Clay swelling is a colloidal phenomenon that has a large influence on flow and solute migration in soils and sediments. While models for clay swelling have been proposed over many years, debate remains as to the interaction forces that combine to produce the observed swelling behavior. Using cryogenic transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering, we study the influence of salinity, in combination with layer charge, interlayer cation, and particle size, on montmorillonite swelling. We observe a decrease in swelling with increased layer charge, increased cation charge, and decreased cation hydration, each indicative of the critical influence of Coulombic attraction between the negatively charged layers and interlayer cations. Cryo-TEM images of individual montmorillonite particles also reveal that swelling is dependent upon the number of layers in a particle. Calculations of the van der Waals (vdW) interaction based on new measurements of Hamaker coefficients confirm that long-range vdW interactions extend beyond near-neighbor layer interactions and result in a decrease in layer spacing with a larger number of layers. This work clarifies the short- and long-range attractive interactions that govern clay structure and ultimately the stability and permeability of hydrated clays in the environment.
Clay swelling plays an essential role in many environmental and industrial processes, including the flow of water, hydrocarbons, and supercritical CO$_2$ in soils and sediments, and transport of radionuclides and other contaminants through clay barriers. (1) Swelling is commonly observed in smectites, a group of 2:1 layer silicates that, as a result of isomorphous substitutions in their octahedral or tetrahedral sheets, have a low negative layer charge that is compensated by exchangeable cations in the interlayer space. (2, 3) While clay swelling has been shown to be a function of several parameters, of particular interest is the influence of salinity. (4-6) Changes in the clay structure in response to changes in groundwater salinity can have a large influence on the stability and permeability of engineered clay barriers used in subsurface storage of nuclear waste and natural shale deposits selected as barriers for geologic storage of carbon dioxide. (7, 8) Salinization of soils as a result of irrigation or seawater intrusion similarly affects the ability of soils to absorb and retain water and other nutrients.

The general salinity dependence of smectite swelling behavior is well-established by X-ray diffraction (XRD) and small-angle X-ray scattering (SAXS). (4-6, 9) In a landmark study, Norrish and Quirk used XRD to measure the layer spacing of montmorillonite, a member of the smectite group, at varying concentrations of NaCl. (9) In highly saline aqueous solutions, e.g., 1 M NaCl, Wyoming montmorillonite exists as crystalline hydrates with a monolayer of interlayer water. Decreasing salinity leads to stepwise incorporation of two, three, and possibly four discrete layers of water. A discontinuous transition occurs at 0.25 M NaCl, with the layer spacing jumping from 2 to 4 nm. Below this salinity, the layer spacing increases continuously, with layer spacings as high at 28 nm reported. (6) In this regime, the swelling is described as osmotic swelling because it is driven by the difference in ion concentrations inside and outside of the clay layers. At still lower salinities, further expansion eventually results in complete delamination of the montmorillonite particles into single layers.

Substantial research has generated structural models and theoretical descriptions of smectite crystalline hydrates and fully exfoliated dispersions. For example, c-axis electron density profiles have been established to high accuracy for crystalline hydrates. (10) Clear conceptual models exist for the dependence of crystalline hydrate layer spacing upon water activity, salinity, and layer charge, and molecular simulation can provide good agreement with swelling observations. (2, 11-13) Moreover, the structure and rheology of low-salinity suspensions of delaminated montmorillonite layers, including a transition between a completely dispersed sol and an aggregated gel, are well-established. (14, 15) In contrast, osmotic hydrates represent an intermediate regime for which a clear understanding of layer–layer interactions is lacking.

Clay swelling is governed by competing short- and long-range forces. These interactions are typically modeled by the theory of Derjaguin–Landau–Verwey–Overbeek (DLVO). The DLVO theory describes the interactions between two colloidal particles as a balance between electrostatic repulsion, in this case between two negatively charged clay layers, and vdW attraction. This theory accurately predicts the swelling behavior of smectites with low layer charge in the presence of monovalent Li$^+$ and Na$^+$. (16, 17) However, the DLVO theory fails to adequately describe the behavior of smectites with high layer charge or in the presence of divalent cations. (18-20) Beginning with Langmuir, the postulates of the DLVO theory have been criticized in part because of skepticism that vdW forces could act over the distances relevant to colloidal suspensions and osmotic hydrates. (21) As an alternative, Langmuir and later the Sogami–Ise theory proposed that long-range electrostatic attractive forces between like-charged particles could be mediated by intervening counterions. (22) This concept has experimental and theoretical support, but disagreement continues over the most appropriate description of clay swelling. (20) Layer–layer
interactions in smectites are further complicated by the presence of both negatively charged faces and positively charged edges.[23] This inhomogeneous charge distribution could influence the layer–layer equilibrium structure.

Direct determination of the forces between interfaces in water is feasible for only a minority of systems.[24] However, detailed knowledge of the structure of colloidal suspensions and the dependence of this structure upon particle and solution properties can provide insights into the nature of such interaction forces. Light, X-ray, and neutron scattering methods cannot fully describe complex anisotropic systems, such as smectite osmotic hydrates, but can provide statistically significant constraints upon models of the suspension structure. Here, we show that in situ imaging using cryo-TEM clarifies the attractive interaction forces that govern clay swelling.

Cryo-TEM of frozen hydrated clays provides unprecedentedly clear images of individual montmorillonite particles as they exist in solution.[25] In combination, SAXS provides complementary bulk characterization of the particle shape and layer spacing from the crystalline to osmotic hydrate regime. We used these methods to characterize the structure of hydrated montmorillonite as a function of salinity, in combination with layer charge, interlayer cation, and particle size. This work provides support for counterion-mediated attraction between negatively charged smectite layers within osmotic hydrates. In addition, our imaging results strongly indicate a role for long-range non-electrostatic attractive forces in influencing layer spacing. To confirm this conclusion, we used valence electron energy-loss spectroscopy (VEELS) and the Lifshitz theory to predict the contributions of vdW interactions to montmorillonite swelling. This work demonstrates the importance of long-range vdW forces to the structure of osmotic hydrates, thereby providing direct support for a key precept of the DLVO approach.

**Experimental Section**

**Materials**

Experiments were performed using Wyoming montmorillonite (SWy-2), Cheto montmorillonite (SAz-2), and Otay montmorillonite (SCa-3) from the Source Clays Repository of The Clay Minerals Society. The layer charges per unit formula are −0.55 (octahedral, −0.53; tetrahedral, −0.2), −1.08 (octahedral, −1.08; tetrahedral, 0), and −1.48 (octahedral, −1.29; tetrahedral, −0.19) for SWy-2, SAz-2, and SCa-3, respectively.[26] Aqueous solutions of NaCl, LiCl, KCl, MgCl₂, and CaCl₂ were prepared from reagent-grade salts and Milli-Q ultrapure water.

**Clay Treatments**

The clays were treated to obtain homoionic montmorillonite free of mineral impurities. This was achieved by equilibrating the clay (40 g/L) in 1 M NaCl solution. The supernatant was separated by centrifugation and replaced three times. Excess NaCl was removed by replacing the supernatant with ultrapure water, followed by dialysis [SpectraPor 7, 8 kDa molecular weight cut-off (MWCO), 40 mm flat width]. Large impurities (>2 μm), such as quartz or feldspar, were removed by centrifugation following the conditions described by Moore and Reynolds.[27] Additional size fractionation of the clay suspension was achieved by increasing the centrifugation time and speed. Exchange of interlayer Na⁺ cations with Li⁺, K⁺, Mg²⁺, or Ca²⁺ was achieved by repeating the equilibration in the respective chloride salts and removal of the excess salt. The clay suspensions were then
dried at 60 °C in a convection oven. Clays were rehydrated with water or aqueous salt solutions at 5 wt % and allowed to equilibrate for 1 week prior to characterization.

**Cryo-TEM Sample Preparation and Imaging**

Clay suspensions were plunge-frozen in liquid ethane using an automated vitrification robot (FEI Vitrobot). Aliquots of 3 μL were deposited onto 300-mesh lacy carbon Cu grids (Electron Microscopy Sciences) that had been glow-discharged. Excess solution was removed by automatic blotting (2 blots for 5 s each) before plunge freezing. Imaging was performed at 200 kV on a field-emission-gun-equipped Philips CM200. Vitrified samples were loaded using a Gatan cryo-holder operating at approximately −180 °C. Measurements of interlayer spacing were performed using the software ImageJ. Measurements were restricted to particles containing at least four layers and layers that appeared parallel or approximately parallel. The measurements were averaged within and, unless otherwise noted, across multiple particles to produce the reported interlayer spacings.

**SAXS Data Collection**

SAXS was performed at beamline 5-ID-D of the Advanced Photon Source at Argonne National Laboratory. Equilibrated clay suspensions were mounted in a 1.5 mm quartz capillary (Charles Supper Company). SAXS data were collected simultaneously on two Rayonix charge-coupled device (CCD) detectors with sample–detector distances of 8.5 and 1.0 m, calibrated using a lanthanum hexaborate and silver behenate standard, respectively. The wavelength of radiation was set to 1.03 Å (12 keV), resulting in a range of the scattering vector, \( q = 0.017–0.58 \text{ Å}^{-1} \). The scattering patterns were azimuthally averaged using FIT2D and corrected for varying incident beam intensity and sample transmission. The scattering intensity, \( I(q) \), of the clay suspensions was obtained by subtracting contributions from the solution and the quartz capillary.

**VEELS Data Collection and vdW Force Calculations**

Hamaker coefficients for montmorillonite layers separated by water were calculated from measured VEELS–transmission electron microscopy (TEM) data following the method developed by the French group.\(^{(28)}\) A suspension of Na-saturated SWy-2 in water was deposited on a lacy carbon TEM grid and allowed to dry. VEELS–TEM data were recorded on a 2100-F field-emission transmission electron microscope (FETEM) operating at 80 kV and processed using DigitalMicrograph software (Gatan). Two spectra, zero loss and plasmon peak optimized, were recorded and spliced, yielding a total energy range from −5 to 65 eV. The energy resolution based on the full width at half maximum of the zero-loss peak was 0.9 eV. To confirm that the sample was not significantly damaged as a result of irradiation by the electron beam, a microdiffraction pattern was recorded following VEELS–TEM data collection to confirm characteristic crystal diffraction. The zero-loss peak was removed from the VEELS–TEM spectra by fitting with a logarithmic tail, and multiple scattering was removed on the basis of the Fourier-log deconvolution method.\(^{(29)}\) The imaginary component of the dielectric function was extracted by Kramers–Kronig analysis of the deconvolved spectra. The spectra were scaled according to the index of refraction sum rule scaling, assuming a refractive index perpendicular to the plane of the SWy-2 flake of \( n_\alpha = 1.520 \pm 0.003 \).\(^{(30)}\) The Hamaker coefficient of SWy-2 separated by water \( (A) \) was calculated according to the Lifshitz theory\(^{(31)}\) implemented using the Gecko Hamaker code.\(^{(32)}\) Calculations were performed assuming particles containing 2–16 montmorillonite layers of 1 nm thickness. The Hamaker coefficients were then used to calculate the vdW force per unit area, \( P_{\text{vdW}} \), between two SWy-2 layers.
where $D$ is the layer spacing. Additional details of the VEELS–TEM analysis and Hamaker coefficient calculations are given in the Supporting Information.

## Results and Discussion

### Influence of Salinity

Cryo-TEM images of SWy-2 equilibrated at 0.01, 0.1, and 1 M NaCl demonstrate an increase in layer spacing with decreasing salinity (panels a–c of Figure 1). At 0.1 and 0.01 M NaCl, we observe both individual delaminated layers and osmotic hydrate particles containing multiple expanded layers. In these images, only clay particles with layers oriented parallel to the optical axis are visible. Clay particles in other orientations may be present, but because each layer is only approximately 1 nm thick, there is insufficient mass-thickness contrast to detect particles containing a small number of layers oriented more than 10° from the optical axis.\(^{(25)}\) Measurements of the layer spacing both within a single particle and across multiple particles find a large variation in spacing. The average layer spacings at 0.1 and 0.01 M NaCl are 8 ± 1 and 11 ± 1 nm, respectively, both characteristic of osmotic swelling. At 1 M NaCl, we observe clay particles containing multiple stacked layers and a well-defined layer spacing of 1.9 ± 0.15 nm, characteristic of crystalline hydrates.

![Figure 1](image)

Within the range of salinities studied and in circumneutral and acidic solutions (pH 4), we observe predominantly face-to-face interactions. In agreement with indirect studies of the solution structure of other platelets, we find no evidence of the edge-to-face “house of cards” configuration that is thought to arise from protonation of clay particle edges. Some individual layers within osmotic hydrates exhibit layer rotations and lateral offsets that are suggestive of increased edge-to-face proximity, possibly a rotationally disordered version of the “stack of coins” configuration. However, a further study of SWy-2 equilibrated at pH 4 in 0.1 M NaCl did not show more examples, even though a more positive edge charge was expected.\(^{(23)}\) Thus, we cannot confidently attribute the observed structure to random Brownian motion or electrostatic edge-to-face forces.

SAXS data of Na-saturated SWy-2 suspensions in 0–1 M NaCl provide complementary characterization of the smectite dispersions at several length scales. At low $q$, the scattering slope is $l(q) \sim q^{-2}$, characteristic of scattering from a mass fractal or three-dimensional particle. This suggests that, even at low salinity, the clay layers form large assemblies that do not completely
delaminate [also seen by Pignon and Ganley and van Duijneveldt using small-angle neutron scanning (SANS)/static light scattering (SLS)]. At intermediate \( q \) (0.01 < \( q \) < 0.05), the power law slope for SWy-2 suspended in water or 0.1 M NaCl is \( I(q) \sim q^{-2} \), characteristic of scattering from two-dimensional particles or sheets.

The SAXS data also exhibit broad peaks that demonstrate the transition from crystalline to osmotic swelling with decreasing salinity. Smectite in water gives the strongest SAXS peak at a 60 nm distance that is consistent with prior results on more concentrated suspensions. In particular, Svensson and Henson also found a more pronounced scattering peak in water relative to NaCl solutions. SAXS data from smectite in pure water is quite accurately reproduced as repulsive interactions between disc-shaped particles with limited ordered stacking. This is consistent with our cryo-TEM data that could not provide a statistically relevant assessment of interlayer spacing. Thus, the SAXS peak likely derives from a combination of scattering from disordered periodic lamellae and a suppression of scattering intensity as a result of repulsive layer–layer correlations.

For SWy-2 suspended in 0.1 and 0.01 M NaCl, the SAXS peaks indicate disordered layer spacings of approximately 8.4 and 12 nm, respectively. These spacings are in good agreement with our cryo-TEM observations of disordered osmotic hydrates. At 1 M NaCl, the power law slope at intermediate \( q \) increases to \( I(q) \sim q^{-3} \), consistent with the formation of aggregated crystalline hydrates. The well-defined peak corresponds to a crystalline layer spacing of 1.9 nm. The dependence of the crystalline and osmotic hydrate structures with ionic strength is in good agreement with DLVO.

**Influence of the Layer Charge**

To better understand the influence of layer charge, we also studied montmorillonites that have a higher layer charge than SWy-2 (\(-0.57 \text{ e}^−/\text{formula unit}\)) as a result of substitutions in both their octahedral and tetrahedral sheets. Cryo-TEM images of SCa-3 (\(-1.48 \text{ e}^−/\text{formula unit}\)) and SAz-2 (\(-1.08 \text{ e}^−/\text{formula unit}\)) equilibrated in 0.01 M NaCl show osmotic hydrates with lower average layer spacings of 7 ± 1 and 6.5 ± 0.9 nm, respectively. SCa-3 and SAz-2 form aggregates containing a larger number of layers with more disorder than observed in SWy-2 suspensions. SAXS data of SCa-3 and SAz-2 suspensions indicate the coexistence of two distinct layer spacings of 6.5 nm, also observed by cryo-TEM, and 1.9 nm, characteristic of crystalline hydrates. The ratio of the intensities of the osmotic and crystalline hydrate peaks increases with decreasing layer charge.

A relationship between layer charge and swelling of crystalline hydrates has been previously established. Slade and co-workers observed that higher charge smectites either did not expand or required lower salt concentrations to transition from the one- to two-layer hydrate. Dazas and co-workers observed a decrease in smectite crystalline layer spacing with charge of the tetrahedral sheet. In contrast, there is no consistent picture of layer charge and swelling in the osmotic hydrate regime. Reports of swelling pressure have provided either very small or undetectable dependence upon layer charge, but those
measurements cannot distinguish layer and smectite particle contributions to the swelling pressure. (39, 40) Thus, the present work is the first demonstration of an influence of layer charge on the mean layer spacing of osmotic hydrates, a relationship that is not reproduced by the DLVO theory. (2) Although a full model of swelling is out of the scope of this paper, it is a clear demonstration of attractive electrostatic forces within the smectite layers and the interlayer cations.

Effect of the Cation Type

We further investigate the influence of Coulombic attraction between clay layers and interlayer cations by studying the effect of exchanging the interlayer cations. SWy-2, which predominantly contains interlayer Na⁺ cations, was exchanged with monovalent Li⁺ and K⁺ cations and divalent Mg²⁺ and Ca²⁺ cations by equilibrating the clay with the respective chloride salts. In SWy-2 exchanged with Li⁺ and rehydrated at 0.1 M LiCl, we observe osmotic hydrates with morphologies and layer spacings that are similar to those observed with Na-saturated SWy-2 at an equal salt concentration (Figure 3a). The layer spacings are also in agreement with observations by Norrish using XRD. (5) In contrast, exchange of the interlayer cations with either Mg²⁺ or Ca²⁺ resulted in a highly ordered layer spacing of 2 ± 0.1 nm, characteristic of crystalline hydrates (panels c and d of Figure 3 and Figure S1 of the Supporting Information). Multivalent cations have long been known to inhibit clay swelling and prevent the formation of osmotic hydrates, even at very low ionic strength. (5) Similar to the effect of layer charge, the decrease in layer spacing with cation charge is attributed to an increase in the Coulombic attraction between the clay layers and the interlayer divalent cations.

![Figure 3. (a–d) Cryo-TEM images of (a) Li-, (b) K-, (c) Mg-, and (d) Ca-saturated SWy-2 in 0.1 M corresponding chloride salt solutions. (e) SAXS data of K-saturated SWy-2 in 0.1 M KCl displays two distinct layer spacings at high q (D = 1.5 nm) and low q (D = 13 nm).](image)

We also chose to investigate the effect of K⁺ because this monovalent cation is known to interact distinctively with swelling clays. (41-44) High concentrations of KCl are used in water-based drilling fluids to prevent clay swelling and wellbore instability during oil and gas exploration. (45) Inhibition of clay swelling is typically attributed to the low hydration energy of K⁺ and ability to form inner-sphere surface complexes with the smectite basal surface. (41, 42) Using XRD, Berend and Ferrage found that, at high relative humidity, montmorillonite exchanged with cations with higher hydration energies, such as Li⁺, Na⁺, Mg²⁺, and Ca²⁺, predominantly contains two water layers, whereas montmorillonite exchanged with cations with lower hydration energies, such a K⁺, contains zero and/or one water layer. (46, 47) Molecular simulations further confirm that the single-layer hydrate with K⁺ ions bound to the clay surface is the most energetically stable structure for K-saturated montmorillonite. (43)

Cryo-TEM revealed both unexpanded clay particles and delaminated clay layers but no evidence of osmotic hydrates (Figure 3b). No other cation generated this combination. SAXS of K-saturated SWy-2 suspensions exhibited a peak at 1.4 nm, confirming the presence of unexpanded clay layers (Figure 3e). The power slope of I(q) ∼ q⁻² also supports the presence of expanded and aggregated clay layers. Unexpectedly, on the basis of the highly disordered suspensions observed with cryo-TEM, the SAXS data also showed a broad second peak at 13 nm, characteristic of osmotic hydrates. These SAXS observations are in agreement with prior work. In XRD studies of >33 wt % K-saturated Upton montmorillonite in water, Zhang and Low
report the presence of two peaks corresponding to crystalline (∼1.5 nm) and osmotic (5.5–8.5 nm) hydrates. These data at high clay content are consistent with our own, because it is well-established that osmotic layer spacing increases at a lower clay content. The presence of smectite in all swelling states in a single suspension is surprising. More work will be required to understand K⁺ interactions with smectite and the poor agreement with SAXS and cryo-TEM for this system.

Influence of the Layer Dimension
We hypothesized that the significant disorder observed in the smectite suspensions may be a consequence of a broad distribution of smectite layer sizes. Na-saturated SWy-2 was size-fractionated in water by centrifugation, and the fractions resuspended in 0.1 M NaCl. Cryo-TEM and SAXS (Figure 4) showed that the resulting fractions were distinct but provided little evidence for size fractionation based on the layer diameter. Cryo-TEM images of the large size fraction display aggregates composed of many layers and layer spacings characteristic of both osmotic and crystalline hydrates. This is also reflected in the SAXS data from the presence of two peaks corresponding to layer spacings of 7.3 and 1.9 nm (Figure 4d). In the smallest size fraction, we observe by cryo-TEM only single delaminated clay layers and minimal evidence of osmotic hydrates. In SAXS, this is reflected from the power log slope of I(q) ∼ q⁻², even at low q (Figure 4c). Segad and co-workers also investigated the influence of size fractionation and report based on Scherrer analysis of SAXS peak widths that the number of layers in the particle increases in larger size fractions. No evidence of ordered layer stacking was observed in the smallest size fraction.

Together these observations suggest that there is a fraction of clay layers in Na-saturated SWy-2 that does not completely delaminate, even in water, and a fraction that does not reassemble into stacked layers, even at salinities as high as 0.1 M NaCl. This is also supported by SAXS data of Na-saturated SWy-2 in water, which indicates the presence of large clay assemblies, even at very low salinity (Figure 1d). The centrifugation method, therefore, did not fractionate based on the diameter of the clay layers, instead fractionating based on the particle size (number of stacked layers). We suggest that this finding is a result of the inherent composition and charge heterogeneity of natural clays. The largest size fraction may have a higher layer charge that inhibits delamination or exchange with Na⁺, while the smallest size fraction may have a lower layer charge and, consequently, minimal Coulombic attraction between the clay layers and interlayer cations.

Relationship between the Layer Number and Interlayer Spacing
Cryo-TEM imaging of individual clay particles also allows us to correlate the measured interlayer spacings with the observed number of layers in a particle. Despite large variation in the measured layer spacings, even within a single particle, we observe a decrease in spacing with an increasing number of clay layers (panels a–c of Figure 5). For SWy-2 suspended in 0.1 M NaCl, the majority of particles contain 4 or 5 layers; however, particles with as high as 15 layers are observed. Measurements of the
average layer spacing within a single particle indicate a decrease in layer spacing from 8.2 nm in particles containing 4 layers to 6.3 nm in particles containing 15 layers. As proposed in earlier work, we attribute this decrease in layer spacing with a larger number of layers to the influence of long-range vdW interactions, with long-range defined here as those extending beyond near-neighbor layer interactions.\cite{25} Although electrostatic interactions between smectite layers and electrolyte cations can cause pairwise attractive forces between smectite layers, no theory of colloidal interactions has shown how electrostatic forces could extend over multiple layers.

![Figure 5. (a–c) Cryo-TEM images of Na-saturated SWy-2 in 0.1 M NaCl demonstrate a decrease in layer spacing with an increasing number of layers (N\text{\textsubscript{layers}}) from (a) 4 to (b) 15. (d) P\text{\textsubscript{vdW}} as a function of N\text{\textsubscript{layers}} at fixed layer spacing (D = 8 nm) and variable layer spacings taken from cryo-TEM measurements at 0.1 M NaCl (D = 8–6 nm).]

Accurate models of the vdW forces between clay layers depend upon accurate values of the Hamaker coefficient.\cite{24} These values can be calculated from optical absorption measurements, but as a result of the nanoscale dimensions of smectite particles, published Hamaker coefficients are based on indirect measurements and exhibit considerable variation.\cite{48, 49} To obtain reliable values of the Hamaker coefficient, we use VEELS–TEM to measure the optical absorption of individual Na-saturated SWy-2 layers (Figure S2 of the Supporting Information). From measured spectra, we can extract the dielectric function and apply the Lifshitz theory to calculate values of the Hamaker coefficient as a function of the number of layers in a particle and their separation. For two SWy-2 layers of finite thickness, we obtain a non-retarded Hamaker coefficient of 8 ± 1 zJ (Figure S3 of the Supporting Information). This value is in good agreement with a model constructed from silica and corundum optical data\cite{25} but is lower than values that have been obtained on the basis of swelling pressure (18.8–64.9 zJ) or critical coagulation concentration (22 zJ).\cite{48, 49}

From the measured values of the Hamaker coefficient, we can calculate $P\text{\textsubscript{vdW}}$ between two SWy-2 layers as a function of the number of layers in the particle (Figure 5d). Assuming a fixed layer spacing ($D = 8$ nm, the value for a particle containing two layers extrapolated from cryo-TEM data of SWy-2 in 0.1 M NaCl), we estimate that $P\text{\textsubscript{vdW}}$ increases slowly from 16 N m\textsuperscript{-2} for a particle containing two layers to 20 N m\textsuperscript{-2} for a particle containing 16 layers. If we also account for the decrease in layer spacing observed by cryo-TEM, $P\text{\textsubscript{vdW}}$ between two SWy-2 layers increases exponentially, with the addition of each successive layer. For SWy-2 at 0.1 M NaCl, we estimate that $P\text{\textsubscript{vdW}}$ between two layers increases from 16 to 60 N m\textsuperscript{-2} in a particle containing 16 layers. This relationship between the particle size and layer spacing arising from long-range vdW interactions thus predicts the inverse relationship between the layer spacing and particle size that we observe by cryo-TEM.\cite{25} Our experimental observations and quantitative vdW force calculations, as well as the recent advances in understanding vdW forces in a range of systems,\cite{50, 51} clearly establish long-range vdW forces to be a central aspect of clay swelling as originally proposed by the developers of the DLVO theory.

**Conclusion**
Using cryo-TEM and SAXS, we characterize the structure of montmorillonite suspensions as a function of salinity, in combination with the layer charge, interlayer cation, and particle size. The observations show an important role for short-range attractive Coulombic interactions between negatively charged smectite layers and interlayer cations that oppose swelling in both the crystalline and osmotic hydrate regimes. In the osmotic swelling regime, we find evidence for long-range vdW attraction that contributes to ordered layer spacings, even out to large separations across multiple smectite layers. These findings confirm the role of vdW forces as described by the DLVO theory but clarify the need to consider multilayer interactions for a full description of clay swelling. The combination of in situ characterization and measurement of vdW interactions by VEELS–TEM provides a basis for identifying and modeling the relevant interaction forces that control swelling in natural clay systems.

Supporting Information

The authors declare no competing financial interest.

Acknowledgment

The authors thank Roseann Csencsits and Zoltan Metlagel for their help with cryo-TEM. This work was supported by the Office of Science, Office of Basic Energy Sciences (BES), Chemical Sciences, Geosciences, and Biosciences Division of the U.S. Department of Energy (DOE), under Contract DE-AC02-05CH11231. Research at the Molecular Foundry was supported by BES, DOE, under Contract DE-AC02-05CH11231.

References

This article references 51 other publications.


34. Ganley, W. J.; van Duijneveldt, J. S. Controlling Clusters of Colloidal Platelets: Effects of Edge and Face Surface Chemistries on the Behavior of Montmorillonite Suspensions Langmuir 2015, 31, 4377–4385 DOI: 10.1021/acs.langmuir.5b00047


44. Zhang, Z.; Low, P. Relation between the heat of immersion and the initial water content of Li-, Na-, and K-montmorillonite J. Colloid Interface Sci. 1989, 133, 461–472 DOI: 10.1016/S0021-9797(89)80057-8


