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Abstract: Candida albicans, a diploid polymorphic fungus, has evolved a unique heritable epigenetic
program that enables reversible phenotypic switching between two cell types, referred to as “white”
and “opaque”. These cell types are established and maintained by distinct transcriptional programs
that lead to differences in metabolic preferences, mating competencies, cellular morphologies, re-
sponses to environmental signals, interactions with the host innate immune system, and expression
of approximately 20% of genes in the genome. Transcription factors (defined as sequence specific
DNA-binding proteins) that regulate the establishment and heritable maintenance of the white and
opaque cell types have been a primary focus of investigation in the field; however, other factors
that impact chromatin accessibility, such as histone modifying enzymes, chromatin remodelers, and
histone chaperone complexes, also modulate the dynamics of the white-opaque switch and have been
much less studied to date. Overall, the white-opaque switch represents an attractive and relatively
“simple” model system for understanding the logic and regulatory mechanisms by which heritable
cell fate decisions are determined in higher eukaryotes. Here we review recent discoveries on the
roles of chromatin accessibility in regulating the C. albicans white-opaque phenotypic switch.

Keywords: white-opaque switching; Candida albicans; chromatin; transcriptional regulation; heri-
tability; cell fate decisions; histone modifying enzymes; chromatin remodeling enzymes; histone
chaperone complexes; epigenetics

1. Introduction

Multicellular organisms are comprised of many phenotypically and functionally
distinct cell types, the vast majority of which contain the same primary genomic sequence.
How a single set of genomic “instructions” can reliably yield many distinct and heritable
phenotypic states is a fundamental question in biology. We have begun to understand that
a single genome can support many transcriptional programs, which in turn specify unique
cell type specific patterns of gene expression, and ultimately establish distinct phenotypes.
These cell types are often heritably maintained in an epigenetic manner following each cell
division, and it has become increasingly apparent that chromatin structure and accessibility
play important roles in the transcriptional regulation of cell type specificity.

Candida albicans, a unicellular polymorphic fungus, has evolved the ability to establish
two transcriptional programs that give rise to two distinct cell types called “white” and
“opaque” based on their appearance at the single colony level. The white and opaque
cell types are heritably maintained in an epigenetic manner through thousands of cell
divisions with no change to the primary sequence of the genome [1,2]. A growing body
of literature has identified numerous similarities between the molecular mechanisms
governing the C. albicans white-opaque switch and those that underlie heritable cell type
differentiation in higher eukaryotes [3–7]. Since a similar heritable phenotypic switch is
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not observed in the classic model yeast Saccharomyces cerevisiae, C. albicans has emerged as a
compelling “simple” and genetically tractable eukaryotic model system to study heritable
transcriptional programs in higher eukaryotes.

The C. albicans white and opaque cell types are established and maintained by distinct
transcriptional programs that lead to a wide range of phenotypic differences between the
two cell types. These include differences in metabolic preferences, mating competencies,
cellular morphologies, responses to environmental signals, interactions with the host innate
immune system, and expression of ~20% of genes in the genome [3,4,8–15]. A variety of
environmental cues have been identified that can bias the switch in favor of the white or
opaque cell type. Growth in the presence of N-acetyl glucosamine, elevated CO2 levels,
acidic pH, anaerobic conditions, genotoxic or oxidative stress, and 25 ◦C all promote
white to opaque switching, while 37 ◦C in the presence of glucose triggers en masse
opaque to white switching [1,2,16–21]. The destabilizing effect of elevated temperature on
opaque cells is not universal, however, and opaque cells can be heritably maintained at
37 ◦C when grown on alternative (i.e., non-glucose) carbon sources [22]. Under standard
switch permissive laboratory growth conditions (25 ◦C on Lee’s medium supplemented
with 100 µg/mL uridine and 2% glucose, or other similarly comprised synthetic defined
growth medium), phenotypic switching between the two cell types occurs stochastically
at a frequency of approximately one switch event per 1000–10,000 cell divisions [16–19].
In other words, once established, each cell type is maintained through an epigenetic
mechanism that is stably inherited over thousands of subsequent cell divisions.

The frequency of switching between the white and opaque cell types is controlled
by a set of regulatory genes that encode seven sequence-specific DNA-binding proteins,
i.e., transcription factors (TFs) (Wor1, Wor2, Wor3, Wor4, Ahr1, Czf1, Efg1), and one non-
DNA-binding adapter protein (Ssn6). These eight switch regulators have been extensively
characterized through genome-wide transcriptional profiling and chromatin immunopre-
cipitation (ChIP) experiments, as well as by genetic epistasis experiments [1,2,4,22–26].
Based on this work, these eight proteins have been shown to form the core of the transcrip-
tional circuit that governs the establishment and heritable maintenance of the white and
opaque cell types [4,9,22,23,25,27] (Figure 1). At the heart of this circuit lies Wor1, the “mas-
ter regulator” of the opaque cell type, which is considered to be the key regulator involved
in initiating the switch to, and heritable maintenance of, the opaque cell type [1,2,4,27].
WOR1 expression, which is repressed in white cells and upregulated in opaque cells [1,2],
triggers the formation of a highly intertwined regulatory network–consisting of the core
regulators and all of their directly bound target genes–that is responsible for the establish-
ment and heritable maintenance of the opaque cell type [1–4]. Remarkably, the high degree
of interconnectivity in the core opaque transcriptional circuit (Figure 1) is similar to that
observed in transcriptional circuits controlling stem cell maintenance and differentiation in
mammals [3,28–30], suggesting that similar regulatory architectures may be common across
eukaryotes to control analogous heritable transcriptional programs and their associated
phenotypic outputs. Subsequent to the identification of the core transcriptional circuit con-
trolling white-opaque switching, an additional 108 genes that encode known or predicted
sequence-specific DNA-binding proteins have been identified as “auxiliary” regulators
of the white-opaque switch [1,2,9,22] (Table 1). This auxiliary designation indicates that
while these genes are known to influence the frequency of switching, the regulators that
they encode have yet to be incorporated into the white-opaque transcriptional regulatory
network through genome-wide chromatin association or other studies.
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Figure 1. Core white and opaque transcriptional circuits. Colored lines indicate direct binding interactions between each 
TF (same color as their circular node) and their respective target genes within the white (A) and opaque (B) circuits. Data 
to create this figure was obtained from [4,9,22,23,25,27]. Figure was generated using Cytoscape [31]. 

Table 1. Genes encoding known or predicted TFs and a non-DNA-binding adapter protein with roles in white-opaque 
switching. 

Core White-Opaque Transcriptional Regulators 
Gene Name Orf19 # Known Effect on White-Opaque Switch in Mutant Strain 

  White to Opaque 1 Opaque to White 1 Other Functions References 
AHR1 Orf19.7381 1.96 0.13 Adherence [32] 
CZF1 Orf19.3127 0.05 0.06 Filamentation [33] 

EFG1 Orf19.610 24.0 <0.02 Filamentation, 
Metabolism  [34,35] 

SSN6 * Orf19.6798 N/A OP <0.04 Filamentation [36,37] 
WOR1 Orf19.4884 >0.05 N/A WH Adherence [38] 
WOR2 Orf19.5992 >0.03 N/A WH Iron homeostasis [39] 
WOR3 Orf19.467 0.42 0.26   
WOR4 Orf19.6713 >0.08 N/A WH   

Auxiliary White-Opaque Transcriptional Regulators 
Gene Name Orf19 # Known Effect on White-Opaque Switch in Mutant Strain 

  White to Opaque 1 Opaque to White 1 Other Functions References 
AAF1 Orf19.7436 0.88 0.38 Adherence [40] 

AFT2 Orf19.2272 0.36 0.59 
Iron metabolism, Stress 

response, Adherence [41,42] 

ARG81 Orf19.4766 1.75 0.44 Adherence [43] 
ASG1 Orf19.166 0.05 0.05 Filamentation [44] 

ASH1 Orf19.5343 0.83 0.04 Filamentation, 
Metabolism 

[45,46] 

BAS1 Orf19.6874 1.49 1.15 Filamentation [47] 

BCR1 Orf19.723 2.21 N/AWH 
Adherence, Biofilm 

formation, Drug 
resistance 

[43,48–50] 

Figure 1. Core white and opaque transcriptional circuits. Colored lines indicate direct binding interactions between each TF
(same color as their circular node) and their respective target genes within the white (A) and opaque (B) circuits. Data to
create this figure was obtained from [4,9,22,23,25,27]. Figure was generated using Cytoscape [31].

Table 1. Genes encoding known or predicted TFs and a non-DNA-binding adapter protein with roles in white-opaque
switching.

Core White-Opaque Transcriptional Regulators

Gene Name Orf19 # Known Effect on White-Opaque Switch in Mutant Strain

White to Opaque 1 Opaque to White 1 Other Functions References

AHR1 Orf19.7381 1.96 0.13 Adherence [32]
CZF1 Orf19.3127 0.05 0.06 Filamentation [33]
EFG1 Orf19.610 24.0 <0.02 Filamentation, Metabolism [34,35]

SSN6 * Orf19.6798 N/A OP <0.04 Filamentation [36,37]
WOR1 Orf19.4884 >0.05 N/A WH Adherence [38]
WOR2 Orf19.5992 >0.03 N/A WH Iron homeostasis [39]
WOR3 Orf19.467 0.42 0.26
WOR4 Orf19.6713 >0.08 N/A WH

Auxiliary White-Opaque Transcriptional Regulators

Gene Name Orf19 # Known Effect on White-Opaque Switch in Mutant Strain

White to Opaque 1 Opaque to White 1 Other Functions References

AAF1 Orf19.7436 0.88 0.38 Adherence [40]

AFT2 Orf19.2272 0.36 0.59 Iron metabolism, Stress
response, Adherence [41,42]

ARG81 Orf19.4766 1.75 0.44 Adherence [43]
ASG1 Orf19.166 0.05 0.05 Filamentation [44]
ASH1 Orf19.5343 0.83 0.04 Filamentation, Metabolism [45,46]
BAS1 Orf19.6874 1.49 1.15 Filamentation [47]

BCR1 Orf19.723 2.21 N/A WH Adherence, Biofilm formation,
Drug resistance [43,48–50]

BRG1 Orf19.4056 1.87 0.66 Filamentation, Biofilm
formation [48,51,52]
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Table 1. Cont.

Auxiliary White-Opaque Transcriptional Regulators

Gene Name Orf19 # Known Effect on White-Opaque Switch in Mutant Strain

White to Opaque 1 Opaque to White 1 Other Functions References

CAP1 Orf19.1623 0.67 0.23 Drug resistance, Stress
response, Apoptosis [53–57]

CAS5 Orf19.4670 1.45 0.43 Drug resistance, Stress
response, Cell cycle [58–60]

CPH1 Orf19.4433 0.46 0.39 Filamentation, Mating [61–64]
CPH2 Orf19.1187 0.44 0.70 Filamentation [65]

CRZ1 Orf19.7359 1.86 0.18
Drug resistance, Stress
response, Calcineurin

pathway
[66–70]

CSR1 Orf19.3794 1.02 2.56 Zinc ion homeostasis,
Filamentation [71,72]

CTA4 Orf19.7374 0.88 0.17 Stress response, Drug
resistance [44,73]

CTA7 Orf19.4288 2.37 0.48
CUP2 Orf19.5001 0.81 0.63 Stress response [74]
CUP9 Orf19.6514 4.74 0.07 Filamentation [75]

DAL81 Orf19.3252 0.16 0.57 Adherence [76]
DPB4 Orf19.2088 0.32 0.41 Filamentation [77]

ECM22 Orf19.2623 1.31 0.46
EFH1 Orf19.5498 1.69 0.61 Metabolism [34]
FCR1 Orf19.6817 0.52 0.63 Drug resistance [78]

FGR15 Orf19.2054 0.06 4.78 Filamentation [79]

FLO8 Orf19.1093 <0.04 N/A WH Filamentation,
CO2 sensing [80,81]

GAL4 Orf19.5338 <0.04 0.77 Metabolism [82]
GIS2 Orf19.3182 0.86 0.11 Drug resistance [83]

GRF10 Orf19.4000 1.37 0.14 Filamentation, Metabolism [47,84]
GZF3 Orf19.2842 0.08 1.70 Stress response [83]
HAP2 Orf19.1228 <0.04 0.62 Iron homeostasis [39]
HAP3 Orf19.4647 0.34 1.30 Stress response [39]

HAP31 Orf19.517 0.04 0.79 Stress response,
Drug resistance [39,83]

HAP41 Orf19.740 0.10 1.14 Stress response [39]
HAP42 Orf19.1481 0.49 0.54
HAP5 Orf19.1973 0.15 0.33 Stress response, Metabolism [39,85]

HCM1 Orf19.4853 18.4 0.27 Stress response,
Filamentation [39,86]

HFL1 Orf19.3063 <0.05 2.11 DNA replication [87]
INO2 Orf19.7539 <0.04 0.28 Transcription [88]
INO4 Orf19.837.1 0.33 0.81 Transcription [88]
ISW2 Orf19.7401 3.40 2.89 Stress response [89]
KAR4 Orf19.3736 0.51 1.23 Mating [90,91]

LYS143 Orf19.4776 7.25 0.88 Biofilm formation [43]
LYS144 Orf19.5380 1.29 0.42 Biofilm formation [43]

MAC1 Orf19.7068 0.05 0.63 Copper ion homeostasis,
Filamentation [92]

MIG1 Orf19.4318 <0.03 1.37 Metabolism [93–95]
MIG2 Orf19.5326 1.62 0.63 Metabolism [93]
MSN4 Orf19.4752 1.88 0.21 Biofilm formation [43]

NDT80 Orf19.2119 0.10 1.87 Drug resistance, Biofilm
formation [48,96]

NTO1 Orf19.5910 2.80 0.66 Stress response [89]
OPI1 Orf19.1543 4.03 0.42 Filamentation, Metabolism [97,98]
PTH2 Orf19.4231 2.96 0.24

RAP1 Orf19.1773 16.0 0.64 Telomere recombination,
Filamentation [99–101]
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Table 1. Cont.

Auxiliary White-Opaque Transcriptional Regulators

Gene Name Orf19 # Known Effect on White-Opaque Switch in Mutant Strain

White to Opaque 1 Opaque to White 1 Other Functions References

RBF1 Orf19.5558 N/A OP <0.03 Filamentation [102]
RCA1 Orf19.6102 0.11 0.53 CO2 sensing, Drug resistance [103,104]
REP1 Orf19.7521 0.68 2.43 Drug resistance [105]
RFG1 Orf19.2823 1.05 2.12 Filamentation, Stress response [106–108]
RFX1 Orf19.3865 1.78 1.67 Stress response [109]
RFX2 Orf19.4590 1.46 0.58 Stress response [109]
RME1 Orf19.4438 2.15 0.57 Drug resistance [110]
RPN4 Orf19.1069 18.2 0.67 Intracellular proteolysis [111,112]
RTG1 Orf19.4722 0.47 0.35 Metabolism [113]
RTG3 Orf19.2315 0.36 0.46 Metabolism [113]
SEF2 Orf19.1926 1.09 0.31
SFL1 Orf19.454 0.88 1.95 Flocculation, Filamentation [114,115]
SKN7 Orf19.971 1.13 0.65 Stress response [116]
SKO1 Orf19.1032 0.56 0.42 Stress response, Filamentation [117–119]
STP2 Orf19.4961 9.18 0.15 Metabolism [120]
STP4 Orf19.909 3.25 0.47 Metabolism [120]
SWI4 Orf19.4545 0.22 1.02 Cell cycle [121]
TYE7 Orf19.4941 2.04 0.97 Metabolism [82]

UGA33 Orf19.7317 0.99 0.60 Adherence [43]
UME6 Orf19.1822 0.62 2.02 Filamentation, CO2 sensing [122–125]
UME7 Orf19.2745 0.50 1.44 Adherence [43]
UPC2 Orf19.391 0.94 3.13 Drug resistance, Metabolism [126–129]
WAR1 Orf19.1035 0.31 0.94 Stress response [130]
XBP1 Orf19.5210 0.16 0.85 Stress response [39]
ZCF16 Orf19.2808 1.47 1.19 Biofilm formation [131]
ZCF17 Orf19.3305 1.31 2.22 Adherence [43]
ZCF2 Orf19.431 0.59 0.36 Stress response [132,133]

ZCF20 Orf19.4145 0.66 0.46 Iron homeostasis [134]
ZCF21 Orf19.4166 0.25 0.02
ZCF22 Orf19.4251 1.77 0.93
ZCF24 Orf19.4524 0.96 0.31 Stress response [39]
ZCF25 Orf19.4568 8.48 0.34
ZCF27 Orf19.4649 0.53 1.46 Filamentation [43]
ZCF30 Orf19.5251 1.08 0.60
ZCF31 Orf19.5924 0.42 3.24 Stress response [83]
ZCF34 Orf19.6182 0.35 0.22 Stress response [83]
ZCF7 Orf19.1685 4.73 0.37
ZCF8 Orf19.1718 0.48 0.46 Adherence [76]
ZFU2 Orf19.6781 0.52 2.26
ZFU3 Orf19.6888 0.20 0.06 Biofilm formation [48,131]
ZMS1 Orf19.5026 0.36 0.84

Orf19.1150 1.22 0.78
Orf19.1274 0.70 1.20
Orf19.1577 0.89 0.68
Orf19.1757 1.04 0.61
Orf19.217 0.60 0.57
Orf19.2476 1.91 2.49
Orf19.2612 2.38 1.40
Orf19.2961 7.02 2.05
Orf19.3928 5.71 0.23
Orf19.7098 7.77 1.10

1 Fold changes in switch frequencies for each deletion mutant strain are calculated relative to an isogenic wildtype reference strain. “N/A
OP” indicates that the deletion mutant strain was opaque-locked and the white to opaque or opaque to white switch frequency could not
be determined. “N/A WH” indicates that the deletion mutant strain was white-locked, or failed to yield stable opaque colonies, and the
opaque to white switch frequency could not be determined. “*” indicates a non-DNA-binding adaptor protein. Blank cells indicate that the
information is unknown. Switch frequency data in this table was obtained from [9].
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While much of the research on white-opaque switching to date has focused on regula-
tory TFs that bind directly to DNA in a sequence specific manner, an increasing body of
literature has revealed important roles for factors that impact chromatin accessibility in
regulating the dynamics of the switch [5,24,135–140]. Relatively little is known, however, at
a mechanistic level, about how these factors influence switching. Since the ability of TFs to
access their regulatory targets is substantially affected by chromatin landscapes [141], the
roles that these chromatin accessibility factors play to influence white-opaque switching is
an important avenue for future investigation.

Chromatin is composed of genomic DNA wrapped around four histone dimers, form-
ing nucleosomes, as well as non-histone proteins that organize and stabilize chromatin
structure. The regulation of chromatin is essential for cellular processes such as transcrip-
tion, replication and repair, mitosis, and apoptosis [142]. The four histone dimers that make
up the nucleosome core can be post-translationally modified either before or after their
deposition into chromatin, adding an extra layer of information that is encoded on top of
the primary sequence of the genome. These epigenetic modifications, which have unique
context dependent functions, include acetylation, methylation, crotonylation, ubiquitinoy-
lation, SUMOylation, and phosphorylation [143–149]. Although these modifications are
considered epigenetic marks, most of them are not heritably transmitted from one cellular
or organismal generation to the next. Histone modification is a reversible process that
is mediated by specific enzymes that are classified as “writers”, such as histone lysine
methyltransferases, that catalyze the addition of chemical modifications, and “erasers”,
such as histone deacetylases, that remove chemical modifications [150]. Often, the writers
and erasers function within multiprotein complexes that also contain proteins with special-
ized domains, such as bromodomains, that are classified as “readers”. Readers recognize
specific histone modifications and regulate the specificity and enzymatic activity of their
associated writers and erasers [151]. Additional factors that influence chromatin structure
and accessibility include remodelers, which actively translocate or evict nucleosomes, and
histone chaperones, which deposit histones into chromatin [152–155].

28 genes that encode known or predicted writers (eleven genes), erasers (fourteen
genes), chromatin remodelers (one gene) and histone chaperones (two genes) have been
analyzed for their roles in white-opaque switching [5,24,135–137,139,140,156] (Table 2).
Eighteen of these genes are involved in white-opaque switching since their deletion signifi-
cantly affected the frequency of white-opaque switching relative to an isogenic wildtype
strain (Table 2). These genes encode proteins that fall into six functional categories with
respect to their roles in white-opaque switching: (1) stabilizers of the white cell type that do
not affect opaque cell stability (Set1, Rpd31, Hst3, Hda1, Hda2, and Hda3); (2) destabilizers
of the white cell type that do not affect opaque cell stability (Hst2); (3) stabilizers of the
opaque cell type that do not affect white cell stability (Pho13); (4) destabilizers of the
opaque cell type that do not affect white cell stability (Hst1); (5) stabilizers of the white cell
type that also decrease opaque cell stability (Hat1, Swr1 and Yng2); and (6) destabilizers of
the white cell type that also increase opaque cell stability (Hos2, Set3, Nat4, Rtt109, Rpd3
and Cac2) (Figure 2). Below we review the current knowledge of the roles of these writers,
erasers, chromatin remodelers, and histone chaperones in regulating the white-opaque
switch.
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Table 2. Genes encoding known or predicted writers, erasers, chromatin remodelers and histone chaperones analyzed for
their impacts on white-opaque switching.

Gene Name Orf19# Protein Function
Known Effect on White-Opaque Switch

in Mutant Strain Reference

Wh –> Op 1 Op –> Wh 1

YNG2 Orf19.878

Histone Acetyltransferases
(Writers)

23.8 0.01 [5]
SPT10 Orf19.2361 no effect no effect [135]
HPA2 Orf19.6323 no effect no effect [135]

RTT109 Orf19.7491 0.10 6.98 [157]
NAT4 Orf19.4664 0.12 3.42 [135]
SAS2 Orf19.2087 no effect no effect [135]
HAT1 Orf19.779 7.60 0.13 [140]
ELP3 Orf19.7387 no effect no effect [135]

SET1 Orf 9.6009
Histone Methyl Transferases

(Writers)

1.73 0.98 3 [135]
SET2 Orf19.175 no effect no effect [135]
DOT1 Orf19.740 no effect no effect [135]

HDA1 Orf19.2606

Histone Deacetylases
(Erasers)

2.73 1.06 3 [29,31] *
HDA2 Orf19.6952 3.33 no data [158]
HDA3 Orf19.7344 3.67 no data [158]
RPD3 Orf19.2834 33.3 49.7 [137]

RPD31 Orf19.6801 2.85 1.23 3 [136]
HST1 Orf19.4761 1.29 3 0.37 [135]
HST2 Orf19.2580 0.04 1.86 3 [135]

HST3 4 Orf19.1934 6.00 no effect [24]
HOS1 Orf19.4411 no effect no effect [135]
HOS2 Orf19.5377 0.13 2.29 [135]
HOS3 Orf19.2772 no effect no effect [135]
SET3 Orf19.7221 0.16 2.71 [135]

PHO13 2 Orf19.4444 Phosphatases (Erasers) 0.93 3 5.01 [135]
ORF19.4736 Orf19.4736 no effect no effect [135]

SWR1 Orf19.1871 Chromatin Remodelers 16.0 0.01 [5]
CAC2 Orf19.6670 Histone Chaperones 3.75 2.53 [139]
HIR1 Orf19.2099 no effect no effect [139]

1 Fold changes in switch frequencies for each deletion mutant strain are calculated relative to an isogenic wildtype reference strain. 2 The
protein encoded by PHO13 has been shown to lack protein phosphatase activity and is instead involved in metabolism [159,160]. 3 The
effect on white-opaque switching is not significant. 4 This strain is an HST3/hst3 hemizygous mutant strain. * The hda1/hda1 deletion mutant
strain was investigated in both referenced articles with similar findings. All switch frequencies reported in this table originate from the
indicated references.
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2. Regulation of White-Opaque Switching by “Writers”

Five of the histone modifiers that influence white-opaque switching are “writers”, four
of which are histone acetyltransferases (HATs) (Hat1, Rtt109, Nat4, Yng2) and one of which
is a histone methyltransferase (HMT) (Set1). HATs modify histones by acetylating lysine
residues at histone tails or at histone globular domains, while HMTs primarily modify
histones by methylating lysine residues at histone tails. Each of the four HATs influence
the stability of both the white and opaque cell types, with Hat1 and Yng2 playing opposing
roles to Nat4 and Rtt109 (Figure 2) [5,24,140]. In contrast, the HMT Set1 specifically assists
in the establishment of the opaque cell type by increasing the white to opaque switch
frequency but does not affect opaque cell maintenance. In the following sections, we review
the current knowledge of how these writers regulate the establishment and maintenance of
the white and opaque phenotypic states.

2.1. Regulation of White-Opaque Switching by the NuA4 Histone Acetyltransferase Yng2

Histone acetyltransferases (HATs) are characterized by their substrate and cellular
localization. Type A HATs modify nucleosomal histones and are localized in the nucleus,
while type B HATs modify histones before they are deposited into nucleosomes and are
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localized in the cytoplasm [161]. Yng2, the catalytic subunit of the NuA4 HAT complex, is
the only type A HAT known to regulate the white-opaque switch [5] (Table 2 and Figure 2).
Although the mechanism by which NuA4 regulates the white-opaque switch is unknown,
some mechanistic insights can be gleaned from the knowledge of how NuA4 regulates
the yeast to hyphal cell transition [162]. The NuA4 complex is recruited to the upstream
intergenic regions of hyphal-specific genes by Efg1 and, upon filament induction, an
increase in H4 acetylation levels is observed at these sites [162]. This acetylation event
is required for the recruitment of the SWI/SNF complex, which activates the hyphal-
specific genes through its chromatin remodeling activity. Given that Efg1 is also a key
white-opaque switch regulator and is bound upstream of many white- and opaque-specific
genes, it is perhaps not surprising that genetic evidence suggests a similar process may
be involved in regulating the white-opaque switch [162]. Notably, deletion of YNG2
results in a nearly identical alteration of white-opaque switching as deletion of EFG1
(~24-fold increase in white to opaque switching and ≥60-fold decrease in opaque to white
switching) (Tables 1 and 2). These findings suggest that H4K5 acetylation at white and
opaque regulated genes that are directly bound by Efg1 likely plays an important role
in stabilizing the white cell type and destabilizing the opaque cell type. Since NuA4
regulates the expression of hyphal-specific genes indirectly, through H4K5 acetylation-
dependent recruitment of the SWI/SNF chromatin remodeling complex, it seems plausible
that SWI/SNF complex-dependent chromatin remodeling may ultimately play a role in
modulating the stability of the white and opaque cell types.

The NuA4 complex has also been implicated in the regulation of white-opaque switch-
ing through H2 and H4 acetylation-dependent recruitment of the SWR1 chromatin remod-
eling complex, which is responsible for depositing an H2A.Z histone variant into chromatin
in exchange for a canonical H2A histone [163]. Deletion of SWR1, the major subunit of
the SWR1 complex, results in an increase in white to opaque switching and a decrease in
opaque to white switching, with similar fold changes in switch frequencies as observed
for a yng2 deletion mutant strain [5] (Table 2). The NuA4 HAT complex and the SWR1
chromatin remodeling complex share four subunits, and it was recently determined that
the two complexes can merge to function as one unit depending on the morphological state
of the C. albicans cell [164]. Taken together, these findings suggest that there is a complex
interplay between histone modification and chromatin remodeling enzymes in regulating
the stability of the white and opaque cell types. Studies in fungi and higher eukaryotes
have shown that chromatin remodeling enzymes are often recruited to their target loci by a
combination of factors, including histone modifications; however, the specific roles of these
interactions in regulating cell type heritability is not understood in eukaryotes.

2.2. Regulation of White-Opaque Switching by the Histone Acetyltransferase Rtt109

Rtt109 is a type B HAT known to acetylate lysine 56 within the globular domain of his-
tone 3 (H3K56) before the histone monomer is deposited into nucleosomes. This acetylation
mark is especially important because the addition of a negative charge within the globular
domains of histones reduces the electrostatic attraction between DNA and nucleosomes
and thus destabilizes the affected nucleosomes [143]. This increase in DNA accessibility
due to H3K56 acetylation influences the repackaging of chromatin after replication and
DNA damage repair [165–167], and also plays an important role in anti-silencing and
transcription at heterochromatic loci [168,169]. Interestingly, an increase in the levels of
H3K56 acetylation is correlated with an increase in the rate of histone turnover at certain
developmentally regulated genomic loci in higher eukaryotes [170]. This increase in the
rate of histone turnover is, in turn, correlated with an increase in chromatin accessibility,
and thus TFs (both activating and repressing) are more likely to bind to, and regulate the
expression of, genes at these loci.

Rtt109 has been shown to play an important role in enabling the white to opaque
transition and in the heritable maintenance of the opaque cell type [24]. In a rtt109 deletion
mutant strain, white cells were found to switch to the opaque cell type at a tenfold lower
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frequency than that of wildtype cells, and the resulting opaque cells were highly unsta-
ble [24]. In fact, opaque colonies of an rtt109 deletion mutant strain were found to consist
of a mixed population of both white and opaque cells, and only a subset of the elongated
cells that resembled the opaque phenotype were found to express high levels of WOR1 [24].
These findings suggest that the H3K56 acetylation mark plays a critical role in the stability
of WOR1 expression in opaque cells. Locus specific chromatin immunoprecipitation exper-
iments by ChIP-qPCR revealed that H3K56 acetylation marks were differentially deposited
at multiple loci upstream of genes that are differentially expressed between white and
opaque cell types [22]. Indeed, H3K56 acetylation was found to be enriched within the
upstream intergenic region of WOR1 in opaque cells, relative to white cells [24]. How
H3K56 acetylation is deposited in a cell type specific manner at the upstream intergenic
regions of these differentially expressed genes remains an open question. While we do
not yet know the specific mechanisms by which Rtt109 regulates the white-opaque switch,
evidence suggests that Rtt109 regulates Wor1 accessibility to its own upstream intergenic
region [24]. For example, we know that opaque cells expressing an ectopic copy of WOR1
in an rtt109 deletion mutant strain failed to heritably maintain the opaque cell type after
the ectopic copy of WOR1 was turned off [24], suggesting that Rtt109 activity and H3K56
acetylation enrichment within the WOR1 upstream intergenic region are necessary for the
stable maintenance of the WOR1 positive feedback loop that is central to the heritability of
opaque cells.

2.3. Regulation of White-Opaque Switching by the Histone Acetyltransferase Hat1

Hat1, a type B HAT that is part of the NuB4 complex, acetylates histone 4 (H4) tails at
two different lysine residues (H4K5 and H4K12), and mediates the incorporation of free
histones into nucleosomes [171]. The role of Hat1 in the NuB4 complex was confirmed
by showing that reducing H4 levels mimicked inactivation of the NuB4 complex [140].
In C. albicans, a hat1 deletion mutant strain displayed both increased white to opaque
switching and decreased opaque to white switching [140]. In other words, the NuB4
complex seems to bias the switch towards the white cell type by both stabilizing the white
cell type and destabilizing the opaque cell type. While the mechanism by which Hat1
influences the switch is unknown, we speculate that Hat1 may regulate the white-opaque
switch by modulating H4 levels in chromatin, which would affect chromatin accessibility.
In white cells, reduced H4 levels in a hat1 deletion mutant strain could increase DNA
accessibility for TFs binding to WOR1 cis-regulatory elements, thus making it easier for
Wor1 to initiate the autoregulatory positive feedback loop central to the white to opaque
transition. In opaque cells, this increase in DNA accessibility could stabilize the WOR1
positive feedback loop, thereby stabilizing the opaque state. Consistent with this idea, one
would predict that white to opaque switching would be reduced in an MTL heterozygous
hat1 deletion mutant strain due to increased binding of the MTL a1/α2 heterodimer
upstream of WOR1.

2.4. Regulation of White-Opaque Switching by the Histone Acetyltransferase Nat4

Deletion of NAT4, which encodes an N-terminal acetyltransferase (NAT), has been
found to reduce white to opaque switching and increase opaque to white switching [135].
Thus, Nat4 tilts the scales in favor of opaque cell formation by destabilizing the white cell
type and by stabilizing the opaque cell type. In S. cerevisiae, Nat4 acetylates the N-terminal
serine residues of H4 and H2A [172]. While not much is known about the function of Nat4
in C. albicans, we briefly discuss a few unique properties of the S. cerevisiae Nat4 to highlight
why NATs could be of interest to study in C. albicans.

Five NAT types have been identified in S. cerevisiae (NatA, NatB, NatC, NatD, NatE) [173],
and with the exception of NatD, they all have human orthologs. Nat4, the catalytic subunit
of NatD is the only NAT shown to regulate the white-opaque switch. Unlike the other
NATs, NatD does not contain auxiliary subunits, and therefore does not require interacting
partners for its enzymatic activity [174]. Interestingly, NatD recognizes a significantly
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longer N-terminal sequence for acetylation than the other NATs [174]. These unique
properties of NatD suggest that this enzyme likely regulates the white-opaque switch by
regulating the acetylation levels of H4 and H2A.

2.5. Regulation of White-Opaque Switching by the Histone Methyltransferase Set1

Set1 deposits methylation marks at lysine 4 of H3 (H3K4) via its SET domain-containing
methyltransferase [175]. It is the only methyltransferase in C. albicans that modifies H3K4,
and thus deletion of SET1 in C. albicans results in a complete loss of H3K4 methylation [176].
In S. cerevisiae and higher eukaryotes, H3K4 methylation marks are hallmarks of tran-
scriptionally active chromatin sites [175]. Studies in S. cerevisiae have shown that SET1 is
required for transcriptional silencing of the silent mating-type loci and telomeres [177];
however, the specific relationship between H3K4 methylation and transcription has not
been investigated in C. albicans. A C. albicans set1 deletion mutant strain has been shown to
display increased white to opaque switching relative to the wildtype strain [135]. Unlike
the HATs, which influence both white to opaque switching and opaque cell stability, the
Set1 histone methyltransferase, however, does not affect opaque cell stability [135]. The
mechanism by which Set1-dependent H3K4 methylation specifically influences white cell
stability, without affecting opaque cell stability, is an intriguing area of interest for future
studies.

3. Regulation of White-Opaque Switching by “Erasers”

Histone deacetylases remove histone acetylation marks and thus are often associated
with a repressive function because of their roles in forming a condensed or “closed”
chromatin state that restricts DNA accessibility [178]. Ten histone deacetylases (HDACs)
(Rpd3, Rpd31, Hda1, Hda2, Hda3, Set3, Hos2, Hst1, Hst2, and Hst3) have been shown to
influence white-opaque switching [24,135,137,158]. Three of these HDACs (Hda1, Hst3,
and Rpd31) have no known roles in regulating the stability of the opaque cell type, and
thus, similar to the Set1 HMT discussed above, appear to be white cell-specific modulators
of the white-opaque switch [24,135,137]. These findings suggest that decreased chromatin
accessibility, mediated by these HDACs either genome-wide or at specific regulatory loci,
plays a role in maintaining cell type epigenetic heritability by modulating accessibility for
TFs (activating and repressing). Below, we discuss the known roles of these HDACs in
white-opaque switching.

Rpd3 is a histone deacetylase that acts on both H3 and H4 and has been shown to
play a direct role in regulating WOR1 expression in white cells [136]. Upon deletion of
RPD3, H4 acetylation levels increase throughout the WOR1 upstream intergenic region,
and these elevated acetylation levels appear to directly influence white cell stability by
increasing the accessibility of chromatin. Interestingly, the effect of RPD3 deletion on white
cell stability is dependent upon the mating type of the cell. In MTL heterozygous cells,
where the MTLa1/α2 heterodimer stabilizes the white cell type through direct repression
of WOR1 [14,27], deletion of RPD3 results in an increase in MTLa1/α2 binding upstream
of WOR1 and a decrease in WOR1 expression [136]. Conversely, in an MTL homozygous
(a/a) strain, where the MTLa1/α2 heterodimer is not present, deletion of RPD3 results
in a decrease in white cell stability [136]. This decrease is presumably due to an increase
in Wor1 accessibility to the WOR1 upstream intergenic region, which would ultimately
facilitate activation of the WOR1 positive feedback loop that is central to the formation
and stabilization of the opaque cell type. These results establish that white cell stability
can be regulated through the modulation of interactions between regulatory TFs and their
cis-regulatory target sites via histone deacetylation. Alternatively, HDACs could also
remove histone acetylation marks from within open reading frames, thus changing their
chromatin accessibility. Set3 and Hos2 were recently shown to form part of an HDAC
complex in C. albicans that regulates expression of metabolic and morphogenesis related
genes via this type of mechanism [179], and a similar mechanism has been proposed to
explain how Rpd31 represses white to opaque switching [136]. While Set3, Hos2 and Rpd31
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have been shown to regulate the white-opaque switch, their specific mechanisms of action
on the switch have yet to be elucidated.

The SET3 complex, which includes the HDACs Set3, Hos2, and Hst1, has been shown
to be intertwined at a genetic level with the transcriptional regulatory circuit that con-
trols white-opaque switching. Genetic epistasis studies have highlighted an intriguing
interaction between the SET3 complex and a key repressor of the white to opaque switch,
Efg1 [135]. While deletion of EFG1 alleviates Efg1-mediated repression of WOR1, and
thus stimulates white to opaque switching and stabilizes the opaque state, deletion of
either SET3 or HOS2 suppresses the efg1 deletion phenotype and restores switching fre-
quencies to near wildtype levels [135]. This suggests that the activation and sustained
expression of WOR1 that is central to opaque cell formation and stability is dependent
not only on alleviation of Efg1 repression, but also on the activity of the SET3 complex.
Since the SET3 complex has been shown to be a negative regulator of the protein kinase
A (PKA) pathway [180], and Efg1 is believed to be a major regulatory target of the PKA
pathway, [181–183] this suggests a potential mechanism for the genetic interactions ob-
served between SET3, HOS2, and EFG1. Additional epistasis experiments revealed that
deletion of SET1, encoding a methyltransferase, and the resulting loss of H3K4 histone
methylation, suppresses the effect of SET3 or HOS2 deletion on white-opaque switching,
revealing a complex interaction between these chromatin modifiers and the modulation
of white and/or opaque cell stability. Although SET3, HOS2 and HST1 have all been
shown to function as part of the SET3 complex, deletion studies indicate that Hst1 may act
independently of the SET3 complex when regulating white-opaque switching [135,184].
Specifically, while Set3 and Hos2 both promote white to opaque switching and opaque cell
stability, Hst1 appears to have no effect on white cell stability and acts to decrease opaque
cell stability [135]. One potential explanation for this result could be that Hst1 may instead
regulate opaque cell stability as a component of the SUM1-RFM1-HST1 complex, which
has been shown to function as a repressor of sporulation-specific genes in S. cerevisiae [185]
and a repressor of drug and oxidative stress resistance genes in Candida glabrata [186].

Similar to SET3 and HOS2 deletion phenotypes, deletion of HST2 was found to result
in a decrease in white to opaque switching, yet no alterations in opaque cell stability
were detected [135]. This finding suggests that Hst2 is likely involved in destabilizing
the white cell type. In contrast to SET3 and HOS2, which are epistatic to EFG1, the HST2
deletion phenotype is suppressed when EFG1 is also deleted [29], suggesting that HST2
may destabilize the white cell type by inhibiting or antagonizing EFG1. Hda1, which
also plays roles in stabilizing the white cell type without influencing opaque cell stability,
may also act through EFG1. EFG1 expression is reduced in white cells when HDA1 is
deleted; however, the mechanism by which Hda1 influences EFG1 expression has yet to be
elucidated. Furthermore, HDA1 expression is overall lower in opaque cells, relative to white
cells [137], perhaps explaining why deletion of HDA1 does not affect opaque cell stability.
Hda1 has been proposed to form a complex along with Hda2 and Hda3 [158], potentially
explaining the similarity in phenotypes between HDA1, HDA2, and HDA3 deletion strains.
In addition, deletion of any one of these three genes has been reported to result in at least a
fivefold increase in WOR1 expression [158], possibly due to a reduction in Efg1-dependent
repression of WOR1 transcription. Although Hda1 has been shown to promote sustained
hyphal development via deacetylation of Yng2, leading to eviction of the NuA4 HAT
complex from hyphal promoters [51,187], it is unclear whether a similar mechanism may
be involved in white-opaque switching, as both Hda1 and Yng2 contribute to stabilizing
the opaque cell type. Hst3 is a sirtuin class HDAC that removes H3K56 acetylation and
stabilizes the white cell type [24], presumably by counteracting the white cell destabilizing
effects of Rtt109, which facilitates sustained WOR1 expression though increased H3K56
acetylation. It is interesting to note that Hst3 levels are reduced in response to genotoxic
stress [24], providing a possible explanation for the up to eightfold increase in white to
opaque switching observed when white cells are cultured in the presence of the cytotoxic
drugs methyl methanesulfonate or hydroxyurea [24]. Understanding how these HDACs
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regulate the expression of key white-opaque transcriptional regulators, such as WOR1 and
EFG1 to ultimately influence the relative stabilities of white and opaque cell types, is an
important area of focus for future studies.

4. Potential Roles of “Readers” in Regulating White-Opaque Switching

“Reader” enzymes recognize or “read” post-translationally modified histone residues
and possess a histone binding module, such as a bromodomain [188,189], that recognize
specific histone residues with modifications. Bromodomain modules, for example, rec-
ognize histone lysine residues with acetylation marks [190]. While the roles of readers
in regulating white-opaque switching have yet to be investigated, readers are involved
in other important processes in C. albicans. For example, one reader of the lysine acety-
lation mark (Bdf1) and two readers of the crotonylation and acetylation marks (Taf14
and Yaf9), have been shown to play important roles in C. albicans pathogenicity [191,192].
NuA4-dependent acetylation upstream of hyphal-specific genes has been shown to result
in the recruitment of the SWI/SNF chromatin remodeling complex via its bromodomain
during hyphal induction [162]. In other fungi and higher eukaryotes, many readers have
been identified and studied [193–196], but their functions have yet to be investigated in
C. albicans. Several histone modifying enzymes and chromatin remodeling enzymes, which
affect the white-opaque switch, also affect cellular differentiation and heritability in higher
eukaryotes [197–201]. Readers are often components within histone modifying enzyme
complexes and chromatin remodeling complexes, and thus, assist these large complexes
in finding their target loci within the genome [202]. Therefore, it seems likely that readers
are involved in regulating the C. albicans white-opaque switch, and this is an important
unexplored area of interest for future studies.

5. Regulation of White-Opaque Switching by Chromatin Remodeling Complexes

Chromatin remodeling enzyme complexes modulate chromatin accessibility through
the function of their ATPase-translocase domains. We can classify chromatin remodeling
enzymes into four subfamilies, each of which carries out specialized functions [154]. ISWI
and CHD complex subfamilies preferentially reduce chromatin accessibility by regulating
the assembly and organization of nucleosomes. The SWI/SNF complex subfamily remod-
els chromatin by sliding or evicting nucleosomes, which generally increases chromatin
accessibility [154]. The INO80 complex subfamily modulates chromatin accessibility by
replacing canonical histones with histone variants, specifically targeting nucleosomes that
flank transcription start sites. The SWR1 complex, a member of the Ino80 subfamily, is the
only known regulator of this class that regulates white-opaque switching in C. albicans [5]
and is discussed in more detail below.

Regulation of White-Opaque Switching by the SWR1 Chromatin Remodeling Complex

SWR1 encodes a chromatin remodeling enzyme that is responsible for the deposition
of the histone variant H2AZ. The SWR1 complex, which is an ortholog of the human
SRCAP complex, is a multiprotein complex responsible for replacing canonical histone
H2A-H2B dimers with the histone variant H2A.Z-H2B dimers without disassembling
the H3/H4 tetramer from DNA [163,203]. H2A.Z is a highly conserved variant of H2A
that is found throughout all eukaryotes [204]. Developmentally regulated genomic loci
show increased enrichment of H2A.Z relative to non-developmentally regulated loci [205].
H2A.Z is deposited specifically into the two nucleosomes that flank transcription start
sites [206], and is essential in several higher eukaryotic organisms, but not in fungi [207,208].
In C. albicans, H2A.Z is enriched in white cells, relative to opaque cells, within the upstream
intergenic region of WOR1 [5]. The complex responsible for depositing this histone variant
appears to play a role in stabilizing the white cell type and destabilizing the opaque cell
type, as deletion of SWR1 causes a significant increase in the white to opaque switch
frequency and in the heritable maintenance of opaque cells [5]. Since H2A.Z variant
enriched sites have been shown to correlate with slightly increased chromatin accessibility
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relative to canonical histones [209], it is conceivable that higher levels of H2A.Z inhibit
expression of WOR1 by facilitating the binding of a repressor protein within the upstream
intergenic region of WOR1.

A similar phenotype is observed upon disruption of the NuA4 complex, which is
known to recruit and/or promote chromatin-related enzymatic activities of the SWR1
complex [162,210]. Therefore, it is likely that NuA4 regulates the white-opaque switch
by modulating the recruitment or enzymatic activity of Swr1, which in turn results in
decreased H2A.Z deposition throughout the genome. The nucleosome editing function
of the SWR1 complex is also controlled through H3K56 acetylation, which is catalyzed
by Rtt109. High levels of H3K56 acetylation led to decreased levels of H2A.Z deposition
genome-wide [211]. This is notable as H3K56 acetylation itself has been implicated in
altering histone turnover rates [212], which consequently alters genome-wide chromatin
accessibility. It remains an open question whether H3K56 acetylation regulates the white-
opaque switch by modulating the enzymatic activity of the SWR1 complex, or whether
H3K56 acetylation directly regulates the white-opaque switch by modulating histone
turnover rates.

6. Regulation of White-Opaque Switching by Histone Chaperone Complexes

The highly basic amino acid composition of histones makes them predisposed to
aggregation and promiscuous histone-DNA interactions, thus necessitating a diverse net-
work of histone chaperones to orchestrate the assembly and integration of histones into
chromatin [152,153,213]. Below, we focus our discussion on the evolutionarily conserved
histone chaperone complexes HIR (HIRA in humans) and CAF-1, and their roles in regulat-
ing the white-opaque switch in C. albicans. CAF-1 primarily assembles nucleosomes in a
replication dependent manner [214,215], whereas HIR functions independent of replica-
tion [216,217]. Importantly, the replication coupled nucleosome assembly function of CAF-1
is conserved in humans [214,215]. Both chaperone complexes are essential in higher eu-
karyotes [218,219], which has complicated efforts to investigate their functions in cell type
formation and maintenance. The C. albicans white-opaque switch provides a unique and
robust alternative system to investigate the functions of these highly conserved chaperone
complexes in higher eukaryotes.

Studies in both S. cerevisiae and human HeLa cells have revealed that the HIR and
CAF-1 complexes modulate nucleosome dynamics [220], which in turn affect chromatin
accessibility. Other than their replication dependent functions, these two enzymes have also
been shown to have several overlapping functions that are unrelated to replication. Recent
work in C. albicans has shown that they function similarly to their orthologs in S. cerevisiae.
Deletion of C. albicans HIR1, a subunit of the HIR complex, had no effect on white-opaque
switching, while deletion of CAC2, a subunit of CAF-1 complex, resulted in an overall
increase in switching in both directions [139]. On the other hand, deletion of a subunit
of both chaperone complexes in C. albicans has been shown to lead to reduced opaque
cell stability, as evidenced by wildtype levels of white to opaque switching and a sixfold
increase in opaque to white switching [139]. These results alone do not definitively point to
a specific chaperone complex responsible for regulating opaque cell stability; however, they
do reveal that nucleosome dynamics can significantly affect cell type maintenance in the
context of the white-opaque switch. Modulating nucleosome dynamics has a significant
effect on chromatin accessibility [141], and recent studies have acknowledged the impact
of chromatin accessibility on cell type specification and maintenance [170,200,221–223]. It
is possible that opaque cells, more so than white cells, depend on increased chromatin
accessibility to maintain their cell type specific transcriptional program, which could
explain why deleting subunits of the HIR and CAF-1 complexes have dramatic effects on
opaque cell stability.
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7. Conclusions

Most chromatin research in C. albicans has focused on the roles of chromatin in regulat-
ing cellular processes such as transcription, replication, repair, mitosis, and apoptosis [35].
Recently, this focus has shifted to investigating how chromatin and chromatin modifiers
regulate cell type specification and heritability. This avenue of research has led to signifi-
cant insights into how chromatin regulates these fundamental biological processes. Many
of these insights come from studies in higher eukaryotes; however, the inherent complexity
of myriad possible cell type lineages and large genome sizes has slowed progress in the
field.

The white-opaque switch in C. albicans is not hindered by the same challenges as
higher eukaryotes, and thus represents an attractive alternative model system for investi-
gating the mechanisms by which chromatin dynamics regulate cell type specification and
heritability. We have reviewed the roles of chromatin regulating proteins in modulating
the white-opaque switch and the heritability of white and opaque cell types in C. albicans
(summarized in Figure 3). Most of these proteins have been shown to also affect cellular
differentiation and heritability in higher eukaryotes, thus supporting the overall relevance
of this research. Future studies on chromatin regulating proteins in C. albicans will certainly
lead to significant insights into the mechanisms by which chromatin regulates cellular
differentiation and heritability across eukaryotes.
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been shown to lack protein phosphatase activity and is instead involved in metabolism [159,160]. 

Figure 3. Summary illustration of the roles of chromatin regulating proteins in modulating the C. albicans white-opaque
switch. Colored lines within the core white and opaque transcriptional circuits indicate direct binding interactions between
each TF (same color as their circular node) and their respective target genes. Data to create the transcriptional circuits was
obtained from [4,9,22,23,25,27]. Transcriptional circuits were generated using Cytoscape [31]. White to opaque and opaque
to white switching is indicated by the central black arrows. Erasers are shown as blue hexagons, writers are shown as aqua
ovals, chromatin remodelers are shown as red triangles, and histone chaperones are shown as orange rectangles. Note that
Yng2 is a subunit of the NuA4 complex and that Cac2 is a subunit of the CAF-1 complex. *Pho13 has been shown to lack
protein phosphatase activity and is instead involved in metabolism [159,160].
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