
Lawrence Berkeley National Laboratory
LBL Publications

Title
An MPI Implementation of the SPAI Preconditioner on the T3E

Permalink
https://escholarship.org/uc/item/2sz0v8k1

Authors
Barnard, Stephen T
Bernardo, Luis M
Simon, Horst D

Publication Date
1997-09-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2sz0v8k1
https://escholarship.org
http://www.cdlib.org/

'.

LBNL-40794
UC-405
Preprint

ERNEST ORLANDO LAWREN.CE
BERKELEY NATIONAL LABORATORY'

An. MPI Implementation ~f the
SPAI Pre conditioner on theT3E'

I

Stephen T. Barnard, Luis M. Bernardo,
and Horst D. Simon "

Computing Sciences Directorate

September 1997

Submitted to
, lriiernationaljournal

ofSupercpmputer
Applications _

I,r 1

.,
"

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBNL-40794
UC-405

An MPI Implementation of the SP AI Preconditioner on the T3E

Stephen T. Barnard, Luis M. Bernardo, and Horst D. Simon

Computing Sciences Directorate
Ernest Orlando Lawrence Berkeley National Laboratory

University of California
Berkeley, California 94720

September 1997

This work was supported in part by the Director, Office of Computational and Technology Research, Division
of Mathematical, Information, and Computational Sciences, of the U.S. Department of Energy under Contract
No. DE-AC03-76SF00098.

An MPI Implementation of the
SPAI Preconditioner on the T3E*

LBNL-40794

Stephen T. Barnardt Luis M. Bernardot

Horst D. Simon§

September 8, 1997

Abstract

We describe and test spai_l.l, a parallel MPI implementation of
the Sparse Approximate Inverse (SPAI) preconditioner. We show that
SPAI can be very effective for solving a set of very large and difficult
problems on a Cray T3E. The results clearly show the value of SPAI
(and approximate inverse methods in general) as the viable alternative
to ILD-type methods when facing very large and difficult problems.
We strengthen this conclusion by showing that spaU.l also has very
good scaling behavior.

1 Introd uction

The solution of large, sparse linear systems of equations, obtained from dis­
cretization of PDE's, is an important and typical problem in many scientific

"This work was partly supported by the Director, Office of Computational and Tech­
nology Research, Division of Mathematical, Information, and Computational Sciences of
the U.S. Department of Energy under Contract No. DE-AC03-76SF00098 and partly (L.
Bernardo) supported by the Director, Office of Energy Research, Office of Laboratory
Policy and Infrastructure Management, of the U.S. Department of Energy under Contract
No. DE-AC03-76SF00098.

tResearch Scientist, MJR Technology Solutions, NASA Ames Research Center, Moffet
Field, CA 94035 (barnard<§nas. nasa. gov)

INERSC, MS 50C-3328, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
(lmbernardo<§lbl.gov)

§NERSC, MS 50B-4230, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
(hdsimon<§lbl.gov)

1

and engineering disciplines. Since direct solvers become extremely expen­
sive due to the amount of work and storage required, iterative methods such
as CG, GMRES, BICGSTAB, BCG, are typically used [1]. On the other
hand, the widespread use of massively parallel computers in scientific ap­
plications during recent years has generated, and justified, interest in the
development and implementation of efficient parallel algorithms on modern
high performance computers. Parallel implementations of these iterative
solvers are not difficult to create, but an effective preconditioner is usually
required for them to converge in a reasonable number of itera,tions, or even
to converge at all. Unfortunately, the widely used, and effective, ILU-type
preconditioners, based on incomplete L U factorizations, are very difficult
to parallelize, while the common preconditioners that can be parallelized,
such as Polynomial and Block Jacobi, do not seem to be very effective for
many important problems. Approximate Inverse pre conditioners have been
an interesting alternative since they are inherently parallel, and have the
potential to be effective too.

The Sparse Approximate Inverse (SPAI) preconditioner, as proposed by
Grote and Huckle [2], falls into this category and has already been shown
to be effective. The construction of this preconditioner can be expensive
compared to ILU-type methods as has been shown in [3, 4] on a number
of standard, but rather small, examples. Our results indicate that for very
large problems, where ILU-type pre conditioners are less efficient, SPAI will
become the preconditioner of choice due to its inherent parallelism.

Here we report on spaL1.1, an MPIimplementation ofSPAIfor distributed­
memory parallel computers, written by one of the authors (Barnard). The
rest of the paper is organized as follows. In Section 2 we review the SPAI
algorithm, and in Section 3 we describe spaL1.1 and the techniques used
in its implementation (a preliminary version of this work discussed in [5]).
Section 4 covers the numerical experiments and Section 5 describes the per­
formance and scaling properties of spaL1.1. In Section 6 a few case studies
are discussed and in Section 7 we present our conclusions about SPAI and
spaL1.1.

2 SPAI

Consider the system of linear equations

Ax = b, x, bE lR,n (1)

2

with A a large, sparse and unsymmetric matrix. We seek a solution x = ,
A-I b. An iterative solver starts with an initial guess Xo and constructs
a sequence {xo, x}, ... , xm} that is intended to converge to an acceptable
approximation Xm to x such that IIrmll/llbll ~ tol, where rm = b - Axm.
The convergence is in general not guaranteed, and can be extremely slow.
The convergence can however be accelerated by a preconditioner M, which
can be used either as a right preconditioner,

AMy = b, X= My,

or left preconditioner,
MAx=Mb.

The matrix M should be chosen so that AM (or MA) is a good approxi­
mation to the identity I. Here, good approximation is usually understood in
the sense of minimizing the Frobenius norm of (AM - I). This choice nat­
urally leads to inherent parallelism, because the columns mk of M (or the
rows in the case of minimizing liMA - IIIF) can be computed independently
of one another. In fact, since

n

IIAM - III} ~ L II(AM - I)ekll~, (2)
k=l

the minimization of (2) separates into n independent least squares problems

(3)

which can be solved in parallel. Here ek = (0, ... ,0,1,0, ... , O)T. The difficulty
lies in determining a good sparsity structure for M, so that the solution of (3)
yields an effective preconditioner, and a considerable amount of research
has already been done in that direction (Yeremin et al. [6, 7, 8], Grote and
Simon [9], Cosgrove, Diaz and Griewank [10], Chow and Saad [11], and
Grote and Huckle [2]). For the rest of this paper we shall restrict ourselves
to SPAI, the method proposed by Grote' and Huckle [2], and to spaL1.1, a
parallel implementation of SPA! written by one us (Barnard [5]). A closely
related version of the parallel SPAI preconditioner is included in ISIS++ [12],
which is a an extensive and portable collection of parallel iterative solvers
and preconditioners.

3

2.1 The SPAI Algorithm

Although spaL1.1 constructs a left preconditioner, to be consistent with [2],
we briefly describe SPAI as a right preconditioner. The algorithms to con­
struct left or right preconditioners are essentially identical, and one can be
converted to the other merely by swapping the meanings of "rows" and
"columns" (spaL1.1 constructs a left preconditioner because the matrix­
vector multiplication required by iterative methods is most efficiently done
on a parallel distributed-memory system when the matrix is distributed
row-wise - that is, with complete rows assigned to different processors).

If the sparsity pattern of M is known then the solution of (3) is straight­
forward, amounting to the solution of n independent least squares problems.
Let .:1 = {j I mk(j) :f: O} be the set of indices of the nonzero entries of the
kth column of M. The set of indices of rows in A that could possibly affect

. a product with column k is I = {i I A(i,.:1) :f: O}. To solve (3) we construct
the full submatrix1 A = A(I, .:1), which has III rows and 1.:11 columns, and
solve the problem

Il!in IIAmk - ekll2 (4)
mk

where ek = ek(I) and mk = Mek(I). This can be done, for example, with
a QR decomposition as described in [2].

The main difficulty in constructing an approximate sparse inverse is de­
termining the sparsity pattern of M. Grote and Huckle propose the following
method. For each column k of M start with some initial sparsity pattern .:1,
which would typically be diagonal: .:1 = {k}. Construct the full submatrix
A and solve the least squares problem (4) to obtain mk. Let mk(.:1) = mk,
with the residual

r = A(.,.:1)mk - ek . (5)

Assuming that IIrll2 :f: 0, then mk is not exactly the kth column of the
true inverse, and we must augment the sparsity structure .:1 to obtain a
better approximation. Therefore look at how to reduce the magnitude of
the nonzero components of the residual.

Let .c = {l I r(l) :f: o}. Let j = {j I A(.c,j) :f: 0}\.:1. These are
candidate indices to add to .:1, but there may be very many of them, so
it is necessary to somehow choose the ones that most effectively reduce
IIrlb. Grote and Huckle suggest as a heuristic solving a one-dimensional

1 Note that we store and operate on A as a dense matrix, although it may contain zero
entries.

4

minimization problem for each j E j:

(6)

which has the solution
rTAe-

J.L
- J

i - -IiAeill~
(7)

with the residual

(8)

The procedure for choosing new indices to augment the sparsity structure
.J is as follows:

1. Determine j,

2. Determine Pi for all j E j,

3. Determine the mean of {Pi},

4. Retain all indices in j corresponding to a value of P less than or equal
to the mean, up to to some maximum number of indices (typically 5).

The algorithm stops when either a maximum number offill-ins (nonzero
entries) per column is reached or the condition

(9)

is satisfied, where 0 < f. < 1, is a parameter that determines the accuracy of
the sparse-inverse approximation. A more detailed description of the SPA!
algorithm is given in [5].

3 spaL1.1, an MPI Implementation of SPAI

Although SPA! is an inherently parallel algorithm, there are several diffi­
cult issues to confront in creating an efficient and portable implementation.
These issues were the main topic in [5], but for the sake of completeness we
describe them here again.

5

3.1 One-Sided Communication

SPAI computes every row of M independently, but to do so it must access
potentially any row of A in a completely unpredictable way. A processor
that computes a row of M must therefore access rows of A that reside on
other processors. This is straightforward on a shared-memory architecture,
but on a distributed-memory system with no support for shared-memory
programming it requires either expensive and nonscalable all-to-all commu­
nication or so-called "one-sided" communication. We use MPI for maximum
portability, but MPI does not support one-sided communication directly. It
does, however, provide the functionality to implement one-sided communi­
cation in a specialized way.

The processors computing rows of M run entirely asynchronously, with
no barriers until M is completed. Whenever a processor needs access to
data on another processor, or when it needs to inform another processor of
some condition, it sends a request to that processor in the form of a short
message. These requests are handled by a communications server that uses
the MPLlprobe function to detect the arrival of requests.

There are five types of requests, distinguished by their message tags in
the communications server:

1. Another processor needs a row of A.

2. Another processor needs a row of M. This is part of the load balance
mechanism described below.

3. Another processor is storing a row of M. Again, this is part of the
load balancing mechanism.

4. A processor has finished constructing all the rows of M that it "owns"
and is informing the master processor that it has finished its local work
(although it may still construct rows owned by other processors until
all processors have finished their local work).

5. The master processor informs all other processors that the construction
of M has been completed.

The communications server is called periodically by every processor, typi­
cally when they are waiting for remote data or when they have finished a
substantial amount of work, such as computing a row of M.

6

3.2 Latency Hiding

Many distributed-memory computers have large latency in interprocessor
communication. The parallel spaLL! code masks this latency as much as
possible by using asynchronous communication and overlapping work with
communication. For example, when a processor initiates a request for a row
of A to another processor it uses the asynchronous MPLlsend function, then
it repeatedly calls the communications server to service requests from other
processors until the data that it requested arrives.

One effective way that the parallel spaLL! code hides latency is to avoid
unnecessary communication altogether by caching remote references. When
a processor is working on a row of M and needs to retrieve a row of A from
another processor it puts that row in a cache (implemented with a hash
table). It is very likely that subsequent rows of M will require the same
row of A, which they will find in the cache without resorting to unnecessary
communication. The function that accesses rows of A works as follows:

1. If the row is local simply return it.

2. Otherwise, ifit is in the cache return it.

3. Otherwise, initiate a request to the processor that owns it.

4. Service requests until the data arrives and the request queue is empty.

5. Put the row in the cache and return it.

3.3 Load Balancing

It is very likely that some rows of M will require much more work than the
average row, which can lead to a serious load imbalance. Furthermore, it
is impossible to predict accurately how much work a row will require, and
therefore it is impossible to allocate work to processors ahead of time in a
load-balanced distribution. We have implemented a dynamic load balancing
strategy to deal with this problem.

Every processor "owns" a number of rows of the matrices A and M,
which are assigned at the outset of the program. The indices of the "local"
rows of M are maintained as a queue and each processor constructs its local
part of M by taking indices from the queue. Suppose processor preaches
the end of the queue, having completed its local work. It sends a message
informing the master processor that it has finished its local work, but there

7

may be other processors which are not finished, so processor p polls the other
processors, using the communications server, asking whether they have any
row indices of M remaining in their queues. Suppose processor q has such
an index. It takes that index from the queue and returns it to processor
p, which then computes the row of M in exactly the same way as it would
compute a local row of M, and when it is finished it their local work it
sends messages (which are handled by the communications server) to the
other processors informing them that M is complete.

3.4 User Interface

The SPAI algorithm has a few free parameters that permit the control of
the quality of the preconditioner constructed. These parameters specify the
number of fill-ins per column, the number of new nonzero entries allowed
per step of the algorithm, and E. In spaL1.1, these parameters are called
ma, mn and ep, respectively, and we will make use of them in the rest of this
paper. spaL1.1 comes bundled with an iterative method (BICGSTAB), and
that was the only method we used in this study. Coupling spaL1.1 with
other iterative solvers is straightforward.

4 Numerical Experiments

In this Section we present the results we obtained for a set of very diverse
sparse matrices, with a number of nonzeros ranging from a few thousand
to a couple of million. All the matrices we used can be obtained from the
excellent University of Florida Sparse Matrix Webpage maintained by T.
Davis [13]. We used matrices from the the HB (Harwell Boeing), Simon,
Nasa and Rothberg collections2 • For practical purposes we will group the
matrices according to their sizes. Small matrices will be the ones with less
than fifty thousand nonzero entries, medium size matrices will have between
fifty thousand and five hundred thousand nonzero entries, and large matrices
will have more than five hundred thousand nonzero entries.

Before we present the results, though, we need to settle on some criteria
about what is important in those results. There are two issues we have to

2In some places, especially when we refer to a matrix for the first time, we will follow
the name of the matrix with a "code" like (Nasa,rsa). The first entry r~fers to the name
of the collection to which the matrix belongs, and the second entry to the type of matrix,
using HB notation [15]: "rua" refers to unsymmetric matrices and "rsa" to symmetric
ones.

8

consider in order to make a judgement about SPA!. The first is effectiveness
(by how much can the number of iterations of the iterative method be re­
duced), and the second is efficiency (how long it takes to find the solution,
including the time taken evaluating the preconditioner).

All numerical results reported here were obtained on the Cray T3E-600
at NERSC, an MPP system with 176 processors, of which 152 are configured
to run parallel computing jobs. The T3E processors are DEC Alphas (EV-
5's) with a clock speed of 300 MHz, peak performance of 600 MFlops and
256 MB of memory (but a practical limit of 235 MB for parallel jobs, and
80 MB for jobs in one processor). Hence single processor results listed here
are indicative of workstation performance of SPAI. By default, the T3E
processors use 64-bit words. Double precision (64 bit) arithmetic was used
in all experiments.

4.1 Assessing the Effectiveness of SPAI

A good case in favor of the effectiveness of SPAI was already made in [2] and
also in [3, 4]. Here we present more evidence by studying matrices where
ILU-type methods either fail or have difficulty. Based on the extensive study
ofthe convergence behavior oflLU preconditioned iterative methods in [14],
we selected six matrices where ILU preconditioners either failed or required
high levels of fill-in (large k's in ILUT(k)), independently of the iterative
solver used, in order to achieve convergence in a small number of steps.
These six matrices are listed in Table 1 and the results are displayed in
Table 2 and are self explanatory3. The tolerance was set to 10-8 and the
iterative method used was BICGSTAB4. A right hand side b of 1 's was used,
but to better compare with [14] we also tried, for some of the matrices, a
right hand side such that the solution is a random vector. No significant
difference was observed.

Although SPAI succeeded in some ofthe matrices where ILU-type meth­
ods had failed, the SPAI preconditioner was significantly denser than the
ILU-type pre conditioners constructed in [14], and it is likely that ILU-type

3In the. three cases where ILUT(k) preconditioners failed, the following fill-in levels
were used [14]: k = 100 for nnc261, k = 44 for nnc1374 and k = 13 for Ins3937.

41t is well known that sometimes BICGSTAB stagnates. For instance, for nnc261 with
the choice of parameters given in Table 2, BICGSTAB reaches the tolerance of 10-10

after 18 iterations, but then stagnates and never reaches a tolerance of 1O-1~. In all cases
presented here, the spai_1.1 parameters or the tolerance were chosen in order to avoid
that.

9

methods would have succeeded too if denser preconditioners had been con­
sidered. On the other hand, with the exception of Ins3937, all the other
problems were solved in one processor in a reasonable amount of time. For
those cases, the cost of constructing such dense preconditioners seems ac­
ceptable (in absolute terms), even on a workstation. And, as we shall see
later, the shortest times to solution can in fact be considerably less than the
ones shown.

4.2 Assessing the Efficiency of SPAI

As described in Section 3.4, spaLl.1 allows us to choose from a different
number of options (parameters), the important ones here being ep, mIl and
ma (E, maximum number of nonzeros per step of the SPAI algorithm and
maximum number of non zeros per row, respectively). Depending on our
choice for those parameters, the final results (sparsity of M, number of iter­
ations of BICGSTAB, but specially the time taken by both the construction
of the preconditioner and the iterative method BICGSTAB) can be very
different. It is important, therefore, that we have some rule of thumb to de­
cide between the different choice of parameters. This is an issue that needs
to be addressed before we decide in favor or against SPAI as an efficient
preconditioner (even when run in parallel). Since efficiency is measured by
the total time to solution (construction of preconditioner time + iterative
method time), the parameters should be chosen so that this time to solution
is the shortest possible. This usually happens when the times taken by the
preconditioner and iterative method are comparable. To show this fact, we
present now some results we obtained with a small set of small matrices.
These matrices are by now standard references in the SPAI literature and
were also used in [2, 3,4], and are listed in Table 3. In all cases a right hand
side of 1 's was used.

For every matrix we will fix a value for ma, usually 5% or 10% of n, the
order of the matrix, and we will look at the run times of the preconditioner
and the iterative method for different values of ep and mn. The results are
displayed in Tables 4-9.

We report now our observations for these six matrices. All the tests
were ran in one processor. We recall again that spai_l.1 constructs a left
preconditioner. To be consistent with [2, 3] we also used a convergence
tolerance of 10-8 •

orsregl The results for this matrix are displayed in Table 4. For larger

10

I Matrix n I nnz(A) II k I BICGSTAB I PLU I
nnc261 261 1500 - - -
nnc666 666 4044 30 > 1000 rv5
nnc1374 1374 8606 - - -
lns131 131 536 1 167 1.3
lns511 511 2796 20 49 6
Ins3937 3937 25407 - - -

Table 1: Set of matrices that were shown to be very difficult with ILU-type
methods [14] and that SPAI solves. The last three columns contain data
obtained from [14]: k refers to the ILUT(k) preconditioner used, PLU is the
density of the incomplete L U matrices relative to A and the values in the
BICGSTAB column were the number of iterations needed to converge to a
tolerance of 10-8 .

I Matrix II ep ma I 'SPAI BICGSTAB

nnc261 0.4 60 6791 2.17 14 0.09
0.4 60 18436 6.62 75 1.18

nnc666 0.3 60 22539 8.26 52 0.92
0.3 101 31914 21.43 45 1.00
0.3 60 48768 19.00 75 2.74

nnc1374 0.3 101 68302 49.90 67 3.06
0.2 101 86559 66.01 48 2.65
0.4 21 1265 0.18 55 0.13

Ins131 0.4 51 2050 0.41 36 0.10
0.4 101 2881 0.89 21 0.07
0.3 101 21250 12.15 85 1.34

Ins511 0.2 101 28125 18.10 77 1.46
0.2 151 36770 33.95 55 1.25

Ins3937 0.1 900 1558045 412.66 1942 154.68

II ep ma I nnz(M) I (sec.) I # Iter. I (sec.) I
Table 2: The effectiveness of SPAI can be controlled by changing the param­
eters ep, ma and mn. Here, mn = 5 always, except for Ins3937, where a value
of mn = 85 was used. The tolerance was 10-8 in all cases. These results
were obtained with one processor, except for Ins3937, where 16 processors
were used. For these problems SPAI is effective at the cost of constructing
a preconditioner with significantly more nonzero entries than the original
matrix.

11

values of ep and mn, no difference is observed between the different
cases. This was due to the fact that the value chosen for rna was
too large to change the results, as can be seen by the fact that the
condition (9) was always satisfied. In fact, a choice for rna of 1 % of n,
would have given practically the same results. For the cases considered
the minimum total time was around 2.15-2.20 seconds.

orsirr2 The results for this matrix are displayed in Table 5. The same
comments that applied to orsreg1 apply here. The minimum total
time for the cases considered was around 0.90-1.00 seconds.

sherman! The results for this matrix are displayed in Table 6. The mini­
mum total time for the cases considered was around 0.80-0.90 seconds.

sherman2 The results for this matrix are displayed in Table 7. In this case
many more rows did not satisfy condition (9). The minimum total
time for the cases considered was around 9-11 seconds, showing in fact
that this is a harder problem than the previous ones. Interestingly
enough, the minimum times occur for large ep's and large number of
iterations.

pores2 The results for this matrix are displayed in Table 8. This was a
much harder matrix, as previously noticed [2], and it is suggested there
that a left preconditioner makes the problem easier. However, since
we also used left preconditioning (spaL1.1 uses left preconditioning),
we cannot explain why our results seem to indicate that this matrix is
harder than the results of [2, 3] suggest. The minimum total time for
the cases considered was around 4 minutes.

saylr4 The results for this matrix are displayed in Table 9. The minimum
total time for the cases considered was around 24-25 seconds.

A few but important remarks are worth making now:

1. We didn't find a significant difference between runs with different val­
ues of mn and the same ep, for the cases where (9) is almost always
satisfied. At most, the results seem to indicate that larger values
of mn (but still much smaller than rna) allow a faster evaluation of
the pre conditioner without real degradation of the convergence rate

. of BICGSTAB. Also, there are no significant differences between the
sparsities of the preconditioners evaluated with different mn's. These

12

I Matrix n I nnz I
orsreg1 2205 14133
orsirr2 886 5970
sherman 1 1000 3750
sherman2 1080 23094
pores2 1224 9613
saylr4 3564 22316

Table 3: Set of matrices used to show the dependence of the preconditioner
and iterative method times on the parameters ep, mn and mao

ep I mn II SPAI BICGSTAB I TTime I
2 33795 12.33 0 23 1.21 13.54

0.2 5 29848 4.76 0 22 0.80 5.56
10 39755 6.14 0 24 1.07 7.21
2 ·11701 1.93 0 37 0.88 2.81

0.3 5 11025 1.53 0 37 0.86 2.39
10 11025 1.53 0 37 0.89 2.42
2 11701 1.91 0 37 0.91 2.82

0.4 5 11025 1.54 0 37 0.86 2.40
10 11025 1.57 0 37 0.95 2.52
2 8379 1.15 0 49 1.05 2.20

0.5 5 9261 1.19 0 44 0.97 2.16
10 9261 1.19 0 44 0.96 2.15
2 3969 0.46 0 169 3.04 3.50

0.6 5 3969 0.46 0 169 3.01 3.47
10 3969 0.46 0 169 3.01 3.47

I ep I mn \I nnz(M) I (sec.) I f I # Iter. I (sec.) I (sec.) I
Table 4: orsreg1: n = 2205, nnz = 14133. A value of ma = 55 was used,
which corresponds to 2.5% of n. TTime denotes the total time to solution,
and the shortest time is boldfaced. The values in the column labeled by f
correspond to the number of rows where (9) was not satisfied.

13

I ep I mn II SPAI BICGSTAB I TTime I
2 15054 6.35 10 25 0.43 6.78

0.2 5 12699 2.25 0 23 0.37 2.62
10 17927 2.85 7 20 0.36 3.21
2 4853 0.93 0 39 0.42 1.35

0.3 5 4417 0.64 0 ' 37 0,37 1.01
10 4425 0.64 0 38 0.40 1.04
2 4738 0.91 0 40 0.44 1.35

0.4 5 4329 0.63 0 39 0.39 1.02
10 4329 0.63 0 39 0.39 1.02
2 3266 0.48 0 56 0.52 1.00

0.5 5 3626 0.50 0 46 0.45 0.95
10 3626 0.49 0 46 0.43 0.92
2 1566 0.20 0 231 1.88 2.08

0.6 5 1566 0.20 0 231 1.87 2.07
10 1566 0.20 0 231 1.86 2.06

I ep I mn II nnz(M) I (sec.) I i I # Iter. I (sec.) I (sec.) I
Table 5: orsirr2: n = 886, nnz = 5970. A value of ma = 44 was used, which
corresponds to 5% of n.

observations seem to disagree with [3], but are also inconclusive since
the number of experiments was quite small. We decided not to pursue
this further.

2. In the cases where a larger number of rows violate (9), there is stronger
evidence that larger values of mn allow a faster evaluation of the pre­
conditioner at the cost of increasing the number of iterations needed
by BICGSTAB to converge. The total times are not necessarily larger
though.

3. The minimum total time usually occurs when the time taken to eval­
uate the pre conditioner is very close to the time taken by the iterative
method (BICGSTAB) to converge to the required tolerance. This also
means that the corresponding number of iterations can be large.

4. The parameter ep is the most important one, as expected.

Of the four above remarks, the third one is the most important one and
the key to speed up the search for the shortest time to solution; i.e., looking

14

I ep I mIl II SPAI BICGSTAB I TTime I .
2 15520 5.83 47 22 0.34 6.17

0.2 5 14715 2.21 23 23 0.35 2.56
10 15757 1.87 24 20 0.31 2.18
2 6690 1045 6 34 0.36 1.81

0.3 5 7329 0.82 8 34 0.39 1.21
10 8136 0.77 8 31 0.36 1.13
2 4437 0.92 6 45 0040 1.32

004 5 4874 0.54 5 45 0042 0.96
10 5051 0049 4 40 0.39 0.88
2 2721 0.38 0 79 0.61 0.99

0.5 5 3333 0.36 2 59 0049 0.85
10 3407 0.34 2 57 0047 0.81
2 1791 0.25 0 106 0.76 1.01

0.6 5 2021 0.24 2 102 0.73 0.97
10 2031 0.23 2 84 0.65 0.88

I ep I mIl II nnz(M) I (sec.) I , I # iter. I (sec.) I (sec.) I
Table 6: sherman1: n = 1000, nnz = 3750. A value of ma = 50 was used,
which corresponds to 5% of n.

I ep I mIl II SPAI BICGSTAB I TTime I
5 14696 18.96 42 32 0.84 19.80

0.4 10 14700 11.44 24 53 1.53 12.97
20 14007 7.97 75 335 9.12 17.09
5 13518 16.17 24 34 0.87 17.04

0.5 10 13581 9.07 18 65 1.68 10.75
20 13074 6.76 63 338 8.64 15.40
5 12646 14.51 20 39 0.98 15.49

0.6 10 12547 8.10 16 72 1.79 9.89
20 12324 6.14 52 195 4.84 10.98
5 10830 10.90 8 53 1.28 12.18

0.7 10 10940 6.26 10 108 2.62 8.88
20 10767 5.01 39 555 13.42 18.43

I ep I mIl II nnz(M) I (sec.) I , I # Iter. I (sec.) I (sec.) I
Table 7: sherman2: n = 1080, nnz = 23094. A value of ina = 54 was used,
which· corresponds to 5% of n.

15

I ep I mn " SPAI BICGSTAB I TTime I
5 198865 391.48 999 898 97.30 488.78

0.2 10 197314 220.70 1021 1339 147.15 367.85
20 190636 150.23 1041 1526 159.42 309.65
5 142305 232.41 441 1269 103.80 336.21

0.3 10 147205 135.20 426 1077 91.61 226.81
20 154088 104.84 503 2326 202.52 307.36
5 82530 100.15 107 4366 232.51 332.66

0.4 10 90239 65.95 113 3096 182.85 248.80
20 102022 55.19 145 2219 138.46 193.65

I ep I mn " nnz(M) I (sec.) I i I # iter. I (sec.) I (sec.) I
Table 8: pores2: n = 1224, nnz = 9613. A value of ma = 183 was used,
which corresponds to 15% of n.

I ep I mn " SPAI BICGSTAB I TTime I
5 84074 48.66 13 72 5.29 53.95

0.2 10 87883 30.18 31 72 5.38 35.56
20 84873 22.72 92 77 5.65 28.37
5 45566 12.74 0 222 12.46 25.20

0.3 10 47202 9.73 3 310 17.19 26.92
20 47044 8.53 4 271 15.00 23.53
5 26310 6.83 0 741 30.88 37.71

0.4 10 26459 4.59 3 583 24.26 28.85
20 25816 3.73 4 609 25.15 28.88

I ep I mn II nnz(M) I (sec.) I i I # Iter. I (sec.) I (sec.) I
Table 9: saylr4: n = 3564, nnz = 22316. A value of ma = 178 was used,
which corresponds to 5% of n.

16

for the point in parameter space where the times taken by the preconditioner
and iterative method are comparable is a good way to look for the shortest
time to solution.

This may mean in general that the corresponding number of iterations
can be quite large. From the perspective of a Numerical Linear Algebra
theorist this may seem a displeasing choice, but from the perspective of a
user that needs a preconditioner to solve problems quickly, this is the right
choice because it usually leads to the shortest times to solution. It is not
difficult to give a heuristic explanation why that is so.

lf we plot the times taken to construct a preconditioner versus some
measure of the "quality" ofthat preconditioner (like ep, where smaller values
for ep mean better quality), we can intuitively expect that the resulting plot
corresponds to a decreasing and convex function of ep. Similarly, intuitively,
we can expect the plot of the times taken by the iterative method to converge
to a required tolerance, to be an increasing and convex function of ep. lf we
consider now the total times to solution (i.e., the sum of the two plots), then
intuitively we expect the minimum to be close to the point where the two
plots meet , i.e. , the point where the time to construct the preconditioner
and the time for the iterative method to converge are "roughly" the same.
As an example, we consider the matrix sherman1 with mn = 5 and ep =
0.2:0.1:0.6 (Matlab notation). A graph of bars is shown in Fig. l.

In [3], the SPAI and ILU preconditioners were compared by looking at the
times to construct the preconditioners that give roughly the same number
of iterations. Although that effectively compares the costs associated with
the two preconditioners (and the verdict was that SPAI is very expensive
relatively to ILU, in one processorS), it doesn't guarantee that we are looking
at the shortest times to solution. As a matter of fact though, the IL U times
given in [3] are comparable to their respective iterative methods times, and
probably the corresponding solution times are very close to the shortest
times to solution.

There are situations (e.g. , when various right hand sides are present)
where chosing the parameters so that the times spent in constructing the
preconditioner and in the iterative method are roughly the same is not a
good choice (but extending that argument further, if we have even more right
hand sides, direct methods end up being cheaper than iterative methods) .
And finally, there is no way to determine the point in parameter space with
the shortest time to solution except by trial and error (a time-consuming

5The same conclusion was reached in [4] .

17

3~----~r-----~------~-------r-------r------,

2 .5

2
...-..
g
(J)

;-1 .5
E
i=

1

0.5

0'----
0.1 0.2 0 .3 0.4 0.5 0.6 0.7

ep

Figure 1: sherman1: Time taken to construct preconditioner with SPAI
(left bar); time taken by BICGSTAB to converge to tolerance of 10-8 (mid­
dle bar); total time (right bar), as a function of ep . The times are given in
seconds, and were obtained with ma = 44 and mn = 5, as given in Table 6.

task) , and there is no guarantee that there is only one such point , except for a
heuristic argument. Keeping this in mind, we decided nevertheless to present
mostly the results corresponding to the shortest times to solution (where
the time spent in constructing the preconditioner and the time spent in the
iterative method are roughly the same), even if the number of iterations
may seem very large.

4.3 The Experiments

The results presented below correspoild to the shortest times to solution
(among . the few tests we performed). As stressed in the previous section ,
we could present results corresponding to more effective preconditioners
(smaller number of iterations) , but those preconditioners would be less effi­
cient (longer times to solution) .

18

In general, the results for small matrices were obtained with only one
processor, while for medium size and large matrices we used multiple pro­
cessors. Here we report only cases that SPAI solved, and we will leave the
few cases where it failed to Section 6. Again, we used in all cases a right
hand side of 1 'so In the few cases where a right hand side was provided, we

. also repeated (some of) the experiments with the given right hand side, but
no significant differences were observed.

4.3.1 Small Matrices

The results for matrices (HB,rua) with less than fifty thousand nonzero
entries are presented in Table 10, and are self explanatory. To be consistent
with [2, 3] (although we always use a left preconditioner) we set the tolerance
to 10-8 (in [4] a value of 10-9 was used). For sherman3 the default starting
vector Xo and the right hand side b were such that the tolerance was satisfied
after the first iteration. This was accidental and not representative of the
method.

4.3.2 Medium Size Matrices

These are the matrices with more than fifty thousand but less than five
hundred thousand nonzero entries. The results are presented in Table 11
for some bcsstk (HB,rsa) and raefsky (Simon,rua) matrices, and are self
explanatory6. The tolerance was set to 10-10 . Figure 2 refers to raefsky2

6Since the matrix raefskyl was also studied in [3], it is worth comparing the two results,
even though we used a left preconditioner while in [3] a right preconditioner was used. The
fact that raefskyl seems to be only slightly unsymmetric, at least visually (see Section 6),
makes such comparison meaningful.

The following table is self explanatory. MI12 is the code used in [3].

I Code \I ma ep mn I nnz(M)/nnz(A) I SPAI I BICGSTAB

MI12 50 0.3 1 0.087 665.45 86 22.64
spaLL 1 50 0.3 1 0.0867 475.90 87 14.19
spaLL 1 21 0.5 5 0.033 16.20 127 20.30

1/ ma ep mn I nnz(M)/nnz(A) I (sec.) I # Iter. I (sec.) I

A tolerance of 10-8 was used. The last row, which corresponds to the shortest time
to solution, clearly shows how the efficiency can be greatly improved by choosing the
right parameters. For the second row, we use the parameters used in [3, 2). The ratios
MI12/spai-l.l of the SPAI CPU times and BICGSTAB CPU times are 1.40 and 1.51,
respectively (and are thus consistent). Evidently, the spai_1.1 results were obtained in
one processor.

19

I Matrix II n I nnz(A) I SPAI BICGSTAB

orsreg1 2205 14133 9261 1.19 44 0.96
orsirr1 1030 6858 4326 0.54 44 0.47
orsirr2 886 5970 3626 0.49 46 0.43
sherman 1 1000 3750 3407 0.34 57 0.47
sherman2 1080 23094 10940 6.26 108 2.62
sherman3 5005 20033 5005 0.41 1 0.04
sherman4 1104 3786 1104 0.10 64 0.47
sherman5 3312 20793 11155 1.45 53 1.71
saylr3* 1000 3747 4510 0.40 57 0.54
saylr4 3564 22316 47044 8.53 271 15.00
pores2 1224 9613 102022 55.19 2219 138.46
lnsp3937 3937 25407 275107 40.58 3262 96.54
watt2 1856 11550 155686 29.82 1742 28.88

II n I nnz(A) I nnz(M) I (sec.) I # Iter. I (sec.) I
Table 10: The results correspond to the shortest times to solution among
the limited number of tests we performed. Here we used tolerance = 10-8

and 1 processor, except for Insp3937 and watt2 where 8 processors were
used. saylr3* was obtained from saylr3 by replacing two independent 2 x 2
singular submatrices by 2 x 2 identity matrices, as explained in [2], pag. 18.

(Simon,rua), another medium size matrix. It shows variations in the num­
ber of iterations as ep changes. This is a typical behavior in that smaller
values of ep mean better preconditioners and fewer iterations. However, in
this case, the shortest time happens for ep = 0.80 (incidentally, raefsky2 is
diagonal dominant and very easy to solve). Table 13, in Section 5, shows
the scaling properties of spai_1.1 for the matrix bcsstk17.

4.3.3 Large Matrices

These are the matrices with more than five hundred thousand nonzero en­
tries. The results, obtained for a tolerance of 10-10 are shown in Table 12
for raefsky3 (Simon,rua) and the cfd matrices (Rothberg,rsa), and are again
self explanatory. As we can see from the results, SPAI can be an expensive
method, even when restricted to large problems in large number of proces­
sors. As expensive as it can seem (at least for cfd2), it is probably still more
efficient than any other method, but we do not have data to support this

20

I Matrix II n I nnz(A) I SPAI BICGSTAB

bcsstk14 1806 63454 30733 3.74 120 1.29
bcsstk16 4884 290378 11094 1.54 39 1.05
bcsstk17 10974 428650 261849 593.41 1227 87.09
raefsky1 3242 294276 9812 3.68 145 3.75
raefsky5 6316 168658 - 23221 1.16 10 1.27
raefsky6 3402 137845 16594 3.75 151 2.49

II n I nnz(A) I nnz(M) I (sec.) I # iter. I (sec.) I
Table 11: The results correspond to the shortest times to solution among
the limited number of tests we performed. Here we used tolerance = 10-10

and 8 processors, except for raefsky5 where only one processor was used.
For bcsstk17 we were unable to find a better SPAI-BICGSTAB time ratio
(BICGSTAB would always break down for any choice of parameters likely
to push the ratio in the right direction.).

I Matrix II n I nnz(A) I SPAI I BICGSTAB I
raefsky3 21200 1488768 859892 307.9 3328 342.3
cfd1 70656 1828364 1327276 112.4 889 171.0
cfd2 123440 3087898 5272790 418.6 2714 668.7

II n I nnz(A) I nnz(M) I (sec.) I # iter. I (sec.) I
Table 12: The results correspond to the shortest times to solution among the
limited number of tests we performed. Here we used tolerance = 10-10 and
16 processors, except for cfd2 where 64 processors were used. In Figure 5
the scaling behavior of spaL1.1 for cfd2 is shown.

claim (we did not find any published results to which we could compare).

5 Parallel Performance of spaLl.l

In this Section we discuss the scaling properties of spai_1.1, both during
the construction of the pre conditioner and during the iterative phase. Two
examples will be considered: bcsstk17 and cfd2 .

. The results for bcsstk17 are displayed in Table 13 and Figures 3 and 4.
This matrix required a minimum of two processors. It is clear from the
Figures that SPAI scales considerably better (at least on the T3E) than
does BICGSTAB. This scaling will be sensitive, however, to the latency of

21

· raefsky2:. BICGSTAB for different epSilons

I.
ep =0.20
ep = O.~O
ep = 0,40
ep =0.50
ep =o.~o
ep =0.70
ep = 0.80

10-12 '--__ '--__ "--__ '---__ "--__ "--__ "--__ '---__ "---_---'

o 50 100 150 200 250 300 350 400 450
number of iterations

Figure 2: raefsky2: n = 3242, nnz = 294276. Effectiveness of the precondi­
tioner increases (i.e, number of iterations decreases) as ep decreases. In this
case the shortest total time happens for ep = 0.80, and the preconditioner
is just diagonal.

interprocessor communication (which is very good on the T3E). The scal­
ing of BICGSTAB (or any iterative solver) is limited by remote references
incurred in the inner products. The sparse matrix-vector multiply routine
used by the BICGSTAB solver in spaLl.1 attempts to hide this latency by
overlapping local work with communication.

The results for cfd2 are displayed in Table 14 and Figure 5. This matrix
did not fit in 8 processors with the choice of parameters used.

22

I # procs 1/ 2 8 16 I 32 I 64 I
SPAI (sec.) 2120.1 1114.1 593.4 327.8 184.0 103.2
BICGSTAB (sec.) 275.9 155.7 87.1 53.7 38.4 32.4
BICGSTAB (# iter.) 1252 1191 1227 1255 1270 1135

Table 13: bcsstk17: Scaling of spaL1.1, including the iterative phase. A
tolerance of 10-10 was used, and for the set of parameters used, spaL1.1
constructs a preconditioner with nnz(M) = 261849. The number of itera­
tions depends on the number of processors, a well known fact that hinders
the study of the scalability of BICGSTAB (or any other iterative method).

I # procs /I 16 I 32 I 64 I 128 I
SPAI (sec.) 1228.2 707.4 418.4 233.2
BICGSTAB (sec.) 1068.2 830.0 667.0 453.5
BICGSTAB (# iter.) 2379 2740 2714 2319

Table 14: cfd2: Scaling of spaL1.1, including the iterative phase. A toler­
ance of 10-10 was used, and for the set of parameters used, spaL1.1 con­
structs a preconditioner with nnz(M) = 5272790.

6 Topics on SPAI

In this Section we discuss miscellaneous topics concerning the quality of the
preconditioner M constructed by SPAI, and why sometimes it totally fails
as a preconditioner. Some of these issues were already discussed in [2, 3].

It was shown in [2] that SPAI is very effective at capturing the sparsity
pattern of the real inverse. This was concluded after comparing the portraits
of M and A (we define this matrix as being the one obtained from A-I by
keeping its largest entries, in absolute value, and in the same number as the
number of nonzero entries in M). However, this picture can be misleading
since there is no guarantee that A is a good preconditioner. As a matter of
fact, usually it's not. Also, sometimes SPAI fails to get the sparsity structure
of A, but M is nevertheless a good preconditioner. This point is illustrated
in Figure 6.

To study how good A could be as a preconditioner, we submitted A to
a couple of tests where M does well by construction. We performed those
tests with a couple of matrices and the results were sufficiently consistent to
show that in general A is a bad preconditioner. Here we report the results
obtained with the by now popular orsirr2 matrix. Figure 7 shows that in

23

SPAI scaling for bcsstk17
104~--------r---------r---------~-------.'--------.

----- SPAI scaling
perfect scaling

101~------~--------~--------~--------~------~
2 4 8 16 32 64

Number of Processors

Figure 3: bcsstk17: SPAI scales linearly with the number of processors.
For 64 processors, there is a performance degradation of 55% relative to
perfect scaling (from 2 processors) .

. this case the pre conditioner M captures the sparsity of A. rather well and is
also a good preconditioner. Notice how by an appropriate choice of spaL1.1
parameters we obtained a much sparser preconditioner than in [2]. Since
by construction, M minimizes the Frobenius norm of (MA - I), we decided
to see how well A. would compare. The results are shown at the top of
Figure 8. If minimizing Frobenius norm is a necessary condition to have
a good preconditioner, then it's clear that A. will be a bad preconditioner.
To confirm that, we evaluated the eigenvalues of both MA and A.A. The
results are displayed in Figure 9. As a last test we used A. as a preconditioner
with BICGSTAB and the bad qualities of A. as a preconditioner were again
confirmed (A. turned out to be a matrix "close to singular or badly scaled"
and the iterative method broke down). At the bottom of Figure 8 we also
compare the number of nozero entries per row for M and A..

Among all the matrices we tried there were a few where SPAI failed, even
with all the leverage that a T3E provides. An example of a small matrix

24

BICGSTAB scaling for bcsstk17
103~--------~-------'r--------'---------'---------.

-- BICGSTAB scaling
perfect scaling

100~----~--~------~~------~--------~--------~
2 4 8 16 32 64

Number of Processors

Figure 4: bcsstk17: BICGSTAB "scales" nonlinearly with the number of
processors. The high costs of communication are evident in the convexity
of the scaling "function".

where that happens, is grell07 (HB,rua), Figure 10. We think that is mainly
due to the high degree of assymmetry in A. That this was a difficult matrix
had already been noticed in [3]. In this case, as in all other cases where
we failed to solve Ax = b, we were limited by memory constraints. As
examples oflarge matrices where SPAI failed, we have raefsky4 (Simon,rua)
and nasasrb (Nasa,rsa). The matrix raefsky4 is particularly difficult because
the largest entries (in absolute size) occur far from the diagonal, as can be
seen 7 in Figure 11. The same happens with lns3937, Figure 12, but due to
its smaller size it was possible to find a solution by chosing a large values
for ma (this seems to be a necessity when the largest entries are far from
the diagonal), as we saw in Table 2. On the other hand, nasasrb does not
seem to be very difficult just by visual inspection. However, its size greatly
reduced our capabilities to tweak with the parameters within the memory

7The color plates and the statistics information were obtained from the University of
Florida Sparse Matrix Webpage [13].

25

SPAI scaling for cfd2
104~--------------,---------------~---------------.

SPAI scaling
perfect scaling

102~--------------~---------------L--------------~
16 32 64 128

Number of Processors

Figure 5: cfd2: SPA! scales linearly wJth the number of processors. For the
choice of parameters used, 8 processors were not enough to hold this matrix.
For 128 processors, there is a performance degradation of 52% relative to
perfect scaling (from 16 processors).

constraints, and we were unable to see any sign of convergence.
Visual inspection of the absolute size of the matrix entries, either by

using the Emily Visualization Tool, or just by looking at the University
of Florida Sparse Matrix Webpage (as we did), turned out to be a very
useful way to quickly guess what parameters to use in spai_1.1 and how
well SPA! could perform. As an example, it was easy to predict that SPA!
would solve cfd1 (Rothberg,rsa) quite easily (considering its size) due to
the "visual" dominance of the diagonal (Figure 13), and the tests confirmed
that. Just a knowledge of the pattern of the entries would not allow such
conclusions (compare, say, cfd1 with bcsstk14 (HB,rsa), whose pattern is
similar, but turned out to be a much harder matrix, considering its smaller
size). Similarly we guessed SPA! would do rather well with cfd2, the largest
matrix we tried, and the tests confirmed that too.

26

A

nnz = 3750 nnz = 4513

BICGSTAB M

10-15 '--------~----'
o 20 40 60 nnz = 4513

Figure 6: sherman1: Although SPAI fails to capture important features of
A, M is nevertheless a good preconditioner. Upper left: Ai upper right: Ai
lower right: Mi lower left: BICGSTAB plot. For ep = 0.4, ma = 21, mn = 5
and tol. = 10-12 , SPAI computes M in 0.41 secs and BICGSTAB converges
in 60 iterations and 0.45 secs.

27

A

nnz = 5970 nnz =4329

BICGSTAB M

1 0-15 '----~---~---'
o 20 40 60 nnz =4329

Figure 7: orsirr2: In this case SPAI captures many of the features of A. M
is also a good preconditioner. Upper left: A; upper right: A; lower right:
M; lower left: BICGSTAB plot. For ep = 0.4, ma = 21, mn = 5 and tol.
= 10-12 , SPAI computes M in 0.62 secs and BICGSTAB converges in 53
iterations and 0.40 secs. .

28

10° r---~----~----~----,-----~----r----'----~----'

10-1~--~~--~----~----~----~----~--~----~--~
o 100 200 300 400 500 600 700 800

10
5

_ _ _ _ _ ...J'lJ'lJ'lJ'\
~I IOWI ~ ~ iJlL'U ~ I"

""

100 200 300 400 500 600 700 800
20r---~----~----~----'-----~----r----'----~----'

10

100 200 300 400 500 600 700 800
20r---~----~----~----'-----~----r----'----~----'

10

100 200 300 400 500 600 700 800

Figure 8: orsirr2: Here we compare M with A. The top two plots compare
the Frobenius norm of the rows of (MA-- I) (1st plot), and (AA - I) (2nd
plot). The two bottom plots compare the number of non zeros per row of M
(3rd plot) and A (4th plot). The spaL1.1 parameters (ma, mn and ep) are
the same as in Figure 7. For those values we obtained liMA - IIIF = 7.5736
and IIAA - IIiF = 7.8734 X 105•

29

0.2

0.1 x
x

0-
x

: IDDOOOliCllD __ >OIlII •• I.IIa.D'iIOlOlIOC:X>¢IIIICO.-ac II

x

x
~.~CII

x

~0.1
x

x

-0.2
0 0.5 1 1.5

400

200

0 x x x x

-200

-400
-80000 -60000 -40000 -20000 o 10000

x
2

x
xx

x
x

x o x ~ xxxx..; :"_IIC)IC! __ .acxOC}!IOCXX>O< >0< X x
x

x
x

-2 xx
x

x

-300 -200 -100 o 100 200 300

Figure 9: orsirr2: Here we compare the eigenvalues of MA (top plot) and
AA (middle plot). The bottom plot is a zoom in of the middle one. This
gives clear evidence that A would be a very poor pre conditioner .

30

A A

M" _ .. " .". .. :. ... _. -... ,...~ __ __ . e:: " ~ : . .. -. . - . _.

" :: -.

t , _ .. , ... ~ ... _. --..

ji i: ..
I; "' , ..

nnz = 5664 nnz = 14907

BICGSTAB M

10-2L-----~------~----~
o 200 400 600 nnz = 14881

Figure 10: grel107: n = 1107, nnz = 5664. In this case M and A have
nothing in common. This matrix, although rather small, resisted all at­
tempts, and was never solved. The above plots were obtained with ep =
0.4, rna = 21 and mn = 5.

31

max

Figure 11: raefsky4: This was a matrix where SPAI failed, because the
largest entries occur far from the diagonal. Statistics: n = 19779, nnz(A)
= 1328611, max = 1.568 X lOll , min = 8.882 X 10-16•

max

Figure 12: Ins3937: Although the largest entries occur far from the di­
agonal, the matrix was sufficiently small to be solved within the memory
constraints of the T3E. Statistics: n = 3937, nnz(A) = 25407; max =
1.938 X 1011 , min = 3.203 X 10-7.

32

max

mm

Figure 13: cfdl : Although quite large, the dominance of the diagonal sug­
gested this would be a relatively easy matrix, and the tests confirmed that .
Statistics: n = 70656, nnz(A) = 1828364, max = 1, min = 7.824 X 10-7

.

7 Conclusions

The SPAI pre conditioner is very effective, and almost any problem can be
solved by an appropriate choice of parameters (in spaLl.1 those parameters
are rna, mn and ep) . However, it can be very expensive, even in the very
large problems that were supposed to be the most appropriate for a parallel
preconditioner like SPA!. Evidently, t he more effective the preconditioner,
the more expensive it is, but in general the costs are such that shortest
times to solution (i.e., time taken to construct preconditioner + time taken
by iterative method) require a poor pre conditioner. Nevertheless, SPAI (or
spai_1.1) is probably the best choice available when trying to solve very
large problems.

In general, the choice of an appropriate preconditioner (either effective or
efficient) requires extensive tuning between the free parameters (rna, mn and
ep) . On the other hand , the preconditioners corresponding to the shortest
times to solution have, in general, fewer nonzero entries than the original
matrix. For difficult matrices , the situation is the opposite, with precondi­
tioners having significantly more nonzero entries than the original matrix.

spaLl. 1 is an implementation of SPAI with good load balance and scaling
properties . This also shows that the expensiveness of the method is inherent
to SPAI and not to the implementation.

33

References

[1] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V.
Eijkhout, R. Pozo, C. Romine and H. van der Vorst, TEMPLATES for
the Solution of Linear Systems: Building Blocks for Iterative Methods,
SIAM Publications, 1994

[2] M.J. Grote and T. Huckle, Parallel Preconditioning with Sparse Ap­
proximate Inverses, SIAM J. Sci. Comp., 18:838-53, 1997.

[3] N .I.M. Gould and J .A. Scott, On Approximate-inverse Preconditioners,
Technical Report RAL-95-026, Computing and Information Systems
Department, Atlas Centre, Rutherford Appleton Laboratory, Oxford­
shire, England, June 1995.

[4] M. Benzi and M. Tuma, A Sparse Approximate Inverse Preconditioner
for Nonsymmetric Linear Systems, SIAM J. Sci. Comp., in press.

[5] S.T. Barnard and R.L. Clay, A Portable MPI Implementation of the
SPA! Preconditioner in 1515++, in Proc. Eight SIAM Conference for
Parallel Processing for Scientific Computing, March 1997.

[6] L.Yu. Kolotilina, A.A. Nikishin and A.Yu. Yeremin, Factorized Sparse
Approximate Inverse (FSAI) Preconditionings for Solving 3D FE Sys­
tems on Massively Parallel Computers II, in R. Beauwens and P. de
Groen, editors, Iterative Meth. in Lin. Alg., Proc. of the IMACS Inter­
nat. Sympos., Brussels, pages 311-312, 1991.

[7] Ju.B. Lifshitz, A.A. Nikishin and A.Yu. Yeremin, Sparse Approximate
Inverse Preconditionings for Solving 3D CFD Problems on Massively
Parallel Computers, in R. Beauwens and P. de Groen, editors, Iterative
Meth. in Lin. Alg., Proc. of the IMACS Internat. Sympos., Brussels,
pages 83-84, 1991.

[8] L.Yu. Kolotilina and A.Yu. Yeremin, Factorized Sparse Approximate
Inverse Preconditionings, SIAM Journal on Matrix Analysis and Ap­
plications, 14(1):45-58,1993.

[9] M. Grote and H. Simon, Parallel Preconditioning and Approximate In­
verses on the Connection Machine, in Proc. of the Scalable High Per­
formance Computing Conference (SHPCC), Williamsburg, VA, pages
76-83, IEEE Compo Sci. Press, 1992.

34

[10] J.D.F. Cosgrove, J.C. Diaz and A. Griewank, Approximate Inverse
Preconditionings for Sparse Linear Systems, Int. J. Computer Math.,
14:91-110, 1992.

[11] E. Chow and Y. Saad, Approximate Inverse Preconditionersfor General
Sparse Matrices, in Proc. Colorado Conf. on Iterative Meth., 1994.

[12] R.L. Clay, K.D. Mish, and A.B. Williams, IS1S++ (Iterative Scalable
Implicit Solver in C++) Reference Guide Version 1.0, Sandia Report
SAND97-8535, September, 1997,
(see also http:// ca. sandia.gov/isis/isis++ .html).

[13] http:// cise. uf!. edur davisl sparse/,
T. Davis, Sparse Matrix Collection, NA Digest, Volume 94, Issue 42,
October 1994.

[14] C.H. Tong, A Comparative Study of Preconditioned Lanczos Methods
for Nonsymmetric Linear Systems, Sandia Report SAND91-8240, San­
dia National Laboratory, January 1992.

[15] I.S. Duff, R.G. Grimes and J.G. Lewis, Users' Guide for the Harwell­
Boeing Sparse Matrix Collection (Release I), Technical Report RAL­

·92-086, Rutherford Appleton Laboratory, Chilton, England, 1992.

35
..

@!;J~I::Ib-nr ~ f!at ;Jj~liII3 @lj;J:ii!#l1..!3\':? ~ ~

@M3 ~ ~ 0 @bI93"Y3'\?o ~.19~ ~

