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An MPI Implementation of the 
SPAI Preconditioner on the T3E* 

LBNL-40794 

Stephen T. Barnardt Luis M. Bernardot 

Horst D. Simon§ 

September 8, 1997 

Abstract 

We describe and test spai_l.l, a parallel MPI implementation of 
the Sparse Approximate Inverse (SPAI) preconditioner. We show that 
SPAI can be very effective for solving a set of very large and difficult 
problems on a Cray T3E. The results clearly show the value of SPAI 
(and approximate inverse methods in general) as the viable alternative 
to ILD-type methods when facing very large and difficult problems. 
We strengthen this conclusion by showing that spaU.l also has very 
good scaling behavior. 

1 Introd uction 

The solution of large, sparse linear systems of equations, obtained from dis­
cretization of PDE's, is an important and typical problem in many scientific 
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and engineering disciplines. Since direct solvers become extremely expen­
sive due to the amount of work and storage required, iterative methods such 
as CG, GMRES, BICGSTAB, BCG, are typically used [1]. On the other 
hand, the widespread use of massively parallel computers in scientific ap­
plications during recent years has generated, and justified, interest in the 
development and implementation of efficient parallel algorithms on modern 
high performance computers. Parallel implementations of these iterative 
solvers are not difficult to create, but an effective preconditioner is usually 
required for them to converge in a reasonable number of itera,tions, or even 
to converge at all. Unfortunately, the widely used, and effective, ILU-type 
preconditioners, based on incomplete L U factorizations, are very difficult 
to parallelize, while the common preconditioners that can be parallelized, 
such as Polynomial and Block Jacobi, do not seem to be very effective for 
many important problems. Approximate Inverse pre conditioners have been 
an interesting alternative since they are inherently parallel, and have the 
potential to be effective too. 

The Sparse Approximate Inverse (SPAI) preconditioner, as proposed by 
Grote and Huckle [2], falls into this category and has already been shown 
to be effective. The construction of this preconditioner can be expensive 
compared to ILU-type methods as has been shown in [3, 4] on a number 
of standard, but rather small, examples. Our results indicate that for very 
large problems, where ILU-type pre conditioners are less efficient, SPAI will 
become the preconditioner of choice due to its inherent parallelism. 

Here we report on spaL1.1, an MPIimplementation ofSPAIfor distributed­
memory parallel computers, written by one of the authors (Barnard). The 
rest of the paper is organized as follows. In Section 2 we review the SPAI 
algorithm, and in Section 3 we describe spaL1.1 and the techniques used 
in its implementation (a preliminary version of this work discussed in [5]). 
Section 4 covers the numerical experiments and Section 5 describes the per­
formance and scaling properties of spaL1.1. In Section 6 a few case studies 
are discussed and in Section 7 we present our conclusions about SPAI and 
spaL1.1. 

2 SPAI 

Consider the system of linear equations 

Ax = b, x, bE lR,n (1) 
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with A a large, sparse and unsymmetric matrix. We seek a solution x = , 
A-I b. An iterative solver starts with an initial guess Xo and constructs 
a sequence {xo, x}, ... , xm} that is intended to converge to an acceptable 
approximation Xm to x such that IIrmll/llbll ~ tol, where rm = b - Axm. 
The convergence is in general not guaranteed, and can be extremely slow. 
The convergence can however be accelerated by a preconditioner M, which 
can be used either as a right preconditioner, 

AMy = b, X= My, 

or left preconditioner, 
MAx=Mb. 

The matrix M should be chosen so that AM (or MA) is a good approxi­
mation to the identity I. Here, good approximation is usually understood in 
the sense of minimizing the Frobenius norm of (AM - I). This choice nat­
urally leads to inherent parallelism, because the columns mk of M (or the 
rows in the case of minimizing liMA - IIIF) can be computed independently 
of one another. In fact, since 

n 

IIAM - III} ~ L II(AM - I)ekll~, (2) 
k=l 

the minimization of (2) separates into n independent least squares problems 

(3) 

which can be solved in parallel. Here ek = (0, ... ,0,1,0, ... , O)T. The difficulty 
lies in determining a good sparsity structure for M, so that the solution of (3) 
yields an effective preconditioner, and a considerable amount of research 
has already been done in that direction (Yeremin et al. [6, 7, 8], Grote and 
Simon [9], Cosgrove, Diaz and Griewank [10], Chow and Saad [11], and 
Grote and Huckle [2]). For the rest of this paper we shall restrict ourselves 
to SPAI, the method proposed by Grote' and Huckle [2], and to spaL1.1, a 
parallel implementation of SPA! written by one us (Barnard [5]). A closely 
related version of the parallel SPAI preconditioner is included in ISIS++ [12], 
which is a an extensive and portable collection of parallel iterative solvers 
and preconditioners. 
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2.1 The SPAI Algorithm 

Although spaL1.1 constructs a left preconditioner, to be consistent with [2], 
we briefly describe SPAI as a right preconditioner. The algorithms to con­
struct left or right preconditioners are essentially identical, and one can be 
converted to the other merely by swapping the meanings of "rows" and 
"columns" (spaL1.1 constructs a left preconditioner because the matrix­
vector multiplication required by iterative methods is most efficiently done 
on a parallel distributed-memory system when the matrix is distributed 
row-wise - that is, with complete rows assigned to different processors). 

If the sparsity pattern of M is known then the solution of (3) is straight­
forward, amounting to the solution of n independent least squares problems. 
Let .:1 = {j I mk(j) :f: O} be the set of indices of the nonzero entries of the 
kth column of M. The set of indices of rows in A that could possibly affect 

. a product with column k is I = {i I A( i,.:1) :f: O}. To solve (3) we construct 
the full submatrix1 A = A(I, .:1), which has III rows and 1.:11 columns, and 
solve the problem 

Il!in IIAmk - ekll2 (4) 
mk 

where ek = ek(I) and mk = Mek(I). This can be done, for example, with 
a QR decomposition as described in [2]. 

The main difficulty in constructing an approximate sparse inverse is de­
termining the sparsity pattern of M. Grote and Huckle propose the following 
method. For each column k of M start with some initial sparsity pattern .:1, 
which would typically be diagonal: .:1 = {k}. Construct the full submatrix 
A and solve the least squares problem (4) to obtain mk. Let mk(.:1) = mk, 
with the residual 

r = A(.,.:1)mk - ek . (5) 

Assuming that IIrll2 :f: 0, then mk is not exactly the kth column of the 
true inverse, and we must augment the sparsity structure .:1 to obtain a 
better approximation. Therefore look at how to reduce the magnitude of 
the nonzero components of the residual. 

Let .c = {l I r(l) :f: o}. Let j = {j I A(.c,j) :f: 0}\.:1. These are 
candidate indices to add to .:1, but there may be very many of them, so 
it is necessary to somehow choose the ones that most effectively reduce 
IIrlb. Grote and Huckle suggest as a heuristic solving a one-dimensional 

1 Note that we store and operate on A as a dense matrix, although it may contain zero 
entries. 
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minimization problem for each j E j: 

(6) 

which has the solution 
rTAe-

J.L 
- J 

i - -IiAeill~ 
(7) 

with the residual 

(8) 

The procedure for choosing new indices to augment the sparsity structure 
.J is as follows: 

1. Determine j, 

2. Determine Pi for all j E j, 

3. Determine the mean of {Pi}, 

4. Retain all indices in j corresponding to a value of P less than or equal 
to the mean, up to to some maximum number of indices (typically 5). 

The algorithm stops when either a maximum number offill-ins (nonzero 
entries) per column is reached or the condition 

(9) 

is satisfied, where 0 < f. < 1, is a parameter that determines the accuracy of 
the sparse-inverse approximation. A more detailed description of the SPA! 
algorithm is given in [5]. 

3 spaL1.1, an MPI Implementation of SPAI 

Although SPA! is an inherently parallel algorithm, there are several diffi­
cult issues to confront in creating an efficient and portable implementation. 
These issues were the main topic in [5], but for the sake of completeness we 
describe them here again. 
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3.1 One-Sided Communication 

SPAI computes every row of M independently, but to do so it must access 
potentially any row of A in a completely unpredictable way. A processor 
that computes a row of M must therefore access rows of A that reside on 
other processors. This is straightforward on a shared-memory architecture, 
but on a distributed-memory system with no support for shared-memory 
programming it requires either expensive and nonscalable all-to-all commu­
nication or so-called "one-sided" communication. We use MPI for maximum 
portability, but MPI does not support one-sided communication directly. It 
does, however, provide the functionality to implement one-sided communi­
cation in a specialized way. 

The processors computing rows of M run entirely asynchronously, with 
no barriers until M is completed. Whenever a processor needs access to 
data on another processor, or when it needs to inform another processor of 
some condition, it sends a request to that processor in the form of a short 
message. These requests are handled by a communications server that uses 
the MPLlprobe function to detect the arrival of requests. 

There are five types of requests, distinguished by their message tags in 
the communications server: 

1. Another processor needs a row of A. 

2. Another processor needs a row of M. This is part of the load balance 
mechanism described below. 

3. Another processor is storing a row of M. Again, this is part of the 
load balancing mechanism. 

4. A processor has finished constructing all the rows of M that it "owns" 
and is informing the master processor that it has finished its local work 
(although it may still construct rows owned by other processors until 
all processors have finished their local work). 

5. The master processor informs all other processors that the construction 
of M has been completed. 

The communications server is called periodically by every processor, typi­
cally when they are waiting for remote data or when they have finished a 
substantial amount of work, such as computing a row of M. 
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3.2 Latency Hiding 

Many distributed-memory computers have large latency in interprocessor 
communication. The parallel spaLL! code masks this latency as much as 
possible by using asynchronous communication and overlapping work with 
communication. For example, when a processor initiates a request for a row 
of A to another processor it uses the asynchronous MPLlsend function, then 
it repeatedly calls the communications server to service requests from other 
processors until the data that it requested arrives. 

One effective way that the parallel spaLL! code hides latency is to avoid 
unnecessary communication altogether by caching remote references. When 
a processor is working on a row of M and needs to retrieve a row of A from 
another processor it puts that row in a cache (implemented with a hash 
table). It is very likely that subsequent rows of M will require the same 
row of A, which they will find in the cache without resorting to unnecessary 
communication. The function that accesses rows of A works as follows: 

1. If the row is local simply return it. 

2. Otherwise, ifit is in the cache return it. 

3. Otherwise, initiate a request to the processor that owns it. 

4. Service requests until the data arrives and the request queue is empty. 

5. Put the row in the cache and return it. 

3.3 Load Balancing 

It is very likely that some rows of M will require much more work than the 
average row, which can lead to a serious load imbalance. Furthermore, it 
is impossible to predict accurately how much work a row will require, and 
therefore it is impossible to allocate work to processors ahead of time in a 
load-balanced distribution. We have implemented a dynamic load balancing 
strategy to deal with this problem. 

Every processor "owns" a number of rows of the matrices A and M, 
which are assigned at the outset of the program. The indices of the "local" 
rows of M are maintained as a queue and each processor constructs its local 
part of M by taking indices from the queue. Suppose processor preaches 
the end of the queue, having completed its local work. It sends a message 
informing the master processor that it has finished its local work, but there 
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may be other processors which are not finished, so processor p polls the other 
processors, using the communications server, asking whether they have any 
row indices of M remaining in their queues. Suppose processor q has such 
an index. It takes that index from the queue and returns it to processor 
p, which then computes the row of M in exactly the same way as it would 
compute a local row of M, and when it is finished it their local work it 
sends messages (which are handled by the communications server) to the 
other processors informing them that M is complete. 

3.4 User Interface 

The SPAI algorithm has a few free parameters that permit the control of 
the quality of the preconditioner constructed. These parameters specify the 
number of fill-ins per column, the number of new nonzero entries allowed 
per step of the algorithm, and E. In spaL1.1, these parameters are called 
ma, mn and ep, respectively, and we will make use of them in the rest of this 
paper. spaL1.1 comes bundled with an iterative method (BICGSTAB), and 
that was the only method we used in this study. Coupling spaL1.1 with 
other iterative solvers is straightforward. 

4 Numerical Experiments 

In this Section we present the results we obtained for a set of very diverse 
sparse matrices, with a number of nonzeros ranging from a few thousand 
to a couple of million. All the matrices we used can be obtained from the 
excellent University of Florida Sparse Matrix Webpage maintained by T. 
Davis [13]. We used matrices from the the HB (Harwell Boeing), Simon, 
Nasa and Rothberg collections2 • For practical purposes we will group the 
matrices according to their sizes. Small matrices will be the ones with less 
than fifty thousand nonzero entries, medium size matrices will have between 
fifty thousand and five hundred thousand nonzero entries, and large matrices 
will have more than five hundred thousand nonzero entries. 

Before we present the results, though, we need to settle on some criteria 
about what is important in those results. There are two issues we have to 

2In some places, especially when we refer to a matrix for the first time, we will follow 
the name of the matrix with a "code" like (Nasa,rsa). The first entry r~fers to the name 
of the collection to which the matrix belongs, and the second entry to the type of matrix, 
using HB notation [15]: "rua" refers to unsymmetric matrices and "rsa" to symmetric 
ones. 
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consider in order to make a judgement about SPA!. The first is effectiveness 
(by how much can the number of iterations of the iterative method be re­
duced), and the second is efficiency (how long it takes to find the solution, 
including the time taken evaluating the preconditioner). 

All numerical results reported here were obtained on the Cray T3E-600 
at NERSC, an MPP system with 176 processors, of which 152 are configured 
to run parallel computing jobs. The T3E processors are DEC Alphas (EV-
5's) with a clock speed of 300 MHz, peak performance of 600 MFlops and 
256 MB of memory (but a practical limit of 235 MB for parallel jobs, and 
80 MB for jobs in one processor). Hence single processor results listed here 
are indicative of workstation performance of SPAI. By default, the T3E 
processors use 64-bit words. Double precision (64 bit) arithmetic was used 
in all experiments. 

4.1 Assessing the Effectiveness of SPAI 

A good case in favor of the effectiveness of SPAI was already made in [2] and 
also in [3, 4]. Here we present more evidence by studying matrices where 
ILU-type methods either fail or have difficulty. Based on the extensive study 
ofthe convergence behavior oflLU preconditioned iterative methods in [14], 
we selected six matrices where ILU preconditioners either failed or required 
high levels of fill-in (large k's in ILUT(k)), independently of the iterative 
solver used, in order to achieve convergence in a small number of steps. 
These six matrices are listed in Table 1 and the results are displayed in 
Table 2 and are self explanatory3. The tolerance was set to 10-8 and the 
iterative method used was BICGSTAB4. A right hand side b of 1 's was used, 
but to better compare with [14] we also tried, for some of the matrices, a 
right hand side such that the solution is a random vector. No significant 
difference was observed. 

Although SPAI succeeded in some ofthe matrices where ILU-type meth­
ods had failed, the SPAI preconditioner was significantly denser than the 
ILU-type pre conditioners constructed in [14], and it is likely that ILU-type 

3In the. three cases where ILUT(k) preconditioners failed, the following fill-in levels 
were used [14]: k = 100 for nnc261, k = 44 for nnc1374 and k = 13 for Ins3937. 

41t is well known that sometimes BICGSTAB stagnates. For instance, for nnc261 with 
the choice of parameters given in Table 2, BICGSTAB reaches the tolerance of 10-10 

after 18 iterations, but then stagnates and never reaches a tolerance of 1O-1~. In all cases 
presented here, the spai_1.1 parameters or the tolerance were chosen in order to avoid 
that. 
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methods would have succeeded too if denser preconditioners had been con­
sidered. On the other hand, with the exception of Ins3937, all the other 
problems were solved in one processor in a reasonable amount of time. For 
those cases, the cost of constructing such dense preconditioners seems ac­
ceptable (in absolute terms), even on a workstation. And, as we shall see 
later, the shortest times to solution can in fact be considerably less than the 
ones shown. 

4.2 Assessing the Efficiency of SPAI 

As described in Section 3.4, spaLl.1 allows us to choose from a different 
number of options (parameters), the important ones here being ep, mIl and 
ma (E, maximum number of nonzeros per step of the SPAI algorithm and 
maximum number of non zeros per row, respectively). Depending on our 
choice for those parameters, the final results (sparsity of M, number of iter­
ations of BICGSTAB, but specially the time taken by both the construction 
of the preconditioner and the iterative method BICGSTAB) can be very 
different. It is important, therefore, that we have some rule of thumb to de­
cide between the different choice of parameters. This is an issue that needs 
to be addressed before we decide in favor or against SPAI as an efficient 
preconditioner (even when run in parallel). Since efficiency is measured by 
the total time to solution (construction of preconditioner time + iterative 
method time), the parameters should be chosen so that this time to solution 
is the shortest possible. This usually happens when the times taken by the 
preconditioner and iterative method are comparable. To show this fact, we 
present now some results we obtained with a small set of small matrices. 
These matrices are by now standard references in the SPAI literature and 
were also used in [2, 3,4], and are listed in Table 3. In all cases a right hand 
side of 1 's was used. 

For every matrix we will fix a value for ma, usually 5% or 10% of n, the 
order of the matrix, and we will look at the run times of the preconditioner 
and the iterative method for different values of ep and mn. The results are 
displayed in Tables 4-9. 

We report now our observations for these six matrices. All the tests 
were ran in one processor. We recall again that spai_l.1 constructs a left 
preconditioner. To be consistent with [2, 3] we also used a convergence 
tolerance of 10-8 • 

orsregl The results for this matrix are displayed in Table 4. For larger 
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I Matrix n I nnz(A) II k I BICGSTAB I PLU I 
nnc261 261 1500 - - -
nnc666 666 4044 30 > 1000 rv5 
nnc1374 1374 8606 - - -
lns131 131 536 1 167 1.3 
lns511 511 2796 20 49 6 
Ins3937 3937 25407 - - -

Table 1: Set of matrices that were shown to be very difficult with ILU-type 
methods [14] and that SPAI solves. The last three columns contain data 
obtained from [14]: k refers to the ILUT(k) preconditioner used, PLU is the 
density of the incomplete L U matrices relative to A and the values in the 
BICGSTAB column were the number of iterations needed to converge to a 
tolerance of 10-8 . 

I Matrix II ep ma I 'SPAI BICGSTAB 

nnc261 0.4 60 6791 2.17 14 0.09 
0.4 60 18436 6.62 75 1.18 

nnc666 0.3 60 22539 8.26 52 0.92 
0.3 101 31914 21.43 45 1.00 
0.3 60 48768 19.00 75 2.74 

nnc1374 0.3 101 68302 49.90 67 3.06 
0.2 101 86559 66.01 48 2.65 
0.4 21 1265 0.18 55 0.13 

Ins131 0.4 51 2050 0.41 36 0.10 
0.4 101 2881 0.89 21 0.07 
0.3 101 21250 12.15 85 1.34 

Ins511 0.2 101 28125 18.10 77 1.46 
0.2 151 36770 33.95 55 1.25 

Ins3937 0.1 900 1558045 412.66 1942 154.68 

II ep ma I nnz(M) I (sec.) I # Iter. I (sec.) I 
Table 2: The effectiveness of SPAI can be controlled by changing the param­
eters ep, ma and mn. Here, mn = 5 always, except for Ins3937, where a value 
of mn = 85 was used. The tolerance was 10-8 in all cases. These results 
were obtained with one processor, except for Ins3937, where 16 processors 
were used. For these problems SPAI is effective at the cost of constructing 
a preconditioner with significantly more nonzero entries than the original 
matrix. 
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values of ep and mn, no difference is observed between the different 
cases. This was due to the fact that the value chosen for rna was 
too large to change the results, as can be seen by the fact that the 
condition (9) was always satisfied. In fact, a choice for rna of 1 % of n, 
would have given practically the same results. For the cases considered 
the minimum total time was around 2.15-2.20 seconds. 

orsirr2 The results for this matrix are displayed in Table 5. The same 
comments that applied to orsreg1 apply here. The minimum total 
time for the cases considered was around 0.90-1.00 seconds. 

sherman! The results for this matrix are displayed in Table 6. The mini­
mum total time for the cases considered was around 0.80-0.90 seconds. 

sherman2 The results for this matrix are displayed in Table 7. In this case 
many more rows did not satisfy condition (9). The minimum total 
time for the cases considered was around 9-11 seconds, showing in fact 
that this is a harder problem than the previous ones. Interestingly 
enough, the minimum times occur for large ep's and large number of 
iterations. 

pores2 The results for this matrix are displayed in Table 8. This was a 
much harder matrix, as previously noticed [2], and it is suggested there 
that a left preconditioner makes the problem easier. However, since 
we also used left preconditioning (spaL1.1 uses left preconditioning), 
we cannot explain why our results seem to indicate that this matrix is 
harder than the results of [2, 3] suggest. The minimum total time for 
the cases considered was around 4 minutes. 

saylr4 The results for this matrix are displayed in Table 9. The minimum 
total time for the cases considered was around 24-25 seconds. 

A few but important remarks are worth making now: 

1. We didn't find a significant difference between runs with different val­
ues of mn and the same ep, for the cases where (9) is almost always 
satisfied. At most, the results seem to indicate that larger values 
of mn (but still much smaller than rna) allow a faster evaluation of 
the pre conditioner without real degradation of the convergence rate 

. of BICGSTAB. Also, there are no significant differences between the 
sparsities of the preconditioners evaluated with different mn's. These 
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I Matrix n I nnz I 
orsreg1 2205 14133 
orsirr2 886 5970 
sherman 1 1000 3750 
sherman2 1080 23094 
pores2 1224 9613 
saylr4 3564 22316 

Table 3: Set of matrices used to show the dependence of the preconditioner 
and iterative method times on the parameters ep, mn and mao 

ep I mn II SPAI BICGSTAB I TTime I 
2 33795 12.33 0 23 1.21 13.54 

0.2 5 29848 4.76 0 22 0.80 5.56 
10 39755 6.14 0 24 1.07 7.21 
2 ·11701 1.93 0 37 0.88 2.81 

0.3 5 11025 1.53 0 37 0.86 2.39 
10 11025 1.53 0 37 0.89 2.42 
2 11701 1.91 0 37 0.91 2.82 

0.4 5 11025 1.54 0 37 0.86 2.40 
10 11025 1.57 0 37 0.95 2.52 
2 8379 1.15 0 49 1.05 2.20 

0.5 5 9261 1.19 0 44 0.97 2.16 
10 9261 1.19 0 44 0.96 2.15 
2 3969 0.46 0 169 3.04 3.50 

0.6 5 3969 0.46 0 169 3.01 3.47 
10 3969 0.46 0 169 3.01 3.47 

I ep I mn \I nnz(M) I (sec.) I f I # Iter. I (sec.) I (sec.) I 
Table 4: orsreg1: n = 2205, nnz = 14133. A value of ma = 55 was used, 
which corresponds to 2.5% of n. TTime denotes the total time to solution, 
and the shortest time is boldfaced. The values in the column labeled by f 
correspond to the number of rows where (9) was not satisfied. 
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I ep I mn II SPAI BICGSTAB I TTime I 
2 15054 6.35 10 25 0.43 6.78 

0.2 5 12699 2.25 0 23 0.37 2.62 
10 17927 2.85 7 20 0.36 3.21 
2 4853 0.93 0 39 0.42 1.35 

0.3 5 4417 0.64 0 ' 37 0,37 1.01 
10 4425 0.64 0 38 0.40 1.04 
2 4738 0.91 0 40 0.44 1.35 

0.4 5 4329 0.63 0 39 0.39 1.02 
10 4329 0.63 0 39 0.39 1.02 
2 3266 0.48 0 56 0.52 1.00 

0.5 5 3626 0.50 0 46 0.45 0.95 
10 3626 0.49 0 46 0.43 0.92 
2 1566 0.20 0 231 1.88 2.08 

0.6 5 1566 0.20 0 231 1.87 2.07 
10 1566 0.20 0 231 1.86 2.06 

I ep I mn II nnz(M) I (sec.) I i I # Iter. I (sec.) I (sec.) I 
Table 5: orsirr2: n = 886, nnz = 5970. A value of ma = 44 was used, which 
corresponds to 5% of n. 

observations seem to disagree with [3], but are also inconclusive since 
the number of experiments was quite small. We decided not to pursue 
this further. 

2. In the cases where a larger number of rows violate (9), there is stronger 
evidence that larger values of mn allow a faster evaluation of the pre­
conditioner at the cost of increasing the number of iterations needed 
by BICGSTAB to converge. The total times are not necessarily larger 
though. 

3. The minimum total time usually occurs when the time taken to eval­
uate the pre conditioner is very close to the time taken by the iterative 
method (BICGSTAB) to converge to the required tolerance. This also 
means that the corresponding number of iterations can be large. 

4. The parameter ep is the most important one, as expected. 

Of the four above remarks, the third one is the most important one and 
the key to speed up the search for the shortest time to solution; i.e., looking 
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I ep I mIl II SPAI BICGSTAB I TTime I . 
2 15520 5.83 47 22 0.34 6.17 

0.2 5 14715 2.21 23 23 0.35 2.56 
10 15757 1.87 24 20 0.31 2.18 
2 6690 1045 6 34 0.36 1.81 

0.3 5 7329 0.82 8 34 0.39 1.21 
10 8136 0.77 8 31 0.36 1.13 
2 4437 0.92 6 45 0040 1.32 

004 5 4874 0.54 5 45 0042 0.96 
10 5051 0049 4 40 0.39 0.88 
2 2721 0.38 0 79 0.61 0.99 

0.5 5 3333 0.36 2 59 0049 0.85 
10 3407 0.34 2 57 0047 0.81 
2 1791 0.25 0 106 0.76 1.01 

0.6 5 2021 0.24 2 102 0.73 0.97 
10 2031 0.23 2 84 0.65 0.88 

I ep I mIl II nnz(M) I (sec.) I , I # iter. I (sec.) I (sec.) I 
Table 6: sherman1: n = 1000, nnz = 3750. A value of ma = 50 was used, 
which corresponds to 5% of n. 

I ep I mIl II SPAI BICGSTAB I TTime I 
5 14696 18.96 42 32 0.84 19.80 

0.4 10 14700 11.44 24 53 1.53 12.97 
20 14007 7.97 75 335 9.12 17.09 
5 13518 16.17 24 34 0.87 17.04 

0.5 10 13581 9.07 18 65 1.68 10.75 
20 13074 6.76 63 338 8.64 15.40 
5 12646 14.51 20 39 0.98 15.49 

0.6 10 12547 8.10 16 72 1.79 9.89 
20 12324 6.14 52 195 4.84 10.98 
5 10830 10.90 8 53 1.28 12.18 

0.7 10 10940 6.26 10 108 2.62 8.88 
20 10767 5.01 39 555 13.42 18.43 

I ep I mIl II nnz(M) I (sec.) I , I # Iter. I (sec.) I (sec.) I 
Table 7: sherman2: n = 1080, nnz = 23094. A value of ina = 54 was used, 
which· corresponds to 5% of n. 
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I ep I mn " SPAI BICGSTAB I TTime I 
5 198865 391.48 999 898 97.30 488.78 

0.2 10 197314 220.70 1021 1339 147.15 367.85 
20 190636 150.23 1041 1526 159.42 309.65 
5 142305 232.41 441 1269 103.80 336.21 

0.3 10 147205 135.20 426 1077 91.61 226.81 
20 154088 104.84 503 2326 202.52 307.36 
5 82530 100.15 107 4366 232.51 332.66 

0.4 10 90239 65.95 113 3096 182.85 248.80 
20 102022 55.19 145 2219 138.46 193.65 

I ep I mn " nnz(M) I (sec.) I i I # iter. I (sec.) I (sec.) I 
Table 8: pores2: n = 1224, nnz = 9613. A value of ma = 183 was used, 
which corresponds to 15% of n. 

I ep I mn " SPAI BICGSTAB I TTime I 
5 84074 48.66 13 72 5.29 53.95 

0.2 10 87883 30.18 31 72 5.38 35.56 
20 84873 22.72 92 77 5.65 28.37 
5 45566 12.74 0 222 12.46 25.20 

0.3 10 47202 9.73 3 310 17.19 26.92 
20 47044 8.53 4 271 15.00 23.53 
5 26310 6.83 0 741 30.88 37.71 

0.4 10 26459 4.59 3 583 24.26 28.85 
20 25816 3.73 4 609 25.15 28.88 

I ep I mn II nnz(M) I (sec.) I i I # Iter. I (sec.) I (sec.) I 
Table 9: saylr4: n = 3564, nnz = 22316. A value of ma = 178 was used, 
which corresponds to 5% of n. 
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for the point in parameter space where the times taken by the preconditioner 
and iterative method are comparable is a good way to look for the shortest 
time to solution. 

This may mean in general that the corresponding number of iterations 
can be quite large. From the perspective of a Numerical Linear Algebra 
theorist this may seem a displeasing choice, but from the perspective of a 
user that needs a preconditioner to solve problems quickly, this is the right 
choice because it usually leads to the shortest times to solution. It is not 
difficult to give a heuristic explanation why that is so. 

lf we plot the times taken to construct a preconditioner versus some 
measure of the "quality" ofthat preconditioner (like ep, where smaller values 
for ep mean better quality), we can intuitively expect that the resulting plot 
corresponds to a decreasing and convex function of ep. Similarly, intuitively, 
we can expect the plot of the times taken by the iterative method to converge 
to a required tolerance, to be an increasing and convex function of ep. lf we 
consider now the total times to solution (i.e., the sum of the two plots), then 
intuitively we expect the minimum to be close to the point where the two 
plots meet , i.e. , the point where the time to construct the preconditioner 
and the time for the iterative method to converge are "roughly" the same. 
As an example, we consider the matrix sherman1 with mn = 5 and ep = 
0.2:0.1:0.6 (Matlab notation). A graph of bars is shown in Fig. l. 

In [3], the SPAI and ILU preconditioners were compared by looking at the 
times to construct the preconditioners that give roughly the same number 
of iterations. Although that effectively compares the costs associated with 
the two preconditioners (and the verdict was that SPAI is very expensive 
relatively to ILU, in one processorS), it doesn't guarantee that we are looking 
at the shortest times to solution. As a matter of fact though, the IL U times 
given in [3] are comparable to their respective iterative methods times, and 
probably the corresponding solution times are very close to the shortest 
times to solution. 

There are situations (e.g. , when various right hand sides are present) 
where chosing the parameters so that the times spent in constructing the 
preconditioner and in the iterative method are roughly the same is not a 
good choice (but extending that argument further, if we have even more right 
hand sides, direct methods end up being cheaper than iterative methods) . 
And finally, there is no way to determine the point in parameter space with 
the shortest time to solution except by trial and error (a time-consuming 

5The same conclusion was reached in [4] . 
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Figure 1: sherman1: Time taken to construct preconditioner with SPAI 
(left bar); time taken by BICGSTAB to converge to tolerance of 10-8 (mid­
dle bar); total time (right bar), as a function of ep . The times are given in 
seconds, and were obtained with ma = 44 and mn = 5, as given in Table 6. 

task) , and there is no guarantee that there is only one such point , except for a 
heuristic argument. Keeping this in mind, we decided nevertheless to present 
mostly the results corresponding to the shortest times to solution (where 
the time spent in constructing the preconditioner and the time spent in the 
iterative method are roughly the same), even if the number of iterations 
may seem very large. 

4.3 The Experiments 

The results presented below correspoild to the shortest times to solution 
(among . the few tests we performed). As stressed in the previous section , 
we could present results corresponding to more effective preconditioners 
(smaller number of iterations) , but those preconditioners would be less effi­
cient (longer times to solution) . 
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In general, the results for small matrices were obtained with only one 
processor, while for medium size and large matrices we used multiple pro­
cessors. Here we report only cases that SPAI solved, and we will leave the 
few cases where it failed to Section 6. Again, we used in all cases a right 
hand side of 1 'so In the few cases where a right hand side was provided, we 

. also repeated (some of) the experiments with the given right hand side, but 
no significant differences were observed. 

4.3.1 Small Matrices 

The results for matrices (HB,rua) with less than fifty thousand nonzero 
entries are presented in Table 10, and are self explanatory. To be consistent 
with [2, 3] (although we always use a left preconditioner) we set the tolerance 
to 10-8 (in [4] a value of 10-9 was used). For sherman3 the default starting 
vector Xo and the right hand side b were such that the tolerance was satisfied 
after the first iteration. This was accidental and not representative of the 
method. 

4.3.2 Medium Size Matrices 

These are the matrices with more than fifty thousand but less than five 
hundred thousand nonzero entries. The results are presented in Table 11 
for some bcsstk (HB,rsa) and raefsky (Simon,rua) matrices, and are self 
explanatory6. The tolerance was set to 10-10 . Figure 2 refers to raefsky2 

6Since the matrix raefskyl was also studied in [3], it is worth comparing the two results, 
even though we used a left preconditioner while in [3] a right preconditioner was used. The 
fact that raefskyl seems to be only slightly unsymmetric, at least visually (see Section 6), 
makes such comparison meaningful. 

The following table is self explanatory. MI12 is the code used in [3]. 

I Code \I ma ep mn I nnz(M)/nnz(A) I SPAI I BICGSTAB 

MI12 50 0.3 1 0.087 665.45 86 22.64 
spaLL 1 50 0.3 1 0.0867 475.90 87 14.19 
spaLL 1 21 0.5 5 0.033 16.20 127 20.30 

1/ ma ep mn I nnz(M)/nnz(A) I (sec.) I # Iter. I (sec.) I 

A tolerance of 10-8 was used. The last row, which corresponds to the shortest time 
to solution, clearly shows how the efficiency can be greatly improved by choosing the 
right parameters. For the second row, we use the parameters used in [3, 2). The ratios 
MI12/spai-l.l of the SPAI CPU times and BICGSTAB CPU times are 1.40 and 1.51, 
respectively (and are thus consistent). Evidently, the spai_1.1 results were obtained in 
one processor. 
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I Matrix II n I nnz(A) I SPAI BICGSTAB 

orsreg1 2205 14133 9261 1.19 44 0.96 
orsirr1 1030 6858 4326 0.54 44 0.47 
orsirr2 886 5970 3626 0.49 46 0.43 
sherman 1 1000 3750 3407 0.34 57 0.47 
sherman2 1080 23094 10940 6.26 108 2.62 
sherman3 5005 20033 5005 0.41 1 0.04 
sherman4 1104 3786 1104 0.10 64 0.47 
sherman5 3312 20793 11155 1.45 53 1.71 
saylr3* 1000 3747 4510 0.40 57 0.54 
saylr4 3564 22316 47044 8.53 271 15.00 
pores2 1224 9613 102022 55.19 2219 138.46 
lnsp3937 3937 25407 275107 40.58 3262 96.54 
watt2 1856 11550 155686 29.82 1742 28.88 

II n I nnz(A) I nnz(M) I (sec.) I # Iter. I (sec.) I 
Table 10: The results correspond to the shortest times to solution among 
the limited number of tests we performed. Here we used tolerance = 10-8 

and 1 processor, except for Insp3937 and watt2 where 8 processors were 
used. saylr3* was obtained from saylr3 by replacing two independent 2 x 2 
singular submatrices by 2 x 2 identity matrices, as explained in [2], pag. 18. 

(Simon,rua), another medium size matrix. It shows variations in the num­
ber of iterations as ep changes. This is a typical behavior in that smaller 
values of ep mean better preconditioners and fewer iterations. However, in 
this case, the shortest time happens for ep = 0.80 (incidentally, raefsky2 is 
diagonal dominant and very easy to solve). Table 13, in Section 5, shows 
the scaling properties of spai_1.1 for the matrix bcsstk17. 

4.3.3 Large Matrices 

These are the matrices with more than five hundred thousand nonzero en­
tries. The results, obtained for a tolerance of 10-10 are shown in Table 12 
for raefsky3 (Simon,rua) and the cfd matrices (Rothberg,rsa), and are again 
self explanatory. As we can see from the results, SPAI can be an expensive 
method, even when restricted to large problems in large number of proces­
sors. As expensive as it can seem (at least for cfd2), it is probably still more 
efficient than any other method, but we do not have data to support this 
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I Matrix II n I nnz(A) I SPAI BICGSTAB 

bcsstk14 1806 63454 30733 3.74 120 1.29 
bcsstk16 4884 290378 11094 1.54 39 1.05 
bcsstk17 10974 428650 261849 593.41 1227 87.09 
raefsky1 3242 294276 9812 3.68 145 3.75 
raefsky5 6316 168658 - 23221 1.16 10 1.27 
raefsky6 3402 137845 16594 3.75 151 2.49 

II n I nnz(A) I nnz(M) I (sec.) I # iter. I (sec.) I 
Table 11: The results correspond to the shortest times to solution among 
the limited number of tests we performed. Here we used tolerance = 10-10 

and 8 processors, except for raefsky5 where only one processor was used. 
For bcsstk17 we were unable to find a better SPAI-BICGSTAB time ratio 
(BICGSTAB would always break down for any choice of parameters likely 
to push the ratio in the right direction.). 

I Matrix II n I nnz(A) I SPAI I BICGSTAB I 
raefsky3 21200 1488768 859892 307.9 3328 342.3 
cfd1 70656 1828364 1327276 112.4 889 171.0 
cfd2 123440 3087898 5272790 418.6 2714 668.7 

II n I nnz(A) I nnz(M) I (sec.) I # iter. I (sec.) I 
Table 12: The results correspond to the shortest times to solution among the 
limited number of tests we performed. Here we used tolerance = 10-10 and 
16 processors, except for cfd2 where 64 processors were used. In Figure 5 
the scaling behavior of spaL1.1 for cfd2 is shown. 

claim (we did not find any published results to which we could compare). 

5 Parallel Performance of spaLl.l 

In this Section we discuss the scaling properties of spai_1.1, both during 
the construction of the pre conditioner and during the iterative phase. Two 
examples will be considered: bcsstk17 and cfd2 . 

. The results for bcsstk17 are displayed in Table 13 and Figures 3 and 4. 
This matrix required a minimum of two processors. It is clear from the 
Figures that SPAI scales considerably better (at least on the T3E) than 
does BICGSTAB. This scaling will be sensitive, however, to the latency of 
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· raefsky2:. BICGSTAB for different epSilons 

I. 
ep =0.20 
ep = O.~O 
ep = 0,40 
ep =0.50 
ep =o.~o 
ep =0.70 
ep = 0.80 

10-12 '--__ '--__ "--__ '---__ "--__ "--__ "--__ '---__ "---_---' 

o 50 100 150 200 250 300 350 400 450 
number of iterations 

Figure 2: raefsky2: n = 3242, nnz = 294276. Effectiveness of the precondi­
tioner increases (i.e, number of iterations decreases) as ep decreases. In this 
case the shortest total time happens for ep = 0.80, and the preconditioner 
is just diagonal. 

interprocessor communication (which is very good on the T3E). The scal­
ing of BICGSTAB (or any iterative solver) is limited by remote references 
incurred in the inner products. The sparse matrix-vector multiply routine 
used by the BICGSTAB solver in spaLl.1 attempts to hide this latency by 
overlapping local work with communication. 

The results for cfd2 are displayed in Table 14 and Figure 5. This matrix 
did not fit in 8 processors with the choice of parameters used. 
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I # procs 1/ 2 8 16 I 32 I 64 I 
SPAI (sec.) 2120.1 1114.1 593.4 327.8 184.0 103.2 
BICGSTAB (sec.) 275.9 155.7 87.1 53.7 38.4 32.4 
BICGSTAB (# iter.) 1252 1191 1227 1255 1270 1135 

Table 13: bcsstk17: Scaling of spaL1.1, including the iterative phase. A 
tolerance of 10-10 was used, and for the set of parameters used, spaL1.1 
constructs a preconditioner with nnz(M) = 261849. The number of itera­
tions depends on the number of processors, a well known fact that hinders 
the study of the scalability of BICGSTAB (or any other iterative method). 

I # procs /I 16 I 32 I 64 I 128 I 
SPAI (sec.) 1228.2 707.4 418.4 233.2 
BICGSTAB (sec.) 1068.2 830.0 667.0 453.5 
BICGSTAB (# iter.) 2379 2740 2714 2319 

Table 14: cfd2: Scaling of spaL1.1, including the iterative phase. A toler­
ance of 10-10 was used, and for the set of parameters used, spaL1.1 con­
structs a preconditioner with nnz(M) = 5272790. 

6 Topics on SPAI 

In this Section we discuss miscellaneous topics concerning the quality of the 
preconditioner M constructed by SPAI, and why sometimes it totally fails 
as a preconditioner. Some of these issues were already discussed in [2, 3]. 

It was shown in [2] that SPAI is very effective at capturing the sparsity 
pattern of the real inverse. This was concluded after comparing the portraits 
of M and A (we define this matrix as being the one obtained from A-I by 
keeping its largest entries, in absolute value, and in the same number as the 
number of nonzero entries in M). However, this picture can be misleading 
since there is no guarantee that A is a good preconditioner. As a matter of 
fact, usually it's not. Also, sometimes SPAI fails to get the sparsity structure 
of A, but M is nevertheless a good preconditioner. This point is illustrated 
in Figure 6. 

To study how good A could be as a preconditioner, we submitted A to 
a couple of tests where M does well by construction. We performed those 
tests with a couple of matrices and the results were sufficiently consistent to 
show that in general A is a bad preconditioner. Here we report the results 
obtained with the by now popular orsirr2 matrix. Figure 7 shows that in 
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SPAI scaling for bcsstk17 
104~--------r---------r---------~-------.'--------. 

----- SPAI scaling 
perfect scaling 

101~------~--------~--------~--------~------~ 
2 4 8 16 32 64 

Number of Processors 

Figure 3: bcsstk17: SPAI scales linearly with the number of processors. 
For 64 processors, there is a performance degradation of 55% relative to 
perfect scaling (from 2 processors) . 

. this case the pre conditioner M captures the sparsity of A. rather well and is 
also a good preconditioner. Notice how by an appropriate choice of spaL1.1 
parameters we obtained a much sparser preconditioner than in [2]. Since 
by construction, M minimizes the Frobenius norm of (MA - I), we decided 
to see how well A. would compare. The results are shown at the top of 
Figure 8. If minimizing Frobenius norm is a necessary condition to have 
a good preconditioner, then it's clear that A. will be a bad preconditioner. 
To confirm that, we evaluated the eigenvalues of both MA and A.A. The 
results are displayed in Figure 9. As a last test we used A. as a preconditioner 
with BICGSTAB and the bad qualities of A. as a preconditioner were again 
confirmed (A. turned out to be a matrix "close to singular or badly scaled" 
and the iterative method broke down). At the bottom of Figure 8 we also 
compare the number of nozero entries per row for M and A.. 

Among all the matrices we tried there were a few where SPAI failed, even 
with all the leverage that a T3E provides. An example of a small matrix 
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BICGSTAB scaling for bcsstk17 
103~--------~-------'r--------'---------'---------. 

-- BICGSTAB scaling 
perfect scaling 

100~----~--~------~~------~--------~--------~ 
2 4 8 16 32 64 

Number of Processors 

Figure 4: bcsstk17: BICGSTAB "scales" nonlinearly with the number of 
processors. The high costs of communication are evident in the convexity 
of the scaling "function". 

where that happens, is grell07 (HB,rua), Figure 10. We think that is mainly 
due to the high degree of assymmetry in A. That this was a difficult matrix 
had already been noticed in [3]. In this case, as in all other cases where 
we failed to solve Ax = b, we were limited by memory constraints. As 
examples oflarge matrices where SPAI failed, we have raefsky4 (Simon,rua) 
and nasasrb (Nasa,rsa). The matrix raefsky4 is particularly difficult because 
the largest entries (in absolute size) occur far from the diagonal, as can be 
seen 7 in Figure 11. The same happens with lns3937, Figure 12, but due to 
its smaller size it was possible to find a solution by chosing a large values 
for ma (this seems to be a necessity when the largest entries are far from 
the diagonal), as we saw in Table 2. On the other hand, nasasrb does not 
seem to be very difficult just by visual inspection. However, its size greatly 
reduced our capabilities to tweak with the parameters within the memory 

7The color plates and the statistics information were obtained from the University of 
Florida Sparse Matrix Webpage [13]. 

25 



SPAI scaling for cfd2 
104~--------------,---------------~---------------. 

SPAI scaling 
perfect scaling 

102~--------------~---------------L--------------~ 
16 32 64 128 

Number of Processors 

Figure 5: cfd2: SPA! scales linearly wJth the number of processors. For the 
choice of parameters used, 8 processors were not enough to hold this matrix. 
For 128 processors, there is a performance degradation of 52% relative to 
perfect scaling (from 16 processors). 

constraints, and we were unable to see any sign of convergence. 
Visual inspection of the absolute size of the matrix entries, either by 

using the Emily Visualization Tool, or just by looking at the University 
of Florida Sparse Matrix Webpage (as we did), turned out to be a very 
useful way to quickly guess what parameters to use in spai_1.1 and how 
well SPA! could perform. As an example, it was easy to predict that SPA! 
would solve cfd1 (Rothberg,rsa) quite easily (considering its size) due to 
the "visual" dominance of the diagonal (Figure 13), and the tests confirmed 
that. Just a knowledge of the pattern of the entries would not allow such 
conclusions (compare, say, cfd1 with bcsstk14 (HB,rsa), whose pattern is 
similar, but turned out to be a much harder matrix, considering its smaller 
size). Similarly we guessed SPA! would do rather well with cfd2, the largest 
matrix we tried, and the tests confirmed that too. 
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A 

nnz = 3750 nnz = 4513 

BICGSTAB M 

10-15 '--------~----' 
o 20 40 60 nnz = 4513 

Figure 6: sherman1: Although SPAI fails to capture important features of 
A, M is nevertheless a good preconditioner. Upper left: Ai upper right: Ai 
lower right: Mi lower left: BICGSTAB plot. For ep = 0.4, ma = 21, mn = 5 
and tol. = 10-12 , SPAI computes M in 0.41 secs and BICGSTAB converges 
in 60 iterations and 0.45 secs. 
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A 

nnz = 5970 nnz =4329 

BICGSTAB M 

1 0-15 '----~---~---' 
o 20 40 60 nnz =4329 

Figure 7: orsirr2: In this case SPAI captures many of the features of A. M 
is also a good preconditioner. Upper left: A; upper right: A; lower right: 
M; lower left: BICGSTAB plot. For ep = 0.4, ma = 21, mn = 5 and tol. 
= 10-12 , SPAI computes M in 0.62 secs and BICGSTAB converges in 53 
iterations and 0.40 secs. . 
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Figure 8: orsirr2: Here we compare M with A. The top two plots compare 
the Frobenius norm of the rows of (MA-- I) (1st plot), and (AA - I) (2nd 
plot). The two bottom plots compare the number of non zeros per row of M 
(3rd plot) and A (4th plot). The spaL1.1 parameters (ma, mn and ep) are 
the same as in Figure 7. For those values we obtained liMA - IIIF = 7.5736 
and IIAA - IIiF = 7.8734 X 105• 
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Figure 9: orsirr2: Here we compare the eigenvalues of MA (top plot) and 
AA (middle plot). The bottom plot is a zoom in of the middle one. This 
gives clear evidence that A would be a very poor pre conditioner . 
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Figure 10: grel107: n = 1107, nnz = 5664. In this case M and A have 
nothing in common. This matrix, although rather small, resisted all at­
tempts, and was never solved. The above plots were obtained with ep = 
0.4, rna = 21 and mn = 5. 
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max 

Figure 11: raefsky4: This was a matrix where SPAI failed, because the 
largest entries occur far from the diagonal. Statistics: n = 19779, nnz(A) 
= 1328611, max = 1.568 X lOll , min = 8.882 X 10-16• 

max 

Figure 12: Ins3937: Although the largest entries occur far from the di­
agonal, the matrix was sufficiently small to be solved within the memory 
constraints of the T3E. Statistics: n = 3937, nnz(A) = 25407; max = 
1.938 X 1011 , min = 3.203 X 10-7. 
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max 

mm 

Figure 13: cfdl : Although quite large, the dominance of the diagonal sug­
gested this would be a relatively easy matrix, and the tests confirmed that . 
Statistics: n = 70656, nnz(A) = 1828364, max = 1, min = 7.824 X 10-7

. 

7 Conclusions 

The SPAI pre conditioner is very effective, and almost any problem can be 
solved by an appropriate choice of parameters (in spaLl.1 those parameters 
are rna, mn and ep) . However, it can be very expensive, even in the very 
large problems that were supposed to be the most appropriate for a parallel 
preconditioner like SPA!. Evidently, t he more effective the preconditioner, 
the more expensive it is, but in general the costs are such that shortest 
times to solution (i.e., time taken to construct preconditioner + time taken 
by iterative method) require a poor pre conditioner. Nevertheless, SPAI (or 
spai_1.1) is probably the best choice available when trying to solve very 
large problems. 

In general, the choice of an appropriate preconditioner (either effective or 
efficient) requires extensive tuning between the free parameters (rna, mn and 
ep) . On the other hand , the preconditioners corresponding to the shortest 
times to solution have, in general, fewer nonzero entries than the original 
matrix. For difficult matrices , the situation is the opposite, with precondi­
tioners having significantly more nonzero entries than the original matrix. 

spaLl. 1 is an implementation of SPAI with good load balance and scaling 
properties . This also shows that the expensiveness of the method is inherent 
to SPAI and not to the implementation. 
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