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D.D.S., Ph.D.1,2, and James C.Y. Dunn, M.D., Ph.D.*,1,3

1Department of Bioengineering, University of California, Los Angeles, CA

2Department of Advanced Prosthodontics, Biomaterials, and Hospital Dentistry, University of
California, Los Angeles, CA

3Department of Surgery, University of California, Los Angeles, CA

Abstract

Angiogenesis and survival of cells within thick scaffolds is a major concern in tissue engineering.

The purpose of this study is to increase the survival of intestinal smooth muscle cells (SMCs) in

implanted tissue-engineered constructs. We incorporated 250-μm pores in multi-layered,

electrospun scaffolds with a macroporosity ranging from 15% to 25% to facilitate angiogenesis.

The survival of green fluorescent protein (GFP)-expressing SMCs was evaluated after 2 weeks of

implantation. Whereas host cellular infiltration was similar in scaffolds with different

macroporosities, blood vessel development increased with increasing macroporosity. Scaffolds

with 25% macropores had the most GFP-expressing SMCs, which correlated with the highest

degree of angiogenesis over 1 mm away from the outermost layer. The 25% macroporous group

exceeded a critical threshold of macropore connectivity, accelerating angiogenesis and improving

implanted cell survival in a tissue-engineered smooth muscle construct.

Introduction

Many tissue engineering applications employ scaffolds seeded with cells that grow during in

vitro culture prior to implantation. In recent years, there have been many advances in tissue

engineering of three-dimensional scaffolds. In such large scaffolds, the diffusion of nutrients

and oxygen becomes an important consideration, and rapid vascular infiltration is necessary
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in vivo to sustain seeded cells following implantation [1]. By diffusion alone, thick scaffolds

can only sustain cells within a few hundred μm of the liquid-scaffold interface in vitro, a

limitation which is closely approximated in vivo [2,3]. Various techniques to improving

vascular conduction have been studied [4], including use of growth factors [5–7], bioactive

materials [8,9], microfabrication [10–12], angiogenic cells [13–15], decellularized organs

with intact microvasculature [16,17], non-biological factors [18], and even oxygen-

producing biomaterials [19]. Microfabrication is especially important since improved

conduction pathways can accelerate or improve other efforts to increase angiogenesis in

implants [20].

Porosity of scaffolds used in tissue engineering have long been known to affect angiogenesis

and the development of functional tissue including structural tissues such as bone [21,22]

and cartilage [23,24], as well as soft tissues such as the urethra [25], liver [26], skin [27,28],

muscle [29], vascular structures [30], and soft tissue fillers [31]. In a previous report, we

explored the role of pore size in electrospun polycaprolactone scaffolds using lasercut holes

of various diameter ranging from 80 to 300 μm while maintaining a 15% macroporosity by

area [32]. Larger diameter pores led to an increase in cellular infiltration and vascular

development compared to controls without a significant change in material properties.In that

study, the optimal density of the 300-μm pores, however, was not explored. Ideally, a porous

electrospun scaffolds should have a large surface area for cell attachment, yet enough

macropores to allow rapid angiogenesis. The density of macropores necessary to allow

sufficient angiogenesis to sustain implanted cell survival within electrospun scaffolds

remains unclear [33].

Many diseases affecting the gastrointestinal tract leave insufficient functioning intestine for

normal absorption, resulting in a condition known as intestinal failure [34]. Without

methods for curing these conditions, medical options are limited to reducing symptoms,

contributing to unacceptably high morbidity and mortality rates [35,36]. Tissue engineering

is an appealing alternative for creating new intestine. While much progress has been made

on growing the intestinal epithelium, less has been done with the intestinal smooth muscle

[37–39]. The intestinal smooth muscle is a multi-layered tissue composed of an inner

circular layer beneath the submucosa and an outer longitudinal layer adjacent to the serosa.

Smooth muscle is critical for the transport of waste and nutrients through the gastrointestinal

tract. Functional tissue-engineered smooth muscle that can generate the contraction strength

necessary for peristalsis has been difficult to produce. Even the strongest tissue-engineered

muscles are much weaker than normal muscle, suggesting the need for thicker scaffolds,

which will further increase the need for rapid vascular infiltration and better mimic of the

multi-layered intestine [1,33,40,41]. Furthermore, survival and maturity of intestinal smooth

muscle cells (SMCs) in vivo is accompanied by angiogenesis [42,43], suggesting that a pro-

angiogenic biomaterial may enable the development of a mature smooth muscle.

We sought to determine the optimal macroporosity to generate a critical amount of

angiogenesis necessary to sustain a population of implanted SMCs within multi-layered

scaffolds. Macroporosity was generated by laser-cutting of electrospun sheets, and cell-

seeded sheets were rolled into a multi-layered tube. Following 2 weeks of implantation, the
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scaffolds were evaluated for cellular infiltration, vascular in-growth, and survival of

implanted GFP-expressing SMCs.

Materials and Methods

2.1 Fabrication of poly ε-caprolactone (PCL) scaffolds

Polymer solution was made from 11% w/w ester capped PCL (Lactel Absorbable Polymers,

Birmingham, AL) in hexafluoro-2-propanol (Sigma, St. Louis, MO). Our electrospinning

technique was described in detail previously [32]. Following the electrospinning, the designs

of PCL scaffolds were drawn with Adobe Illustrator, and scaffolds were cut from the whole

electrospun PCL sheet using a VersaLASER 2.3 laser cutting system (Universal Laser

Systems, Scottsdale, AZ). Scaffolds for in vivo experiments were fabricated with a regular

pattern to create pores in the PCL sheet. The pattern was drawn with 150-μm circles to

accommodate melting, which created 250-μm pores with a 75-μm thick ring of solid

polymer melt around the perimeter. After the pores were made, a second pattern was run to

cut the perimeter of the scaffold to create a rectangular 45 mm × 9.5 mm sheet. Rows of

pores were offset to create a staggered series of columns, and the distance between each

pore was varied to create different porosities. Additionally, each row was 0.5 mm below the

previous row. The laser was set to a power of 25x and a speed of 50x, with three consecutive

scans over each substrate.

2.2 Macroporosity Measurements

Scaffold macroporosity was determined using a VHX-2000 digital microscope (Keyence,

Itasca, IL). Three images of each scaffold were taken at 300x magnification. Macroporosity

was determined using ImageJ software to threshold and calculate the area lacking polymer

in each picture.

2.3 Collagen Coating

PCL scaffolds were loaded into a plasma chamber (Harrick Plasma, Ithaca, NY), at 500

mTorr and were etched for 1.5 minutes at high power. Scaffolds were then sterilized in 70%

ethanol for 30 minutes, rehydrated with decreasing percentages of ethanol and finally in

phosphate buffered saline (PBS). Scaffolds were then immediately coated overnight at 37°C

with 500 μL of a 0.25 mg/mL collagen (Purecol, Advanced Biomatrix, San Diego, CA)

solution neutralized with .1N sodium hydroxide to pH 7.4 and diluted in PBS. The coated

scaffolds were rinsed 3 times in PBS for 5 minutes and then soaked in cell-culture medium

until cell seeding.

2.4 GFP-expressing SMC Seeding of the Scaffold

2.4.1 Culture of GFP-expressing SMCs—Transgenic GFP-expressing Lewis rats were

obtained from a breeding colony maintained by UCLA’s Department of Laboratory Animal

Medicine and were sacrificed with approval of Institutional Review Board. SMC isolation

was described in a previous publication [44]. Following digestion, collagenase was

quenched in cell-culture medium consisting of Dulbecco’s Modified Eagle’s Media

(DMEM, Life Technologies, Carlsbad, CA) with 10% Fetal Bovine Serum (FBS, Life

Technologies), and 1x ABAM (Life Technologies).
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2.4.2 GFP-expressing SMC Seeding—Primary SMCs were counted with a

hemacytometer and were seeded at 250,000 cells/cm2 on PCL scaffolds within a custom

polydimethylsiloxane (PDMS, Dow Corning, Elizabethtown, KY) cell seeding tray shaped

to fit the scaffolds. Cell-culture medium was changed every two days after washing with

PBS and scaffolds were maintained in a 37°C humidified incubator with 10% carbon

dioxide for two weeks prior to implantation.

2.5 Scaffold Implantation

2.5.1 Scaffold preparation—On the day of implantation, scaffolds containing cells were

washed once with PBS, and a 9.5 mm section of sterile #6 silicone catheter (Bard,

Covington, GA) was used to provide structural support for wrapping the scaffold in to a

multi-layered tube. The catheter formed the lumen of the tube and prevented the scaffold

from collapsing. Each scaffold was wrapped six times around the catheter with the cell-

seeded side facing outwards. After wrapping, each scaffold was secured to the catheter with

a 6-0 prolene suture (Ethicon, San Angelo, TX) and the ends were plugged with silicone

rubber (Dow Corning, Midland, MI) to prevent cell infiltration from the scaffold edges. The

rolled scaffolds were rinsed and stored in DMEM on ice until implantation. Scaffold

wrapping is demonstrated in Figure 2.

2.5.2 Implantation—All surgical procedures were done in accordance with UCLA’s

Animal Research Committee protocol # 2004-197-21. The surgical procedure was described

in detail in a previous publication [32]. At specimen retrieval, each scaffold was cut in to

four equal-sized cylinders, and two segments were used for qPCR while the other two were

fixed in formalin for histology.

2.6 Immunohistochemistry

2.6.1 Immunostaining of GFP-expressing SMCs—The scaffolds fixed in formalin

were processed for paraffin embedding and sectioning by UCLA’s Translational Pathology

Core Laboratory (TPCL). Slides were stained with hematoxylin and eosin (H&E). Normal

intestine and GFP-expressing adult intestine were fixed, sectioned, and stained as controls.

Each sample was cut into 5-μm sections with two sections per slide; one section on each

slide was used for staining, while the second was used as a control with no primary antibody

added. Slides were washed with xylene to strip away the paraffin and rehydrated with

progressively decreasing concentrations of ethanol in water.

For immunofluorescence, antigen retrieval was performed in Citra solution (Biogenix,

Fremont, CA) for 20 minutes at 100°C followed by 20 minutes of cooling at room

temperature. Samples were permeabilized with 0.5% Triton X and were washed with PBS-

tween twice. A hydrophobic barrier was traced around all samples with a PAP pen (Abcam,

Cambridge, MA). Non-specific staining was blocked with a solution of 2% bovine serum

albumin and 4% goat serum in PBS-tween for one hour. Following blocking, slides were

incubated overnight at 4°C in primary antibody diluted 1:50 in blocking solution. Antibodies

for GFP were purchased from Clontech (Mountain View, CA). Excess primary antibody was

washed away with three more PBS-tween rinses before a 30 minute incubation with

Alexafluor 488 goat anti-mouse secondary (Life Technologies) diluted 1:200 in blocking
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solution. Finally, slides were rinsed three more times in PBS-tween before adding a

mounting media with added DAPI (Vector, Burlingame, CA) to facilitate nuclei

visualization. Fluorescent images were taken with an Olympus IX71 microscope with

cellSens software (Olympus, Center Valley, PA).

2.6.2 Immunohistochemical Staining of Von-Williebrand Factor—
Immunohistological staining for von-Willebrand Factor (vWF) was performed to quantify

blood vessel infiltration in the scaffolds. Following paraffin removal in xylene and

rehydration in decreasing concentrations of ethanol, antigen retrieval was performed in

0.05% trypsin-EDTA solution (Life Technologies) in PBS at 37°C for 15 minutes. Slides

were rinsed in PBS and the endogenous peroxidase activity was blocked with 1% hydrogen

peroxide in methanol for 30 minutes before drawing a hydrophobic barrier around each

section. Samples were again rinsed in PBS and incubated for 1 hour in blocking solution

consisting of 4% horse serum and 2% BSA in PBS-tween. Immediately after blocking,

samples were incubated overnight in a 1:500 dilution of polyclonal rabbit anti-human vWF

antibody (Dako, Carpinteria, CA) in blocking solution. Biotinylated horse anti-rabbit

secondary antibodies (Vector Labs, Burlingame, CA) were diluted 1:200 in blocking

solution and incubated for 30 minutes at room temperature prior to a 30-minute incubation

in horseradish peroxidase streptavidin (Vector). Finally, 3,3′-Diaminobenzidine (DAB)

chromogen (Vector) was developed for 10 minutes before counterstaining in hematoxylin.

Lastly, samples coverslipped with VectaMount (Vector).

2.6.3 Quantification of Staining—Fluorescent images of DAPI- or GFP- stained

sections were taken from four sides of each scaffold section for each implant. Scaffold

images were then manually separated in to three parts representing the outermost (“serosal”)

two layers, the middle two layers (“middle”), and the innermost (“luminal”) layers. Each

part was quantified by area using ImageJ. The four images from each section were added,

and the area for each section was averaged with all the sections for the same macroporosity

implants. Following staining for vWF, bright field images were taken and separated in the

same manner as the fluorescent images. Blood vessels showing positive staining for vWF

were counted manually and added to the other images from each section. All sections for

each macroporosity implant were used to calculate the mean and standard deviation.

2.7 DNA Extraction and Quantitative Polymerase Chain Reaction

GFP-expressing DNA was collected and quantified using techniques published in previous

literature [45]. DNA was extracted from a quarter section of scaffold adjacent to the midline

using a DNeasy kit for blood/tissue (Qiagen, Germantown, MD). GFP cell quantity in each

scaffold was quantified using DNA extracted from known standards of GFP-expressing

SMCs from the same cell harvest. The number of GFP-expressing SMC from each section

of scaffold was used to determine that for the entire implant by multiplying by four.
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Results

Scaffold Macroporosity Characterization

A fine network of electrospun PCL fibers 2-3 μm in diameter was observed in all scaffolds

(Fig. 1). A 75-μm ring of melted polymer circumscribed the 250-μm pores (Fig. 2). Laser-

cut scaffolds had an average macroporosity of 15.9% ± 1.4 (designated as “15%”), 19.3% ±

1.4 (“20%”), and 25.1 ± 2.0 (“25%”), while uncut scaffolds had a measured macroporosity

of 0.2% ± 0.3 (“0%”).

Histology of retrieved implants

After two weeks of implantation, histologic sections of retrieved implants revealed similar

cellular penetration among all scaffolds with macropores (Fig. 3). In contrast, non-porous

scaffolds had little cellular penetration through the outermost layer, and the inner layers

shriveled due to a lack of cellular support. At higher magnification, cells were observed to

fill macropores and aligned along with the fibers of the scaffolds between layers. Most

layers within the 20% and 25% macroporous scaffolds and the outer layers of the 15%

macroporous scaffolds exhibited swelling similar to that seen previously [32]. The

macropores were flanked by the melted ring as a curved edge surrounding the cellular

infiltrate (Fig. 3).

Nuclear staining to quantify cellular penetration

Following implantation for two weeks, cell nuclei staining with DAPI revealed more cellular

penetration in all layers of each macroporous scaffold when compared to the uncut scaffolds

(Fig. 4). There was no statistical difference in cellular penetration between any of the

macroporous scaffolds through any of the layers (Fig. 5).

Quantification of angiogenesis

Differences in angiogenesis were visualized with staining for vWF. Blood vessels showed a

ring of dark brown vWF-positive staining (Fig. 6). There was a continued increase in vWF

staining as the macroporosity increased in the laser-cut scaffolds (Fig. 7).

Quantification of GFP-expressing SMC

Following two weeks implantation, GFP-expressing SMCs were quantified by real-time

PCR of GFP DNA in the scaffold. Both the 20% and 25% macroporous scaffolds had a

significantly higher number of GFP cells as compared to the uncut scaffolds (Fig. 8). The

distribution of GFP-expressing cells within the scaffolds was examined by

immunofluorescent staining (Fig. 9). A statistically significant increase in GFP-expressing

cells was observed in every layer of the 25% macroporous scaffolds as compared to either

the 20% or the 15% macroporous scaffolds (Fig. 10).

Discussion

This study underscores the importance scaffold design conducive to angiogenesis. By

increasing scaffold macroporosity by 5%, a roughly three-fold increase in implanted cell

survival was achieved. SMCs were able to survive at a distance of over 1 mm from the outer
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edge of the 25% macroporous implants, suggesting that even larger implants may be

sustainable. Future research will be conducted to determine the functionality and contractile

strength of these tissue-engineered smooth muscles. Whether 25% macroporosity represents

the optimal porosity for implanted cell survival remains to be determined. While higher

macroporosities may lead to an even larger increase in the survival of GFP-expressing

SMCs, the scaffolds’ surface area available for SMC attachment will limit the density of the

macropores. By fine tuning scaffold’s macroporosity, we were able to improve angiogenesis

significantly in tissue-engineered smooth muscle.

Techniques to microfabricate scaffolds to enhance vascularization are crucial in tissue

engineering. Diffusion-limitation is a consistent problem in tissue engineering, and scaffolds

of any reasonable magnitude that fail to account for diffusion will ultimately suffer from

areas of hypoxia [1,2]. Furthermore, microfabrication is inexpensive, reproducible, fast, and

complementary to other efforts to sustain implanted cells [20]. To address the difficulties of

creating a thick, multi-layered smooth muscle, we created a sheet of electrospun PCL that

was seeded with cells, grown in an incubator, and rolled in to a tube thicker than 1 mm. In

these implants, a qualitative cell alignment along scaffold fibers can be observed in higher

magnifications (Fig. 3). Two layers of aligned electrospun sheets offset at right angles would

provide a similar alignment pattern to the circular and longitudinal smooth muscle found in

native intestine. These layers could also create the necessary intra-muscularis niche for

intestinal pacemaker and neural cells, potentially leading to peristalsis within the tissue-

engineered intestine [46]. For these reasons, electrospun scaffolds with pro-angiogenic

macropores are an interesting biomaterial for engineering artificial intestine.

Surface characteristics of fibrous scaffolds such as those formed with electrospinning

influence characteristics of cells cultured on the surface, including differentiation [47,48]

and behavior [49–53]. It is also well known that electrospun sheets can be a tremendous

barrier to cellular and vascular penetration [32,54]. In this study, we showed that vascularity

but not total cellularity correlated with the implanted cell survival. The most porous

scaffolds in this study were associated with the greatest blood vessel growth and highest

number of surviving GFP-expressing SMCs. Implanted GFP-expressing cells were

distributed throughout the 25% macroporous scaffolds, suggesting that blood vessel

infiltration was either rapid enough to sustain cells up to 1 mm away from the outer

omentum, or GFP-expressing cells were able to proliferate and migrate along with

infiltrating blood vessels within the 2-week period.

A possible explanation for the difference in implanted cell survival observed in various

macroporous scaffolds is that blood vessel infiltration happens more rapidly as the density of

the macropores increases. Even though host cells exist in high amounts after two weeks in

all scaffolds, the implanted cells may have died in the scaffolds with fewer macropores. Our

results suggest that a small increase beyond a threshold macroporosity results in a large

increase in implanted cell survival. Additional insight is provided by an analogy to the

mathematical percolation theory, the study of network connectivity and the transmittance of

substances or information due to network architecture [55]. Percolation theory predicts that

past a critical threshold, a series of connections can lead to a percolating cluster, or a

phenomenon where sufficient connections exist to conduct passage through a material where
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such passage was impossible with slightly fewer connections [56]. Similar analogies to

percolation theory exist in biological systems relating to antigen-antibody reactions,

lymphocyte membrane network formations, immunology, and conductivity in biological

materials [56]. Developing a percolation theory approach to improving blood vessel

networks in engineered tissues is an area for future research.

Conclusion

In this study, we demonstrate that a critical threshold macroporosity exists within tissue-

engineered smooth muscle constructs. Our findings show that higher macroporosities were

significantly more conducive to in vivo blood vessel infiltration. We provide evidence that a

small increase beyond a threshold macroporosity results in a large increase in SMC survival

and angiogenesis. Tissue-engineered smooth muscle constructs thicker than 1 mm were

sustained in scaffolds above a critical macroporosity threshold. Our study underscores the

importance of pore connectivity within microfabricated scaffolds for tissue engineering.
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Figure 1.
Macroscopic evaluation of scaffold porosity. Electrospun sheets are white 250-μm holes

appear black with a light gray ring of melted polymer around the edge. Mean porosities were

measured with ImageJ software and are listed with standard deviations (n=3) in results.

Scale bar is 500-μm.
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Figure 2.
Scanning electron microscope images of electrospun scaffolds with lasercut macropores.

Electrospun sheets, 25% porous, have fiber diameters of about 3-μm and micropore

diameters of 250-μm. A dense ring of melted fibers about 75-μm thick forms around the

macropores (arrows). Electrospun fibers are aligned vertically. Scale bar is 1000-μm (A),

250-μm (B), and 100-μm (C). The scaffold wrapping process is demonstrated (D) with a

nickel for scale.
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Figure 3.
Hematoxylin and eosin staining of implant sections for 0% porous (A), 15% porous (B),

20% porous (C), and 25% porous (D). Scaffolds were harvested at two weeks and visualized

in cross-section with H&E staining. Scaffolds with pores had robust cell infiltration, while

the non-porous control shows very little cellular penetration past the outer layer, leading to

poor histological processing. Scale bar is 2-mm. A 200x magnification of the 25% porous

scaffold (E) shows low cell infiltration within the electrospun fibers due to scaffold density.

Cells can be seen aligning along the scaffold fibers. The arrows point to melted polymer ring

formed around the laser cut hole. Scale bar is 100-μm.
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Figure 4.
Cellular penetration measured with DAPI staining. Nuclei were stained with DAPI to

visualize cellular penetration through scaffold layers of 0% porous (A), 15% porous (B),

20% porous (C), and 25% porous (D) scaffolds. Representative white lines are drawn to

separate the scaffold layers in to outer (layers 5 and 6, O); middle (layers 3 and 4, M); and

luminal (layers 1 and 2, L). Scale bar is 500-μm.
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Figure 5.
Quantification of DAPI staining. There was no measurable difference in DAPI staining

between layers of the porous implants. All porous implants had a significant improvement in

DAPI staining compared to non-porous controls (p<.05, *); (p<.005, #).
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Figure 6.
Immunohistochemical evaluation of implants for von Willebrand Factor positive blood

vessels. Angiogenesis was quantified by staining scaffold sections with diaminobenzidine

stain and anti-vWF and counter-staining with hematoxylin. A continuous increase in blood

vessel numbers corresponded to an increase in macroporosity from 0% porous (A), 15%

porous (B), 20% porous (C), and 25% porous (D). Black arrows highlight vWF-stained

vessels. Scale bar is 200-μm.
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Figure 7.
Quantification of von-Willebrand Factor positive blood vessels. Statistical increases in blood

vessel infiltration existed between the 15% scaffolds and all layers of both 20% and 25%

macroporous scaffolds (p<.05, *; p<.005, **). Statistical increases in blood vessel

penetration also existed between the 20% and 25% macroporous scaffolds in both the outer

and middle layers (p<.05, #), but not the luminal layers.
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Figure 8.
Green fluorescent protein positive DNA quantified by qPCR. Only the 20% and 25%

macroporous scaffolds had a significant increase in GFP+ DNA compared to the non-porous

controls.
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Figure 9.
Immunofluorescent staining for Green Fluorescent Protein. Survival of implanted GFP+

smooth muscle cells was quantified with green fluorescent anti-GFP staining. Few GFP+

cells are noticeable in the 0% porous (A), 15% porous (B), and 20% porous (C) scaffolds,

while an increase in fluorescent green GFP+ cells is noticeable in laser cut holes in the 25%

porous scaffold (D). Scale bar is 500-μm.
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Figure 10.
Quantification of GFP+ staining. Immunofluorescent anti-GFP staining was quantified with

ImageJ software. A significant increase in GFP staining was observed in the 25% porous

scaffolds compared to both 15% and 20% in all layers (p<.05, *). There was no difference

between the 15% and 20% porous groups.
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