the confluence of cells in the wound area at each time point using quantitative image 

analysis (Essen Bioscience). Since scratch wound invasion assays may be influenced by cell 

proliferation, we also measure percent confluence by sparsely plating cells (20% confluency) and 

acquiring phase contrast images every 2 hours for 120 hours. To quantify the number of 

protrusions at the invasion front, the length of each invasion front is measured using the free 

hand tool of ImageJ.  
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Cell Rounding Assay 

To determine the cell rounding time constant, we measure the rate of cell rounding after 

trypsinization. We plate cells to 40% confluency in a 60 mm petri dish coated with 100 µg/ml 

Matrigel (overnight at 37℃), wash twice with 1X phosphate buffered saline (Corning), and then 

treat with 1X trypsin-EDTA to induce cell rounding (Gemini BioProducts). To quantify changes 

in cell shape during rounding, we acquire images every 10 s starting immediately before trypsin-

EDTA is added (t = 0 s). Cell area is determined using a custom MatLab (Mathworks) script. 

The rounding time constant is determined by fitting exponential decay curves to experimental 

data starting at 45 s to account for the delay in cell contraction observed after trypsin is added 

(Sen et al, Cell. and Mol. Bioengineering 2009). 

 

Micropillar Traction Stress Assay 

Gold micro-disks on top of PDMS micropillars were fabricated in a similar fashion as in F. Xiao 

et al. (78). Darkfield images of 10 regions were taken before cell seeding. After drug treatments, 

we fix the cells with 4% paraformaldehyde for 15 mins at 37℃. To fluorescently label cells, we 

use Wheat Germ Agglutinin (WGA), Alexa Fluor 488 conjugate (Invitrogen). The same 10 

regions of the micropillar devices are then imaged using both darkfield and fluorescent 

microscopy. Displacement of gold-tipped pillars are quantified by tracking darkfield images of 

the pillars, and forces are determined by the following equation: 

 

Where F is the force exerted by a cell on the pillar, E is the elastic modulus of the PDMS, r is the 

radius of the pillar, L is the height of the pillar, and x is the horizontal displacement of the pillar. 
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Matrix Metalloproteinase (MMP) Activity Assay 

To measure activity of MMPs, we use the red MMP activity assay (abcam). In brief, we retrieve 

90 µl of conditioned media from each well of a 96-well plate after 18 h of culture from wells that 

have cells at ~30 % confluency. Media is transferred to a black-walled, clear-bottom 96-well 

plate (Greiner BioProducts, catalog no. 969500). To inhibit MMP activity, we treat cells with 0, 

10, or 25 µM GM6001 (MMP inhibitor) for 48 hours before measuring MMP activity.  

 

Statistical analysis  

All data are obtained from at least 3 independent experiments. For data with normal 

distributions, we determine statistical significance using a student’s t-test (Excel, Microsoft). For 

data that exhibit a non-normal distribution, we perform bootstrapping to obtain the bootstrapped 

median and confidence intervals; we then use the Mann-Whitney U test to determine statistically 

significant differences between non-normal distributions using Matlab (Mathworks) and Origin 

(OriginLab). 
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Supplemental Figures 

 

Supplemental Figure 3-1. Blebbistatin decreases proliferation of Hs766T and MIA PaCa-2 cells. (A) 

Proliferation measured by confluence of cell populations. Line plot shows the quantification of confluence over 

time. The dotted line indicates the 72 h time point, which we use to compare wound confluence values for statistical 

significance. Cells are treated with blebbistatin or DMSO (ctrl) from t = 0. (B) Bar plot showing average wound 

confluence at the 72 h time point. Error bars represent standard error from 3 independent experiments. Pairwise p-

values are determined by a student’s t-test. *p < 0.05. 
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Supplemental Figure 3-2. Hs766T cells have a greater front line length than MIA PaCa-2 and PANC-1 cells. 

Front line length measured from representative IncuCyte invasion images. Error bars represent standard deviation 

from 3 independent experiments. Pairwise p-values are determined by a student’s t-test. *p < 0.05. 
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Supplemental Figure 3-3. MMP activity does not influence PDAC cell invasion through a protein matrix. (A) 

RNAseq analysis of the gene expression of various MMPs. Bar plot represents arbitrary expression values of the 

denoted protein for each cell line. (B) MMP activity levels of PDAC cell panel normalized to cell number. Error 

bars represent standard deviation from 3 independent experiments. Pairwise p-values are determined by a student’s 

t-test. *p < 0.05. (C) Invasion through Matrigel is measured by wound confluence in 3D scratch wound invasion 

assays. Scatter plot shows the quantification of wound confluence over time. Cells are treated with the MMP 

inhibitor GM6001 or DMSO (ctrl) from t = 0. 
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Supplemental Figure 3-4. CK-666 and SMIFH2 do not significantly affect PDAC cell proliferation at 24 h. (A) 

Proliferation measured by confluence of cell populations. Line plot shows the quantification of confluence over 

time. The dotted line indicates the 24 h time point, which we use to compare wound confluence values for statistical 

significance. Cells are treated with CK-666 or DMSO (ctrl) from t = 0. (B) Bar plot showing average wound 

confluence at the 24 h time point. (C) Proliferation measured by confluence of cell populations. Line plot shows the 

quantification of confluence over time. The dotted line indicates the 24 h time point, which we use to compare 

wound confluence values for statistical significance. Cells are treated with CK-666 or DMSO (ctrl) from t = 0. (D) 

Bar plot showing average wound confluence at the 24 h time point. Error bars represent standard error from 3 

independent experiments. Pairwise p-values are determined by a student’s t-test. *p < 0.05.  
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Supplemental Figure 3-5. Myosin expression levels across panel of PDAC cell lines. Bar plot represents arbitrary 

expression values of the denoted protein for each cell line. 
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ABSTRACT  

The physical properties of cells, such as cell deformability, are promising label-free 

biomarkers for cancer diagnosis and prognosis. Here we determine the physical phenotypes 

that best distinguish human cancer cell lines, and their relationship to cell invasion. We use 

the high throughput, single-cell microfluidic method, quantitative deformability cytometry 

(q-DC), to measure six physical phenotypes including elastic modulus, cell fluidity, transit 

time, creep time, cell size, and maximum strain at rates of 102 cells/s. By training a simple k-

nearest neighbor machine learning algorithm, we demonstrate that multiparameter analysis of 

physical phenotypes enhances the accuracy of classifying pancreatic cancer cell lines 

compared to single parameters alone. We also discover a set of four physical phenotypes that 

predict invasion; using these four parameters, we generate the physical phenotype model of 

invasion by training a machine learning algorithm with experimental data from a set of 

human ovarian cancer (HEYA8) cells that overexpress a panel of tumor suppressor 

microRNAs. We validate the model using breast and ovarian human cancer cell lines with 

both genetic and pharmacologic perturbations. Our results reveal that the physical phenotype 

model correctly predicts the invasion of five cancer cell samples. We also identify a context 

where our model does not accurately predict invasion, which incites deeper investigation into 

the role of additional physical phenotypes in cancer cell invasion. Taken together, our results 

highlight how physical phenotyping of single cells coupled with machine learning provide a 

complementary biomarker to predict the invasion of cancer cells.
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INTRODUCTION  

Predicting disease and treatment outcomes based on single cell phenotypes is critical in medicine 

from cancer diagnosis to stem cell therapies. In clinical oncology and immunology, single cell 

analysis of protein markers and DNA content using flow cytometry is used for diagnosis, 

prognosis, and monitoring patient response to therapy1. Yet pathological and physiological 

changes can also manifest as altered cell physical phenotypes, including cell and nuclear size, 

stiffness, and viscosity, which are convenient, label-free biomarkers. For example, grading of 

tumor biopsies based on nuclear morphology is widely used for cancer prognosis2–4. The 

mechanical phenotype, or ‘mechanotype’, of cancer cells also shows promise as a prognostic 

biomarker, since more invasive cancer cells have altered mechanotype compared to less invasive 

cells5–16. While cell mechanotype impacts the ability of cells to deform through narrow gaps and 

can thus have consequences for functional behaviors, such as invasion, the relationship between 

invasion and cell stiffness remains unclear: many studies show that more invasive cancer cells 

tend to be more compliant than less invasive or benign cells5–11; however, there are also contexts 

where more invasive cells are found to be stiffer12–16. These contrasting results motivate deeper 

investigation into additional physical phenotypes that may collectively be stronger predictors of 

invasion. 

Microfluidic methods are especially valuable for physical phenotyping, as they enable rapid 

measurements of single cells. One such method is transit-based deformability cytometry, which 

probes physiologically-relevant deformations of cells through narrow gaps across varying 

deformation time and length scales10,17–20. While transit time TT is a relative measurement, this 

parameter can distinguish sets of two to three cancer cell lines10,19. However, a population of 

cells typically exhibits TT that span several orders of magnitude21; together with the inherent 
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variability of TT measurements, it is thus challenging to robustly compare cell samples, scale up 

measurements to larger panels of cells, and achieve successful translation to clinical applications. 

We recently presented the quantitative deformability cytometry (q-DC) method, which uses 

calibration particles and power law rheology to obtain calibrated single-cell measurements of 

elastic modulus E and fluidity β22. Measuring additional physical phenotypes, such as E and β, 

could achieve more robust classification of cells using transit-based deformability cytometry. 

Studies of cell physical phenotypes using atomic force microscopy (AFM)23–27, cross-slot 

deformability cytometry28, and optofluidic time-stretch microscopy29 demonstrate that multiple 

physical phenotypes, such as cell morphology, stiffness, and relaxation time, can enhance the 

accuracy of cell classification. Multiparameter analysis of physical phenotypes can also result in 

clinical benefits; biophysical signatures of mesenchymal stromal cells are predictive of their 

regenerative capability as indicated by in vivo ectopic bone formation in mouse models30. 

However, it is unclear which additional parameters can enhance the use of transit-based 

deformability cytometry to classify cancer cells. More broadly, identifying the physical 

phenotypes of cancer cells that are predictors of invasion would provide a set of valuable 

complementary biomarkers for metastatic potential. 

Here we investigate the relationship between physical phenotypes and invasion of human cancer 

cell lines. We perform multiparameter analyses of six physical phenotypes across nineteen 

cancer cell samples. To measure the physical phenotypes of single cells, we use quantitative 

deformability cytometry (q-DC) to obtain calibrated measurements of elastic modulus E and cell 

fluidity β, as well as transit time TT, creep time TC, cell size Dcell, and maximum strain ϵmax, at 

rates of 102 cells/s22. We show that multiparameter analysis of these physical phenotypes can 

enhance classification of cancer cell lines. From our analysis across well-established pancreatic 
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cancer cell lines as well as ovarian cancer cells that overexpress tumor-suppressor microRNAs, 

we build the predictive physical phenotyping model for invasion, which we validate using both 

genetic and pharmacologic perturbations of cancer cells. Our results demonstrate the predictive 

power of physical phenotypes and machine learning to generate complementary biomarkers for 

invasion.  

MATERIALS AND METHODS  

Cell culture. HPDE cells are obtained from Dr. Ming-Sound Tsao (University Health Network-

Princess Margaret Hospital, Canada and University of Toronto, Canada). HPDE cells are 

cultured in Keratinocyte-SFM medium supplemented with prequalified human recombinant 

Epidermal Growth Factor 1-53, Bovine Pituitary Extract, and 1% penicillin-streptomycin. The 

human pancreatic ductal adenocarcinoma (PDAC) cell lines (AsPC-1, Hs766T, MIA PaCa-2, 

and PANC-1) are from the American Type Culture Collection (ATCC). AsPC-1, Hs766T, MIA 

PaCa-2 and PANC-1 cells are grown in high glucose, L-glutamine without sodium pyruvate 

DMEM medium with 10% heat-inactivated fetal bovine serum and 1% penicillin-streptomycin. 

Fetal bovine serum and penicillin-streptomycin are from Gemini BioProducts, West Sacramento, 

CA. All cell media and additional media supplements are from Thermo Fisher Scientific Inc., 

Canoga Park, CA. Human ovarian cancer (HEYA8) cells, microRNA mimics, mock, and 

scrambled (SCR) negative controls are from Dr. Preethi Gunaratne (University of Houston, 

USA)31,32. HEYA8 cells are cultured in RPMI 1640 medium supplemented with 10% fetal 

bovine serum and 1% of penicillin-streptomycin. Cells are transiently transfected at 24 nM using 

Lipofectamine 2000 in serum-free OptiMEM medium, followed by the addition of 10% fetal 

bovine serum after 4 hours in serum-free conditions. All assays are performed 72 hours post 

transfection. Human ovarian cancer (OVCA433-GFP, OVCA433-Snail) cells are from Dr. 
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Ruprecht Wiedemeyer (Cedars-Sinai Medical Center, USA)33. OVCA433 cells are cultured in 

DMEM medium with L-Glutamine, Glucose, and Sodium Pyruvate. Medium is supplemented 

with 10% fetal bovine serum, 1% Anti-anti, and 2.5 µg/ml Plasmocin Prophylactic with 5 µg/ml 

blasticidin S HCl. 

A highly metastatic variant of the MDA-MB-231 cells (MDA-MB-231-HM, gift from Dr. Zhou 

Ou, Fudan University Shanghai Cancer Center, China)34 is cultivated in DMEM medium with L-

Glutamine, Glucose, and Sodium Pyruvate, supplemented with 10% fetal bovine serum and 1% 

penicillin-streptomycin. The agonist (isoproterenol) for the β-adrenergic receptor is from Sigma-

Aldrich (St. Louis, MO). Cells are treated for 24 hours prior to measurements.  

All cells are cultured at 37oC with 5% CO2. Cell line authentication is performed using short 

tandem repeat (STR) profiling (Laragen Inc., Culver City, CA, USA and CellBank Australia, 

Westmead, NSW, Australia). Prior to deformability measurements, 0.01% (v/v) Pluronic F-127 

surfactant (Sigma-Aldrich, St. Louis, MO, USA) is added to the cell suspension to reduce cell 

adhesion to the PDMS walls. While F-127 treatment does not significantly affect E values of 

suspended cells22, we observe a significant decrease in cell-to-PDMS adhesion in some cell types 

such as HPDE cells21.  

Microfluidic chip fabrication. Negative photomasks are designed in AutoCAD (Autodesk, Inc., 

San Rafael, CA) and printed on chrome by the Nanolab at UCLA. The design of the q-DC 

devices is described previously21. Silicone masters are fabricated using soft photolithography 

techniques35. Polydimethylsiloxane (PDMS) (Sylgard Dow Corning, Midland, MI, USA) with a 

10:1 w/w ratio of base and curing agent is poured onto the master wafer and placed under 

vacuum to degas for 1 hour. To cure the PDMS, the wafer and PDMS mixture is placed in a 
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65oC oven for 2 hours. Inlets and outlets are created using a biopsy punch with a 0.75 mm bore 

size (Sigma-Aldrich, St. Louis, MO, USA). The devices are then bonded to coverglass (#1.5 

thickness) by plasma and baked at 80oC for 5 minutes to facilitate bonding. To ensure consistent 

device surface properties, q-DC experiments are performed 24 h after plasma treatment21. 

q-DC microfluidic experiment. To measure the physical properties of single cells, we use the q-

DC method as previously reported22. In brief, q-DC microfluidic devices are mounted onto an 

inverted microscope (Zeiss Observer, Zeiss, Oberkochen, Germany) that is equipped with a 

20×/0.40 NA objective. A constant air pressure (69 kPa) drives cell suspensions to flow through 

the channels. As cells deform through microfluidic constrictions with 10 µm height and 9 µm 

width, a CMOS camera (MicroRNAcoEx4, Vision Research, Wayne, NJ, USA) is used to 

capture brightfield images at rates of 600 to 2000 frames per second. For cell suspensions with a 

density of 2 x 106 cells/mL that are driven by an applied pressure of 69 kPa (10 psi), single cell 

measurements can be acquired at rates of 102 cells/s. While the timescale of the initial cell 

deformation into microfluidic constrictions is largely determined by cell deformability (32–34), 

0.01% (w/v) pluronic F-127 surfactant (Sigma-Aldrich, St. Louis, MO, USA) is added to the cell 

media to minimize cell-surface interactions. 

Physical property measurements using q-DC. To conduct multiparameter analysis of cell 

physical properties, the displacement and shape of single cells are tracked using a MATLAB 

code (Mathworks, Natick, MA, USA; code available online on GitHub)22. This enables us to 

acquire cell size Dcell, maximum strain ϵmax, creep time TC, and transit time TT. To extract elastic 

modulus E and cell fluidity β, the applied stress during cell deformation is measured using 

agarose calibration particles with well-characterized Young’s moduli for the 9 x 10 µm2 and 7 x 
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10 µm2 device geometries22. By tracking the change in cell strain during deformation and fitting 

power law rheology to the creep function, we can extract elastic modulus and cell fluidity. The 

creep function, J(t), is defined as the ratio between the strain and applied stress:  

 

      𝐽(𝑡) =  
𝜖(𝑡)

�̅�
 ,     Eq. 1 

where ϵ(t) is the strain and 𝜎 is the time-averaged stress. Here, strain is measured as 𝜖(𝑡) =

 
𝐶𝑜– 𝐶(𝑡)

𝐶𝑜
, where C is the circularity, 𝐶(𝑡) =

4𝜋𝐴(𝑡)

𝑃(𝑡)2 . We set the initial circularity value as 𝐶𝑜 =  1, 

which is the value of a perfect circle, since the cells exhibit a circularity close to 1 prior to 

deformation through the constrictions. Using least squares residual fitting, we fit the power law 

model to the creep trajectories of individual cells: 

 𝐽(𝑡) =  
𝜖(𝑡)

0.032 𝑃𝑎𝑝𝑝𝑙𝑖𝑒𝑑
 ,     Eq. 2 

where E is the elastic modulus when t = τ; τ is the characteristic timescale, set to 1 s; and β is the 

power law exponent, which represents cell fluidity. For purely elastic materials, β = 0; for purely 

viscous materials, β = 1. As elastic modulus E, cell fluidity β, creep time TC, and transit time TT 

depend on cell size, we analyze only cells that have Dcell that is the population median ± 1 µm. 

Classification using q-DC. To evaluate the power of q-DC parameters to classify cells, we 

perform supervised machine learning using the k-nearest neighbor (k-NN) algorithm. The k-NN 

classification algorithm assigns the output class as the most common class of an integer, k, 

closest neighbors; in this study we use k = 10. The distance is defined as the Euclidian distance 

between input feature vectors—in our case the sets of qDC predictors. We supply a known set of 
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input data by generating 1000 randomly-sampled subsets with replacement, containing 200 

single cells, for each cancer cell line and measuring the medians of the corresponding q-DC 

parameters for each sample set, such as median cell size and maximum strain. Using the 

summary statistics dataset in custom Python code, we train classification models based on the k-

NN algorithm for sets of q-DC predictors. We execute the training with 5-fold cross validation, 

which enables us to determine the classification accuracy. Here, the classification accuracy is 

defined as the percentage of correct predictions on each observation in the validation sets.  

Physical phenotype model of invasion using q-DC. The physical phenotype model of invasion 

is determined by multiple linear regression in MATLAB (Mathworks, Natick, MA, USA). To 

evaluate linear regression error, we utilize the single-cell q-DC data to train linear regression 

models using 1000 bootstrapped samples of single-cell physical phenotypes. Each bootstrapped 

sample generates a linear combination of physical phenotypes to predict invasion and their 

associated coefficients that minimize residuals. The physical phenotype model is determined by 

the median coefficient for each parameter. The correlation coefficient between predicted 

invasion and measured invasion is determined as the average correlation coefficient. Similar to 

the training analysis, we predict invasion using the physical phenotype model with 1000 

bootstrapped samples of the q-DC data of single-cells; this enables us to determine the average 

predicted invasion. 

RESULTS 

Multiparameter physical phenotyping by q-DC. To rapidly measure the physical phenotypes 

of single cells, we use transit-based deformability cytometry; this microfluidic device consists of 

an array of branching channels18,20,21,36,37, which lead to micron-scale constrictions. The 
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timescale for cells to transit through the micron-scale constrictions of these channels provides a 

simple measure of cell deformability (Fig. 4-1A,B): stiffer cells tend to have longer transit times 

(TT) compared to more compliant cells38. We recently developed quantitative deformability 

cytometry (q-DC), which enables calibrated single-cell measurements of physical phenotypes 

including elastic modulus E and fluidity β that are extracted using power law rheology. Using q-

DC, we also obtain cell size Dcell, from the diameter of the unconstrained cell prior to 

deformation; maximum strain ϵmax, based on the minimum circularity that occurs as the cell 

deforms through the constriction; and creep time TC, which is the time required for a cell to reach 

maximum strain (Fig 4-1A). While q-DC enables measurements of physical phenotypes in 

addition to TT, it is not clear how this added information benefits cell classification and 

prediction of invasion.  

Pairwise correlation analysis of q-DC parameters. To assess the value of multiple biophysical 

parameters for classification of different cell types, we use q-DC to measure physical phenotypes 

of human pancreatic ductal adenocarcinoma (PDAC) cell lines that are derived from primary 

tumors (PANC-1 and MIA PaCa-2), and secondary sites (AsPC-1 and Hs766T), as well as a 

nontransformed human ductal pancreatic epithelial (HPDE) control cell line. These cell lines 

exhibit distinct differences in invasion12, and therefore provide a model system for testing q-DC 

classification of cells. 
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Fig 4-1. Overview of cell physical phenotyping by quantitative deformability cytometry (q-DC). (A) 

Overview of physical phenotypes measured by q-DC: elastic modulus E, cell fluidity β, transit time TT, 

creep time TC, cell size Dcell, and maximum strain ϵmax. (B) A representative cell deforming through a 

microfluidic channel of the q-DC device. Creep time TC is the time required for a cell to reach maximum 

strain ϵmax; transit time TT is the time required for the cell to transit through the constriction. Scale bar, 20 

µm. (C) Black dots represent the strain of the single cell shown in panel B as a function of time. Red solid 

line represents power law fit to single-cell strain trajectory over the creep timescale, TC. Using power law 

rheology, we extract elastic modulus, E, and fluidity exponent, β. (D) Representative scatter plot of E and 

Dcell for human pancreatic ductal epithelial (HPDE) cells. Each dot represents a single cell and color 

denotes number density. Shown here are a total of N = 3231 cells. 

To identify which physical phenotypes provide unique information and which ones are 

statistically redundant for classifying populations of single cells, we first evaluate the correlation 

strength between pairs of the six q-DC outputs, E, β, TT, TC, Dcell, and ϵmax (Fig. 4-2A, S. Table. 

4-1). Spearman’s rank correlation coefficients of -1 and +1 reflect pairs of parameters that are 

highly correlated and statistically dependent on each other. By contrast, correlation coefficients 

with a low absolute value indicate pairs of parameters that are weakly correlated with each other; 
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each parameter from a weakly correlated pair will more likely provide unique information, as 

they are more statistically independent from each other. 

Analysis of the Spearman’s correlation coefficients reveals that TT and Tc are highly correlated (r 

= 0.94; p ≪ 0.001) (Fig. 4-2A, S. Table. 1); this is expected as the first stage of cell transit 

through a pore requires cell creep. We also find that β and E are strongly correlated (r = -0.88; p 

≪ 0.001); this scaling of E and β is consistent with the behavior of soft glassy materials17,39. All 

other pairwise comparisons between parameters, such as Dcell to ϵmax, TT, E, are weakly correlated 

with -0.14 < r < 0.41 (S. Table 4-1), suggesting that combinations of these parameters could 

provide unique information for characterizing cell lines. 

Multiparameter analysis for classification of pancreatic cells. To assess the value of q-DC 

data sets in classifying PDAC cell lines, we use the simple yet powerful k-nearest neighbors (k-

NN) algorithm to classify cell lines based on physical phenotypes. In the k-NN method, training 

data establishes a multidimensional feature space, where q-DC parameters define each 

dimension; cells are then classified based on the identity of their k nearest neighbors in the pre-

established feature space. To evaluate how the number of predictors and combinations thereof 

affect classification accuracy, we first assess single physical phenotypes. We find that single 

parameters alone offer low classification accuracy of cell lines: TT yields 65% accuracy in 

predicting the correct cell line from our panel of PDAC cell lines, E yields 59% accuracy, and 

Dcell gives 52% (Fig. 4-2B).  

The inclusion of additional physical phenotypes can significantly enhance classification 

accuracy: {E, TT} provide a model accuracy of 87% and with {TT, Dcell}, the model accuracy 

increases to 91% (Fig. 4-2B, S. Fig. 1). Other combinations of two parameters yield accuracies 
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ranging from 69% to 89% (S. Fig. 4-1). Including an additional third parameter further improves 

accuracy, but with smaller gains: both {E, TT, Dcell} and {E, ϵmax, Dcell} result in 94% accuracy. 

The highest accuracy of 96% can be obtained using four parameters {E, TT, Dcell, ϵmax} (Fig. 4-

2B). Surprisingly, we find that using additional q-DC parameters does not improve classification 

accuracy, which ranges from 92% to 96% when using five and six physical phenotypes; this 

highlights how highly correlated parameters, such as TT and TC, do not add unique value to cell 

classification accuracy. Therefore, {E, TT, Dcell, ϵmax} constitute the ‘reduced set’ of parameters 

as they provide the highest classification accuracy with the least amount of parameters.  

Since transit time TT is a common metric for mechanotype that is obtained by transit-based 

deformability cytometry20, we next evaluate the benefit of q-DC parameters by comparing the 

performance of the k-NN algorithm using the reduced set of parameters to TT alone (Fig. 4-

2C,D). For the k-NN algorithm using TT as a single predictor, we find the algorithm performs 

poorly: the true positive rate for each cell line ranges from 0.33 to 0.86 (Fig. 4-2C). For example, 

the true positive rate for PANC-1 cells is 0.33, indicating that only 33% of PANC-1 samples are 

correctly identified as PANC-1 cells, 41% are incorrectly identified as HPDE cells, and 26% as 

AsPC-1 cells (Fig. 4-2C). When {TT} is used, the true positive rate averaged across all cell lines 

is 0.65 and the false positive rate is 0.35. By contrast, the reduced set of q-DC parameters {E, TT, 

Dcell, ϵmax} significantly improves the average true positive rate to 0.96. For example, the true 

positive rate for PANC-1 cells is 1.0, where 100% of PANC-1 samples are correctly identified. 

Additionally, the true positive rate for Hs766T is 0.94, where 94% of Hs766T samples are 

correctly identified, while 6% are identified as MIA PaCa-2 (Fig. 4-2D). We also observe the 

reduced set {E, TT, Dcell, ϵmax} decreases the false positive rate, which ranges from 0 to 0.06 
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(average = 0.04) (Fig. 4-2D). Taken together, these findings indicate that q-DC predictors 

increase the accuracy for classifying PDAC cell lines compared to TT alone.  

  

Fig. 4-2. Predictive power of q-DC outputs for cell classification. (A) Spearman’s rank correlation 

coefficients for pairs of q-DC outputs: elastic modulus E, cell fluidity β, transit time TT, creep time TC, cell 

size Dcell, and maximum strain ϵmax. Color represents the magnitude of the correlation coefficient, r, as 

detailed in S. Table. 1. Gray ‘X’ denotes not statistically significant (n.s.). (B) Accuracy of k-nearest 

neighbor machine learning algorithm for classifying human pancreatic cell lines. Each bar represents the 

accuracy of models built with varying combinations of q-DC predictors as indicated by the colored dots; 

grey dots represent excluded predictors. Orange bars and dots represent the highest accuracy that can be 

achieved with a set of one, two, three, and four physical phenotypes. Turquoise bars and dots show 
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accuracy obtained by all other combinations of physical phenotypes. Asterisk shows the reduced set of 

predictors that provides the greatest accuracy with the least number of parameters. White numbers show the 

accuracy, which is calculated as the percentage of data subsets that are correctly identified as one of the 

five pancreatic cell lines. S. Fig. 1 illustrates the accuracy of models using additional combinations of q-DC 

predictors. (C-D) Confusion matrices show the performance of the k-NN algorithm for (C) transit time TT, 

and (D) reduced set of q-DC predictors: elastic modulus E, transit time TT, cell size Dcell, and maximum 

strain ϵmax. Rows represent the true cell line; columns represent the predicted cell line. Color scale denotes 

the proportion of cells predicted as each cell type.  

Relationship of physical phenotypes to cancer cell invasion. Defining how cancer cell 

physical phenotypes relate to functional behaviors, such as invasion, could provide valuable 

biomarkers that have physiologically relevant predictive power. Invasion is fundamentally a 

physical process, whereby cells deform and move through narrow gaps of the extracellular 

matrix. The invasion of cancer cells is associated with physical phenotypes such as cell stiffness 

or elastic modulus: while in some contexts more invasive cells are more compliant5–11, there are 

other cases where more invasive cells are stiffer12–16. Other physical phenotypes, such as cell size 

and deformation timescale can also determine the ability of cells to deform through narrow 

gaps21. While correlations between individual physical phenotypes and invasion have been 

investigated12,32,40, it is not known how these phenotypes could collectively provide an improved 

biomarker for invasion.  

To determine the relationship between the reduced set of physical phenotypes {E, TT, Dcell, ϵmax} 

and cancer cell invasion (Fig. 4-3A), we first evaluate the correlation between invasion and 

single physical phenotypes. Across the panel of PDAC cell lines, we find that individual 

parameters from the reduced set have poor to moderate correlations with invasion as measured 

using a 3D scratch wound invasion assay12,32: Pearson’s correlation yields R2 that range from RD-
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Inv
2 = 0.05 ± 0.001 to RE-Inv

2 = 0.45 ± 0.006 (Fig. 4-3B). We find the strongest correlation of a 

single parameter with invasion for E (RE-Inv
2 = 0.45 ± 0.006), whereby cells that are more 

invasive tend to have lower E (Fig. 4-3B). This trend of more invasive cells being more 

compliant is consistent with previous reports in breast and ovarian cancer cells5–11. However, the 

inverse relationship between invasion and E does not hold across all PDAC cell lines as MIA 

PaCa-2 cells exhibit the lowest elastic modulus yet reduced invasion compared to Hs766T and 

PANC-1 cells (Fig. 4-3B).  

We also physical phenotype seven ovarian cancer cell samples that overexpress distinct tumor-

suppressor microRNAs; higher levels of expression of these microRNAs are associated with 

improved patient survival, as identified through Cancer Genome Atlas (TCGA) data31. We 

previously found that these tumor suppressor microRNAs decrease cell invasion31,32 and tend to 

increase cell transit time32. Physical phenotyping by q-DC reveals that individual phenotypes of 

microRNA-overexpressing cells also exhibit only moderate correlations to invasion (Fig. 4-3B). 

While we find that higher E and TT are associated with decreased invasion across both 

established pancreatic cancer cell lines and ovarian cancer cells with manipulated microRNA 

levels, we find opposite trends for Dcell and ϵmax (Fig. 4-3B); these discrepancies further 

substantiate the low predictive power of individual physical phenotypes. As single physical 

phenotypes are not sufficient to predict invasion, we next investigate if multiparameter analysis 

using the reduced set of four physical phenotypes can collectively predict cancer invasion. 

To develop a model that can predict cell invasion on the basis of physical phenotypes, we train a 

multiple linear regression model using {E, TT, Dcell, ϵmax} and invasion data. While we use data 

from numerous cell samples, linear regression can be susceptible to overfitting when the number 

of fitting parameters approaches the number of data points. Therefore, we account for the 
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number of predictors in the strength of correlation between the measured and predicted invasion 

using the adjusted-R2
 (R2

adj), 

𝑅𝑎𝑑𝑗
2 = 1 − [

(1−𝑅2)(𝑛−1)

𝑛−𝑚−1
],     Eq. 3 

where n is the number of observations and m is the number of predictors. For the PDAC cell 

lines, an R2
adj value does not exist, as there are four fitting parameters in the reduced set and only 

five cell lines. Reducing the number of predictors only yields R2
adj that are similar to correlations 

between single parameters and invasion (S. Fig. 4-2). However, building the linear regression 

model using invasion and physical phenotype data {E, TT, Dcell, ϵmax} from seven ovarian cancer 

cell samples that overexpress distinct microRNAs results in invasion values that are highly 

correlated with experimental observations, as indicated by the high R2
adj = 1.00 ± 0.002 (Fig. 4-

3D); we call this multiple linear regression model built with the reduced set the ‘physical 

phenotype model for invasion’, as it demonstrates robustness to predict invasion. We also train 

models with smaller sets of predictors; however, we find that reduced set of physical phenotypes 

(E, TT, Dcell, ϵmax) yields the highest Radj
2 value, and thus generates the strongest predictive model 

with the smallest number of parameters (Fig. 4-3D). 
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Fig. 4-3. Relationship of q-DC parameters and invasion across cancer cell types. (A) Schematic 

illustration the reduced set of physical phenotypes, which we use to predict cell invasion, elastic modulus 

E, transit time TT, cell size Dcell, and maximum strain ϵmax, as measured using 3D invasion assay. (B) Plots 

showing invasion versus single physical phenotypes for pancreatic adenocarcinoma (PDAC) cell lines (blue 

circles) and ovarian cancer (HEYA8) cells that overexpress a panel of tumor suppressor microRNAs (red 

triangles). Each data point represents the median value for a cell sample. Error bars represent standard 

deviation. Dashed lines show best linear fits. (C) Correlation between measured and predicted invasion 

using the physical phenotype model for invasion. Dashed lines show best linear fit for the microRNA-

overexpressing cells. Data points represent the average value for a cell sample. Error bars represent 

standard deviation. (D) The strength of correlations between measured and predicted invasion from linear 

regression models built with combinations of physical phenotypes for microRNA-overexpressing ovarian 

cancer cells. Colored circles illustrate the set of predictors used in the model. Bars represent adjusted-R2 

(Radj
2) values, which reflect the average strength of the correlation, while accounting for the number of 

fitting parameters to data points. Error bars represent standard deviation. 

 

Predicting invasion using label-free physical phenotypes. To validate the physical 

phenotyping model for invasion, we measure physical phenotypes of seven additional cancer cell 

samples, and determine how accurately we can predict their invasion. We first use q-DC to 

physical phenotype three breast cancer cell lines, MDA-MB-231, MDA-MB-468, and MCF-7 

(Fig 4-4A). These cell lines are well characterized to have varying invasive potentials, from 

highest to lowest: MDA-MB-231 > MDA-MB-468 > MCF-741–45. Other key characteristics of 

progression are also described for these cell lines, including the propensity to form cell colonies 

(MDA-MB-231 > MDA-MB-468 > MCF-7)45. By physical phenotyping using q-DC, we find 

that MDA-MB-231 cells have decreased E compared to both MDA-MB-468 and MCF-7 cells 

(EMDA-MB-231 = 1.2 ± 0.3 kPa < EMCF-7 = 2.0 ± 0.2 kPa < EMDA-MB-468 = 2.7 ± 0.3 kPa). Compared 
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to the ranking of invasion of these cells types, we find a weak correlation between E and 

invasion, which is further quantified by Spearman’s correlation coefficient (r = 0.5); these 

findings support that E alone is not sufficient to predict invasion. We find that transit times 

follow the same ranking as E, whereby TT - MDA-MB-231 = 15 ± 3 ms < TT - MCF-7 = 25 ± 5 ms < TT – 

MDA-MB-468 = 57 ± 27 ms (Fig. 4-4A). Thus, neither E nor TT is sufficient to predict invasion. 

However, we discover that the physical phenotyping model for invasion correctly ranks the 

invasion of these breast cancer cell lines, MDA-MB-231 > MDA-MB-468 > MCF-7 (Fig. 4-4D). 

These results further substantiate the power of multiparameter analysis to predict invasion based 

on label-free physical phenotyping of single cancer cells. 

To further validate the physical phenotyping model for invasion, we predict the invasion of 

ovarian cancer (OVCA433) cells that have been genetically manipulated to generate a pair of 

epithelial- and mesenchymal-like cell lines. Cancer cells with overexpression of Snail33 

(OVCA433-Snail), a key transcription factor in epithelial-to-mesenchymal transition (EMT)46, 

are mesenchymal-like and exhibit increased invasion46. By contrast, the control cells 

(OVCA433-GFP) are epithelial-type. Using q-DC to physical phenotype this pair of cell lines, 

we find that OVCA433-Snail cells have a reduced E compared to the OVCA433-GFP control 

cells (EOVCA-GFP = 1.8 ± 0.1 kPa; EOVCA-Snail = 1.0 ± 0.7 kPa; p << 0.001) (Fig 4-4B). We also 

observe that OVCA433-Snail cells exhibit shorter transit times than OVCA433-GFP (TT - OVCA-

GFP = 22 ± 2.8 ms; TT – OVCA-Snail = 16 ± 1.2 ms, p << 0.001), consistent with the decreased 

stiffness of the mesenchymal-type OVCA433-Snail cells (Fig. 4-4B). Using q-DC outputs, we 

demonstrate that the physical phenotype model for invasion has the power to predict the 

increased invasion of the OVCA433-Snail cells compared to the control OVCA433-GFP cells 

(Fig. 4-4B); these results also demonstrate that physical phenotypes measured by q-DC are 
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consistent with other hallmark characteristics of EMT, such as the increased vimentin to E-

cadherin ratio47 and ability to form cell colonies48, which are commonly used to define 

mesenchymal-type cells. 

We next assess how increased cell invasion that is caused by pharmacologic manipulation can be 

predicted by the physical phenotype model of invasion. We previously showed that cancer cells 

treated with the β-adrenergic agonist, isoproterenol, have increased invasion in vitro13. 

Activation of β-adrenergic signaling also promotes metastasis in clinically-relevant orthotopic 

mouse models of breast cancer34,49. Following treatment of highly metastatic human breast 

cancer (MDA-MB-231-HM) cells with isoproterenol, we find that E increases from EControl = 0.9 

± 0.4 kPa to EISO = 4.0 ± 0.6 kPa (p = 0.001) (Fig. 4-4C). Similarly, TT increases from TT - Control = 

18 ± 4.2 ms to TT - ISO = 81 ± 31 ms (p << 0.001)13 (Fig. 4-4C). While we measure statistically 

significant differences in cell physical phenotypes with this pharmacologic perturbation, the 

physical phenotyping model for invasion does not accurately predict the effects of isoproterenol 

on cancer cell invasion (Fig 4-4F). The inability of the physical phenotyping model to predict the 

increased invasion caused by this pharmacologic manipulation suggests that there is a 

fundamentally different relationship between the physical phenotypes of cells with activation of 

β-adrenergic signaling and invasion compared to the other sets of cancer cells that we investigate 

here. 
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Fig. 4-4. Predicting invasion by multiparameter physical phenotyping. (A-C) The four key physical 

phenotypes that comprise the reduced set for: (A) breast cancer cells, MCF-7, MDA-MB-468, and MDA-

MB-231; (B) ovarian cancer cells, OVCA433-GFP control, and OVCA433 that overexpresses Snail 

(OVCA433-Snail), a key transcription factor in epithelial-to-mesenchymal transition (EMT); (C) Highly 

metastatic human breast cancer (MDA-MB-231-HM) cells with activation of β-adrenergic signaling by 

treatment with 100 nM isoproterenol (+ISO) or vehicle (Control) for 24 h. N > 400. (D-F) Average predicted 

invasion as determined by the physical phenotyping model for invasion. Error bars represent the standard 

deviation. Colors represent previously determined invasive potentials, as described in literature13,42–45. 
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DISCUSSION 

Our results across 18 distinct samples of ovarian, breast, and pancreatic cancer cells show that 

cell stiffness alone, as indicated by E or TT, is not sufficient to predict invasion. Using label-free, 

multiparameter physical phenotyping of single cells, we develop the physical phenotyping model 

that can predict invasion using four parameters—elastic modulus E, transit time TT, maximum 

strain ϵmax, and cell size Dcell—which can be rapidly measured using q-DC. We demonstrate the 

model’s predictive power across cell lines, which have inherent differences in invasive potential, 

as well as for cells that have increased invasive potential caused by genetic manipulations.  

Physical phenotypes as indicators of invasion. While cell classification is the basis for 

malignant diagnosis, the ability to rapidly physical phenotype populations of single cells, and 

predict their invasive ability, would greatly reduce the time required to measure cell invasion, 

which is typically hours to days. Using q-DC and machine learning, we find that the strongest 

indicators of invasion for microRNA-overexpressing ovarian cancer cells are E, TT, ϵmax, and 

Dcell.  

Elastic modulus. E is an essential indicator of invasion in the physical phenotype model. Our 

investigation of physical phenotypes across 18 cell samples, including established cell lines and a 

range of genetic and pharmacologic perturbations, provide the opportunity to examine how 

broadly the relationship between cell stiffness and invasion can be generalized. Interestingly, 

while we find that E tends to decrease for cells that are more invasive, we also identify contexts 

where more invasive cells are stiffer. For example, across pancreatic cancer cell lines, we find 

that more invasive cells are more compliant. Yet, we also find that PANC-1 and Hs766T cells, 

which are more invasive, are stiffer compared to MIA PaCa-2 cells. We also observe that while 
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many of the microRNAs cause ovarian cancer (HEYA8) cells to become stiffer and less 

invasive, overexpression of microRNA 509-5p causes cells to be stiffer and more invasive. There 

are additional examples of more invasive cells being stiffer in the breast cancer panel, where 

MDA-MB-468 are stiffer, yet more invasive than MCF-7 cells. Treatment of MDA-MB-231 

cells with isoproterenol also causes cells to be stiffer and more invasive. These and other cases of 

more invasive cells that are stiffer12–16, highlight how the concept that elastic modulus is 

inversely correlated with invasion is oversimplified. 

Transit time. While transit time TT is commonly used to distinguish cancer cell types20, this 

parameter alone is not a strong indicator of invasion. We find moderate to poor correlations 

between TT and invasion across well-characterized cell lines and microRNA-overexpressing 

cells. The emergence of TT as an indicator of invasion in the physical phenotyping model 

suggests that the ability of cells to continuously deform may be important in invasion. While E 

reflects the ability of a cell to resist initial deformation, and thus dominates viscoelastic response 

on short ~ms timescales21, transit time captures the ability of a cell to deform through the entire 

constriction. We showed previously that TT depends on both elastic and viscous properties21; 

indeed, invasion occurs over hours to days38, where viscous contributions may be more relevant.  

Size. We also find that cell size Dcell strengthens the accuracy of the physical phenotype model to 

predict invasion. We and others previously determined that cell size is inversely correlated with 

invasion potential9,32, which may reflect how smaller cells can more readily invade through a 

matrix. Cell size also determines the probability of cells to occlude narrow capillaries or 

pores50,51, and thus may be implicated in lodging of cells in metastatic target sites, such as the 

narrow capillaries of the pulmonary beds of the lung52. The effects of cell size may also reflect 

contributions of the cell nucleus to q-DC measurements: nuclear size scales with cell size12, and 
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the nucleus tends to be stiffer than the surrounding cytoplasm11. Moreover, increased nuclear-to-

cytoplasmic volume is a hallmark of malignant cells with diagnostic value2,53,54. Morphological 

parameters, such as eccentricity and circularity, are also identified as strong predictors of cancer 

cell types25.  

Effects of measurement techniques on multiparameter physical phenotyping. Since different 

methods for physical phenotyping probe cells over different time and length scales, it is not clear 

how broadly the predictors of invasion that we have identified using q-DC may be extended to 

other methods. Despite differences in the deformation depth and timescale between q-DC and a 

conventional mechanotyping method, such as AFM, we observe a similar range of elastic 

modulus values obtained using q-DC and AFM of cells that are cultured under the same 

conditions12. However, we find the ranking of elastic moduli determined by q-DC and AFM is 

not consistent: by q-DC from stiffest to most compliant, AsPC-1 > HPDE > PANC-1 > Hs766T 

> MIA PaCa-2, and by AFM, Hs766T ~ HPDE > PANC-1 > MIA PaCa-2. One notable 

difference is the Hs766T cells: they are the stiffest PDAC cell line measured by AFM and second 

most compliant cell line by q-DC, despite having an elastic modulus of a similar order of 

magnitude (3.0 ± 2.0 kPa by AFM and 1.6 ± 0.2 kPa by q-DC). This difference between cell 

mechanotype measured by these two methods may be attributed to the difference in cell 

measurement state: microfluidic methods such as q-DC probe cells in a suspended state, whereas 

AFM measures adhered cells. When cells lift off from the substrate into a suspended state, they 

undergo dramatic cytoskeletal rearrangements and exhibit altered distributions of F-actin55. By 

contrast, cells that are attached to a substrate also generate intracellular tension, or ‘prestress’56, 

which can contribute to cell stiffness measurements57,58. Therefore, the stiffness of the Hs766T 

cells measured by AFM may reflect their increased contractility and/or stress fiber formation 
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compared to when they are in suspension. Since the stiffness of adhered cells depends on myosin 

II activity59–62 and traction stresses scale with cell metastatic potential63, mechanotyping of 

adhered cells may thus provide an additional, complementary physical indicator of cell invasion. 

This example of cell mechanotype differences in adhered and suspended states highlights why 

measuring the mechanical properties of cells using complementary methods could provide 

valuable information about the passive and active contributions to cell deformability. 

Measurements of adhered and suspended cells may also provide deeper insight into the possible 

functional significance of cell mechanotype. While cell deformations are required for adhered 

cells during invasion, extravasation, and intravasation 52,64, cells in a suspended state deform 

during circulation through the blood and lymphatic vasculature 52,64.  

Benefits of multiparameter analysis for predicting cell invasion. Cell physical phenotypes are 

emerging as valuable, complementary biomarkers for cell classification and clinical 

benefit(8,22,23,24). While enhanced predictive power can be achieved with additional 

parameters obtained by q-DC, extra computation is required to extract parameters such as elastic 

modulus E, cell fluidity β, creep time TC, and maximum strain ϵmax
22. The tradeoff between 

classification accuracy and computational expense will ultimately depend on the specific 

application. For example, certain cancer cell populations can be distinguished using 

measurements of TT and Dcell, which rely on simple image analysis10,19–21,36,38. With greater 

computational investment, including tracking the time-dependent changes in cell shape during 

deformation and fitting single-cell creep trajectories to power law rheology models, additional 

parameters such as ϵmax and E can be determined22. However, such enhanced resolution may not 

be essential for specific applications. For example, the invasion of the epithelial-type OVCA433-

GFP cells versus the mesenchymal-type OVCA433-Snail cells is accurately ranked by E alone 
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(Fig 4-4E). In future applications, more advanced machine learning algorithms could bypass the 

additional image analysis required for q-DC; for example, neural network algorithms can be 

trained using images with minimal processing, and thus do not require the additional 

computational steps to extract physical phenotypes.  

Additional biophysical markers may also broaden the application of the physical phenotype 

model to contexts where the model does not accurately predict invasion, such as in the case of 

pharmacologic perturbations. Specifically, activation of β-adrenergic signaling alters single-cell 

physical phenotypes and invasion, but in a way that is not consistent with the other cell samples, 

including both cell lines and genetically-modified cells, that we investigate here. Further studies 

of how β-adrenergic signaling alters cell physical phenotypes should deepen our understanding 

of the relationship between invasion and physical phenotypes and facilitate the discovery of 

additional biomarkers, such as contractility, for invasion. Invasion is a complex and highly 

dynamic process requiring deformation through micron-scale pores52,65, actin protrusion 

formation66, generation of traction forces63, and secretion of proteases67–69. For example, the 

increased stiffness of cells with activation of β-adrenergic signaling requires myosin II activity13; 

myosin II is also required for actomyosin contractility, which increases cell stiffness in adhered 

states59–62 and generates forces required for cells to invade through 3D matrices70,71.  

Navigating the physical fitness landscape of invasion. While the physical phenotype model for 

invasion relies on the reduced set of parameters—elastic modulus E, transit time TT, maximum 

strain ϵmax, and cell size Dcell—it is intriguing to speculate if these physical phenotypes reflect a 

particular strategy for optimizing cell invasion. We observe that more invasive cells tend to have 

lower elastic modulus and smaller cell size (Fig 4-3B). However, the predictive power of the 

physical phenotype model for is based on the multiparameter physical signature of invasive cells. 
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Future studies to better elucidate the interplay between physical phenotypes in the invasion 

fitness landscape will deepen our understanding of selective advantages that may be acquired by 

cancer cells to enhance their invasion.  

Our findings that the physical phenotype model for invasion cannot predict the increased 

invasion of cancer cells with β-adrenergic activation may imply that different physical signatures 

reflect different strategies for cancer cell invasion. Deeper investigation of contexts where 

invasion cannot be predicted by the physical phenotype model for invasion may reveal another 

regime that is described by a different set of phenotypes that can predict invasion. Identifying 

additional complementary biomarkers could generate a more inclusive—even universal—model 

to predict invasion across varied contexts. 

While we focus here on using physical phenotypes as indicators of invasion, the rapid, calibrated 

measurements of q-DC have exciting potential to also provide mechanistic insights into the 

invasive behavior of cancer cells. Since proteins of the mechanome and contractome, which 

regulate cancer cell physical phenotypes, are also essential in invasion32, determining the 

molecular origins of cell physical phenotypes should reveal novel mediators and pathways that 

can be targeted to stop cancer cell invasion.  

 

CONCLUSION 

The q-DC method for single-cell physical phenotyping coupled with machine learning 

algorithms provides a crucial step towards enhanced classification of cancer cell types. Our 

findings also link cancer cell physical phenotypes with functional behaviors such as invasion, 

establishing a framework for predicting invasion based on label-free biomarkers that can be 

105



rapidly measured. The ability of q-DC to enable calibrated, multiparameter cell physical 

phenotyping to classify cell types and predict cellular behaviors is valuable for biomedical 

applications, and should offer unprecedented insight into heterogeneous populations of cells that 

include subpopulations of drug-resistant cancer cells to undifferentiated stem cells.  
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SUPPLEMENTAL INFORMATION 

 

  

  

 

 

S. Fig. 4-1 Sets of q-DC predictors alter the accuracy of cell classification algorithms. Bars 

show the accuracy of classification algorithms that are built using varying sets of q-DC 

predictors; white text denotes the numeric values of accuracy.  
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S. Fig. 4-2 Correlation between experimental and predicted invasion of PDAC cells using 

physical phenotyping. R2 and adjusted R2 (Radj
2) values of physical phenotyping models of 

invasion, which use varying sets of parameters. Blue bars represent R2 values; navy blue bars 

represent Radj
2 values, which reflect goodness of fit, while accounting for the number of 

parameters to data points. Colored circles illustrate the set of predictors.  
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S. Table 4-1. Pair-wise Spearman’s rank correlation coefficients. Matrix of correlation 

coefficients for pairs of q-DC variables: cell diameter Dcell, maximum strain ϵmax, transit time TT, 

creep time TC, apparent elastic modulus E, and fluidity β. Correlation analysis is performed on 

the q-DC data for human breast and pancreatic cancer cell lines.   

 

 Dcell ϵmax TT TC Ea ß 

Dcell 1.00 0.41 -0.02 0.07 -0.02 -0.14 

ϵmax 0.41 1.00 0.06 0.17 -0.15 -0.10 

TT -0.02 0.06 1.00 0.94 0.69 -0.52 

TC 0.07 0.17 0.94 1.00 0.72 -0.57 

Ea -0.02 -0.15 0.69 0.72 1.00 -0.88 

ß -0.14 -0.10 -0.52 -0.57 -0.88 1.00 
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Chapter V: Conclusions and Future Directions 

Conclusions 

 Advances in our knowledge of PDAC have resulted in the development of a number of 

new therapies (1,2) yet the average 5-year survival rate of pancreatic cancer patients is still under 

10% (3). Therefore, it is imperative to explore additional characteristics of PDAC that may 

increase our understanding of why current therapies are ineffective and enable the discovery of 

new druggable therapeutic targets. Here I establish physical phenotypes of PDAC cells, including 

cell size and deformability, and determine how these are associate with cell invasion. I also 

measure the ability of PDAC cells to actively generate forces, and establish how actomyosin 

contractility and protrusive forces contribute to both cell stiffness and invasion.  

 In chapter I, I find that three PDAC cell lines – Hs766T, MIA PaCa-2, and PANC-1 – are 

more deformable than the nontransformed pancreatic ductal epithelial cell line – HPDE – but that 

more invasive PDAC cells are stiffer than their less invasive counterparts. The finding that stiffer 

cells are more invasive was surprising as a large number of studies on the cell deformability of 

breast, ovarian, and prostate cancer show that more deformable cells are more invasive. My results, 

along with studies in lung cancer and breast cancer cells treated with a beta-adrenergic agonist, 

highlight that cancer cell stiffness is cell-type dependent. 

 In chapter II, I determine that active force generation, namely the myosin II-dependent 

production of contractile forces and actin polymerization driven by Arp2/3 and formins, are 

determinants of both PDAC cell stiffness and invasion potential; these data support why stiffer 

cells are more invasive, as described in chapter I. 

 In chapter III, I describe a label-free physical phenotype model that can predict invasion 

using single-cell physical phenotypes. These physical parameters are all obtained by microfluidic 
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quantitative deformability cytometry, a novel method developed by Kendra Nyberg and Dr. Amy 

Rowat. 

Overall, my studies establish the physical properties of PDAC cells, and the relationship 

between these physical phenotypes and invasion. Since the proteins and processes that regulate 

cell deformability and active force generation are required for invasion and mechanotransduction, 

these biophysical studies should deepen our knowledge of cancer cell behaviors, such as motility, 

growth, and resistance to chemotherapy. 

 

Future Directions 

 My work sets the foundation for future studies that integrate our knowledge of the physical 

properties PDAC cells with our understanding of the mechanical properties of the PDAC 

microenvironment. Alterations in the physical microenvironment of pancreatic cancer are strongly 

implicated in disease progression. A number of studies have established that the extensive stromal 

deposition in and around PDAC tumors accelerates disease progression (4,5). For example, the 

increased density of extracellular matrix (ECM) in the PDAC microenvironment activates a 

positive feedback loop that increases the deposition of collagen and other ECM proteins, and 

further increases disease progression (5). Additional studies establish that cells sense their physical 

surroundings through a process called mechanosensing, which is the ability of a cell to sense and 

transmit mechanical stimuli from the microenvironment into the cell. Mechanotransduction is 

imperative to cancer processes, including proliferation, invasion, and metastasis (6). I hypothesize 

that the sensing of mechanical stimuli may be influenced by the stiffness of a cell since the ability 

of a cell to sense and respond to external physical cues occurs through integrins and focal 

adhesions, which are physically connected to the cell cytoskeleton, a major determinant in cell 
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stiffness (7). In addition, cells also generate mechanical forces. For example, contractile and 

protrusive forces, which I have implicated in PDAC cell stiffness and invasion, are transmitted to 

the surrounding environment via adhesion proteins to trigger forward cell locomotion (8,9). Thus, 

it is essential to study the physical properties of PDAC cells and their microenvironment as two 

entities that influence each other, and not as independent characteristics that influence cancer cell 

behaviors. 

Specifically, future studies can explore the how cancer processes are altered when PDAC 

cells of different stiffnesses are introduced to a stiff matrix, which is representative of the fibrotic 

cancer microenvironment, or a more deformable matrix, which is representative of a non-disease 

state. What molecular changes occur when stiffer or more deformable PDAC cells sense a stiffer 

surrounding? Does mechanosensing differ in stiff or deformable cells, and do these differences 

contribute to an increased invasive potential or other hallmark cancer behaviors?  

A deeper understanding of the relationship between the physical properties of PDAC cells 

and the surrounding microenvironment could lead to knowledge that could enhance the 

development of therapeutics. In 2009, Olive et al. presented data suggesting that the inhibition of 

Sonic hedgehog (Shh) disrupted and lessened the desmoplasia present in the PDAC 

microenvironment. Using a pancreatic cancer mouse model, they showed that Shh inhibition and 

the resultant decrease in stromal tissue increased mouse survival compared to controls (10). They 

hypothesized that the stroma conferred chemoresistance by decreasing drug penetrance to the 

tumor cells. These exciting results formed the basis for clinical trials that used IPI-926, a drug that 

inhibits the Shh pathway and decreases desmoplasia around tumors, in combination with 

gemcitabine, a common chemotherapeutic for pancreatic cancer. Unfortunately, the trials were 

stopped due to poor clinical results. From this example, it is clear that the physical properties of 
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PDAC, either cell or microenvironment, should not be individually targeted for treatment without 

knowledge of how one affects the other, as they are each part of a complex system. It is possible 

that the stiffness and density of the PDAC extracellular matrix is not only upregulating pathways 

that promote cancer progression (5), but also may be confining tumor cells in a small space to 

prevent rapid dissemination (11). Thus, it is imperative to understand the relationship between the 

physical properties of cells and their environment as we develop new therapies to treat, and 

hopefully cure, pancreatic cancer. 
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