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Abstract

Novel technologies, such as the 10k Affymetrix genotyping array, allow scoring of genetic

polymorphisms at a very high density across the genome. This allows researchers to conduct

traditional inquiries at an unprecedented resolution, while simutaneously motivates novel types

of analysis, aimed at exploiting the increased information contained in these datasets. We

consider how genotypes of cancer cell lines can be used to reconstruct genomic loss events

and map putative tumor suppressor genes (TSG). Using a hidden Markov model framework,

we adapt a previously described model for genomic instability in cancers to the current data

structure. Simulations indicate that our procedure can be powerful and accurate and initial

application to real data leads to encouraging results.

1 Introduction

Large scale genomic variation is receiving increasing attention from the scientific community (Pol-

lack et al., 2002; Bignellet al., 2004; Coxet al., 2005; Iafrateet al., 2004; Sebatet al., 2004).

Along the process that leads to tumorigenesis, genomic stability is impaired: cancer cells present a

higher rate of genomic losses and duplications. Moreover, some of these variations in copy number

may determine the cancerous status of the cells, for instance by inactivating a tumor suppressor

gene. Observed cancer cells are often considered to be selected to favor genomic losses in par-

ticular regions harboring tumor suppressor genes (TSG). Indeed, genomic losses have often been

studied in cancer cells with the precise intent of locating TSGs (Newtonet al. (1998) provides a

comprehensive review of the biological process). Generally, a link between copy number variation

and altered behaviour of cancer cells has been established (Pollacket al. 2002, Coxet al., 2005).

Concurrently, it has recently become apparent that there are a number of genetic polymorphisms

that consist of large scale genomic variations (e.g. considrably sized genomic deletes and dupli-

cates) that arise or are transmitted through the germline (Iafrateet al., 2004; Sebatet al., 2004).
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While these two biological processes are very different, their effects can be measured with the

same technology. For a number of years, large scale studies of genomic instability were limited to

the case of cancers, and variation in copy numbers was assessed by genotyping tumor tissue and

a normal cell from the same individual. In these studies, the fact that a marker is heterozygous in

the normal cell and a homozygous in the cancer cell, can be considered as evidence that one of

the chromosomes of the individual under study experienced a loss of genetic material and, hence,

only the allele residing on the other chromosome remains to be detected. (Symmetrically, one

could explain this result in terms of increase in copy number of one of the chromosomes, such that

the signal from the duplicated allele overwhelms the one from the other). Newtonet al. (1998)

(Newton and Lee, 2000; Newton, 2002, Newtonet al., 2003) propose a model for the analysis of

this loss of heterozygosity (LOH) data and demonstrate how to apply it to locate putative tumor

suppressor genes.

Recently, a number of other technologies have been developed that enable a more direct and

high throughput assessment of copy number variations: these include comparative genomic hy-

bridization (CGH), and array-based CGH (Pinkelet al., 1998; Bignellet al. 2004). Due to these

technological advancements, scientists are able to observe recently documented large scale ge-

nomic variation (Iafrateet al., 2004; Sebatet al., 2004). A number of statistical methods have

been proposed to analyze the data from these experiments (Fridlyandet al., 2004; Lai and Zhao,

2005; Wanget al., 2005). Simultaneously, genotyping technology has evolved, and we are now

able to measure polymorphic sites at a much higher density than just a few years ago. Thus LOH

remains a powerful method of investigation. For example, recent studies have shown how geno-

typing arrays can be used to conduct effective copy number investigations (Limet al., 2004). One

advantage of high density genotyping is that one can potentially gather information on copy num-

ber without the concurrent need to type both a “normal” and “case” cell from the same individual.

This is due to the aboundance of markers which provide a fine resolution snapshot of the genome,

in which a “long” contiguous stretch of homozygous SNPs calls can be interpreted as the result of a
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genomic alteration (with appropriate caveats). When one considers this potential (already noted in

Lim et al., 2004), developing methods that enable the use of high density genotypes to study copy

number variations becomes an important goal. While other techniques may lead to more direct

and precise measurements, and should likely be preferred if the primary goal of the study is de-

tection of copy number variations, genotyping is done routinely on large scale both for tumor and

normal cells. Failing to identify detectable changes in copy numbers from these data may result in

erroneous interpretation of the results of the study, in addition to a loss of useful information.

In this paper, we focus on the use of high density SNP genotyping for the study of genomic

instability in cancer cells. In a companion study (Wanget al., 2005) we analyze the case of large

scale genomic variation. In the next section we present a model for genotypes in the presence

of genomic instability and selection. We subsequently illustrate how to estimate the instability

parameters of the model and how to reconstruct the most likely profiles of genomic alteration

from an individual’s genotype data. Section 4 contains the description of a likelihood ratio test to

identify location of a tumor suppressor gene, and Section 5 illustrates our results with simulated

and real data. We conclude with a discussion.

2 A model for genotypes under genomic instability and selec-

tion

We assume that the results of high density SNP genotyping across the genome are available for

T cancer cell lines. In particular, we consider the case where the 10k genotyping array from

Affymetrix is used, leading to the scoring of 10913 markers across the genome, at approximately

intervals of 0.3 megabases. The methodology we will describe can be used with allele calls pro-

duced with other platforms, but it is tailored for high density genotyping—necessary to inform

the inference of genomic aberrations from the genotype of cancer cells only. We denote with
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Y = {yi}M
i=1 the sequence of genotypes atM markers for one cell line: eachyi can take on one

of four possible values:(AA, AB, BB,−), corresponding to the three genotypes and a “no call”

value. We will assume independence between genotypes corresponding to markers on different

chromosomes. It is convenient to group markers according to the chromosome where they are

located:Xk = {xki}mk
i=1 will indicate the genotypes of themk markers on chromosomek, so that

Y = {Xk}22
k=1. When unnecessary for clarity, we will avoid using the indexk, so thatX = {xi}m

i=1

the collection of genotypes for markers in an unspecified chromosome. We use the superscriptt to

identify cell lines, so that the entire collection of our data is{Y t}T
t=1.

Newtonet al. (1998) and Newton and Lee (2000) describe the model for genomic instability

and selection in cancer cells that we use for our analysis. We refer the interested reader to these

original papers to fully appreciate the underlying biological hypotheses, and we limit ourselves to

a brief exposition. The substantial difference between the work presented in Newtonet al. (1998),

Newton and Lee (2000) and ours study resides in the fact that these previous authors asserted LOH

calls, from the availability of genotypes from both a cancer and a normal cell from the same indi-

vidual. Here we assume that only cancer cells are typed: the genomic loss process is unobserved,

and we need to describe how it is reflected in the genotypes of cancer cells. The framework of

hidden Markov models appears as a natural solution. We start considering the instability compo-

nent of the model, and data from one cell line. LetΠ = {πi}m
i=1 denote the genomic loss process

at the positions corresponding to each of them markers on a chromosome:πi = 0 indicates no

genomic alterations at the location of thei-th marker andπi = 1 indicates an alteration. In the

following we will refer to alterations as a loss, since the model by Newtonet al. (1998) that we

are adapting was conceived specifically for losses; however, it is quite possible to interpret the

detected abnormalities as increases in genomic copy number. Withdi we indicate the distance in

megabases (Mb) between markeri andi + 1. Thus set the notation, the transition probabilities of
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the hidden Markov process can be described in terms of two parametersδ andη: t(πi+1 = 1 | πi = 1) t(πi+1 = 0 | πi = 1)

t(πi+1 = 1 | πi = 0) t(πi+1 = 0 | πi = 0)

 =

 1− (1− δ)(1− e−ηdi) (1− δ)(1− e−ηdi)

δ(1− e−ηdi) 1− δ(1− e−ηdi)

 .

The parameterδ represents the sporadic loss rate, that is the probability that any location in the

genome is lost in a random individual. The parameterη is used to model the dependency of the

Markov process and the length of the genomic losses. In this framework the distance between two

change-points in theπ process is modeled similarly to the distance between two recombination

events (Lange, 2002). Note thatt(πi+1 = 1 | πi = 1) → 1 and t(πi+1 = 0 | πi = 0) → 1

asdi → 0. The adequacy of this model to describe genomic instability in cancer cells has been

discussed by Newtonet al. (1998) and supported by its successful application in empirical studies

(see, for example Milleret al., 2003). In this model,δ andη are constant across a region spanned

by linked markers. Depending on the nature of the data acquired, it may be sensible to assume that

each chromosome is characterized by a specific value ofδ andη; additionally, it may be appropriate

to allow these parameters to be cell-line specific.

To link the unobserved loss process to the genotype data, we use the following emission prob-

abilities: e(xi = AA | πi = 1) e(xi = AB | πi = 1) e(xi = BB | πi = 1) e(xi = − | πi = 1)

e(xi = AA | πi = 0) e(xi = AB | πi = 0) e(xi = BB | πi = 0) e(xi = − | πi = 0)



=

 PA,i(1− τ) 0 (1− PA,i)(1− τ) τ

P 2
A,i(1− κ) 2PA,i(1− PA,i)(1− κ) (1− PA,i)

2(1− κ) κ

 , (1)

wherePAi
is the frequency of alleleA for the ith marker,τ is the missing rate in loss regions,

andκ is the missing rate in regions with no genomic aberrations. The difference in missing rate

is due to the fact that the loss region may produce an “anomalous” intensity signal, filtered out by

quality control mechanisms and resulting in “no call”s. In the presence of a genomic loss, only

homozygous genotypes are observed, and the relative abundance ofAA andBB depends on the
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allele frequenciesPA,i. While the emission probabilities (1) do not account for genotyping error,

this effect can be easily incorporated. More substantial modification of the emission probabilities

are needed, instead, to consider linkage disequilibrium across markers. We discuss such modifica-

tions in a companion paper (Wanget al., 2005). The likelihood of a genotype sequenceX under

the instability model can be evaluated with standard HMM recursion formulas. In particular, if we

defineα(πi) = Pr(x1, . . . , xi, πi), andβ(πi) = Pr(xi+1, . . . , xm|πi), we have:

α(πi) =
∑

πi−1=0,1

α(πi−1)t(πi|πi−1)e(xi|πi)

β(πi) =
∑

πi+1=0,1

β(πi+1)t(πi+1|πi)e(xi+1|πi+1).

Then, for example Pr(X) =
∑

πm=0,1 α(πm). To emphasize that this probability depends only on

the instability component of the model, we will indicate it withPI(X). A version of the afore-

mented recursion formulas can also be used to evaluate conditional probabilitiesPI(X|πs = k),

which will be relevant in the following.

Newtonet al. (1998) describe the selection effect that is the basis of the possible localization

of tumor suppressor genes, and we adopt the same model. They consider the possibility of one

tumor suppressor gene per chromosome. Two parameters are introduced:s represents the location

of the tumor suppressor gene, andωs the probability that a cancer cell line has a loss at positions.

The likelihood of a genotype sequence, once the selection effect is introduced, can be written as:

Pr(X) = ωsPI(X|πs = 1) + (1− ωs)PI(X|πs = 0),

wherePI(X|πs) depends on the instability process. In order to map a tumor suppressor gene,

one needs to acquire data on multiple cell lines, so that the complete data for analysis will be a

collection of genotype sequencesX1, X2, . . . , XT on the same chromosome. The data likelihood

is then:

L(X1, . . . , XT |δ, η, ω, τ, s) =
T∏

t=1

(ωPI(X
t|πt

s = 1) + (1− ω)PI(X
t|πt

s = 0)).
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GivenL(X1, . . . , XT |δ, η, ω, τ, s), we can estimate the model parameters, reconstruct the location

of most likely losses, and attempt mapping the tumor suppressor gene. We will assume that allele

frequenciesPA,i are known: Affymetrix, for example, provides an estimate of allele frequencies

for all the SNPs on its genotyping chip. We will also assume a known background “NoCall” rate:

typically this can be estimated in each laboratory without much difficulty using a set of genotypes

from normal individuals. The parameters we then need to estimate areη, δ, τ for the instability

component of our model andωs ands for the selection effect.

3 The instability model: parameter estimation and reconstruc-

tion of genome losses

Our estimation strategy rests on the assumption that the large number of typed markers allows us

to gather enough information on the sporadic loss process that its parametersη, δ, andτ can be

estimated separately fromω and the TSG locations. This is certainly the case when one is typing

SNPs at high density genomewide,η, δ, andτ are constants across chromosomes and individuals,

and there is only one TSG per chromosome—which is the situation we consider in this paper.

However, the same assumption may be appropriate whenη, δ, andτ vary across chromosomes

and individuals, and when there are multiple TSGs—depending on the marker density and the

value of the parameters. In the cases in which this assumption appears inadequate, one would not

resort to the two stage strategy for estimatingη, δ, τ, ω ands that we describe below, but would

need to simultaneously estimate all of these parameters. This is not difficult theoretically, and

the likelihood derivatives given in the following can be used to describe such a maximization

routine. We did not pursue this strategy because the nature of the data we were interested in made

it unnecessary and computationally very intensive. Note that if a smaller number of markers is

typed—so that the proposed assumption may be inadequate—the number of computations will also
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be significantly reduced, making the simultaneous estimation strategy more feasible (simultaneous

estimation is carried out, for example, in Newtonet al. 1998).

To estimate the parameters of the instability model,δ, η andτ , we use a maximum likelihood

approach and a gradient algorithm. As anticipated, we consider a likelihood that is based solely on

the instability component of our model:

logLI(Y
1, . . . , Y T |η, δ, τ) =

T∑
t=1

22∑
k=1

log PI(X
t
k).

To describe the form of the first derivatives of the loglikelihood with respect to the three parameters

of interest, it is easier to focus initially on one termPI(X
t
k) = PI(X). When the hidden state

Π = (πi) is known, we obtain

PI(X, Π) = PI(x1, · · · , xm, π1, · · · , πm) = p(π1)
m−1∏
i=1

t(πi+1 | πi)
m∏

i=1

e(xi | πi).

Thererfore,
∂PI(X, Π)

∂t(πi+1 | πi)
=

PI(X, Π)

t(πi+1 | πi)

∂PI(X, Π)

∂e(xi | πi)
=

PI(X, Π)

e(xi | πi)
.

Now, recalling that the likelihood of the data isPI(X) =
∑

π1,··· ,πm
PI(X, Π), and that we can

carry out the summations with respect toπi using the forward and backward recursions, we obtain
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the following expression for the partial derivative forη:

∂PI(X)

∂η
= =

∂
∑

π1,··· ,πm
PI(X)

∂η
=

∑
π1,··· ,πm

∂PI(X, Π)

∂η

=
∑

π1,··· ,πm

m−1∑
i=1

PI(X, Π)

t(πi+1 | πi)

∂t(πi+1 | πi)

∂η

=
m−1∑
i=1

∑
πi

∑
πi+1

1

t(πi+1 | πi)

∂t(πi+1 | πi)

∂η

∑
π1,··· ,πi−1
πi+2,··· ,πm

PI(X, Π)

=
m−1∑
i=1

∑
πi

∑
πi+1

PI(X, πi, πi+1)

t(πi+1 | πi)

∂t(πi+1 | πi)

∂η

=
m−1∑
i=1

∑
πi

∑
πi+1

α(πi)e(xi | πi+1)β(πi+1)
∂t(πi+1 | πi)

∂η
,

whereα(πi) andβ(πi) are computed by the forward and backward algorithms. Similarly, we have

∂PI(X)

∂δ
=

∑
π1

α(π1)β(π1)
∂t(π1)

∂δ
+

m−1∑
i=1

∑
πi

∑
πi+1

α(πi)e(xi | πi+1)β(πi+1)
∂t(πi+1 | πi)

∂δ
,

wheret(π1 = 1) = δ andt(π1 = 0) = 1− δ. And finally, for the parameterτ :

∂PI(X)

∂τ
=

m∑
i=1

α(πi = 1)β(πi = 1)

e(xi | πi = 1)

∂e(xi | πi = 1)

∂τ
.

The derivatives of the log-likelihood can be easily computed from the expressions given above and

used to set up a gradient algorithm:

δ(t+1) = δ(t) + λδ
∂ log PI(X)

∂δ |δ=δ(t)

η(t+1) = η(t) + λη
∂ log PI(X)

∂η |η=η(t)

τ (t+1) = τ (t) + λτ
∂ log PI(X)

∂τ |τ=τ (t)
,

with λ indicating the step size. It is also quite clear how different assumptions on variability of

the parametersη, δ, τ across chromosomes and individuals will result in derivatives of the log-

likelihood obtained using summations across different index sets.
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Once an estimate of the instability parameters is obtained, this can be used to reconstruct the

most likely genomic aberration profileΠt
k for each of the individuals and chromosomes in the

sample, using a standard Viterbi algorithm (see, Durbinet al., 1998). This represents by itself an

interesting output of our procedure, as it allows scientists to gather information on location and

size of genomic losses from data that consist only in genotypes of cancer cells. Indeed, some

researchers may consider this as the only output of interest, and not subscribe to the selection

model for identification of TSGs that we will describe in the following section. For this reason, we

preferred to opt for the 2-stage procedure.

4 The selection effect: likelihood ratio test to identify tumor

suppressor gene locations

For the purpose of identifying the locations of a tumor suppressor gene and the increased proba-

bility of genomic lossωs associated with this location, we conduct a series of likelihood ratio tests,

wheres is allowed to vary position across the entire chromosome, and the hypothesisHs
0 : δ = ωs

vs Hs
1 : δ ≤ ωs is tested at each of the examined locationss. The genomic region for which the

hypothesisHs
0 cannot be rejected will be considered as likely regions to harbor tumor suppressor

genes, and the correspondingωs will describe the selection effects. At this stage, the parameters

δ, η, τ are considered known, so that for each explored locations we have to maximize the likeli-

hood only with respect to the parameterωs. Recall that for a given locations, the likelihood of the

chromosome data is:

L(X1, . . . , XT |δ, η, ωs, τ, s) =
T∏

t=1

(ωsPI(X
t|πt

s = 1) + (1− ωs)PI(X
t|πt

s = 0)).

Notice thatL(X1, . . . , XT |δ, η, ωs = δ, τ, s) =
∏T

t=1 PI(X
t | η, δ, τ). Furthermore, taking the

logarithm ofL we obtain a concave function ofωs; indeedlogL(ωs) =
∑T

t=1 log(ωs(PI(X
t|πt

s =

1)−PI(X
t|πt

s = 0))+PI(X
t|πt

s = 0)) is the sum of logarithms of affine functions, hence the sum

12



of concave functions is thus concave. This allows us to conclude that there is only one maximum

for logL(ωs) and forL(ωs). In carrying out this series of likelihood ratio tests we follow the

convention used in linkage genome scans of recording the logarithm base 10 of the inverse of the

likelihood ratio, called LOD score; precisely, at each examined locations our test statisticsLs will

be

Ls =


log10

L(X1, . . . , XT |δ, η, ω∗
s , τ, s)∏T

t=1 PI(X t | η, δ, τ)
ω∗

s = argmaxL(X1, . . . , XT |δ, η, ωs, τ, s) > δ

0 ω∗
s < δ

In terms perhaps more familiar to statisticians, thatLs can be interpreted as a profile log-likelihood

ratio. Thes∗ location that maximizesLs represents a candidate tumor suppressor gene location.

To decide if the evidence in favor ofω∗
s > δ is sufficient, one needs to further examine the value of

Ls∗ and determine if such a difference in likelihood values is attributable to random chance or not.

We will return to this point in the following.

To maximizeL(X1, . . . , XT |δ, η, ωs, τ, s) as a function ofωs it is convenient to use an EM

algorithm. If we considerπ1
s , . . . π

T
s , loss status at locations for theT cell-lines in the sample as

missing data, we obtain the following complete data likelihood:

P (X1, . . . , XT , π1
s , . . . , π

T
s |ω, s) =

T∏
t=1

(ωPI(X
t | πt

s = 1))πt
s((1− ω)PI(X

t | πt
s = 0))(1−πt

s),

leading to the complete data log-likelihood below:

log P (X1, . . . , XT , π1
s , . . . , π

T
s |ω, s) =

T∑
t=1

πt
s log(ω)+(T−

T∑
t=1

πt
s) log(1−ω)+

T∑
t=1

log PI(X
t | πt

s).

The last term does not depend onω, so we can omit it from consideration in the following. The

EM iterations will be based on the following expected complete data log-likelihood:

Q(ω|ω(l)) =
T∑

t=1

E(πt
s|X t, ω(l)) log(ω) + (T −

T∑
t=1

E(πt
s|X t, ω(l))) log(1− ω).

For the expectation step, we will have:

E(πt
s|X t, ω(l)) = Pr(πt

s = 1|X t, ω(l)) =
PI(X

t|πt
s = 1)ω(l)

PI(X t|πt
s = 1)ω(l) + PI(X t|πt

s = 0)(1− ω(l))
.
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MaximizingQ(ω|ω(l)) leads toω(l+1) =
∑T

t=1 E(πt
s|X t, ω(l))/T .

We now return to the problem of determining which locationss, corresponding to high val-

ues ofLs, should be considered serious candidates for a TSG. First, note thatLs has a reasonable

interpretation in terms of how much more likely the data is underHs
1 thenHs

0 , and that the re-

searcher may want to select a threshold value that better represents their interpretation of the study

results. On purely statistical grounds, the determination of an appropriate cut off depends on the

distribution ofLs under the nullHs
0 and on the necessity of taking into account that multiple tests

are being performed. Furthermore, notice that the testsLs1 andLs2 corresponding to two locations

on the same chromosome are not independent. To determine a significance cut-off one ideally

would like to know the distribution of the entire process{Ls}s under the complete null hypothesis.

Unfortunately, this is unknown at this stage. The marginal distribution ofLs, asT → ∞, can be

roughly approximated using the known results for likelihood ratio tests: underHs
0 , 2 ln 10Ls is

asymptotically distributed as a 50:50 mixture of a mass at zero andχ2
(1) (the mass at zero derives

from the fact that we place a constraint on the values ofω > δ, and the 0.5 mixing coefficient can

be derived from the consistency and gaussianity of the MLE ofωs). While this approximation of

the distribution ofLs is rather crude, it provides us a guideline of what a reasonable significance

cut-off may be. The appropriate cut-off forLs depends on the distribution ofLs and, roughly

speaking, on the number of “effectively independent” tests, which is determined by the length of

the segment of the genome studied and the value of theη parameter. We suggest that once the

instability parameters are estimated, a small scale simulation study be conducted where genotype

data with the same structure as the real one is generated from the instability model, with no selec-

tion effect, and a cut-off forLs that controls the desired measure of error rate to be determined. It

may be of use to refer once again to the analogy with linkage mapping which carries through in

terms of distribution forLs: in these genetic mapping studies, a value ofLs greater than 3, or 3.5

is typically considered strong evidence in favor ofHs
1 (Lander and Kruglyak, 1995).
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5 Simulations and data example

In this section we illustrate the proposed methodology with a small scale simulation study and

by applying it to a real dataset. When we simulate data, we consider the same structure of the

Affymetrix 10k mapping arrays: 10913 SNPs covering 22 autosomal chromsomes with an average

distance of 230 kb. To generate genotypes we use the population allele frequencies provided by

Affymetrix. Our simulations are small scale, in that we did not consider a series of possible values

for the model parameters, but we simply chose one and evaluated the performance of our model

in one case. Our intention is not to investigate the performance of our model overall, but simply

to illustrate its potential. We chose instability parameter values that are realistic for at least some

biological settings:δ = 0.1, η = 0.2, κ = 0.08, τ = 0.13. As far as the selection component of our

model, we postulated one tumor suppressor gene at location 49.10 Mb on chromosome 1.

The first goal of our simulation was to evaluate the effectiveness of our procedure for the

estimation of the instability parameters. We attempted estimation of these parameters using data

from one individual only. To ensure that the presence of a TSG would not introduce distortions,

we constrained the location 49.10 Mb on chromosome 1 to be lost and generated the rest of the

data from the instability model. We repeated this 100 times and estimated in each case the three

parametersδ, η, andτ . Results are presented in Figure 1: mean and median of the estimators are

both concordant with the true parameter values, and the spread is reasonably small.

Using the estimates of the instability parameters and the Viterbi algorithm, we subsequently

reconstructed the loss status for each of the simulated cancer cell lines. We evaluated this recon-

struction in terms of sensitivity (fraction of SNPs in regions of genomic loss that are correctly de-

scribed) and specificity (fraction of SNPs in normal genomic regions that are correctly described).

Figure 2 presents the histograms of sensitivity and specificity across the 100 cases: the perfor-

mance is quite satisfactory, with average sensitivity 0.86 and specificity 0.99.

We then turn to investigate the effectiveness of our algorithm for the localization of the tumor
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suppressor gene. For this problem we considered the same parameter settings described above,

ω=0.3, and genotypes from 50 cancer cell lines. We generated 100 datasets, and applied to each

of them the two-step procedure consisting of estimating the instability parameters first and then

attempting localization of the TSG. Our estimates of the instability parameters are quite good

(unsurprisingly better than the one described above, due to the larger abundance of data). We

evaluated the LOD curve at roughly 10,000 locations in the genome corresponding to the mid-

point between each of the markers available. To determine the appropriate significance threshold

for the LOD score curve, we conducted a simulation study using the true values of the instability

parameters. Given the quality of our estimates, this does not represent a significant short-cut: the

value 3.5 resulted in control of the family wise error rate at the 0.05 level. Figures 3 and 4 illustrate

the results in one of our simulations. The LOD score curve across the entire genome is presented

in Figure 3: only the area on chromosome one corresponding to the location of the TSG leads to

values higher than 3.5. Figure 4 provides a more detailed illustration of the data on chromosome

one and our analysis for this simulation: comparing panels (a) and (b) one can appreciate the de-

noising achieved with the reconstruction of the most likely loss profile. Simultaneously, theωs

estimates and the LOD curve (based on the simultaneous analysis of all cell lined) detect signals

that are not enriched sufficiently at the level of individual tumors to be interpreted as losses.

When we analyze the results of the 100 simulations, we obtain a power to detect the TSG

on chromosome 1 equal to 0.5. The actual FWER is 0.05 and the FDR 0.037 (to estimate these,

we considered as a false discovery any location leading to a LOD> 3.5 and more than1/η away

from the true TSG). The relatively low power can be explained considering thatω and the average

size of losses (as determined byη) are both relatively small. Furthermore, it is noteworthy that

we generated our dataset settingω=0.3, but we did not fix the actual fraction of cancer cells in the

sample to be 0.3; this reduces the overall power. Figure 5 illustrates how the LOD score at the

TSG location varies as a function of the actual proportion of losses in the sample. From Figure 5

is also evident that largerω values will increase power; a larger sample size will also obviously

16



do so. The effect ofη andδ on power cannot be deduced from our simulations. Higher values of

δ would make sporadic losses more common, and higher values ofη would make sporadic losses

shorter (and hence less likely to overlapp): changes in these parameters will affect the significance

cut-off level and likely the power.

While the results of this small scale simulation study appear fairly positive, one must recall

that we generated the data according to the model we used to analyze them. Our simulation allows

us to verify the accuracy of our algorithm and evaluate the power of our procedure in an ideal

situation, but it does not reflect the difficulties that we may encounter in the analysis of real data.

To partially address this concern, we now turn to the analysis of a small dataset, collected by our

colleagues at UCLA that motivated this methodology development. In a pilot study, Affymetrix

10k arrays were used to genotype 11 samples of primary brain tumors. In the initial analysis,

whose results we report here, we assumed that the instability model parametersδ, η, andτ were

constant across chromosomes and cell lines. Their estimated values wereδ = 0.1638, η = 0.6777,

τ = 0.1398. A simulation study suggested the value of 3.8 as a cut-off forLs in order to control

FWER at 0.05. Only one region in the genome reached that level, on the short arm of chromosome

9: data and LOD score are reported in Figure 6. Interestingly, this region is known to harbor a

tumor suppressor gene, referred to as p16 (Lucaset al., 1995). Considering the data in Figure 6

leads to a few remarks. There are four samples that are almost entirely homozygous on the short

arm of chromosome 9, and two with high loss rates: this is reflected in an overall higher level of the

LOD curve. The maximum LOD score, however, is not reached in correspondence of the known

TSG. The length of these losses is quite higher than what is predicted by the value ofη: while this

makes the signal quite strong in this region, it can also be interpreted as a model failure; we are

currently exploring more careful analysis of the data, allowing instability parameters to vary across

cell lines and chromosomes.
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6 Discussion

We describe a model to reconstruct genomic losses in cancer cell lines from genotype data and

to identify the likely location of tumor suppressor genes on the basis of genotype data from a

collection of cancer cell lines. Our model for the process of genomic loss is taken from Newtonet

al. (1998), and we coupled it with a hidden Markov model to specify how the process of genomic

loss is translated in observations on genotypes of the cancer cell line only. The study design we

consider and the choices at the foundation of our computational strategy are based on the use of

high density SNP genotyping, as obtained with Affymetrix 10k arrays, which allow scoring of

10,000 polymorphisms across the human genome.

When only genotype data from cancer cell lines are available, information on genomic losses

is contained in stretches of homozygous markers: the longer the stretch of homozygosity, the less

likely that such multilocus genotypes may be observed in absence of genomic aberrations. While

in our model genomic loss is the only cause for increased multilocus homozygosity, there are other

mechanisms that can potentially generate genotypes with similar characteristics: in particular, in-

breeding (Leuteneggeret a., 2003) and linkage disequilibrium (Sabatti and Risch, 2002; Rosenberg

and Calabrese, 2004) are important alternative explanations for increased homozygosity. We now

briefly discuss the implications of these observations.

Linkage disequilibrium is the terminology used in genetics to indicate association between al-

leles at nearby markers. The model for genotypes given the genomic loss statusΠ that we proposed

assumes linkage equilibrium, that is absence of association. As the distance between neighboring

markers decreases, this assumption becomes inadequate and leads to identification of more losses

than are really present in the data set. For data obtained with the Affymetrix genotyping array and

described in this paper, this does not present a very serious problem: linkage disequilibrium, when

present, typically extends at most across a window of 3-4 markers—which is generally too small to

lead to the suspicion of a genomic loss. However, when the density of the scored polymorphisms
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increases, it becomes necessary to incorporate the effect of linkage disequilibrium in our model.

Indeed, it is possible to modify the emission probabilities of the HMM in order to account for

the association between alleles at neighboring markers. This leads to a likelihood that cannot be

described in the typical framework of HMM, but can still be evaluated with recursive formulas.

We describe this model in a companion paper (Wang H.et al., 2005).

The effect of inbreeding and genomic losses are more difficult to distinguish. Indeed, Leuteneg-

ger et al. (2003) have a model to estimate inbreeding coefficients that is practically identical to

the HMM we use to describe genome instability. In this regard, the genomic loss profile that we

reconstruct for each cell line under the instability model is valid only under the assumption of no

inbreeding (which, incidentally, is likely to hold in the type of population samples collected for

LOH studies). The instability component of our model, instead, captures an effect that is clearly

distinct from inbreeding: the propensity of multiple cell lines to share losses in the same region.

The inference on TSG location, hence, should be robust to the presence of inbreeding when suffi-

cient numbers of independent cancers are analyzed.

Finally, we note that there are some extensions to our model that can be easily carried through

and that we did not implement in the present paper partly because of time constraints and partly be-

cause they did not appear necessary to perform the analysis of the data we set out to study, namely

genotypes obtained with the Affymetrix 10k array. One such extension involves the introduction

of genotyping error parameter in the emission probabilities. This parameter can either be assumed

known or estimated from the data (however, estimating it from another dataset is likely to produce

better results). Similarly, theκ parameter can be varied across markers or cell lines. Another ex-

tension consists in the simultaneous estimation of all the parametersη, δ, τ, ωs, which, as we have

discussed in the previous section, may be important for datasets that do not provide genome-wide

genotyping. Furthermore, while we described our model assuming the instability parameters held

constant across cell-lines and chromosomes, one can easily relax this assumption.
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Figure 1: Instability Parameters Reconstruction. Histograms of the estimated values for each

of the instability parameters using genotypes from one cell line in 100 simulations. The vertical

red lines indicate the true value of the parameters.
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Figure 2: Reconstruction of Loss Status.Histograms of sensitivity and specificity of the loss

process reconstruction using instability model in 100 simulations.
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Figure 3:LOD score for TSG. Profile log-likelihood ratio for the locations of the tumor suppres-

sor gene across the genome for one case of the simulation.
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Figure 4: Localization of the TSG on Chromosome One.Panel (a) represents the data gener-

ated by our simulation and used in the reconstruction. Each row represents an individual and each

column a SNP. Polymorphisms are ordered according to their genomic position. Heterozygous

genotypes are colored in blue, homozygous genotypes in orange, and missing calls are left blank.

For ease of display, inter-marker distances are depicted as constant. Panel (b) displays the cor-

responding loss profiles reconstructed with the instability model. Panel (c) reports the estimated

value forωs for each of the genomic positions. Finally, in panel (d), we present the LOD score

curve fors. The true location of the TSG is indicated with a dashed line.
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computed within these groups and is plotted against the corresponding proportion of losses.
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Figure 6: Data Analysis. We present the data (coded in the same format as in Figure 4 and the

LOD curve for the localization of a tumor suppressor gene relative to cromosome 9. The location

of the known TSG p16 is indicated with a dashed line.
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