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SUMMARY

One of the features that distinguishes modern humans from our extinct relatives and ancestors is a 

globular shape of the braincase [1–4]. As the endocranium closely mirrors the outer shape of the 

brain, these differences might reflect altered neural architecture [4, 5]. However, in the absence of 

fossil brain tissue, the underlying neuroanatomical changes as well as their genetic bases remain 

elusive. To better understand the biological foundations of modern human endocranial shape, we 

turn to our closest extinct relatives: the Neandertals. Interbreeding between modern humans and 

Neandertals has resulted in introgressed fragments of Neandertal DNA in the genomes of present-

day non-Africans [6, 7]. Based on shape analyses of fossil skull endocasts, we derive a measure of 

endocranial globularity from structural MRI scans of thousands of modern humans and study the 

effects of introgressed fragments of Neandertal DNA on this phenotype. We find that Neandertal 

alleles on chromosomes 1 and 18 are associated with reduced endocranial globularity. These 

alleles influence expression of two nearby genes, UBR4 and PHLPP1, which are involved in 

neurogenesis and myelination, respectively. Our findings show how integration of fossil skull data 

with archaic genomics and neuroimaging can suggest developmental mechanisms that may 

contribute to the unique modern human endocranial shape.

In Brief

Gunz, Tilot et al. combine paleoanthropology, archaic genomics, neuroimaging, and gene 

expression to study biological foundations of the characteristic modern human endocranial shape. 

They find introgressed Neandertal alleles that associate with reduced endocranial globularity and 

affect expression of genes linked to neurogenesis and myelination.

RESULTS AND DISCUSSION

Neandertals (Figure 1A) and modern humans (Figure 1B) have similar endocranial volumes 

but distinct endocranial shapes. Modern humans have a globular-shaped braincase, with a 

round and expanded posterior cranial fossa housing the cerebellum, and more bulging 

parietal bones [2–4]. Contrasting the average endocranial shapes of modern humans and 

Neandertals, Kochiyama et al. [5] proposed that the biggest differences between these 

groups are found in the cerebellum. Comparative analyses suggest rapid evolutionary 

changes of this brain structure in great apes and humans [8, 9]. Our analysis of endocranial 

shape based on data from [4] demonstrates that other regions beyond the cerebellum are 

relatively larger in modern humans than in Neandertals, including parts of the prefrontal 
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cortex and the occipital and temporal lobes (Figures 1C and1D). In contrast, parietal bulging 

[2–4] is not linked to an increased surface area, suggesting that the parietal lobe is 

‘‘displaced’’ by reorganization of other—presumably subcortical—parts of the brain.

The evolutionary history of our species can currently be traced back to fossils from Jebel 

Irhoud (Morocco) dated to about 300,000 years ago [4, 10, 11]. While their faces and teeth 

look modern, their elongated braincases appear more like older human species and 

Neandertals [4, 10]. Together with crania from South Africa and Ethiopia, these fossils 

document an early evolutionary phase of Homo sapiens on the African continent [10, 11]. 

The globular endocranial shape emerged gradually in the Homo sapiens lineage, evolving 

independently of brain size: reorganization of cerebellar and lateral parietotemporal areas 

was followed by continued gradual changes in the organization of cerebellar and occipital 

areas [4]. From the perspective of ontogeny, braincase shape depends on a complex interplay 

between cranial bone growth, facial size, and the tempo and mode of neurodevelopment [1, 

4, 12–14]. In present-day humans, globularity emerges during perinatal development [12, 

13] in a period when the rapidly expanding brain is the main driver of braincase shape. It has 

therefore been proposed that endocranial globularity reflects evolutionary changes in early 

brain development [4, 12]. However, endocranial imprints only capture outer brain shape 

and cannot provide direct information about underlying features of neural reorganization.

Study Design and Hypothesis

In this study, we combine paleoanthropological data from Neandertal fossils with 

neuroimaging and genomic data from thousands of present-day humans, as well as gene 

expression data, to interrogate the molecular basis of endocranial globularity. As overall 

endocranial shape is a complex trait, we expect that it is influenced by many genetic loci, 

each with only a small effect. We therefore use both phenotypic and genetic differences 

between modern humans and Neandertals as filters to constrain our search space. Analyses 

of the genomes of Neandertals and modern humans show that they encountered each other 

outside Africa and interbred [6, 15, 16]. Introgressed fragments of Neandertal DNA can be 

reliably identified in modern humans and are estimated to account for 1%–2% of the 

genomes of non-African individuals, such that collectively ~40% of the Neandertal genome 

is represented in people living today [17–19]. Here, we quantify the endocranial shape 

differences between Neandertals and modern humans and study how Neandertal 

introgressed fragments affect this phenotype.

Metric for Endocranial Globularity

Using computed tomographic (CT) scans of fossil and extant skulls, we generated virtual 

imprints of the interior braincase (endocasts) and quantified endocranial shape differences 

between modern humans from Europe (n = 19) and Neandertals (n = 7) based on a dense 

mesh of semilandmarks (Figures 1C and 1D). We placed the same mesh on the endocranial 

surface segmented manually from the MNI-152 template—an average of 152 registered 

structural MRI scans of living humans (Figures 1E and 1F). A principal component analysis 

of endocranial shape shows that there is no overlap between the more globular endocrania of 

modern humans and the more elongated endocrania of Neandertals (Figure 2A). We 

therefore used these distinctive group differences to develop a summary metric for 
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endocranial globularity. This ‘‘globularity score’’ quantifies overall endocranial shape by 

projecting the endocranial measurements of each individual onto the vector between the 

average shape of Neandertals and that of present-day humans (Figure 2B). By applying this 

morphometric approach to structural MRI scans of thousands of healthy human adults (n = 

6,575) from the general population (predominantly of European origin), we obtained an 

evolutionarily derived quantitative index of globularity, which we showed with repeat scans 

to be robust and reliable. We replicated the findings shown in Figure 2 in a more diverse 

endocranial dataset, building on data from [4] (Figure S1). As the sample composition 

differs from the one shown in Figure 2, the values of the derived globularity scores also 

differ—the overall pattern, however, remains highly consistent. Endocranial shapes extracted 

from CT and MRI scans largely overlap in both analyses (Figures 2, S1B, and S1C).

Voxel-Based Morphometry

We explored potential underlying structural contributions to interindividual variation in the 

globularity phenotype in healthy present-day humans using voxel-based morphometry 

(VBM) of MRI scans in two large European cohorts from Germany (SHIP and SHIP-Trend, 

total n = 2,929). These analyses revealed multiple significant (p(peak,FWE) % 0.025) 

clusters where globularity was positively or negatively associated with interindividual 

variability in gray matter (GM). In both hemispheres, greater values of globularity were 

associated with higher GM volumes in temporal regions, vermis and adjacent parts of the 

cerebellum, and in subcortical structures including the hippocampus, thalamus, amygdala, 

caudate, and putamen (Figure S2; Table S1). A significant inverse relationship of globularity 

and GM (Table S2) was detected in large parts of the frontal, temporal, and occipital gyri; 

parts of the cerebellum; and several subcortical regions (thalamus, putamen, hippocampus).

Effect of Introgressed Neandertal Alleles

To investigate molecular correlates of the fossil-based globularity score, we used genotype 

data from European individuals to identify introgressed Neandertal alleles [18, 20] and 

studied their association with variability in this phenotype. We analyzed five datasets 

comprising 4,468 individuals with European ancestry for whom both MRI and genotype 

data were available: three batches of the Dutch BIG cohort (total n = 2,433) and the 

genotyped subsets of the German SHIP (n = 1,139) and SHIP-Trend (n = 896) cohorts, 

mentioned above. We analyzed each of 50,057 archaic SNPs with a minor allele frequency 

(MAF) of at least 0.01, testing the hypothesis that Neandertal-introgressed fragments would 

promote elongation of endocranial shape in modern humans (controlling for age, sex, 

ancestry, and scanning parameters). These SNPs cover 42% of the known, high-confidence 

Neandertal haplotypes [20] (Figures 3A and 3B). Although the cohorts were all European, 

we used multidimensional scaling (MDS) to exclude outlier individuals and, for extra rigor, 

accounted for residual effects of population stratification using principal components (PCs). 

Prior to association analysis, we designated significance thresholds that appropriately 

account for the extent of multiple testing, based on the linkage disequilibrium structure 

within the set of Neandertal alleles being tested (6,778 independent tests, estimated using the 

Genetic Type 1 error calculator [21]). Thus, our multiple-testing corrected thresholds were p 

< 7.38 × 10−6 for significant association and p < 1.48 × 10−4 for suggestive association, 

following standard guidelines of the field.
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Five SNPs within a ~200 kilobase (kb) archaic haplotype on chromosome 1 spanning 

1:19244479–19453365 passed the significance threshold (top SNP 1:19365951, p = 3.26 × 

10−6). A second Neandertal haplotype on chromosome 18 (500 kb, 18:60279290–60776578) 

contains six SNPs that passed the suggestive significance threshold (top SNP 18:60691999, 

p = 5.66 × 10−5). A single SNP, representing a 170 kb haplotype on chromosome 14 

(14:50535915, p = 9.29 × 10−5), also passed suggestive significance. All haplotypes showed 

consistent directions of effect across all five datasets from the three cohorts, with the 

Neandertal-like haplotypes showing association with more oblong endocranial shape (Figure 

3C) and with the top SNPs each showing an additive effect (i.e., heterozygous carriers were 

intermediate in score between homozygous groups; Figure 3D). We checked the top SNP at 

each locus to further discount residual effects of population stratification by increasing the 

number of PCs from 2 to 15. In this conservative follow-up analysis, there was a slight 

attenuation of signals: the chromosome-1 association remained significant (p = 6.94 × 10−6), 

and the chromosome-18 association remained suggestive (p = 9.54 × 10−5), but the isolated 

chromosome-14 SNP dropped below the threshold (p = 0.00019). The MAFs for the top 

SNPs were low in all three European cohorts, and very few individuals were homozygous 

for the Neandertal alleles (1:19365951, MAF = 0.0436, 8 homozygotes; 18:60691999, MAF 

= 0.052, 6 homozygotes; 14:50535915, MAF = 0.0204, 1 homozygote; Figure 3D). As 

expected for a genetically complex neuroanatomical phenotype [22], effect sizes of 

individual SNPs were small (Figure 3C) but detectable here due to inclusion of cohorts 

comprising thousands of individuals.

A recent study explored Neandertal DNA variants and brain shape in a substantially smaller 

sample of present-day humans [23]. The authors looked for associations between features of 

brain shape and a composite score reflecting the overall percentage of Neandertal DNA that 

a person carries. However, because individual introgressed fragments are rare, two people 

can have the same total amount of Neandertal-derived DNA, and thus an identical summary 

score, but share few (if any) Neandertal variants. Thus, it is difficult to draw biologically 

informative conclusions from overall genomic percentages, limiting the interpretation of the 

prior study. In their analysis of only 146 people, the authors highlighted Neandertal SNPs in 

the GPR26 gene as being of particular interest [23]; we assessed these markers in our sample 

of 4,468 individuals but saw no association with variability in endocranial globularity (all p 

> 0.05).

Gene Expression

The associated SNPs lie outside protein-coding regions, but could potentially affect 

expression of nearby genes, in the brain and other tissues. We tested this hypothesis for the 

Neandertal haplotypes tagged by the two top SNPs on chromosome 1 and 18 using the 

GTEx database of expression quantitative trait loci (eQTL) data from over 400 donors [24]. 

To increase our power to detect associations with Neandertal introgressed alleles, which tend 

to be at lower frequency in present-day genomes, we used a set of Neandertal eQTLs that 

were previously defined, based on the top 5% of genes in each GTEx tissue showing 

association between gene expression and the presence of a nearby introgressed archaic 

haplotype [25]. The Neandertal variants that were associated with lower globularity scores 

showed modest but consistent effects on the expression in brain tissues of nearby genes that 
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regulate multiple aspects of brain growth. Among the top 5% eQTL associations, we found 

that the chromosome-1 SNP, 1:19365951 (rs28445963), which had the strongest association 

with endocranial shape in our study, showed significant eQTLs in multiple tissues, including 

downregulation of UBR4 in the putamen (part of the basal ganglia) in carriers of the 

Neandertal allele (Figures 4A and 4B; Spearman correlation p = 0.031). The Neandertal 

allele of the most highly associated chromosome-18 SNP, 18:60691999 (rs72931809), was 

associated with upregulation of PHLPP1 in the cerebellum (Figures 4C–4D, Spearman 

correlation p = 0.024). Additional eQTL associations of these SNPs in other tissues are 

shown in Figures S3 and S4.

UBR4 encodes a ubiquitin ligase that regulates neurogenesis in the developing neocortex 

and promotes neuronal migration, among other roles [26]. Loss of the mouse ortholog 

(called p600) in the developing brain impairs neurogenesis, resulting in microcephaly [27]. 

In humans, UBR4 is intolerant to loss-of-function mutations (pLI score = 1.0), suggesting 

that even small expression changes may have functional consequences [28].

PHLPP1 encodes a negative regulator of the PI3K/Akt growth-factor signaling pathway that 

drives myelination. Overexpression of Akt in transgenic mice leads to hypermyelination 

compared to wild-type controls [29]. With a high pLI score (0.92), PHLPP1 is a tumor 

suppressor in humans and mice [30, 31]. The PI3K/ AKT/mTOR signaling pathway broadly 

promotes brain growth and development of the myelin sheath [32–35]. In carriers of the 

Neandertal allele, PHLPP1 expression is slightly higher in the cerebellum, which would be 

predicted to have dampening effects on Akt-driven cerebellar myelination, consistent with 

the less globular endocranial shape associated with this allele in our study. However, 

comparative studies indicate that the increased endocranial globularity of present-day 

humans as compared to Neandertals is not merely the result of absolute cerebellar 

enlargement [4, 5], suggesting that endocranial shape variation involves complex shifts in 

relative, rather than absolute, volumes of different brain structures. This viewpoint is 

supported also by our VBM analyses of interindividual differences in globularity, which 

found that such variation involves both positive and negative GM changes, distributed across 

various brain regions. In one of the cohorts that we studied here, more globular modern 

human endocrania have slightly smaller absolute cerebellar volumes (Table S3), but this 

subtle effect was not observed in the other cohorts. The VBM analyses suggest that, at least 

within present-day Europeans, higher endocranial globularity is associated with increased 

GM in some parts of the cerebellum but also with decreased GM in others (Figure S2; 

Tables S1 and S2).

Conclusions

We have integrated evidence from paleoanthropology, comparative genomics, neuroimaging, 

and gene expression to begin identifying genes associated with variation in endocranial 

globularity, a defining feature of modern humans. The directions of effect were consistent in 

five separate batches of data from three independent cohorts and consistent with our 

hypothesis that Neandertal alleles would push the endocranium toward a more elongated 

shape. The associated variants were connected to genes involved in neurogenesis and 

myelination pathways in putamen and cerebellum, respectively. The eQTL data suggest that 
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Neandertal alleles near UBR4 and PHLPP1 are linked to lower levels of neural proliferation. 

We speculate that this may contribute to altered neuroanatomical morphology of some 

subcortical structures and the cerebellum and thereby to lower overall globularity. The 

Neandertal haplotypes may thus be associated with developmental gene expression patterns 

that influence endocranial globularity through effects on neurogenesis and myelination 

during brain development. Functional impacts of Neandertal alleles on neural properties and 

brain development can in future be empirically tested [36], for example by using gene-

editing techniques to insert changes into human induced pluripotent stem cells, which can be 

differentiated into distinct types of neurons or organoids.

Globularity is a multifactorial trait, involving combined influences of many different loci, 

and the effects of individual SNPs on overall endocranial shape are small. It is likely that 

future genome-wide studies in sufficiently large high-powered samples will reveal additional 

relevant genes and associated pathways. The potential links between evolutionary changes in 

endocranial globularity and mechanisms affecting the basal ganglia and cerebellum are 

nevertheless intriguing, because both brain structures receive direct input from the motor 

cortex and are involved in the preparation, learning, and sensorimotor coordination of 

movements. Expanded cerebellar interconnections with prefrontal, premotor, and superior-

posterior parietal cortices, which also project densely to the putamen, may be particularly 

relevant to cognitive abilities of modern humans [9, 37, 38]. In addition to their involvement 

in sensorimotor coordination, the basal ganglia also contribute to diverse cognitive functions 

in memory, attention, planning, skill learning [39], and potentially to speech and language 

evolution [40, 41].
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Simon E. Fisher (simon.fisher@mpi.nl).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants—The Nijmegen ‘‘Brain Imaging Genetics’’ (BIG) cohort is a Dutch 

population-based sample of healthy, unrelated volunteers. Established in 2007, BIG is part 

of Cognomics, a joint initiative by the Donders Centre for Cognitive Neuroimaging, the 

Human Genetics and Cognitive Neuroscience departments of the Radboud University 

Medical Centre, and the Max Planck Institute for Psycholinguistics. MRI and genetic data 

were collected from individuals at the Donders Center for Cognitive Neuroscience, in 

Nijmegen, the Netherlands. The BIG dataset has been described in several previous studies 

[42, 43]. The MRI data in the present study come from 2,913 participants (53% female), 

with an average age of 27 years (range 17–82). The genetic data presented come from a 

subset of 2,433 individuals (53% female), with an average age of 25 years (range 18–82). 

All participants gave written informed consent for analysis of both their DNA and MRI 

scans, and the regional ethics committee approved the study.

The ‘‘Study of Health in Pomerania’’ (SHIP), established in 1997, is a prospective cohort 

study, part of the Community Medicine Research net of the University of Greifswald. SHIP 

is a population-based project in West Pomerania, a region in the northeast of Germany, that 

consists of two independent prospectively collected cohorts (SHIP and SHIP-Trend) 

assessing the prevalence and incidence of common population-based diseases and their risk 

factors. The study design has been previously described in detail [44]. For SHIP, baseline 

examinations were carried out from 1997 until 2001, and the sample finally comprised 4,308 

participants. Baseline examinations for SHIP-Trend were carried out between 2008 and 

2012, finally comprising 4,420 participants. We conducted a voxel-based morphometry 

(VBM) analysis [45] on individuals from SHIP and SHIP-TREND. Complete datasets 

(including MRI, globularity score, and covariates for adjustments) were available for 3,309 

subjects. After exclusion of medical conditions (e.g., a history of cerebral tumor, stroke, 

Parkinson’s diseases, multiple sclerosis, epilepsy, hydrocephalus, enlarged ventricles, 

pathological lesions) or technical reasons (e.g., severe movement artifacts or inhomogeneity 

of the magnetic field) 2,952 subjects were available. We finally performed the homogeneity 

check and excluded 23 extreme outliers. Our final sample for the VBM analysis consisted of 

2,929 individuals (53% female). So as to study the effect of Neandertal alleles on globularity 

we used samples from the second five-year follow-up of SHIP (SHIP-2, n = 1,139) and the 

baseline of SHIP-Trend (n = 896) for which both MRI and genotype data were available. 

The samples had an average age of 56 (range 30–90) years for SHIP-2, and 50 (range 22–

81) years for SHIP-Trend. The cohorts included 51% and 56% females for SHIP-2 and 

SHIP-Trend, respectively. The medical ethics committee of the University of Greifswald 

approved the study protocol, and oral and written informed consents were obtained from 

each of the study participants.

The ‘‘Function Biomedical Informatics Research Network’’ (FBIRN) Phase 3 cohort 

included 186 individuals with schizophrenia (average age 38 years, 22% female) and 176 
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healthy volunteers (average age 37.5 years, 28% female) with an age range of 18–62 years. 

Written informed consent, including permission to share de-identified data between the 

centers, approved by the University of California Irvine, Los Angeles, and San Francisco, 

Duke University, University of North Carolina, New Mexico, Iowa, and Minnesota 

Institutional Review Boards, was obtained from all study participants. The study methods 

have been previously described in detail [46]. Data from FBIRN was included in the initial 

description of brain globularity (see Methods - Structural MRI), however, the cohort was not 

included in the genetic association analyses (see Methods - Genotyping, Statistical 

analyses).

METHOD DETAILS

Structural MRI—In the BIG cohort, MRI data were obtained using either a 1.5 Tesla 

Siemens Sonata or Avanto scanner, or a 3 Tesla Siemens Trio or Trio TIM scanner (Siemens 

Medical Systems, Erlangen, Germany). Image processing was completed using FreeSurfer 

version 5.3 and FSL FIRST version 5.0 with FLIRT version 6.0, as described previously 

[42].

In the SHIP cohorts, participants were scanned using a 1.5 Tesla Siemens Avanto scanner, 

and image processing was completed using FreeSurfer 5.3 and FSL FIRST version 5.0.9 

(with FLIRT version 6.0).

The FBIRN Phase 3 cohort was scanned at 7 sites using six 3 Tesla Siemens Trio TIM 

(Siemens, Erlangen, Germany) and one 3 Tesla GE MR750 scanner (General Electric, 

USA). Image processing was completed using FreeSurfer 5.3 and FSL FIRST version 5.0.9 

(with FLIRT version 6.0). In all cohorts, visual inspection was used to resolve potential 

outliers.

Computed tomography—Original fossil human crania (n = 7) and a European sample of 

recent modern human adults (n = 19) were scanned using computed tomography (CT). The 

sample shown in Figure 2 comprises the Homo neanderthalensis specimens Gibraltar 1 

(labeled as Gi), Guattari (Gu), La Chapelle-aux-Saints (LC), La Ferrassie 1 (LF), Le 

Moustier 1 (LM1), and the Homo heidelbergensis specimens Kabwe (Ka) and Petralona 

(Pe).

For all CT specimens, virtual endocasts of the braincase were created using segmentation in 

Avizo (Thermo Scientific) following [4]. Any missing data in fossil specimens were 

reconstructed using established protocols [47–49].

Globularity score computation for MRI scans—To quantify the endocranial shape 

differences between modern humans and Neandertals, we combined the methods of 

geometric morphometrics [48] using scripts in Mathematica (Wolfram Inc.) with standard 

neuroimaging data processing protocols (FSL 5.0 and FreeSurfer 5.3). On each virtual 

endocast, we first distributed a dense mesh of semilandmarks [4, 47–49]. The same mesh of 

semilandmarks was distributed on an endocast segmented manually from the MNI 152 brain 

template (MNI 152 T1 2 mm). Semilandmarks are a geometric morphometric technique for 

quantifying relatively smooth curves and surfaces based on the same number 3D coordinates 
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on each individual [4]. One starts by distributing the same number of 3D coordinates in 

approximately corresponding locations on each individual. Subsequently these 

semilandmarks are allowed to slide along the surface so as to remove the influence of the 

arbitrary initial point spacing. Our iterative semilandmark algorithm allows the surface 

semilandmarks to slide along tangent planes until the Procrustes distance between each 

individual and a template shape is minimal (this template shape can be sample average 

shape, or a single individual as detailed below), and projects the semilandmarks back onto 

the surface. These iterative sliding steps establish geometric homology among the 

semilandmarks within a sample [48, 49].

Next, we registered the FreeSurfer segmentation of each MRI scan to the MNI 152 template: 

we used ‘‘mri_label2vol’’ to register wmparc.mgz to the respective individual’s native 

anatomical space (rawavg.mgz), and then the command ‘‘flirt’’ to create a transformation 

matrix between this image and the MNI 152 template. Subsequently, we used ‘‘convert_xfm 
-omat’’ to create an inverse of this transformation matrix.

In Mathematica, we then applied the inverse of each transformation matrix to the 3D 

coordinates of the dense mesh of semilandmarks on the MNI 152 template, thereby bringing 

the semilandmarks into the native anatomical space of each individual. Next, we allowed the 

semilandmarks on all specimens (i.e., CT scans and MRI scans) to slide so as to minimize 

the Procrustes distance between each individual and the MNI 152 template (following ref. 

[49]). This sliding step establishes geometric homology of the semilandmarks [4, 47–49].

We then used Procrustes superimposition on the slid semilandmarks to standardize location 

and orientation and to scale them to the same centroid size [48]. These Procrustes shape 

variables were analyzed using principal component analysis (Figure 2A). To quantify 

globularity, we computed the difference between the Procrustes mean shape of the 

Neandertal endocrania and the average shape of all modern European endocrania extracted 

from CT scans. We then projected the Procrustes shape coordinates of all endocrania (i.e., 

CT and MRI data) onto this multivariate group-difference vector (Figure 2B). This final step 

yields a ‘‘globularity score’’ for each individual, a reliable continuous trait with a normal 

distribution, which we used to quantify the phenotype. A subsample (n = 399) of repeated 

MRI scans (from the BIG cohort) of the same individual on different occasions shows that 

this ‘‘globularity score’’ has a high test-retest repeatability, with a correlation of 0.97 after 

correcting for scanning covariates.

Complementary shape analysis and globularity score—We replicated the findings 

shown in Figure 2 in a more diverse endocranial dataset (Figure S1). This complementary 

shape analysis is based on endocranial data published in [4], with two additional Neandertal 

specimens (Saccopastore 1 and Le Moustier 1). This dataset comprises coordinate 

measurements on computer-generated endocasts of a geographically diverse sample of 

recent modern human adults (n = 89; the European specimens overlap with the crania used 

in the main text Figure 2) and fossil humans (n = 20): 8 fossil Homo erectus specimens — 

KNM-ER 3733 (labeled as ER3733 in Figure S1), KNM-ER 3883 (ER3883), KNM-WT 

15000 (WT15k), OH 9, Ngandong 14 (Ng14), Ngawi (Nga), Sambungmacan 3 (Sam3), and 

Sangiran 2 (Sa2), and the Homo heidelbergensis specimens Kabwe (Ka), and Petralona (Pe). 
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The Neandertal sample includes Amud 1 (labeled as A1), Feldhofer 1 (Fe), Gibraltar 1 (Gi), 

Guattari 1 (Gu), La Chapelle-aux-Saints (LC), La Ferrassie 1 (LF), Le Moustier 1 (LM1), 

Saccopastore 1 (SAC1), Spy 1 (S1), and Spy 2 (S2). A manual endocranial segmentation of 

the MNI 152 template (Figures 1E and1F) was measured following the measurement and 

data processing protocol of [4]. We then used the same transformation matrices as for the 

computations in the main text (Figure 2) to transform these landmarks and semilandmarks to 

the native space of each MRI scan. After a Procrustes superimposition these shape 

coordinate data were analyzed using between-group principal component analysis based on 

the group mean endocranial shapes of Homo erectus, Homo neanderthalensis, and recent 

Homo sapiens (Figure S1B). Globularity scores for this dataset were computed as described 

above for Figure 2B. Homo erectus, Neandertals, and modern humans have distinct 

endocranial shapes (Figure S1B). Whereas the globularity scores of Neandertals and Homo 
erectus overlap completely (indicating that both groups have elongated endocranial shapes), 

modern humans form a distinct cluster without overlap (Figure S1C).

Characterization of the phenotype—Aspects of brain shape variation within modern 

humans have recently been linked to naturally occurring brain size variation [50]. Our 

evolutionarily-derived measure of brain globularity, however, is not related to brain size, as 

we found no significant correlation between globularity and intracranial volume (Table S3). 

Moreover, the evolutionary trajectory of globularity within Homo sapiens is not related to 

endocranial volume, and the adult endocranial volumes of Homo sapiens and Neandertals 

overlap [4].

We found that endocranial globularity subtly changes with age in modern adult Europeans, 

with older adults having slightly higher globularity scores (i.e., more rounded endocranial 

shapes) (Table S3). Notably, however, not a single modern human individual overlapped 

with Neandertals in overall endocranial shape (Figure 1F, Figure 2B) and thus globularity 

score (Figure 1G, Figure 2C). Longitudinal MRI data may be able to identify the factors 

contributing to this subtle age-effect, whether it be due to regional differences in brain 

volume loss or other processes.

Several studies have associated Neandertal-introgressed genetic variants with variability in 

phenotypes in modern humans, such as immunity, metabolism, and adaptation to 

environmental conditions, like temperature and sunlight, as well as neurological and 

behavioral phenotypes related to depression and addiction [17–20, 51]. To understand 

whether endocranial globularity is associated with other evolutionarily-linked traits, we 

tested their partial correlations in the SHIP-2 and SHIP-TREND cohorts (Table S3). 

Controlling for the effect of age, we saw no significant correlation between the globularity 

measure and any trait previously associated with Neandertal introgressed alleles.

Voxel-based morphometry analysis—MRI scans were processed for voxel-based 

analysis (Figure S2, Tables S1 and S2) with SPM12 (Wellcome Trust Centre for 

Neuroimaging, University College London) and the CAT12 toolbox (developed by Christian 

Gaser, University of Jena, Germany, www.neuro.uni-jena.de). The images were bias-

corrected, spatially normalized by using the high-dimensional DARTEL normalization, 

segmented into the different tissue classes, modulated for non-linear warping and affine 
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transformations and smoothed by a Gaussian kernel of 8 mm FWHM. The homogeneity of 

gray matter images was checked using the covariance structure of each image with all other 

images (outlier R 3 standard deviations from the mean), as implemented in the check data 

quality function in the CAT12 toolbox. We ran a linear regression model in every voxel of 

the gray matter segmentations with the globularity score as the exposure variable and 

adjusted for the following covariates: age (modeled continuously using restricted cubic 

splines), sex, ICV, and cohort (SHIP, SHIP-Trend). The statistical threshold for significant 

voxels was set to family wise error (FWE)-corrected peak-level p values ppeak,FWE<0.025 as 

we were testing two-sided for positive and negative associations with globularity. The 

labeling of the significant clusters was done within the xjview toolbox (http://

www.alivelearn.net/xjview) on the basis of the Anatomical Automatic Labeling atlas (AAL) 

[52].

Genotyping—Samples from the BIG cohort were genotyped in three batches over a period 

of several years, using the Affymetrix 6.0, Psychiatric Genomics Consortium PsychChip, or 

Illumina OmniExpress arrays. The SHIP samples were genotyped using the Affymetrix 6.0 

(SHIP) and Illumina Omni 2.5 (SHIP-Trend) arrays.

Sample and SNP-level quality control was performed in PLINK in accordance with the 

ENIGMA consortium protocol, described previously [43]. Briefly, sample-level quality 

control included missingness (SHIP: > 8%, BIG: > 5%) and identity-by-descent estimation 

(removing duplicates). Multidimensional scaling (MDS) components, as calculated in 

PLINK [53], were used to exclude any outliers resulting from population stratification.

SNPs passing initial quality control measures (SHIP: pHWE > 0.0001 and CallRate > 0.8; 

SHIP-Trend: pHWE > 0.0001 and CallRate > 0.9; BIG: pHWE > 0.000001, CallRate > 

0.95) were imputed to the 1000 Genomes Project (phase 1, version 3, ALL populations) 

reference panel using IMPUTE v2.2.2 (SHIP) or minimac (release 2012–05-29, BIG) [54–

56]. Variants with imputation quality scores (R2) higher than 0.6 were carried forward in the 

analyses. The reference human genome for SNP annotation was the hg19 (GRCh37) human 

genome assembly.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses—Partial correlations between the globularity score and other 

covariates were performed in R using the ‘ppcor’ package. Scaled globularity scores were 

corrected for the scanner parameters (BIG only, since the SHIP cohorts used more 

homogeneous acquisition), and participants’ age and sex (Table S3). As noted above, based 

on MDS quality control checks in genotype processing, we are confident of minimal 

population substructure in these European cohorts. Nonetheless, for additional rigor we 

included the first two principal components to correct for any remaining subtle population 

stratification. With the model residuals as the trait, association statistics were generated with 

mach2qtl (BIG) or QUICKTEST version 0.99b (SHIP cohorts) using an additive model. The 

five sets of summary statistics were aligned using easyQC with the 1000 Genomes Project 

European phase 1 version 3 reference files.
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We restricted our meta-analysis to the list of SNPs originating from Neandertal 

introgression, which was first presented [18] and further refined as described [20]. The full 

set included 132,296 variants that differ from the Homo sapiens–Neandertal common 

ancestor and match the Neandertal sequence. The meta-analysis was performed in METAL, 

using the standard error based method, a minimum minor allele frequency of 0.01, and 

including the genomic control option [57]. In follow-up tests of the three top SNPs, 

assessing how the number of genetic principal components in the model affected association 

statistics, the genomic control option was not used as the meta-analysis involved only three 

markers. Any SNPs missing from one or more of the cohorts were excluded, leaving 50,057 

variants in the final analysis. As we tested a pre-defined, directional hypothesis that 

Neandertal alleles would be associated with a shift toward more archaic endocranial shapes, 

we calculated p values based on a one-tailed association test.

Neighboring SNPs on introgressed fragments are often in linkage disequilibrium with each 

other, and hence show varying degrees of non-independence in association testing. To 

appropriately adjust for the multiple testing of many SNPs, accounting for the existing 

linkage disequilibrium structure, the effective number of independent tests was calculated 

using the Genetic Type-1 Error Calculator (GEC), with the 1000 Genomes Project VCF as 

input [21]. Significance was assessed using the significant (7.38 3 10—6) and suggestive 

thresholds (1.48 3 10—4) provided by GEC.

GTEx eQTL Analysis—The GTEx dataset was obtained from dbGaP (accession number 

phs000424.v6.p1.c1, accessed on 05/23/2016). The processing of GTEx v6 data for 48 

tissues, for which > 50 individuals had available genotype data, has been described in detail 

elsewhere [25]. We retained protein-coding genes for a given tissue if there were at least two 

individuals in the dataset that had a read count greater than 0. We used DESeq2 to normalize 

all expressed genes in each tissue between individuals. For genes within 50 kilobases of a 

Neandertal SNP, we calculated Spearman correlations between the SNP and the normalized 

gene expression, if there were at least two genotypes with a minimum of two individuals 

each. As the top 5% of genes associated with Neandertal SNPs contained an excess of low p 

values, these were defined as a significant gene expression associations for each tissue, 

following the practice of the prior published work using this approach [25]: instead of 

simply using the eQTLs identified by GTEx consortium we re-evaluated the full dataset in 

order to increase power to detect associations with Neandertal introgressed alleles, which 

tend to be at lower frequency in present day genomes. Because of this low frequency, the 

power to detect associations with Neandertal alleles is more limited than for the higher 

frequency variants (for which the cut-offs used in the GTEx study were optimized). 

Additionally, the power to detect associations differs substantially between tissues as a result 

of the differences in sample size. We therefore used a quantile cut-off to avoid 

discrimination against low frequency alleles, and tissues with lower sample sizes. As a result 

it is possible that we identify rare Neandertal-introgressed variants that are excluded in the 

GTEx browser due to frequency filters. Sample sizes are listed in Data S1.
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DATA AND SOFTWARE AVAILABILITY

Association summary statistics are available in Data S1. The Mathematica script used to 

compute the globularity scores is available from the authors upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We use fossil skull data to derive an index of endocranial shape in human 

MRI scans

• In 4,468 Europeans, we screen introgressed Neandertal SNPs for association 

with the index

• Lead SNPs consistently associate with reduced globularity in five separate 

subsamples

• These SNPs affect neural expression of two genes linked to neurogenesis and 

myelination
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Figure 1. Endocranial Shape Differences between Neandertals and Modern Humans
(A) CT scan of the Neandertal fossil from La Chapelle-aux-Saints with a typical elongated 

endocranial imprint (red).

(B) CT scan of a modern human showing the characteristic globular endocranial shape 

(blue). Arrows highlight the enlarged posterior cranial fossa (housing the cerebellum) as 

well as bulging of parietal bones in modern humans compared to Neandertals.

(C) Average endocranial shape of adult Neandertals; each vertex of the surface corresponds 

to a semilandmark.
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(D) Average endocranial shape of modern humans. Areas shaded in green are relatively 

larger in modern humans than in Neandertals.

(E and F) The semilandmarks used to quantify overall endocranial shape from MRI scans of 

living people shown on the MNI 152 template in lateral and frontal views, respectively.
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Figure 2. Globularity Scores of CT and MRI Scans
(A) Principal component analysis of endocranial shape. 99% confidence ellipses are shown 

for modern human CT scans from Europe (blue; n = 19), MRI scans of present-day humans 

(yellow; n = 6,575), and Neandertal CT scans (red; n = 7); two Homo heidelbergensis 
individuals are plotted in black.

(B) Frequency plot of globularity scores computed for data shown in (A). This globularity 

score quantifies overall endocranial shape by projecting each individual onto the vector 

between the elongated average shape of Neandertals and the globular average shape of 

present-day humans. Inset shows example MRI scans associated with low (left) and high 

(right) globularity scores among present-day humans.

See also Figure S1.
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Figure 3. Endocranial Globularity in Modern Humans Is Associated with Introgressed 
Neandertal Haplotypes
(A) Association statistics for introgressed Neandertal SNPs (solid line, significance, adjusted 

for multiple testing; dashed line, suggestive significance).

(B) Quantile-quantile plot of association p values, showing the expected uniform 

distribution, with the outliers representing significant associations.

(C) Forest plots depict the effects of the top Neandertal SNPs, for each study and genotyping 

batch. Boxes are proportional to weight, with whiskers representing the 95% confidence 

interval; diamonds represent a linear mixed-effect model incorporating all five datasets.

(D) Covariate-corrected globularity scores by genotype. All data points are shown; boxes 

represent 25th and 75th percentiles; whiskers represent 1.5 times the interquartile range.
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Figure 4. Introgressed Neandertal Fragments Associated with Globularity
(A and C) Detailed views of the kilobase surrounding the Neandertal SNPs within the 

introgressed haplotypes (brown bars) on chromosomes 1 (A) and 18 (C).

(B and D) Expression quantitative trait loci data from the GTEx resource, showing the 

impact of Neandertal alleles on gene expression for UBR4 (B) and PHLPP1 (D), as defined 

by [24].

See also Figures S3 and S4.
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