Title
Sequential Causal Learning in Humans and Rats

Permalink
https://escholarship.org/uc/item/2sz64027

Authors
Lu, Hongjing
Rojas, Randall R.
Beckers, Tom
et al.

Publication Date
2008-01-23

Peer reviewed
Sequential Causal Learning in Humans and Rats

Hongjing Lu (hongjing@ucla.edu)
Department of Psychology, UCLA

Randall R. Rojas (rrojas@stat.ucla.edu)
Department of Statistics, UCLA; Raytheon, Space and Airborne Systems

Tom Beckers (tom.beckers@psy.kuleuven.be)
Department of Psychology, K.U.Leuven

Alan Yuille (yuille@stat.ucla.edu)
Departments of Statistics, Psychology, and Computer Science, UCLA

Abstract
Recent experiments (Beckers, De Houwer, Pineño, & Miller, 2005; Beckers, Miller, De Houwer, & Urushihara, 2006) have shown that pretraining with unrelated cues can dramatically influence the performance of humans in a causal learning paradigm and rats in a standard Pavlovian conditioning paradigm. Such pretraining can make classic phenomena (e.g., forward and backward blocking) disappear entirely. We explain these phenomena by a new Bayesian theory of sequential causal learning. Our theory assumes that humans and rats have available two alternative generative models for causal learning with continuous outcome variables. Using model-selection methods, the theory predicts how the form of the pretraining determines which model is selected. Detailed computer simulations are in good agreement with experimental findings.

Keywords: Bayesian inference; model selection; sequential causal learning; animal conditioning

Introduction
For more than two decades, researchers in both animal conditioning and human causal learning have identified significant parallels between the phenomena observed in the two fields (see Shanks, 2004). It has even been suggested that rats in conditioning paradigms learn to relate cues to outcomes in a manner similar to the way a scientist learns cause-effect relations (Rescorla, 1988). At the same time, there have been strong disagreements about the theoretical basis for both human causal learning and animal conditioning. On the one hand, conditioning models (Rescorla & Wagner, 1972) have been applied to human causal learning (Shanks, 1985); on the other, models of human causal learning have been applied to animal conditioning (Blaisdell, Sawa, Leising, & Waldmann, 2006; Cheng, 1997).

A phenomenon that has received particular attention in both the human and animal literatures is the blocking effect (Kamin, 1969). Suppose that two cues, A and X, are repeatedly and consistently paired with a particular outcome O. X will be viewed as a weaker cause of O if A alone is repeatedly paired with O either before (forward blocking) or after (backward blocking) pairings of the AX compound with O. Some evidence has suggested that blocking is less pronounced in humans than in rats (De Houwer, Beckers, & Glaudier, 2002). However, recent experiments by Beckers et al. (2005, 2006) indicate that apparent differences between humans and rats in the conditions that promote blocking may reflect different assumptions about the cue-reward relationship, rather than any basic difference in causal learning processes between species. For both species, Beckers et al. showed that different pretraining conditions using unrelated cues could alter the learner’s assumptions and thereby prevent or promote the occurrence of classic phenomena such as forward and backward blocking (leading rats to behave more like humans, and vice versa).

The goal of this paper is to provide a computational explanation for these experimental findings based on Bayesian inference. Our theory proposes that experimental subjects, whether rats or humans, have available multiple models of cue integration appropriate for different situations (Waldmann, 2007; Lucas & Griffiths, 2007). From our computational perspective, pretraining influences the probability that causal learners will select a particular integration model during a subsequent learning session with different cues, and this choice in turn determines the magnitude of blocking effects.

Most previous statistical theories of human causal learning have focused on learning from summarized contingency data based on binary variables (Cheng, 1997; Griffiths & Tenenbaum, 2005). The computational theory described here instead provides a trial-by-trial model of learning from sequential data. For nonverbal animals, there is no obvious way to present summarized data; often, humans also must learn from sequential data. In particular, sequential models are required to account for influences of the order of data presentation (Danks, Griffiths, & Tenenbaum, 2003; Dayan & Kakade, 2000; Shanks, 1985). A computational theory should enable beliefs to be dynamically updated by integrating prior beliefs with new observations in a trial-by-trial manner. In addition, in conditioning experiments the outcomes (e.g., food reward) are generally continuous in nature (i.e., the magnitude of the reward may vary). A computational theory must therefore address continuous-valued as well as binary variables in order to integrate causal learning by humans with learning by other animals.
Bayesian Theory of Sequential Learning

Within our theory of causal learning, each causal model corresponds to a different probabilistic model for generating the data. For continuous-valued outcomes we use a linear-sum model (Dayan & Kakade, 2000), which has been used previously to explain many aspects of the blocking effect, and a noisy-MAX model, proposed here for the first time. The latter is a generalization of the noisy-OR model, which gives a good account of human causal learning about binary variables based on summarized contingency data (Cheng, 1997; Griffiths & Tenenbaum, 2005; Lu et al, 2007). The choice of model depends on the type of pretraining, and is determined by standard Bayesian model selection. These expectations based on pretraining carry over to influence the learner’s judgments in the subsequent causal learning task, even though the specific cues differ from those used in the pretraining.

We first introduce likelihood functions for the two different causal models assumed by our theory. We then describe the priors, the resulting full models, and model selection. Finally, we report simulations of experimental data and discuss how the present theory relates to others.

Causal Generative Models as Likelihood Functions

We focus on the relationship between two binary-valued causes x_1, x_2 (i.e. $x_i = 1$ if cause i is present, and $x_i = 0$ otherwise) and a continuous-valued outcome variable O. We define two continuous-valued hidden variables R_1, R_2. The hidden variables correspond to internal states that reflect the magnitudes of the effect generated by each individual cause. Each such magnitude corresponds to the weight of the corresponding cause, ω_1, ω_2, analogous to causal strength (Cheng, 1997). The generative model of the data, as shown in Figure 1, is given by

$$ P(O | \omega_1, \omega_2, x_1, x_2) = \int dR_1 \int dR_2 P(O | R_1, R_2) \prod_i P(R_i | \omega_i, x_i). \quad (1) $$

The first generative model is called the linear-sum model because the output O can be expressed as the sum of R_1 and R_2 plus Gaussian noise with mean 0 and variance σ^2_m,

$$ P(O | R_1, R_2) \propto \exp\{- (O - R_1 - R_2)^2 / (2\sigma^2_m)\} \quad (2) $$

The second generative model, termed the noisy-MAX model, is motivated by the successful noisy-OR model for causal reasoning with binary variables by humans (Cheng, 1997). To adapt the noisy-OR model for continuous outcome variables, we express it as a noisy-MAX,

$$ P(O | R_1, R_2) \propto \exp\{- (O - F(R_1, R_2; T))^2 / (2\sigma^2_m)\} \quad (3) $$

where the function $F(R_1, R_2; T)$ is a noisy-MAX function of R_1, R_2 specified by:

$$ F(R_1, R_2; T) = R_1 \frac{e^{R_1/T}}{e^{R_1/T} + e^{R_2/T}} + R_2 \frac{e^{R_2/T}}{e^{R_1/T} + e^{R_2/T}} \quad (4) $$

The parameter T determines the sharpness of the noisy-MAX function. As $T \rightarrow 0$, the noisy-MAX function becomes identical to the MAX function, i.e., equal to the maximum value of R_1 and R_2. By contrast, as $T \rightarrow \infty$ the noisy-MAX function approaches the average $(R_1 + R_2)/2$.

For both models, the hidden effects of the individual causes are assumed to follow a Gaussian distribution,

$$ P(R_i | \omega_i, x_i) \propto \exp\{- (R_i - \omega_i x_i)^2 / (2\sigma^2_\omega)\}, \quad i = 1, 2. \quad (5) $$

Causal Priors

To perform Bayesian estimation we must specify prior distributions on the weights $P(\omega_1), P(\omega_2)$, which we define as Gaussians with 0 mean and small variance σ^2_ω. This prior distribution expresses the default assumption that the weight of both causes is close to zero before observing any data.

For sequential presentation in a trial-by-trial dynamic manner, we also assume a temporal prior for the change of ω_1, ω_2 over time (i.e.,trials), as in Dayan and Kakade (2000).

$$ P(\omega_i^{t+1} | \omega_i) \propto \exp\{- (\omega_i^{t+1} - \omega_i)^2 / (2\sigma^2_T)\}, \quad i = 1, 2 \quad (6) $$

These temporal priors imply that weights may be slowly varying from trial to trial. The amount of variation is controlled by the parameter σ^2_T. As $\sigma^2_T \rightarrow 0$ the weights becomes fixed over trials, thus effectively switching off the temporal prior. For larger σ^2_T the weights can change significantly over trials.

Combining the Likelihood and Priors

We use the standard technique for combining likelihoods with temporal priors on the weights $P(\omega), P(\omega)$, which we define as Gaussians with 0 mean and small variance σ^2_ω. This prior distribution expresses the default assumption that the weight of both causes is close to zero before observing any data.

For sequential presentation in a trial-by-trial dynamic manner, we also assume a temporal prior for the change of ω_1, ω_2 over time (i.e.,trials), as in Dayan and Kakade (2000).

$$ P(\omega_i^{t+1} | \omega_i) \propto \exp\{- (\omega_i^{t+1} - \omega_i)^2 / (2\sigma^2_T)\}, \quad i = 1, 2 \quad (6) $$

These temporal priors imply that weights may be slowly varying from trial to trial. The amount of variation is controlled by the parameter σ^2_T. As $\sigma^2_T \rightarrow 0$ the weights becomes fixed over trials, thus effectively switching off the temporal prior. For larger σ^2_T the weights can change significantly over trials.

To perform Bayesian estimation we must specify prior distributions on the weights $P(\omega_1), P(\omega_2)$, which we define as Gaussians with 0 mean and small variance σ^2_ω. This prior distribution expresses the default assumption that the weight of both causes is close to zero before observing any data.

For sequential presentation in a trial-by-trial dynamic manner, we also assume a temporal prior for the change of ω_1, ω_2 over time (i.e.,trials), as in Dayan and Kakade (2000).

$$ P(\omega_i^{t+1} | \omega_i) \propto \exp\{- (\omega_i^{t+1} - \omega_i)^2 / (2\sigma^2_T)\}, \quad i = 1, 2 \quad (6) $$

These temporal priors imply that weights may be slowly varying from trial to trial. The amount of variation is controlled by the parameter σ^2_T. As $\sigma^2_T \rightarrow 0$ the weights becomes fixed over trials, thus effectively switching off the temporal prior. For larger σ^2_T the weights can change significantly over trials.
across the two blocking, i.e., the (solid) and cue \(X \) (dashed) as a function of trial and . Thus the model does not need to memorize cue-outcome pairs across all trials. If all the probabilities are Gaussian, then updating the probability distributions using Eqs. 7-8 simply corresponds to updating the means and covariance matrices using the standard Kalman filter equations (Dayan & Kakade, 2000). In the case of the noisy-MAX model, Eqs. 7-8 are applied directly in the distribution updating.

Parameter Estimation and Model Selection

There are two types of inference that we can make from the posterior distributions \(P(\omega' \mid O_{t}, \{\tilde{x}_j\}) \). First, we can perform parameter estimation to estimate the weights \(\omega_i \), i.e., the weights of causes after \(t \) trials. Second, we can evaluate how well each model fits the data and perform model selection (i.e., choose between the linear-sum and noisy-MAX models). As discussed by Lu et al. (2007), different experimental paradigms can be modeled as parameter estimation or model selection.

Parameter estimation involves estimating the weight parameters \(\hat{\omega}_t \). In our simulations, these estimates are the means of weights with respect to the distribution:

\[
\hat{\omega}' = \left[d\omega' P(\omega' \mid O_{t}, \{\tilde{x}_j\}) \omega' \right]. (9)
\]

Model selection involves determining which model is more likely to account for the observed sequence of data \(O_{t} \) and \(\{\tilde{x}_j\} \). For each model (linear-sum or noisy-MAX), we compute:

\[
P(\{O_t\} \mid \{\tilde{x}_j\}) = \prod_{i=0}^{t-1} P(O_{t-i} \mid O_{i}, \{\tilde{x}_{i+1}\}), (10)
\]

with the convention that

\[
P(O_t \mid O_{t}, \{\tilde{x}_j\}) = \int d\omega P(O_t \mid \tilde{\omega}, \tilde{x}_i) P(\tilde{\omega}). (11)
\]

Simulation of Blocking Experiments

We first report our simulations of traditional forward/backward blocking paradigms (Shanks, 1985) using linear-sum and noisy-MAX models. These two blocking effects provide a critical test for any sequential learning model. We then apply our Bayesian approach, e.g. using model selection, to a human experiment that employed pretraining (Beckers et al., 2005), and a similar conditioning experiment using rats (Beckers et al., 2006). The simulations will illustrate how our approach accounts for human and rat performance based on model selection and parameter estimation for sequential data.

Table 1: Design summary for a typical blocking experiment

<table>
<thead>
<tr>
<th>Blocking paradigm</th>
<th>Training phase 1</th>
<th>Training phase 2</th>
<th>test</th>
</tr>
</thead>
<tbody>
<tr>
<td>forward</td>
<td>8A+</td>
<td>8AX+</td>
<td>A, X</td>
</tr>
<tr>
<td>backward</td>
<td>8AX+</td>
<td>8A+</td>
<td>A, X</td>
</tr>
</tbody>
</table>

Figure 2 shows simulations of learning of weight for cue \(A (\omega_A, \text{ solid}) \) and cue \(X (\omega_X, \text{ dashed}) \) as a function of trial number in forward blocking (black) and backward blocking (gray) designs. Figure 2A, B shows predictions based on the linear-sum and the noisy-MAX model, respectively. Both models predict the basic phenomena, as the weight associated with cue \(X \) is weaker than the weight for \(A \) in both forward and backward blocking paradigms, and more so in the former. However, the linear-sum model predicts a larger weight difference than does the noisy-MAX model in both paradigms. Furthermore, for the weight associated with cue \(X \), the linear-sum model predicts a weaker weight in forward blocking (dashed black) than in backward blocking (dashed solid), which is an asymmetry between forward/backward blocking. The noisy-MAX model also predicts an asymmetry, although it diminishes as the number of trials increases. A novel prediction from the noisy-MAX in forward blocking is that the weight associated with cue \(A \) is expected to decrease to 0.5 after a large number of AX+ trials.
Impact of Pretraining on Human Judgments

We simulated results of a pretraining study with humans by Beckers et al (2005). Table 2 schematizes the experimental design. G and H indicate different food cues: + and ++ indicate a moderate or a strong allergic reaction, respectively. As shown in Table 2, additive pretraining involved G+ trials followed by H+, and then followed by GH++. Sub-additive pretraining involved G+ trials followed by H+, and then followed by GH+ trials.

The experiment included three phases: (a) pretraining, (b) elemental training, and (c) compound training. The elemental and compound training were always the same but the pretraining could be either additive or sub-additive for the two groups. In both groups, standard forward blocking trials with different food cues (A+ followed by AX+) were presented in phase 2 and 3. Note that the design used completely different cues in the pretraining phase 1 (cues G, H) and phases 2 and 3 (cues A, X, K, and L). If blocking occurs, we would expect the weight of cue X to be reduced by its pairing with cue A, due to the earlier elemental training on A in phase 2. K and L served as control cues, which were only presented in phase 3 as KL+ trials.

After completing these three phases, participants were asked to rate how likely each food cue separately would cause an allergic reaction. As indicated by the human results shown in Figure 4A, cue X was blocked after additive pretraining but not after sub-additive pretraining. More precisely, additive pretraining resulted in a lower rating for cue X than for the control cues K and L, consistent with absence of blocking for the control cues. In contrast, after sub-additive pretraining there was little difference among the ratings for X, K, and L.

We then computed the mean weights, using Eq. 9, for the models chosen by the model selection stage. These mean weights (see Figure 4B) constitute our simulation’s predictions for the causal ratings. The simulation results are in good agreement with the results for humans (Figure 4A). The linear-sum model generates accurate predictions for the additive group: the mean weight for X is much lower than weights for the control cues K and L, indicating blocking of causal learning for cue X. In contrast, the noisy-MAX model gives accurate predictions for the sub-additive group: the mean weight for X is about the same as the weights for the control cues K and L, consistent with absence of blocking for X.

Figure 4. Mean causal rating for each cue. (A) Human ratings in Experiment 2 by Beckers et al (2005); see their Figure 3, p. 243. Black bars indicate the mean rating for additive pretraining group; white bars for sub-additive pretraining group. (B) Predicted ratings based on the selected model for each group. Black bars indicate the mean weight of cue X based on the linear-sum model, which gives a good fit for the human means in the additive group. White bars indicate the mean weight of cue X based on the noisy-MAX model, which gives a good fit for the human means in the sub-additive group.

Impact of Pretraining on Rat Conditioning

Now we compare the predictions of the models to the experimental findings for a conditioning experiment with rats (Beckers et al., 2006). Animals were presented with cues that were associated with shocks while the animals pressed a lever.

Table 2: Design summary for human pretraining experiment in Beckers et al. (Exp. 2, 2005).

<table>
<thead>
<tr>
<th>Group</th>
<th>Phase 1: Pretraining</th>
<th>Phase 2: Elemental Training</th>
<th>Phase 3: Compound Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additive</td>
<td>8G+/8H+/8GH++/8I+/8Z-</td>
<td>8A+/8Z-</td>
<td>8AX+/8KL+/8Z-</td>
</tr>
<tr>
<td>Subadditive</td>
<td>8G+/8H+/8GH+/8I+/8Z-</td>
<td>8A+/8Z-</td>
<td>8AX+/8KL+/8Z-</td>
</tr>
</tbody>
</table>

Figure 3. Log-likelihood ratios for the noisy-MAX model relative to the linear-sum model for the additive group (black) and the sub-additive group (white) in human experiment by Beckers et al. (2005). The dashed line indicates the threshold for model selection.
We focus on two conditions: sub-additive and irrelevant element, as schematized in Table 3 (Beckers et al., 2006, Experiment 1). Animals in the experimental group received forward blocking training (A+ followed by AX+); control animals did not receive blocking training (B+ followed by AX+). Before the actual blocking training (phase 2 and phase 3), experimental and control animals in the sub-additive condition were exposed to a demonstration of two effective cues, C and D, that had sub-additive outcomes (i.e., C+, D+, CD+), or to an irrelevant pretraining (i.e. C+, D+, E+). The number of lever-press responses to X after phase 3 was measured for all animals.

<table>
<thead>
<tr>
<th>Condition and group</th>
<th>Phase 1: Pretraining</th>
<th>Phase 2: Elemental Training</th>
<th>Phase 3: Compound Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subadditive</td>
<td>4C+/4D+/4CD+</td>
<td>12A+</td>
<td>4AX+</td>
</tr>
<tr>
<td>Control</td>
<td>4C+/4D+/4CD+</td>
<td>12B+</td>
<td>4AX+</td>
</tr>
<tr>
<td>Irrelevant element</td>
<td>4C+/4D+/4E+</td>
<td>12A+</td>
<td>4AX+</td>
</tr>
<tr>
<td>Experimental</td>
<td>4C+/4D+/4E+</td>
<td>12B+</td>
<td>4AX+</td>
</tr>
</tbody>
</table>

Table 3: Design summary for the rat pretraining experiment by Beckers et al. (Exp. 1, 2006).

We used the same translation to the model notation as before. We set the threshold such that without any training, the linear-sum model would be preferred over the noisy-MAX model, as evidence suggests that rats typically assume linear integration (Beckers et al., 2006, p. 98; see also Wheeler, Beckers, & Miller, 2008). We computed the log-likelihood ratios for the pre-testing data, using Eq. 10, to confirm that the noisy-MAX model was selected for the sub-additive condition and the linear-sum model for the irrelevant condition. The results are shown in Figure 5. We used model parameters $\sigma_x = 0.6, \sigma_f = 0.6, \sigma_a = 0.01, T = 0.3$ in the simulations. Compared to the parameter set used for the human experiments, we increased the variance for the temporal prior to speed up causal learning of cues (perhaps reflecting the high salience of electric shock as an outcome).

Beckers et al. (2006) used the suppression ratio of cue X as a measure of rats’ causal judgment about cue X. A value of 0 for the suppression ratio corresponds to complete suppression of bar pressing (i.e., high fear of cue X), and a value of 0.5 corresponds to a complete lack of suppression (i.e., no fear of X). Figure 6A shows the mean suppression ratios for experimental and control animals in Experiment 1 of Beckers et al. (2006).

We model the suppression ratio as a function of the predicted mean weight of cue X, $\overline{\omega_X}$, with Eq. 9. Assuming that the mean number of lever presses in the absence of cue X is N, the expected number of lever presses in the presence of cue X will be $N - N\sigma_X$. Accordingly, the predicted suppression ratio can be computed as:

$$\text{suppression ratio} = \frac{N - N\sigma_X}{N - N\sigma_X + N} = \frac{1 - \overline{\omega_X}}{2 - \overline{\omega_X}} \quad (12)$$

Figure 6B shows the predictions of selected models for the two conditions tested by Beckers et al. (2006). Similar to the results obtained when modeling the human data, the noisy-MAX model was selected for the sub-additive condition, and the linear-sum model for the irrelevant condition. Accordingly, the suppression ratio was estimated using the noisy-MAX model for the sub-additive condition. The suppression ratio in the irrelevant condition was computed by the linear-sum, because the default model was assumed to favor the linear-sum given that irrelevant pretraining data did not provide clearly discriminative information for model selection. As shown in Figure 6B, there was no significant difference in the suppression ratio for the noisy-MAX model, in agreement with rat data showing no significant difference between the experimental and control groups with sub-additive pretraining. In contrast, suppression ratios differed between experimental and control groups using the linear-sum model in agreement with the rat data showing a significant difference between the experimental and control groups with irrelevant element pretraining.

General Discussion

The Bayesian theory of sequential causal learning described in the present paper provides a unified explanation for important learning phenomena observed with both humans and rats. In particular, the theory accounts for influences of pretraining on subsequent learning with completely different stimuli (Beckers, et al., 2005, 2006). The key assumption is that learners have available multiple generative models, each reflecting a different integration rule for combining the influence of multiple causes (cf. Lucas & Griffiths, 2007; Waldmann, 2007). When the outcome is a continuous variable, both humans and rats have tacit knowledge that multiple causes may have a summative
impact on the outcome (linear-sum model). Alternatively, the outcome may be effectively “saturated” at a level approximated by the weight of the strongest individual cause (noisy-MAX). Using standard Bayesian model selection, the learner selects the model that best explains the pretraining data, and then employs the favored model in estimating causal weights with different cues during subsequent learning. Note that the information provided in Phases 2-3 is identical for both groups; hence only Phase 1 (pretraining) is relevant to model selection.

A key component of the sequential learning theory is the temporal prior, which controls dynamic updating of the estimated weight of each cue in a trial-by-trial manner. The temporal prior allows the theory to explain both forward and backward blocking effects, and more generally captures the influence of trial order on causal learning. Trial-order effects are outside the scope of models that only deal with summarized data (e.g., Cheng, 1997; Griffiths & Tenenbaum, 2005; Lu et al., 2007).

The present theory is also more powerful than previous accounts of sequential causal learning. The Rescorla-Wagner model (Rescorla & Wagner, 1972) and its many variants (see Shanks, 2004) only update point estimates of causal strength, and thus are unable to represent degrees of uncertainty about causal strength (Cheng & Holyoak, 1995). By adopting a Bayesian approach to learning probability distributions, the present theory provides a formal account of how a learner’s confidence in the causal strength of a cue will be expected to change over the course of learning. The same limitation (updating point estimates of strength, rather than probability distributions) holds for a previous simulation of sequential learning based on the noisy-OR generative model (Danks, Griffiths & Tenenbaum, 2003). Most importantly, the present theory goes beyond all previous accounts of dynamical causal learning (e.g., Dayan & Kakade, 2000) in its core assumption that learners, both human and non-human, are able to flexibly select among multiple generative models that might “explain” observed data. The theory thus captures what appears to be a general adaptive mechanism by which biological systems learn about the causal structure of the world.

Acknowledgments
Preparation of this paper was supported by a Postdoctoral Fellowship and a Travel Grant from the Research Foundation - Flanders (FWO Vlaanderen) to TB, and a grant from the W. H. Keck Foundation to AY.

References

