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ABSTRACT OF THE DISSERTATION

Logarithmic Sobolev Inequalities for Gaussian Convolutions of
Compactly Supported Measures

by

David Sawyer Zimmermann
Doctor of Philosophy in Mathematics

University of California San Diego, 2015

Professor Todd Kemp, Chair

We give a brief exposition of logarithmic Sobolev Inequalities (LSIs) for prob-
ability measures on Rn, as well as some known sufficient conditions on such measures
for a LSI to hold. We show that the convolution of a compactly supported probability
measure on Rn with a Gaussian measure satisfies a LSI, and look at some examples.
We conclude with an application of this result by showing that the empirical law of
eigenvalues of an n × n symmetric random matrix converges weakly to its mean as
n→∞.
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Chapter 1

Introduction

1.1 Background

A probability measure µ on Rn (or more generally, a Riemannian manifold) is
said to satisfy a logarithmic Sobolev inequality (LSI) with constant c ∈ R if

Entµ(f 2) ≤ 2c E (f, f)

for all locally Lipschitz functions f : Rn → R+ for which both sides of the inequality
are finite, where Entµ, called the entropy functional, is defined as

Entµ(f) :=
∫
f log f∫

f dµ
dµ

and E (f, f), the energy of f , is defined as

E (f, f) :=
∫
|∇f |2dµ,

with |∇f | defined as

|∇f |(x) := lim sup
y→x

|f(x)− f(y)|
|x− y|

so that |∇f | is defined everywhere and coincides with the usual notion of gradient
where f is differentiable. The smallest c for which a LSI with constant c holds is
called the optimal log-Sobolev constant for µ.

LSIs show up as an important tool in many areas of mathematics, such as
geometry [1, 2, 7, 11, 12, 13, 21], probability [9, 14, 18], and optimal transport [22, 24],

1



2

as well as statistical physics [28, 29, 30]. A 2003 paper of Ledoux [23] uses LSI
(in its equivalent form hypercontractivity, see [15]) to determine tail bounds for the
largest eigenvalue of a large symmetric random matrix with Gaussian entries. Another
important application of LSI in probability is the Herbst inequality (see [16], p.301,
Ex. 3.4):

Theorem 1.1.1. (Herbst). Let µ be a probability measure on Rn satisfying a LSI
with constant c, and let F : Rn → R be Lipschitz. Then for all λ ∈ R,

µ
{∣∣∣∣F − ∫ F dµ

∣∣∣∣ ≥ λ
}
≤ 2 exp

(
− λ2

2c||F ||2Lip

)
.

Because of the widespread utility of LSI, it is of great interest to know which
measures satisfy a LSI, and for those that do, what the optimal log-Sobolev constants
are. The prototypical example of a measure that satisfies a LSI is the standard
Gaussian measure on Rn, which Gross proved satisfies a LSI with constant 1 in his
early seminal work [15] in the field. There are many known sufficient conditions on µ
in order for µ to satisfy a LSI (for example, [4, 5, 8, 20, 25]), as well as some known
necessary conditions (for example, Theorem 1.1.1 above implies that µ must have
sub-Gaussian tails if it satisfies a LSI). The next two sufficient conditions for µ to
satisfy a LSI will be used in later chapter chapters. The first of these two is due to
Cattiaux, Guillin, and Wu (see [10, Thm. 1.2]):

Theorem 1.1.2 (Cattiaux, Guillin, Wu). Let µ be a probability measure on Rn with
dµ(x) = e−V (x)dx for some V ∈ C2(Rn). Suppose the following:

1. There exists a constant K ≤ 0 such that Hess(V ) ≥ KI.

2. There exists a W ∈ C2(Rn) with W ≥ 1 and constants b, c > 0 such that

∆W (x)− 〈∇V,∇W 〉(x) ≤ (b− c|x|2)W (x)

for all x ∈ Rn.

Then µ satisfies a LSI.

On the real line, Bobkov and Götze gave the following necessary and sufficient
condition (see [6, p.25, Thm 5.3]):
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Theorem 1.1.3 (Bobkov, Götze). Let µ be a Borel probability measure on R with
distribution function F (x) = µ((−∞, x]). Let p be the density of the absolutely con-
tinuous part of µ with respect to Lebesgue measure, and let m be a median of µ.
Let

D0 = sup
x<m

(
F (x) · log 1

F (x) ·
∫ m

x

1
p(t)dt

)
,

D1 = sup
x>m

(
(1− F (x)) · log 1

1− F (x) ·
∫ x

m

1
p(t)dt

)
,

defining D0 and D1 to be zero if µ((−∞,m)) = 0 or µ((m,∞)) = 0, respectively, and
using the convention 0 ·∞ = 0. Then the optimal log Sobolev constant c for µ satisfies

1
150(D0 + D1) ≤ c ≤ 468(D0 + D1). In particular, µ satisfies a LSI if and only if D0

and D1 are finite.

From this, one can glean some sufficient conditions for a LSI to hold. For
example, if µ is supported in the interval [a, b], and the absolutely continuous part of
µ has a density whose reciprocal is in L1([a, b]), then µ satisfies a LSI with constant
bounded by an absolute constant times ||1/p||1. This is seen by the following rough
estimate for D1 (the estimate for D0 is similar):

D1 = sup
x>m

(
(1− F (x)) · log 1

1− F (x) ·
∫ x

m

1
p(t)dt

)
≤ sup

0<u<1

(
u · log 1

u

)
·
∫ b

a

1
p(t)dt

=1
e
||1/p||1.

We further remark that it is not necessary for 1/p to be L1 for µ to satisfy a LSI.
For example, on [0, 1], let dµ(t) = (α+ 1)tαdt for any α ≥ 1. Then one can explicitly
compute the integrals defining D0 and D1 to check that µ satisfies a LSI.

Surprisingly absent in the literature is the idea of approximation of arbitrary
measures by measures that satisfy a LSI; this will be the focus of this dissertation.
We will approximate by using convolution with Gaussian measures. (Since the time
of publication of [33] by the present author, other work has been done. See the
recent paper [25] for statements about convolutions involving more general classes of
probability measures on Rn than what we investigate here.)

Convolution of an arbitrary measure with a Gaussian does not necessarily yield
a LSI; for example, consider the exponential distribution on R: dµ(t) = exp(−t) dt,
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t ≥ 0. The right tail is not sub-Gaussian; therefore by the Herbst inequality (Theorem
1.1.1 above), µ does not satisfy a LSI. If we convolve µ with the standard Gaussian
measure, then the right tail of the convolved measure has density p given by

p(x) =
∫ ∞
−∞

1√
2π

exp
(
−y

2

2

)
exp(−(x− y)) · 1{y>0}(x− y)dy

= exp
(
−x+ 1

2

) ∫ x

−∞

1√
2π

exp
(
−(y + 1)2

2

)
dy

≥ 1
2 exp

(
−x+ 1

2

)
, for x ≥ −1.

Thus the convolved measure still has an exponential, hence not sub-Gaussian, right
tail and therefore does not satisfy a LSI either. So this approximation scheme does
not work in general. However, if we restrict our attention to compactly supported
measures, then convolution will yield a LSI; this is stated precisely in the next section.

1.2 Results

In this section, we state all of the main results. We first introduce some
conventions: we will denote by γδ the centered Gaussian of variance δ; i.e., dγδ(x) =
(2πδ)−n/2 exp(− |x|

2

2δ )dx. Given a measure µ, we will sometimes write µδ as shorthand
for µ ∗ γδ, the convolution of µ with γδ. Since γδ has a smooth density, µδ also has a
smooth density, which we denote pδ or sometimes just p (except in Section 2.3, where
we use p to denote the Gaussian density, and q to denote to convolved density). In
general, any symbol decorated with a δ will denote some object associated to µ ∗ γδ.

We remark that some of the theorems stated below are subsumed by other
theorems stated below. For the sake of exposition, we include all of their statements
(and proofs, in the subsequent chapters).

The first three theorems below concern measures on the real line.

Theorem 1.2.1. Let µ be a compactly supported probability measure on R. Let γδ be
the centered Gaussian with variance δ > 0. Then µ ∗ γδ satisfies a LSI with constant
c for some c = c(δ).

Theorem 1.2.2. Let µ be a probability measure on R whose support is contained
in an interval of length 2R, and let γδ be the centered Gaussian of variance δ > 0.
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Then for some absolute constants Ki, the optimal log-Sobolev constant c(δ) for µ ∗ γδ
satisfies

c(δ) ≤ K1
δ3/2R

4R2 + δ
exp

(
2R2

δ

)
+K2 (

√
δ + 2R)2.

In particular, if δ ≤ R2, then

c(δ) ≤ K3
δ3/2

R
exp

(
2R2

δ

)
.

The Ki can be taken in the above inequalities to be K1 = 6905, K2 = 4989, K3 = 7803.

Theorem 1.2.3. Let µ be a probability measure on R whose support is contained in
an interval of length 2R, and let γδ be the centered Gaussian of variance δ > 0. Then
the optimal log-Sobolev constant c(δ) for µ ∗ γδ satisfies

c(δ) ≤ max
(
δ exp

(
4R2

δ
+ 4R√

δ
+ 1

4

)
, δ exp

(
12R2

δ

))
.

In particular, if δ ≤ 3R2, we have

c(δ) ≤ δ exp
(

12R2

δ

)
.

We remark here that while Theorem 1.2.3 is quantitatively no better than
Theorem 1.2.2 (for small δ), its novelty lies in its proof, which does not rely heavily
on any sophisticated machinery or deep theorems.

The next two theorems are statements about measures on Rn.

Theorem 1.2.4. Let µ be a probability measure on Rn whose support is contained in
a ball of radius R. Then for all δ > 2R2n, the optimal log-Sobolev constant c(δ) for
µ ∗ γδ satisfies

c(δ) ≤ δ2

δ − 2R2n
.

Theorem 1.2.5. Let µ be a probability measure on Rn whose support is contained in
a ball of radius R, and let γδ be the centered Gaussian of variance δ with 0 < δ ≤
R2, i.e., dγδ(x) = (2πδ)−n/2 exp(− |x|

2

2δ )dx. Then for some absolute constant K, the
optimal log-Sobolev constant c(δ) for µ ∗ γδ satisfies

c(δ) ≤ K R2 exp
(

20n+ 5R2

δ

)
.

K can be taken above to be 289.



6

The bounds stated in Theorems 1.2.3, 1.2.2, and 1.2.5 are bounded by an
exponential in R2/δ. We show in Example 4.0.6 that one cannot do better than
exponential in R2/δ for small δ.

Our last main result is an application of Theorem 1.2.5. We prove, under
weaker hypotheses than classically stated, the universality theorem in random matrix
theory that the empirical law of eigenvalues of an n×n real symmetric random matrix
converges weakly to its mean in probability as n → ∞. (Further exposition is given
in Chapter 5.) Before we state that theorem, we state some terminology. Given a set
S, we say Π = {P1, P2, . . . , Pm} is a partition of S if the Pk are disjoint non-empty
subsets of S whose union equals S. Also, recall that a family {fα}α∈A of random
variables is said to be uniformly integrable if for every ε > 0 there exists a C ≥ 0
such that

E
(
fα · 1{|fα|>C}

)
< ε

for all α ∈ A.

Theorem 1.2.6. For each natural number n, let Yn be an n×n random real symmetric
matrix, and let Xn = 1√

n
Yn. Suppose the following:

1. The family {
[Y̊n]2ij

}
n∈N,1≤i,j≤n

is uniformly integrable, where for a random variable Z, Z̊ := Z − E(Z).

2. For each n, there exists dn and a partition Π = {P1, P2, . . . , Pm} of
{[Yn]ij}1≤i≤j≤n such that:

(a) For each 1 ≤ k ≤ m, |Pk| ≤ dn.

(b) For each 1 ≤ k ≤ m, every entry in Pk is independent of ⋃l 6=k Pl.
(c) As n→∞,

dn
log n → 0.

Then the empirical law of eigenvalues µXn of Xn converges weakly to its mean in
probability.
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The remainder of this dissertation is outlined as follows:
In Chapter 2, we present the proofs of our 1-dimensional results: Theorems

1.2.1, 1.2.2, and 1.2.3.
In Chapter 3, we present the proofs of our n-dimensional results: Theorems

1.2.4 and 1.2.5.
In Chapter 4, we look at LSIs for specific examples. We consider compactly

supported measures on R with densities bounded above and below, as well as measures
with disconnected support; in particular, 2-point measures.

In Chapter 5, we give a brief exposition of Theorem 1.2.6, and present the
proof of Theorem 1.2.6.



Chapter 2

The 1-dimensional case

2.1 Proof of Theorem 1.2.1

The main tool for proving Theorem 1.2.1 is Theorem 1.1.3. The key idea is
the fact that we can describe the tail behavior of the convolution of a compactly
supported measure with a Gaussian.

Proof of Theorem 1.2.1. Suppose supp(µ) ⊆ [a, b]. We will apply Theorem 1.1.3 to
the probability measure µ∗γδ. We will show D0 and D1, as defined in Theorem 1.1.3,
are finite; at the moment we consider D0. Since γδ has a smooth density, µ ∗ γδ has
a smooth density p. Note that p is nonzero everywhere since γδ has strictly positive
density. We therefore want to show

D0 = sup
x<m

(∫ x

−∞
p(t)dt · log 1∫ x

−∞ p(t)dt
·
∫ m

x

1
p(t)dt

)

is finite. Since the above expression is continuous in x for all x ∈ R, it is bounded on
every compact interval. We therefore only need to show that

lim sup
x→−∞

(∫ x

−∞
p(t)dt · log 1∫ x

−∞ p(t)dt
·
∫ m

x

1
p(t)dt

)

is finite. We will do this by giving asymptotics for
∫ x
−∞ p(t)dt and

∫m
x

1
p(t)dt.

Lemma 2.1.1.
lim

x→−∞

δp′(x)
−xp(x) = 1.

8
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Proof. By definition of p,

p(x) =
∫ 1√

2πδ
exp

(
−(x− t)2

2δ

)
dµ(t),

so

p(x+ h)− p(x)
h

=
∫ 1√

2πδ
1
h

(
exp

(
−(x+ h− t)2

2δ

)
− exp

(
−(x− t)2

2δ

))
dµ(t).

Since, by the Mean Value Theorem, the integrand in the above equation is dominated
uniformly in h by maxt∈R −t

δ
√

2πδ exp(−t22δ ) < ∞, we can let h → 0 and apply the
Dominated Convergence Theorem to differentiate under the integral and get

p′(x) =
∫ −1
δ
√

2πδ
(x− t) exp

(
−(x− t)2

2δ

)
dµ(t).

Then

δp′(x)
−xp(x) =

δ
∫ −1
δ
√

2πδ (x− t) exp
(
−(x−t)2

2δ

)
dµ(t)

−x
∫ 1√

2πδ exp
(
−(x−t)2

2δ

)
dµ(t)

=
∫

(x− t) exp
(
−(x−t)2

2δ

)
dµ(t)

x
∫

exp
(
−(x−t)2

2δ

)
dµ(t)

= 1−
∫
t exp

(
−(x−t)2

2δ

)
dµ(t)

x
∫

exp
(
−(x−t)2

2δ

)
dµ(t)

.

But ∣∣∣∣∣∣
∫
t exp

(
−(x−t)2

2δ

)
dµ(t)

x
∫

exp
(
−(x−t)2

2δ

)
dµ(t)

∣∣∣∣∣∣ ≤
∫
|t| exp

(
−(x−t)2

2δ

)
dµ(t)

|x|
∫

exp
(
−(x−t)2

2δ

)
dµ(t)

≤
max(|a|, |b|)

∫
exp

(
−(x−t)2

2δ

)
dµ(t)

|x|
∫

exp
(
−(x−t)2

2δ

)
dµ(t)

= max(|a|, |b|)
|x|

→ 0 as x→ −∞,

so δp′(x)
−xp(x) → 1 as x→ −∞.

The next two lemmas give asymptotics for
∫ x
−∞ p(t)dt and

∫m
x

1
p(t)dt. We will

say f(x) ∼ g(x) if f(x)
g(x) → 1 as x→ −∞.
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Lemma 2.1.2. ∫ x

−∞
p(t)dt ∼ − δ

x
p(x).

Proof. Observe that both
∫ x
−∞ p(t)dt and − δ

x
p(x) tend to 0 as x → −∞ and apply

L’Hôpital’s Rule and Lemma 2.1.1:

lim
x→−∞

∫ x
−∞ p(t)dt
− δ
x
p(x)

= lim
x→−∞

p(x)
δ
x2p(x)− δ

x
p′(x)

= lim
x→−∞

1
δ
x2 + δp′(x)

−xp(x)

= 1.

Lemma 2.1.3. ∫ m

x

1
p(t)dt ∼ −

δ

xp(x) .

Observe that this claim shows that the above integral asymptotically does not
depend onm. Since p is continuous and nonzero on R andm ∈ [a, b],

∫m
x

1
p(t)dt is finite

for each x; and since 1
p(t) blows up as x→ −∞, any dependence on m of

∫m
x

1
p(t)dt is

diminished as x→ −∞.

Proof. For x ≤ a,

p(x) =
∫ 1√

2πδ
exp

(
−(x− t)2

2δ

)
dµ(t)

≤
∫ 1√

2πδ
exp

(
−(x− a)2

2δ

)
dµ(t)

= 1√
2πδ

exp
(
−(x− a)2

2δ

)
,

so that
1

p(x) ≥
√

2πδ · exp
(

(x− a)2

2δ

)
.

So − δ
xp(x) tends to +∞ as x → −∞ and we can again use L’Hôpital’s Rule and
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Lemma 2.1.1:

lim
x→−∞

∫m
x

1
p(t)dt

− δ
xp(x)

= lim
x→−∞

− 1
p(x)

δ
(xp(x))2 (p(x) + xp′(x))

= lim
x→−∞

1
−δ
x2 + δp′(x)

−xp(x)

= 1.

Before we proceed, we need the following fact about asymptotics of logs: if
f(x) ∼ g(x) and g(x) → ∞ as x → −∞, then log f(x) ∼ log g(x). This follows by
observing that

log f(x)
log g(x) = 1 +

log
(
f(x)
g(x)

)
log g(x)

and letting x→ −∞.

Proposition 2.1.4. D0 and D1 are finite.

Proof. We first consider D0. By the observations made at the beginning of this
section, it suffices to show that

lim sup
x→−∞

(∫ x

−∞
p(t)dt · log 1∫ x

−∞ p(t)dt
·
∫ m

x

1
p(t)dt

)

is finite. By Lemmas 2.1.2 and 2.1.3,

lim sup
x→−∞

(∫ x

−∞
p(t)dt · log 1∫ x

−∞ p(t)dt
·
∫ m

x

1
p(t)dt

)

= lim sup
x→−∞

− δ
x
p(x) · log

(
−x
δ

1
p(x)

)
·
(
− δ

xp(x)

)

= lim sup
x→−∞

δ2

x2

(
log

(−x
δ

)
− log p(x)

)

= lim sup
x→−∞

δ2

x2 (− log p(x)) .
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We just now need to show that lim supx→−∞ δ2

x2 (− log p(x)) <∞. But for x ≤ a,

p(x) =
∫ 1√

2πδ
exp

(
−(x− t)2

2δ

)
dµ(t)

≥
∫ 1√

2πδ
exp

(
−(x− b)2

2δ

)
dµ(t)

= 1√
2πδ

exp
(
−(x− b)2

2δ

)
so that

lim sup
x→−∞

δ2

x2 (− log p(x))

≤ lim sup
x→−∞

− δ
2

x2 log
(

1√
2πδ

exp
(
−(x− b)2

2δ

))

= lim sup
x→−∞

− δ
2

x2

(
log

(
1√
2πδ

)
+ −(x− b)2

2δ

)

=δ

2 <∞.

Therefore D0 <∞.

The proof that D1 <∞ is practically identical, the relevant ingredients being
the following:

1− F (x) =
∫ ∞
x

p(t)dt,

lim
x→+∞

δp′(x)
−xp(x) = 1,∫ ∞

x
p(t)dt ∼ δ

x
p(x) as x→ +∞, and∫ x

m

1
p(t)dt ∼

δ

xp(x) as x→ +∞.

Details are omitted.

Theorem 2 now immediately follows from Proposition 2.1.4.

2.2 Proof of Theorem 1.2.2

The approach to proving Theorem 1.2.2 uses Theorem 1.1.3 as was done in
the previous section, but by carefully bounding D0 and D1 in Theorem 1.1.3, both
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on a bounded neighborhood of supp(µ) and outside of that neighborhood, we can
construct explicit upper bounds for the optimal log-Sobolev constant for γ ∗ µ.

Proof of Theorem 1.2.2. Fix µ with support contained in an interval of length 2R.
Since satisfaction of a LSI is translation invariant, we can assume that the support of
µ is contained in the interval [−R,R]. Throughout, we will let mδ denote the median
of µδ, and D0(δ) and D1(δ) be as defined in Theorem 1.1.3, as applied to the measure
µδ. We therefore want to bound

D0(δ) = sup
x<mδ

(∫ x

−∞
pδ(t)dt · log 1∫ x

−∞ pδ(t)dt
·
∫ mδ

x

1
pδ(t)

dt

)

and
D1(δ) = sup

x>mδ

(∫ ∞
x

pδ(t)dt · log 1∫∞
x pδ(t)dt

·
∫ x

mδ

1
pδ(t)

dt

)
.

As in the previous section, note that

pδ(t)dt =
∫ R

−R

1√
2πδ

exp
(
−(t− s)2

2δ

)
dµ(s)

and
p′δ(t)dt =

∫ R

−R

1√
2πδ
· s− t

δ
exp

(
−(t− s)2

2δ

)
dµ(s).

Lemma 2.2.1. For x ≥ R,∫ ∞
x

pδ(t)dt ≤
4
3 ·

δ

x−R +
√
δ
pδ(x).

Proof. We have

4
3 ·

δ

x−R +
√
δ
pδ(x)−

∫ ∞
x

pδ(t)dt

=− 4
3δ
∫ ∞
x

d

dt

(
pδ(t)

t−R +
√
δ

)
dt−

∫ ∞
x

pδ(t)dt

=
∫ ∞
x

(
−4

3δ ·
p′δ(t)(t−R +

√
δ)− pδ(t)

(t−R +
√
δ)2

− pδ(t)
)
dt.

Writing out the integral expressions for p, p′ and simplifying, we get that the above
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expression is equal to∫ ∞
x

1
(t−R +

√
δ)2

1√
2πδ

·
∫ R

−R

(4
3δ + 4

3(t−R +
√
δ)(t− s)− (t−R +

√
δ)2
)

exp
(
−(t− s)2

2δ

)
dµ(s)dt

≥
∫ ∞
x

1
(t−R +

√
δ)2

1√
2πδ∫ R

−R

(4
3δ + 4

3(t−R +
√
δ)(t−R)− (t−R +

√
δ)2
)

exp
(
−(t− s)2

2δ

)
dµ(s)dt

since t ≥ R and s ≤ R

=
∫ ∞
x

1
(t−R +

√
δ)2

1√
2πδ

∫ R

−R

1
3(t−R−

√
δ)2 exp

(
−(t− s)2

2δ

)
dµ(s)dt

≥ 0,

as desired.

The next lemma is an elementary calculation; we omit the details.

Lemma 2.2.2. For x ≥ 0,
∫ ∞
x

exp
(
−u

2

2

)
du ≥ 1

x+ 1 exp
(
−x

2

2

)

and ∫ x

0
exp

(
u2

2

)
du ≤ 2x

x2 + 1 exp
(
x2

2

)
.

Lemma 2.2.3. For x ≥ R,
∫ ∞
x

pδ(t)dt ≥
√
δ√

2π(x+R +
√
δ)

exp
(
−(x+R)2

2δ

)
.

Proof. We have
∫ ∞
x

pδ(t)dt =
∫ ∞
x

∫ R

−R

1√
2πδ

exp
(
−(t− s)2

2δ

)
dµ(s)dt

≥
∫ ∞
x

∫ R

−R

1√
2πδ

exp
(
−(t+R)2

2δ

)
dµ(s)dt

=
∫ ∞
x

1√
2πδ

exp
(
−(t+R)2

2δ

)
dt,
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the above inequality being because (t ≥ R and −R ≤ s ≤ R)⇒ −(t−s)2 ≥ −(t+R)2.
Letting u = (t+R)/

√
δ in the last integral above, we get∫ ∞

x
pδ(t)dt ≥

1√
2π

∫ ∞
(x+R)/

√
δ

exp
(
−u

2

2

)
du

≥ 1√
2π

1
(x+R)/

√
δ + 1

exp
(
−(x+R)2

2δ

)

by Lemma 2.2.2

=
√
δ√

2π(x+R +
√
δ)

exp
(
−(x+R)2

2δ

)
,

as desired.

Lemma 2.2.4. For x ≥ R,∫ x

R

1
pδ(t)

dt ≤ 2δ(x−R)
((x−R)2 + δ)pδ(x) .

Proof. We have

2δ(x−R)
((x−R)2 + δ)pδ(x) −

∫ x

R

1
pδ(t)

dt =
∫ x

R

(
d

dt

(
2δ(t−R)

((t−R)2 + δ)pδ(t)

)
− 1
pδ(t)

)
dt.

Letting u = (t−R)/
√
δ and writing out the integral expressions for p, p′ and simpli-

fying, we get that the above expression is equal to∫ (x−R)/
√
δ

0

1√
2π(u2 + 1)2pδ(

√
δu+R)2

·
∫ R

−R

(
−u4 − 4u2 + 1 + 2(u3 + u)

(
u+ R− s√

δ

))
exp

(
−(u+R− s)2

2δ

)
dµ(s)du

≥
∫ (x−R)/

√
δ

0

1√
2π(u2 + 1)2pδ(

√
δu+R)2

·
∫ R

−R

(
−u4 − 4u2 + 1 + 2(u3 + u) · u

)
exp

(
−(u+R− s)2

2δ

)
dµ(s)du

since u ≥ 0 and s ≤ R

=
∫ (x−R)/

√
δ

0

1√
2π(u2 + 1)2pδ(

√
δu+R)2

·
∫ R

−R
(u2 − 1)2 exp

(
−(u+R− s)2

2δ

)
dµ(s)du

≥ 0,

as desired.
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Lemma 2.2.5.

D1(δ) ≤ 8
√

2π
e
· δ3/2R

4R2 + δ
exp

(
2R2

δ

)
+ 2

3(2π + 1)(1 +
√

2)(
√
δ + 2R)2

and

D0(δ) ≤ 8
√

2π
e
· δ3/2R

4R2 + δ
exp

(
2R2

δ

)
+ 2

3(2π + 1)(1 +
√

2)(
√
δ + 2R)2.

Proof. We only present the proof for the bound on D1(δ); the proof for the bound on
D0(δ) involves analogous lemmas and identical reasoning, and is therefore omitted.

By definition of D1(δ),

D1(δ) = sup
x>mδ

∫ ∞
x

pδ(t)dt · log 1∫∞
x pδ(t)dt

·
∫ x

mδ

1
pδ(t)

dt

= max
(

sup
mδ<x≤R

∫ ∞
x

pδ(t)dt · log 1∫∞
x pδ(t)dt

·
∫ x

mδ

1
pδ(t)

dt,

sup
x≥R

∫ ∞
x

pδ(t)dt · log 1∫∞
x pδ(t)dt

·
∫ x

mδ

1
pδ(t)

dt

)

≤max
(

sup
mδ<x≤R

∫ ∞
x

pδ(t)dt · log 1∫∞
x pδ(t)dt

·
∫ x

mδ

1
pδ(t)

dt,

sup
x≥R

∫ ∞
x

pδ(t)dt · log 1∫∞
x pδ(t)dt

·
∫ R

mδ

1
pδ(t)

dt

+ sup
x≥R

∫ ∞
x

pδ(t)dt · log 1∫∞
x pδ(t)dt

·
∫ x

R

1
pδ(t)

dt

)

= max(A,B + C),

where

A := sup
mδ<x≤R

∫ ∞
x

pδ(t)dt · log 1∫∞
x pδ(t)dt

·
∫ x

mδ

1
pδ(t)

dt,

B := sup
x≥R

∫ ∞
x

pδ(t)dt · log 1∫∞
x pδ(t)dt

·
∫ R

mδ

1
pδ(t)

dt,

C := sup
x≥R

∫ ∞
x

pδ(t)dt · log 1∫∞
x pδ(t)dt

·
∫ x

R

1
pδ(t)

dt.
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By Lemmas 2.2.1,2.2.3, and 2.2.4,

C ≤ sup
x≥R

4
3 ·

δ

x−R +
√
δ
pδ(x) · log

(√
2π√
δ

(x+R +
√
δ) exp

(
(x+R)2

2δ

))

· 2δ(x−R)
((x−R)2 + δ)pδ(x)

= sup
u≥0

8
3

δu

(u+ 1)(u2 + 1) ·
[

1
2 log

(2π
δ

(
√
δ(u+ 1) + 2R)2

)
+ (
√
δu+ 2R)2

2δ

]

where u = x−R√
δ
.

Since log y ≤ y/e, we get

C ≤ sup
u≥0

8
3

δu

(u+ 1)(u2 + 1) ·
[

1
2e ·

2π
δ

(
√
δ(u+ 1) + 2R)2 + (

√
δ(u+ 1) + 2R)2

2δ

]

= sup
u≥0

4
3e(2π + e) · (

√
δ(u+ 1) + 2R)2

u+ 1 · u

u2 + 1 .

Using u/(u2 + 1) ≤ (1 +
√

2)/2(u+ 1) and simplifying, we finally get

C ≤ sup
u≥0

2
3e(2π + e)(1 +

√
2)
(√

δ + 2R
u+ 1

)2
= 2

3e(2π + e)(1 +
√

2)(
√
δ + 2R)2.

We now bound A. We have

A ≤ sup
mδ<x≤R

(∫ ∞
x

pδ(t)dt · log 1∫∞
x pδ(t)dt

)
· sup
mδ<x≤R

∫ x

mδ

1
pδ(t)

dt

≤ sup
0<u<1

(
u log 1

u

)
·
∫ R

mδ

1
pδ(t)

dt

≤1
e

∫ R

−R

1
pδ(t)

dt.

But

pδ(t) = 1√
2πδ

∫ R

−R
exp

(
−(t− s)2

2δ

)
dµ(s)

≥ 1√
2πδ

∫ R

−R
exp

(
−(|t|+R)2

2δ

)
dµ(s)

since −R ≤ s ≤ R⇒ −(t− s)2 ≥ −(|t|+R)2

= 1√
2πδ

exp
(
−(|t|+R)2

2δ

)
,
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so

A ≤ 1
e

∫ R

−R

√
2πδ exp

(
(|t|+R)2

2δ

)
dt =2

e

∫ R

0

√
2πδ exp

(
(t+R)2

2δ

)
dt

≤2
e

∫ R

−R

√
2πδ exp

(
(t+R)2

2δ

)
dt.

Letting u = (t+R)/
√
δ above and applying Lemma 2.2.2, we get

A ≤ 2
√

2πδ
e

∫ 2R/
√
δ

0
exp

(
u2

2

)
du ≤2

√
2πδ
e
· 2 · 2R/

√
δ

4R2/δ + 1 exp
(

2R2

δ

)

=8
√

2π
e
· δ3/2R

4R2 + δ
exp

(
2R2

δ

)
.

Similarly,

B ≤ sup
0<u<1

(
u log 1

u

)
·
∫ R

mδ

1
pδ(t)

dt ≤ 8
√

2π
e
· δ3/2R

4R2 + δ
exp

(
2R2

δ

)
.

So

D1(δ) ≤max
[

8
√

2π
e
· δ3/2R

4R2 + δ
exp

(
2R2

δ

)
,

8
√

2π
e
· δ3/2R

4R2 + δ
exp

(
2R2

δ

)
+ 2

3e(2π + e)(1 +
√

2)(
√
δ + 2R)2

]

=8
√

2π
e
· δ3/2R

4R2 + δ
exp

(
2R2

δ

)
+ 2

3e(2π + e)(1 +
√

2)(
√
δ + 2R)2.

To bound c(δ) and conclude the proof of Theorem 1.2.2, we apply Theorem
1.1.3 and Lemma 2.2.5:

c(δ) ≤468(D0(δ) +D1(δ))

≤468 · 2 ·
(

8
√

2π
e
· δ3/2R

4R2 + δ
exp

(
2R2

δ

)
+ 2

3e(2π + e)(1 +
√

2)(
√
δ + 2R)2

)

≤6905 · δ3/2R

4R2 + δ
exp

(
2R2

δ

)
+ 4989 · (

√
δ + 2R)2.

In particular, suppose δ ≤ R2. Now by elementary calculus, δ3/2

R
exp

(
2R2

δ

)
is

decreasing in δ for δ ≤ R2, so

δ3/2

R
exp

(
2R2

δ

)
≥
[
δ3/2

R
exp

(
2R2

δ

)]
δ=R2

= e2R2,
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giving

R2 ≤ e−2 · δ
3/2

R
exp

(
2R2

δ

)
.

Therefore

c(δ) ≤468 · 2 ·
(

8
√

2π
e
· δ3/2R

4R2 + δ
exp

(
2R2

δ

)
+ 2

3e(2π + e)(1 +
√

2)(
√
δ + 2R)2

)

≤936 ·
(

8
√

2π
e
· δ

3/2R

4R2 exp
(

2R2

δ

)
+ 2

3e(2π + e)(1 +
√

2)(3R)2
)

≤936 ·
(

2
√

2π
e

+ 6
e

(2π + e)(1 +
√

2)e−2
)
δ3/2

R
exp

(
2R2

δ

)

≤7803 · δ
3/2

R
exp

(
2R2

δ

)
.

This concludes the proof.

2.3 Elementary proof of Theorem 1.2.3

The proof of Theorem 1.2.3 is based on two facts: first, the Gaussian measure
γ1 of unit variance satisfies a LSI with constant 1. Second, Lipshitz functions preserve
LSIs. We give a precise statement of this second fact below.

Proposition 2.3.1. Let µ be a measure on Rm that satisfies a LSI with constant c,
and let T : Rm → Rn be Lipschitz. Then the push-forward measure T∗µ also satisfies
a LSI with constant c||T ||2Lip.

Proof. Let g : Rn → R be locally Lipschitz. Then g ◦ T is locally Lipschitz, so by the
LSI for µ, ∫

(g ◦ T )2 log (g ◦ T )2∫
(g ◦ T )2 dµ

dµ ≤ c
∫
|∇(g ◦ T )|2dµ. (2.1)

But since T is Lipschitz,

|∇(g ◦ T )| ≤ (|∇g| ◦ T )||T ||Lip.

So by a change of variables, (2.1) simply becomes∫
g2 log g2∫

g2 dT∗µ
dT∗µ ≤ c||T ||2Lip

∫
|∇g|2dT∗µ,

as desired.
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We now prove Theorem 1.2.3.

Proof of Theorem 1.2.3. In light of Proposition 2.3.1, we will establish the theorem
by showing that µ∗γδ is the push-forward of γ1 under a Lipschitz map. By translation
invariance of LSI, we can assume that supp(µ) ⊆ [−R,R]. We will also first assume
that δ = 1 (the general case will be handled at the end of the proof by a scaling
argument).

Let F and G be the cumulative distribution functions of γ1 and µ ∗ γ1, i.e.,

F (x) =
∫ x

−∞
p(t) dt, G(x) =

∫ x

−∞
q(t) dt,

where
p(t) = 1√

2π
exp

(
−t

2

2

)
and q(t) =

∫ R

−R
p(t− s) dµ(s).

Notice that q is smooth and strictly positive, so that G−1 ◦ F is well-defined
and smooth. It is readily seen that (G−1◦F )∗(γ1) = µ∗γ1, so to establish the theorem
we simply need to bound the derivative of G−1 ◦ F .

Now

(G−1 ◦ F )′(x) = 1
G′((G−1 ◦ F )(x)) · F

′(x) = p(x)
q((G−1 ◦ F )(x)) .

We will bound the above derivative in cases – when x ≥ 2R, when −2R ≤ x ≤ 2R,
and when x ≤ −2R.

We first consider the case x ≥ 2R. Define

Λ(x) =
∫ R

−R
exsdµ(s), K(x) = log Λ(x) +R

x
.

Note Λ and K are smooth for x 6= 0.

Lemma 2.3.2. For x ≥ 2R,

exp
(
−2R2 − 2R− 1

8

)
p(x) ≤ q(x+K(x)) ≤ e−R p(x).



21

Proof. By definition of q, p,Λ, and K,

q(x+K(x)) =
∫ R

−R
p(x+K(x)− s) dµ(s)

= p(x) · e−xK(x)
∫ R

−R
exp

(
−(K(x)− s)2

2

)
· exs dµ(s)

= e−R p(x)
Λ(x)

∫ R

−R
exp

(
−(K(x)− s)2

2

)
· exs dµ(s)

≤ e
−R p(x)
Λ(x)

∫ R

−R
exs dµ(s)

= e−R p(x).

To get the other inequality, first note that e−Rx ≤ Λ(x) ≤ eRx. (These are just
the maximum and minimum values in the integrand defining Λ.) This implies that
−R +R/x ≤ K(x) ≤ R +R/x, so for −R ≤ s ≤ R and x ≥ 2R, we have

−2R− R

x
≤ −2R + R

x
≤ K(x)− s ≤ 2R + R

x

so that

exp
(
−(K(x)− s)2

2

)
≥ exp

(
−(2R +R/x)2

2

)
≥ exp

(
−(2R +R/(2R))2

2

)

= exp
(
−2R2 −R− 1

8

)
.

Therefore

q(x+K(x)) = e−R p(x)
Λ(x)

∫ R

−R
exp

(
−(K(x)− s)2

2

)
· exs dµ(s)

≥ exp
(
−2R2 − 2R− 1

8

)
p(x).

Lemma 2.3.3. K ′(x) ≤ R for x ≥ 2R.

Proof. Recall that e−Rx ≤ Λ(x). (Again, e−Rx is the minimum value in the integrand
defining Λ). We therefore have

K ′(x) = Λ′(x)
xΛ(x) −

log Λ(x)
x2 − R

x2 =
∫ R
−R s e

sx dµ(s)
xΛ(x) − log Λ(x)

x2 − R

x2

≤
R
∫ R
−R e

sx dµ(s)
xΛ(x) + Rx

x2 −
R

x2

=2R
x
− R

x2 .



22

By elementary calculus, the above has a maximum value of R.

Lemma 2.3.4. For x ≥ 2R,

x−R ≤ (G−1 ◦ F )(x) ≤ x+K(x).

Proof. Since G and G−1 are increasing, the lemma is equivalent to

G(x−R) ≤ F (x) ≤ G(x+K(x)).

The first inequality follows from the definition of G and the Fubini-Tonelli Theorem:

G(x−R) =
∫ x−R

−∞
q(t) dt =

∫ x

−∞

∫ R

−R
p(t− s) dµ(s) dt

=
∫ R

−R

∫ x−R

−∞
p(t− s) dt dµ(s)

=
∫ R

−R

∫ x−R+s

−∞
p(u) du dµ(s)

where u = t− s

≤
∫ R

−R

∫ x

−∞
p(u) dt dµ(s)

=F (x).

To establish the other inequality, we use Lemmas 2.3.2 and 2.3.3:

1−G(x+K(x)) =
∫ ∞
x+K(x)

q(t) dt =
∫ ∞
x

q(u+K(u))(1 +K ′(u)) du

where t = u+K(u)

≤
∫ ∞
x

p(u)e−R(1 +R) du

by Lemmas 2.3.2 and 2.3.3

≤
∫ ∞
x

p(u) du

since eR ≥ 1 +R

= 1− F (x),

so that F (x) ≤ G(x+K(x)), as desired.

We are almost ready to bound (G−1 ◦F )′(x) for x ≥ 2R. The last observation
to make is that q is decreasing on [R,∞) since
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q′(t) =
∫ R

−R
p′(t− s) dµ(s) =

∫ R

−R
−(t− s)p(t− s) dµ(s) ≤ 0 for t ≥ R.

So for x ≥ 2R we have, by lemma 2.3.4,

q((G−1 ◦ F )(x)) ≥ q(x+K(x)).

Combining this with Lemma 2.3.2, we get

(G−1 ◦ F )′(x) = p(x)
q((G−1 ◦ F )(x)) ≤

p(x)
q(x+K(x)) ≤ exp

(
2R2 + 2R + 1

8

)
for x ≥ 2R.

In the case where −2R ≤ x ≤ 2R, first note that for all x,

x−R ≤ (G−1 ◦ F )(x) ≤ x+R;

the first inequality above was done in Lemma 2.3.4, and the second inequality is
proven in the same way. So

sup
−2R≤x≤2R

(G−1 ◦ F )′(x) = sup
−2R≤x≤2R

p(x)
q((G−1 ◦ F )(x)) ≤ sup

−2R≤x≤2R
−R≤y≤R

p(x)
q(x+ y)

=

 inf
−2R≤x≤2R
−R≤y≤R

q(x+ y)
p(x)


−1

.

For convenience, let S = {(x, y) : −2R ≤ x ≤ 2R,−R ≤ y ≤ R}. Now

inf
(x,y)∈S

q(x+ y)
p(x) = inf

(x,y)∈S

1
p(x)

∫ R

−R
p(x+ y − s) dµ(s).

Since p has no local minima, the minimum value of the above integrand occurs at
either s = R or s = −R. Without loss of generality, we assume the minimum is
achieved at s = R (otherwise, we can replace (x, y) with (−x,−y) by symmetry of S
and p). So

inf
(x,y)∈S

q(x+ y)
p(x) ≥ inf

(x,y)∈S

1
p(x) · p(x+ y +R).
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Elementary calculus shows that the above infimum is equal to e−6R2 (achieved at
x = 2R, y = R). Therefore

sup
−2R≤x≤2R

(G−1 ◦ F )′(x) ≤
(

inf
(x,y)∈S

q(x+ y)
p(x)

)−1

≤ e6R2
.

The case x ≤ −2R is dealt with in the same way as the case x ≥ 2R, the
analogous statements being:

exp
(
−2R2 − 2R− 1

8

)
p(x) ≤ q(x+K(x)) ≤ e−R p(x),

K ′(x) ≤ R,

x+K(x) ≤ (G−1 ◦ F )(x) ≤ x+R,

and q is increasing for x ≤ −2R. The upper bound for (G−1 ◦F )′(x) obtained in this
case is the same as the one in the case x ≥ 2R.

We therefore have

||G−1 ◦ F ||Lip ≤ max
(

exp
(

2R2 + 2R + 1
8

)
, e6R2

)
So by Proposition 2.3.1, µ ∗ γ1 satisfies a LSI with constant c(1) satisfying

c(1) ≤ ||G−1 ◦ F ||2Lip ≤ max
(

exp
(

4R2 + 4R + 1
4

)
, e12R2

)
.

This proves the theorem for the case δ = 1.

To establish the theorem for a general δ > 0, first observe that

µ ∗ γδ = (h√δ)∗
(
((h1/

√
δ)∗µ) ∗ γ1

)
,

where hλ denotes the scaling map with factor λ, i.e., hλ(x) = λx. Now (h1/
√
δ)∗µ

is supported in [−R/
√
δ, R/

√
δ], so by the case δ = 1 just proven, ((h1/

√
δ)∗µ) ∗ γ1

satisfies a LSI with constant

max
(

exp
(

4(R/
√
δ)2 + 4(R/

√
δ) + 1

4

)
, e12(R/

√
δ)2
)
.

Finally, since ||h√δ||2Lip = δ, we have by Proposition 2.3.1,

c(δ) ≤ max
(
δ exp

(
4R2

δ
+ 4R√

δ
+ 1

4

)
, δ exp

(
12R2

δ

))
.
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In particular, when δ ≤ 3R2 (in fact when δ ≤ (160− 64
√

6)R2 ≈ 3.23R2), we
have

δ exp
(

4R2

δ
+ 4R√

δ
+ 1

4

)
≤ δ exp

(
12R2

δ

)
so the above bound on c(δ) simplifies to

c(δ) ≤ δ exp
(

12R2

δ

)
.

Chapter 2 is, in part, a reprint of material from three articles. The first: D.
Zimmermann. Logarithmic Sobolev inequalities for mollified compactly supported
measures. J. Funct. Anal., 265:1064–1083, 2013. (See [33].) The second: D. Zimmer-
mann. Bounds for logarithmic Sobolev constants for Gaussian convolutions. Submit-
ted for publication in Annales de l’Institute Henri Poincaré. (See [31].) The third: D.
Zimmermann. Elementary proof of logarithmic Sobolev inequalities for Gaussian con-
volutions on R. Submitted for publication in Annales Mathématiques Blaise Pascal.
(See [32].) The dissertation author was the author for this material.



Chapter 3

The n-dimensional case

3.1 Proof of Theorem 1.2.4

Theorem 1.2.4 is based on the following theorem due to Bakry, Émery and
Ledoux:

Theorem 3.1.1. (Bakry, Émery,Ledoux). Let ν be a probability measure on Rn with
smooth, strictly positive density p. If there exists c > 0 such that
Hess(− log p)(x) − 1

c
In is positive semidefinite for all x ∈ Rn, where In is the n × n

identity matrix, then ν satisfies a LSI with constant c.

We remark that the above theorem was stated by Bakry and Émery in [4] in
a slightly different context from what is given here; it was stated in the above form
by Ledoux; for a proof of Theorem 3.1.1, see [17, p. 55].

Proof of Theorem 1.2.4. Suppose δ > 2R2n. By translation invariance of LSI, we
may suppose that the ball containing supp(µ) is centered at 0. Then µ ∗ γδ has
smooth, strictly positive density p given by

p(x) =
∫

(2πδ)−n/2 exp
(
−(x− y)2

2δ

)
dµ(y) =

∫
dνx(y),

where dνx(y) = (2πδ)−n/2 exp
(
−(x−y)2

2δ

)
dµ(y). It is then straightforward to compute

26
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that, for i 6= j,

∂ip(x) = −1
δ

(
xi

∫
dνx(y)−

∫
yi dνx(y)

)
,

∂iip(x) = − 1
δ2

(
δ
∫
dνx(y)− x2

i

∫
dνx(y) + 2xi

∫
yi dνx(y)−

∫
y2
i dνx(y)

)
, and

∂ijp(x) = 1
δ2

(
xixj

∫
dνx(y)− xi

∫
yj dνx(y)− xj

∫
yi dνx(y) +

∫
yiyj dνx(y)

)
;

differentiation under the integral is justified by the Dominated Convergence Theorem
since the integrands are smooth and have bounded partial derivatives of all orders.

We now show δ ·Hess(− log p) converges uniformly to the n×n identity matrix
as δ →∞. For i 6= j,

(∂ip · ∂jp− p · ∂ijp)(x)

= 1
δ2

(
xi

∫
dνx(y)−

∫
yi dνx(y)

)(
xj

∫
dνx(y)−

∫
yj dνx(y)

)
− 1
δ2

∫
dνx(y)

(
xixj

∫
dνx(y)− xi

∫
yj dνx(y)− xj

∫
yi dνx(y) +

∫
yiyj dνx(y)

)
= 1
δ2

(∫
yi dνx(y)

∫
yj dνx(y)−

∫
yiyj dνx(y)

)
,

so

∂ij(− log p(x)) = ∂ip(x)∂jp(x)− p(x)∂ijp(x)
p(x)2

=
∫
yi dνx(y)

∫
yj dνx(y)−

∫
yiyj dνx(y)

δ2 (
∫
dνx(y))2 .

Thus

|δ · ∂ij(− log p(x))| ≤
∫
|yi| dνx(y)

∫
|yj| dνx(y) +

∫
|yi||yj| dνx(y)

δ (
∫
dνx(y))2

≤ R2 (
∫
dνx(y))2 +R2 (

∫
dνx(y))2

δ (
∫
dνx(y))2

= 2R2

δ
.

We also compute

∂ii(− log p(x)) = (∂ip(x))2 − p(x)∂iip(x)
p(x)2

= (
∫
yi dνx(y))2 + δ (

∫
dνx(y))2 −

∫
dνx(y)

∫
y2
i dνx(y)

δ2 (
∫
dνx(y))2 ,
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so

|δ · ∂ii(− log p(x))− 1| =
∣∣∣∣∣(
∫
yi dνx(y))2 −

∫
dνx(y)

∫
y2
i dνx(y)

δ (
∫
dνx(y))2

∣∣∣∣∣
≤ (

∫
|yi| dνx(y))2 +

∫
dνx(y)

∫
y2
i dνx(y)

δ (
∫
dνx(y))2

≤ R2 (
∫
dνx(y))2 +R2 (

∫
dνx(y))2

δ (
∫
dνx(y))2

= 2R2

δ
.

So δ ·Hess(− log p) = In +A(δ), where A(δ) is an n×n real symmetric matrix
whose entries are all uniformly bounded in absolute value by 2R2/δ. We therefore
have for all v ∈ Rn, c ∈ R,

〈(Hess(− log p)− 1
c
In)v,v〉 = 〈1

δ
(In + A(δ))v,v〉 − 1

c
||v||2

=
(1
δ
− 1
c

)
||v||2 + 1

δ
〈A(δ)v,v〉

≥
(1
δ
− 1
c

)
||v||2 − 1

δ
|〈A(δ)v,v〉|

But by Cauchy-Schwarz, we have

|〈A(δ)v,v〉|2 = |
∑
i,j

Aijvivj|2

≤
∑
i,j

|Aij|2 ·
∑
i,j

|vivj|2

≤
∑
i,j

(
2R2

δ

)2

·
∑
i

|vi|2 ·
∑
j

|vj|2

= n2
(

2R2

δ

)2

||v||2 · ||v||2

=
(

2R2n

δ
||v||2

)2

,

so for sufficiently large c,

〈(Hess(− log p)− 1
c
In)v,v〉 ≥

(1
δ
− 1
c

)
||v||2 − 1

δ
|〈A(δ)v,v〉|

≥
(1
δ
− 1
c

)
||v||2 − 1

δ
· 2R2n

δ
||v||2

= 1
δ2

(
δ − 2R2n− δ2

c

)
||v||2

≥ 0
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since δ > 2R2n. In particlar, the above is satisfied for c ≥ δ2/(δ − 2R2n). So by
Theorem 3.1.1, µ ∗ γδ satisfies a LSI with constant δ2/(δ − 2R2n).

3.2 Proof of Theorem 1.2.5

To prove Theorem 1.2.5, we use the Theorem 1.1.2, restated below in more
detail than was given in the introduction.

Theorem 1.1.2. (Cattiaux, Guillin, Wu). Let µ be a probability measure on Rn with
dµ(x) = e−V (x)dx for some V ∈ C2(Rn). Suppose the following:

1. There exists a constant K ≤ 0 such that Hess(V ) ≥ KI.

2. There exists a W ∈ C2(Rn) with W ≥ 1 and constants b, c > 0 such that

∆W (x)− 〈∇V,∇W 〉(x) ≤ (b− c|x|2)W (x)

for all x ∈ Rn.

Then µ satisfies a LSI.
In particular, let r0, b

′, λ > 0 be such that

∆W (x)− 〈∇V,∇W 〉(x) ≤ −λW (x) + b′1Br0

where Br0 denotes the ball centered at 0 of radius r0 (the existence of such r0, b
′, λ is

implied by Assumption 2). By [3, p.61, Thm. 1.4], µ satisfies a Poincaré inequality
with constant CP ; that is, for every sufficiently smooth g with

∫
g dµ = 0,∫

g2dµ ≤ CP

∫
|∇g|2dµ;

CP can be taken to be (1 + b′κr0)/λ, where κr0 is the Poincaré constant of µ restricted
to Br0. A bound for κr0 is

κr0 ≤ Dr2
0

supx∈Br0
p(x)

infx∈Br0
p(x) ,

where p(x) = e−V (x) and D is some absolute constant that can be taken to be 4/π2.
Let

A =2
c

(1
ε
− K

2

)
+ ε

B =2
c

(1
ε
− K

2

)(
b+ c

∫
|x|2dµ(x)

)
,
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where ε is an arbitrarily chosen parameter. Then µ satisfies a LSI with constant
A+ (B + 2)CP .

We remark that the statement of Theorem 1.1.2 is given in [10] in the more
general context of Riemannian manifolds. Also, the constants given above are derived
in [10] but not presented there; for our purposes we have collected those constants
and presented them here.

With the above, we now prove Theorem 1.2.5, which we restate here for the
reader’s convenience.

Theorem 1.2.5. Let µ be a probability measure on Rn whose support is contained in
a ball of radius R, and let γδ be the centered Gaussian of variance δ with 0 < δ ≤
R2, i.e., dγδ(x) = (2πδ)−n/2 exp(− |x|

2

2δ )dx. Then for some absolute constant K, the
optimal log-Sobolev constant c(δ) for µ ∗ γδ satisfies

c(δ) ≤ K R2 exp
(

20n+ 5R2

δ

)
.

K can be taken above to be 289.

Proof. By translation invariance of LSI, we will assume that µ is supported in BR. We
will apply Theorem 1.1.2 to µδ and compute the appropriate bounds and expressions
for K, W , b, c, r0, b′, λ, κr0 , CP ,

∫
|x|2dµδ(x), A, and B.

To find K, b, and c, we follow the computations as done in [25, pp. 7-8]. Let
V (x) = x2

2δ and Vδ(x) = − log(pδ(x)), so

dµδ(x) = e−Vδ(x)dx = d(e−V ∗ µ)(x).

Also let
dµx(z) = 1

pδ(x)e
−V (x−z)dµ(z),

so µx is a probability measure for each x ∈ Rn. Then for X ∈ Rn with |X| = 1,
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Hess(Vδ)(X,X)(x)

=
(∫

BR
∇XV (x− z)dµx(z)

)2

−
∫
BR

(
|∇XV (x− z)|2 − Hess(V )(X,X)(x− z)

)
dµx(z)

=1
δ
−
(∫

BR
|∇XV (x− z)|2dµx(z)−

(∫
BR
∇XV (x− z)dµx(z)

)2
)

since Hess(V ) = 1
δ
I.

But for any C1 function f ,∫
BR
f 2dµx(z)−

(∫
BR
f dµx(z)

)2
=1

2

∫
BR×BR

(f(z)− f(y))2dµx(z)dµx(y)

≤2R2 sup |∇f |2,

so for f = ∇XV , we get

Hess(Vδ)(X,X)(x) ≥ 1
δ
− 2R2 sup |∇(∇XV )|2 = 1

δ
− 2R2

δ2 .

So we take
K = 1

δ
− 2R2

δ2 .

Note K ≤ 0 since δ ≤ R2.
Let

W (x) = exp
(
|x|2

16δ

)
.

Then

∆W − 〈∇Vδ,∇W 〉
W

(x) = n

8δ + |x|
2

64δ2 −
1

16δ

∫
BR
〈x,∇V (x− z)〉dµx(z)

= n

8δ + |x|
2

64δ2 −
1

16δ2

∫
BR

(
|x|2 − 〈x, z〉

)
dµx(z)

≤ n

8δ −
3|x|2
64δ2 + 1

16δ2 sup
z∈BR
〈x, z〉

= n

8δ −
3|x|2
64δ2 + 1

16δ2R|x|.
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Using |x| ≤ |x|2/2R +R/2 above, we get
∆W − 〈∇Vδ,∇W 〉

W
(x) ≤ n

8δ −
3|x|2
64δ2 + 1

16δ2R

(
|x|2

2R + R

2

)

= n

8δ + R2

32δ2 −
1

64δ2 |x|
2,

so we take

b = n

8δ + R2

32δ2 , c = 1
64δ2 .

Now let

r0 =
√

16nδ + 2R2, b′ = 1
4δ exp

(
n+ R2

8δ − 1
)
, λ = n

8δ .

We claim that

b− c|x|2 ≤ −λ+ b′ exp
(
−|x|

2

16δ

)
1Br0

, i.e., b+ λ− c|x|2

b′
exp

(
|x|2

16δ

)
≤ 1Br0

,

so that
∆W (x)− 〈∇V,∇W 〉(x) ≤ −λW (x) + b′1Br0

.

We have
b+ λ− c|x|2

b′
exp

(
|x|2

16δ

)

= 4δ exp
(
−n− R2

8δ + 1
)(

n

8δ + R2

32δ2 + n

8δ −
|x|2

64δ2

)
exp

(
|x|2

16δ

)

=
(
n+ R2

8δ −
|x|2

16δ

)
exp

(
−
(
n+ R2

8δ −
|x|2

16δ

)
+ 1

)
.

For |x| ≥ r0, the above expression is nonpositive, and for |x| ≤ r0, the above expres-
sion is of the form ue−u+1, which has a maximum value of 1, as desired.

Now we estimate κr0 by estimating supx∈Br0
pδ(x) and infx∈Br0

pδ(x). For x ∈
Br0 , we have

pδ(x) =
∫
BR

(2πδ)−n/2 exp
(
−|x− y|

2

2δ

)
dµ(y) ≤

∫
BR

(2πδ)−n/2dµ(y) = (2πδ)−n/2

and

pδ(x) =
∫
BR

(2πδ)−n/2 exp
(
−|x− y|

2

2δ

)
dµ(y)

≥
∫
BR

(2πδ)−n/2 exp
(
−(r0 +R)2

2δ

)
dµ(y)

=(2πδ)−n/2 exp
(
−(r0 +R)2

2δ

)
,
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so

κr0 ≤ Dr2
0

supx∈Br0
p(x)

infx∈Br0
p(x) ≤ Dr2

0 exp
(

(r0 +R)2

2δ

)
.

We then take

CP =1 + b′κr0

λ

≤8δ
n

(
1 + 1

4δ exp
(
n+ R2

8δ − 1
)
·Dr2

0 exp
(

(r0 +R)2

2δ

))

=8δ
n

+ D

e

(
32δ + 4R2

n

)
exp

(
n+ R2

8δ + (
√

16nδ + 2R2 +R)2

2δ

)
.

Using
√
a+
√
b ≤

√
2(a+ b) and the assumptions δ ≤ R2 and n ≥ 1 above, we get

CP ≤
8R2

1 + D

e

(
32R2 + 4R2

1

)
exp

n+ R2

8δ +

√
2(16nδ + 2R2 +R2)

2

2δ


=8R2 + 36D

e
R2 exp

(
17n+ 25R2

8δ

)

≤
(

8 + 36D
e

)
R2 exp

(
17n+ 25R2

8δ

)
.

Next, we estimate
∫
|x|2dµδ(x):

∫
Rn
|x|2dµδ(x) =

∫
Rn

∫
BR
|x|2(2πδ)−n/2 exp

(
−|x− y|

2

2δ

)
dµ(y)dx

=(2πδ)−n/2
∫
BR

∫
Rn
|x+ y|2 exp

(
−|x|

2

2δ

)
dx dµ(y)

by replacing x→ x+ y

=(2πδ)−n/2
∫
BR

∫
Rn

(|x|2 + |y|2) exp
(
−|x|

2

2δ

)
dx dµ(y)

+ (2πδ)−n/2
∫
BR

∫
Rn

2〈x, y〉 exp
(
−|x|

2

2δ

)
dx dµ(y).

The second integral in the last expression above equals 0 since the integrand is an
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odd function of x. So∫
Rn
|x|2dµδ(x) =(2πδ)−n/2

∫
BR

∫
Rn

(|x|2 + |y|2) exp
(
−|x|

2

2δ

)
dx dµ(y)

≤(2πδ)−n/2
∫
Rn

∫
BR

(|x|2 +R2) exp
(
−|x|

2

2δ

)
dµ(y)dx

=(2πδ)−n/2
∫
Rn

(|x|2 +R2) exp
(
−|x|

2

2δ

)
dx

=nδ +R2,

the last integral computed using polar coordinates.
To get expressions for A,B, we choose ε = 16δ; then A,B satisfy

A = 2
c

(1
ε
− K

2

)
+ ε =128δ2

(
1

16δ −
(

1
2δ −

R2

δ2

))
+ 16δ

=128R2 − 40δ ≤ 128R2

and

B =2
c

(1
ε
− K

2

)(
b+ c

∫
|x|2dµδ(x)

)
≤128δ2

(
1

16δ −
(

1
2δ −

R2

δ2

))(
n

8δ + R2

32δ2 + 1
64δ2

(
nδ +R2

))

=18nR2

δ
+ 6R4

δ2 −
63n
8 − 21R2

8

≤18nR2

δ
+ 6R4

δ2 − 2.

Putting everything together, we get that the optimal log-Sobolev constant c(δ)
for µδ satisfies

c(δ) ≤A+ (B + 2)CP

≤128R2 +
(

18nR2

δ
+ 6R4

δ2 − 2 + 2
)(

8 + 36D
e

)
R2 exp

(
17n+ 25R2

8δ

)

=128R2 + 12 · R
2

2δ

(
3n+ R2

δ

)(
8 + 36D

e

)
R2 exp

(
17n+ 25R2

8δ

)
.
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Applying u ≤ eu to two of the terms in the expression above, we get

c(δ) ≤128R2 + 12 exp
(
R2

2δ

)
exp

(
3n+ R2

δ

)(
8 + 36D

e

)
R2 exp

(
17n+ 25R2

8δ

)

=128R2 +
(

96 + 432D
e

)
R2 exp

(
20n+ 37R2

8δ

)

≤
(

128 + 96 + 432D
e

)
R2 exp

(
20n+ 5R2

δ

)

≤289R2 exp
(

20n+ 5R2

δ

)
.

This concludes the proof of Theorem 1.2.5.

We conjecture that the optimal upper bound for c(δ) is independent of n; see
Example 4.0.6 and the remark following that example.

Chapter 3 is, in part, a reprint of material from two articles. The first: D.
Zimmermann. Logarithmic Sobolev inequalities for mollified compactly supported
measures. J. Funct. Anal., 265:1064–1083, 2013. (See [33].) The second: D. Zimmer-
mann. Bounds for logarithmic Sobolev constants for Gaussian convolutions. Sub-
mitted for publication in Annales de l’Institute Henri Poincaré. (See [31].) The
dissertation author was the author for this material.



Chapter 4

Examples

In this section, we first examine c(δ) for a compactly supported measure on R
with density bounded above and below by positive constants, and show that such a
measure itself satisfies a LSI. We then show that measures with disconnected support
cannot satisfy a LSI, and then give tight (up to absolute constants) upper and lower
bounds on c(δ) for the symmetric 2-point measure on R; we demonstrate this same
(n-independent) lower bound on c(δ) for the symmetric 2-point measure on Rn.

Example 4.0.1. On R, let µ be a probability measure on [−R,R] whose absolutely
continuous part has a density that is bounded below by some constant a > 0. Then
there are absolute constants Ki such that for 0 < δ ≤ R2,

c(δ) ≤ K1
R

a
+K2 δ +K3 δ log

( 1
a2δ

)
.

The Ki can be taken above to be K1 = 2067, K2 = 9016, K3 = 1248.

Proof. Defining A,B,C as done in the proof of Lemma 2.2.5, we have

A ≤ sup
0<u<1

(
u log 1

u

)
·
∫ R

mδ

1
pδ(t)

dt ≤ 1
e

∫ R

−R

1
pδ(t)

dt.

Now

pδ(t) ≥
∫ R

−R

1√
2πδ

exp
(
−(t− s)2

2δ

)
· a ds = a

∫ (t+R)/
√
δ

(t−R)/
√
δ

1√
2π

exp
(
−u

2

2

)
du

where u = t− s√
δ
.

36
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But for 0 ≤ t ≤ R we have [0, R/
√
δ] ⊆ [(t−R)/

√
δ, (t+R)/

√
δ], and for −R ≤ t ≤ 0

we have [−R
√
δ, 0] ⊆ [(t−R)/

√
δ, (t+R)/

√
δ]. So by symmetry of the above integrand

we have for δ ≤ R2,

pδ(t) ≥ a
∫ R/

√
δ

0

1√
2π

exp
(
−u

2

2

)
du ≥ a

∫ 1

0

1√
2π

exp
(
−u

2

2

)
du ≥ a

3

for −R ≤ t ≤ R. So

A ≤1
e

∫ R

−R

3
a
dt = 6R

ea
.

Similarly, we have
B ≤ 6R

ea
.

To estimate C, we note that
∫ ∞
x

pδ(t)dt ≥
∫ ∞
x

∫ R

−R

1√
2πδ

exp
(
−(t− s)2

2δ

)
· a ds dt

≥ a√
2πδ

∫ ∞
x

∫ R

R−
√
δ

exp
(
−(t− s)2

2δ

)
ds dt

since δ ≤ R2

≥ a√
2πδ

∫ ∞
x

∫ R

R−
√
δ

exp
(
−(t−R +

√
δ)2

2δ

)
ds dt

since R−
√
δ ≤ s ≤ t⇒ −(t− s)2 ≥ −(t−R +

√
δ)2

= a√
2πδ

∫ ∞
x

√
δ exp

(
−(t−R +

√
δ)2

2δ

)
dt.

Letting u = (x−R +
√
δ)/
√
δ in the last integral above, we get that for x ≥ R,

∫ ∞
x

pδ(t)dt ≥
a
√
δ√

2π

∫ ∞
(x−R+

√
δ)/
√
δ

exp
(
−u

2

2

)
du

≥a
√
δ√

2π
·

√
δ

x−R + 2
√
δ

exp
(
−(x−R +

√
δ)2

2δ

)

by Lemma 2.2.2

≥ a δ

2
√

2π(x−R +
√
δ)

exp
(
−(x−R +

√
δ)2

2δ

)
.
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Then we have (by reusing Lemmas 2.2.1 and 2.2.4),

C ≤ sup
x≥R

4
3 ·

δ

x−R +
√
δ
pδ(x) · log

(
2
√

2π
a δ

(x−R +
√
δ) exp

(
(x−R +

√
δ)2

2δ

))

· 2δ(x−R)
((x−R)2 + δ)pδ(x)

= sup
u≥0

8
3

δu

(u+ 1)(u2 + 1) ·
[
log

(
2
√

2π
a
√
δ

)
+ 1

2 log
(
(u+ 1)2

)
+ (u+ 1)2

2

]

where u = x−R√
δ
.

Using log y ≤ y above and simplifying, we get

C ≤ sup
u≥0

8
3δ log

(
2
√

2π
a
√
δ

)
u

(u+ 1)(u2 + 1) + sup
u≥0

8
3δ

u(u+ 1)
u2 + 1

≤8
3δ log

(
2
√

2π
a
√
δ

)
+ 16

3 δ

=
(8

3 log
(
2
√

2π
)

+ 16
3

)
δ + 4

3δ log
( 1
a2δ

)
.

Proceeding as done in Section 2.2, we therefore have

D1(δ) ≤B + C ≤ 6R
ea

+
(8

3 log
(
2
√

2π
)

+ 16
3

)
δ + 4

3δ log
( 1
a2δ

)
.

So

c(δ) ≤468 · 2 · (B + C)

≤936 ·
(6R
ea

+
(8

3 log
(
2
√

2π
)

+ 16
3

)
δ + 4

3δ log
( 1
a2δ

))
≤2067 R

a
+ 9016 δ + 1248 δ log

( 1
a2δ

)
.

The next example requires a quick lemma, whose simple proof is left to the
reader:

Lemma 4.0.2. Let f be a bounded continuous function, and for every n, let fn be a
continuous, bounded function and let µn, µ be probability measures on R. If fn → f

uniformly and µn → µ weakly, then
∫
fn dµn →

∫
f dµ.
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Example 4.0.3. On R, let µ be a probability measure on [−R,R] that has a density
p such that 0 < a ≤ p ≤ b for some constants a, b > 0. Then for some absolute
constant K, we have µ satisfies a LSI with constant c where c satisfies

c ≤ K
R

a
.

K can be taken above to be 2067.

We remark that the claim in Example 4.0.3 above follows from Theorem 1.1.3;
here, we will prove the above claim by using approximating convolutions and showing
that the log Sobolev constants behave well under weak convergence.

Proof. Let f ∈ H1([−R,R]), the Sobolev space on [−R,R]. Extend f to a continuous
bounded function f̃ on R by defining f̃(x) = f̃(−R) for x ≤ −R and f̃(x) = f̃(R)
for x ≥ R. Take any positive sequence δn converging to 0. Then µδn satisfies a LSI
with some constant cn. For brevity, denote µδn by µn.

If
∫
f 2 dµ = 0, then f = 0 µ-almost everywhere and LSI for µ clearly holds.

Otherwise,
∫
f 2 dµ > 0 so that

∫
f̃ 2 dµn > 0 for each n. We have that

∫
f̃ 2 log f̃ 2∫

f̃ 2dµn
dµn ≤ cn

∫
(f̃ ′)2dµn

for each n, so

lim inf
n→∞

∫
f̃ 2 log f̃ 2∫

f̃ 2dµn
dµn ≤ lim inf

n→∞
cn

∫
(f̃ ′)2dµn. (4.1)

To simplify the left hand side of (4.1), note first that the function

f̃ 2 log f̃ 2∫
f̃ 2dµ

is bounded and continuous since f̃ is. We also have

f̃ 2 log f̃ 2∫
f̃ 2dµn

→ f̃ 2 log f̃ 2∫
f̃ 2dµ

uniformly as n→∞ since∣∣∣∣∣f̃(x)2 log f̃(x)2∫
f̃ 2dµn

− f̃(x)2 log f̃(x)2∫
f̃ 2dµ

∣∣∣∣∣ ≤ sup
x∈R

∣∣∣f̃(x)2
∣∣∣ ∣∣∣∣∣log

∫
f̃ 2dµ∫
f̃ 2dµn

∣∣∣∣∣→ 0.
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So by Lemma 4.0.2,
∫
f 2 log f 2∫

f 2dµn
dµn →

∫
f 2 log f 2∫

f 2dµ
dµ.

To simplify the right hand side of (4.1), note first that by Example 4.0.1,

lim inf
n→∞

cn ≤ K R2.

Also, pn, the density for µn, satisfies

pn(t) =
∫ R

−R

1√
2πδ

exp
(
−(t− s)2

2δ

)
· p(s)ds ≤ b

∫ R

−R

1√
2πδ

exp
(
−(t− s)2

2δ

)
ds

≤ b,

and
pn(t)→ p(t)

as n→∞ for (Lebesgue) almost every −R ≤ t ≤ R. Finally, note (f̃ ′)2 ∈ L1(R) since
f ′ ∈ L2([−R,R]) and f̃ ′ = 0 outside of [−R,R]. so by the Dominated Convergence
Theorem (with dominating function b · (f̃ ′)2), we have

lim inf
n→∞

cn

∫
(f̃ ′)2dµn ≤ K R2 lim

n→∞

∫ R

−R
(f̃ ′(t))2pn(t)dt =K R2

∫ R

−R
(f̃ ′(t))2p(t)dt

=K R2
∫

(f̃ ′)2dµ.

So (4.1) becomes ∫
f̃ 2 log f̃ 2∫

f̃ 2dµ
dµ ≤ K R2

∫
(f̃ ′)2dµ.

But f̃ = f on supp(µ), so we have
∫
f 2 log f 2∫

f 2dµ
dµ ≤ K R2

∫
(f ′)2dµ

as desired.

Our last two examples involve convolutions of 2-point measures; we now briefly
show that those 2-point measures themselves do not satisfy a LSI.

Example 4.0.4. On Rn, let µ be a probability measure with disconnected support.
Then µ does not satisfy a LSI.
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Proof. Suppose supp(µ) ⊆ U ∪V for some disjoint open sets U, V such that supp(µ)∩
U 6= ∅ and supp(µ) ∩ V 6= ∅. In particular, since supp(µ) is closed (and Rn is a
metric space), we can take U and V to have disjoint closures. So we can find a
smooth function f : Rn → R such that f ≡ 1 on U and f ≡ 0 on V . Since U, V
are open, we therefore have ∇f ≡ 0 on U ∪ V . Note also that 0 < µ(U) < 1
by definition of U and V . Then we can easily compute that

∫
|∇f |2 dµ = 0 but

Entµ(f 2) = µ(U) log(1/µ(U)) > 0, so a LSI cannot hold.

We remark that if the µ in the above example is compactly supported, then µδ
satisfies a LSI, and one can use the above f as a test function to show that the optimal
log-Sobolev constant for µδ can be bounded below by exp(C/δ) for sufficiently small
δ and some constant C that depends on µ (see Example 4.0.6 for an illustration of
this idea). Details are omitted.

Example 4.0.5. On R, let µ = 1
2(δ−R + δR) (so the support of µ is contained in an

interval of length 2R). Then there are absolute constantsKi such that for 0 < δ ≤ R2,

K1
δ3/2

R
exp

(
R2

2δ

)
≤ c(δ) ≤ K2

δ3/2

R
exp

(
R2

2δ

)
.

The Ki can be taken to be K1 = 1/11, K2 = 117942.

Proof. We first show the upper bound for c(δ). The density pδ for µδ is given by

pδ(t) = 1
2
√

2πδ

(
exp

(
−(t+R)2

2δ

)
+ exp

(
−(t−R)2

2δ

))

with median mδ = 0.
Defining A,B,C as done in the proof of Lemma 2.2.5, we have

A ≤ sup
0<u<1

(
u log 1

u

)
·
∫ R

mδ

1
pδ(t)

dt ≤ 1
e

∫ R

0
2
√

2πδ exp
(

(t−R)2

2δ

)
dt

since pδ(t) ≥
1

2
√

2πδ
exp

(
−(t−R)2

2δ

)
.
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Letting u = (R− t)/
√
δ above, we get

A ≤ 2
√

2π
e

δ
∫ R/

√
δ

0
exp

(
u2

2

)
du ≤2

√
2π
e

δ · 2R/
√
δ

(R/
√
δ)2 + 1

exp
(
R2

2δ

)

by Lemma 2.2.2

=4
√

2π
e

δ3/2 R

R2 + δ
exp

(
R2

2δ

)

≤4
√

2π
e
· δ

3/2

R
exp

(
R2

2δ

)
.

Similarly, we have

B ≤ 4
√

2π
e
· δ

3/2

R
exp

(
R2

2δ

)
.

Also, as done in Lemma 2.2.5,

C ≤ 2
3(2π + 1)(1 +

√
2)(
√
δ + 2R)2 ≤ 6(2π + 1)(1 +

√
2)R2

for δ ≤ R2.

Again proceeding as done in Section 2.2, we have

D1(δ) ≤B + C

≤4
√

2π
e
· δ

3/2

R
exp

(
R2

2δ

)
+ 6(2π + 1)(1 +

√
2)R2.

Now
R2 ≤ 3

√
3e−3/2 · δ

3/2

R
exp

(
R2

2δ

)
,

which can be seen by using elementary calculus to minimize the right-hand side of
the above inequality over δ. So

c(δ) ≤468 · 2 ·D1(δ)

≤936 ·
(

4
√

2π
e
· δ

3/2

R
exp

(
R2

2δ

)
+ 6(2π + 1)(1 +

√
2)R2

)

≤936 ·
(

4
√

2π
e

+ 6(2π + 1)(1 +
√

2) · 3
√

3e−3/2
)
δ3/2

R
exp

(
R2

2δ

)

≤117942 · δ
3/2

R
exp

(
R2

2δ

)
.

The proof of the lower bound on c(δ) is done in Example 4.0.6 below.
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Example 4.0.6. On Rn, let µ = 1
2δ(R,0,...,0) + 1

2δ(−R,0,...,0) (so the support of µ is
contained in a ball of radius R). Then there is some absolute constant K such that
for 0 < δ ≤ R2,

c(δ) ≥ K
δ3/2

R
exp

(
R2

2δ

)
.

K can be taken above to be 1/11.

Proof. Given 0 < δ ≤ R2, let f be the continuous piecewise linear function on Rn such
that f = 0 on {x1 ≤ 0}, f = 1 on {x1 ≥ δ/R}, and f(x) = R

δ
x1 on {0 ≤ x1 ≤ δ/R}.

Then

c(δ) = sup
g

Entµδ(g2)
E (g, g) ≥

Entµδ(f 2)
E (f, f) .

Now ∫
f 2dµδ ≤

∫
{x1≥0}

dµδ = 1
2 ,

so

Entµδ(f 2) =
∫
f 2 log f 2∫

f 2dµδ
dµδ

≥
∫
f 2 log(2f 2)dµδ

=
∫
{0≤x1≤δ/R}

f 2 log(2f 2)dµδ +
∫
{x1≥δ/R}

f 2 log(2f 2)dµδ.

Since u log(2u) ≥ −1/2e and f 2 log(2f 2) = log 2 on {x1 ≥ δ/R}, we have

Entµδ(f 2) ≥ − 1
2eµδ({0 ≤ x1 ≤ δ/R}) + log 2 · µδ({x1 ≥ δ/R}).

By definition of µδ,

µδ({0 ≤ x1 ≤ δ/R})

=
∫
{0≤x1≤δ/R}

1
2(2πδ)n/2

(
exp

(
−|x− (R, 0, . . . , 0)|2

2δ

)

+ exp
(
−|x+ (R, 0, . . . , 0)|2

2δ

))
dx

≤
∫
{0≤x1≤δ/R}

1
(2πδ)n/2 exp

(
−|x− (R, 0, . . . , 0)|2

2δ

)
dx

since exp
(
−|x+ (R, 0, . . . , 0)|2

2δ

)
≤ exp

(
−|x− (R, 0, . . . , 0)|2

2δ

)
for x1 ≥ 0.
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Integrating in the first component x1 in the above integral, we get

µδ({0 ≤ x1 ≤ δ/R})

≤
∫ δ/R

0
exp

(
−(x1 −R)2

2δ

)
dx1 ·

∫
Rn−1

1
(2πδ)n/2 exp

(
−x

2
2 + · · ·+ x2

n

2δ

)
dx2 . . . dxn

= 1√
2πδ

∫ δ/R

0
exp

(
−(x1 −R)2

2δ

)
dx1,

the second integral in the first expression above being an (n−1)-dimensional Gaussian
integral. Since the integrand in the last expression above is bounded by 1, we get for
δ ≤ R2,

µδ({0 ≤ x1 ≤ δ/R}) ≤ 1√
2πδ
· δ
R
≤ 1√

2π
.

We also have

µδ({x1 ≥ δ/R})

=
∫
{x1≥δ/R}

1
2(2πδ)n/2

(
exp

(
−|x− (R, 0, . . . , 0)|2

2δ

)

+ exp
(
−|x+ (R, 0, . . . , 0)|2

2δ

))
dx

≥
∫
{x1≥δ/R}

1
2(2πδ)n/2 exp

(
−|x− (R, 0, . . . , 0)|2

2δ

)
dx

≥
∫
{x1≥R}

1
2(2πδ)n/2 exp

(
−|x− (R, 0, . . . , 0)|2

2δ

)
dx

since δ ≤ R2.

Letting u = x− (R, 0, . . . , 0) above, we get

µδ({x1 ≥ δ/R}) ≥
∫
{u1≥0}

1
2(2πδ)n/2 exp

(
−|u|

2

2δ

)
du = 1

4 .

So

Entµδ(f 2) ≥ − 1
2eµδ({0 ≤ x1 ≤ δ/R}) + log 2 · µδ({x1 ≥ δ/R}) ≥ log 2

4 − 1
2e
√

2π
.

Also,

E (f, f) =
∫
|∇f |2dµδ = R2

δ2 · µδ({0 ≤ x1 ≤ δ/R}).
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But as we have just shown,

µδ({0 ≤ x1 ≤ δ/R}) ≤ 1√
2πδ

∫ δ/R

0
exp

(
−(t−R)2

2δ

)
dt

≤ 1√
2πδ
· δ
R

exp
(
−(δ/R−R)2

2δ

)

since t ≤ δ/R ≤ R⇒ −(t−R)2 ≤ −(δ/R−R)2,

so

E (f, f) ≤ R2

δ2 ·
1√
2πδ
· δ
R

exp
(
−(δ/R−R)2

2δ

)
= R√

2πδ3/2
exp

(
− δ

2R2 + 1− R2

2δ

)

≤ eR√
2πδ3/2

exp
(
−R

2

2δ

)
.

Therefore

c(δ) ≥ Entµδ(f 2)
E (f, f) ≥

log 2
4 −

1
2e
√

2π
eR√

2πδ3/2 exp
(
−R2

2δ

) =
√

2π
e

(
log 2

4 − 1
2e
√

2π

)
δ3/2

R
exp

(
R2

2δ

)

≥ 1
11 ·

δ3/2

R
exp

(
R2

2δ

)
.

We conjecture that the bound stated in Example 4.0.5 is, up to absolute con-
stant, the best upper bound (uniform over all measures whose supports have a given
radius) that could have been given in Theorems 1.2.2 and 1.2.5. In particular, the
upper bound should be independent of dimension.

Chapter 4 is, in part, a reprint of material from the following article: D.
Zimmermann. Bounds for logarithmic Sobolev constants for Gaussian convolutions.
Submitted for publication in Annales de l’Institute Henri Poincaré. (See [31].) The
dissertation author was the author for this material.



Chapter 5

An application to random matrices

In this section, we give an application of Theorem 1.2.5 to random matrix
theory. For each natural number n, let Yn be an n × n random real symmetric
matrix whose upper triangular entries are independent, and let Xn = 1√

n
Yn. By a

classical result in random matrix theory due to Wigner [26, 27], if the entries of Yn are
identically distributed and the common distribution has finite second moment, then
the empirical law of eigenvalues of Xn converges weakly in probability to its mean.
That is: let λn1 , λn2 , . . . , λnn be the (necessarily real) eigenvalues of Xn, and let

µXn = 1
n

n∑
k=1

δλn
k
.

Then for all ε > 0 and all Lipschitz f : R→ R,

P
(∣∣∣∣∫ f dµXn − E

(∫
f dµXn

)∣∣∣∣ ≥ ε
)
→ 0

as n → ∞. In particular, Wigner showed that if the common distribution has mean
0 and variance 1, then the empirical law of eigenvalues of Xn converges weakly to the
semicircle distribution.

The original proof of this fact was combinatorial in nature; in 2008, Guionnet
(see [17, p.70, Thm. 6.6]) proved this convergence using logarithmic Sobolev inequal-
ities in the special case where the joint laws of entries of the Xn satisfy a LSI, using
the following theorem:

Theorem 5.0.7. (Guionnet). Let Yn, Xn be as above. If the joint law of entries of

46
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Yn satisfies a LSI with constant c, then for all ε > 0 and all Lipschitz f : R→ R,

P
(∣∣∣∣∫ f dµXn − E

(∫
f dµXn

)∣∣∣∣ ≥ ε
)
≤ 2 exp

(
−n2ε2

4c||f ||2Lip

)
.

Given independence of the entries, LSIs for the distributions of the individual
entries are related to LSIs for the joint laws of entries by the following product
property of LSIs (see [15, p. 1074, Rk. 3.3]):

Theorem 5.0.8. (Segal′s Lemma). Let ν1, ν2 be probability measures on Rn1 and Rn2

that each satisfy a LSI with constants c1, c2, respectively. Then the probability measure
ν1 ⊗ ν2 on Rn1+n2 satisfies a LSI with constant max(c1, c2).

The convergence proven by Wigner is in fact almost sure convergence; if the
joint laws of entries of the Yn also satisfy a LSI with constants that do not grow
too large with n (for example, in the case where the entries are i.i.d. with common
distribution satisfying a LSI), then one could also use Theorem 5.0.7 and the Borel-
Cantelli lemma to deduce almost sure convergence. Using Theorem 1.2.5, we will show
that, under certain integrability and independence assumptions, the empirical law of
eigenvalues µXn converges weakly in probability to its mean, regardless of whether or
not the joint laws of entries satisfy a LSI. We first state a lemma from matrix theory
(see [19, p.37, Thm. 1, and p.39, Rk. 2]):

Lemma 5.0.9. (Hoffman, Wielandt). Let A,B be symmetric n × n matrices with
eigenvalues λA1 ≤ λA2 ≤ . . . ≤ λAn and λB1 ≤ λB2 ≤ . . . ≤ λBn . Then

n∑
i=1

(λAi − λBi )2 ≤ Tr[(A−B)2].

We now prove Theorem 1.2.6, which we restate here for the reader’s conve-
nience.

Theorem 1.2.6. For each natural number n, let Yn be an n×n random real symmetric
matrix, and let Xn = 1√

n
Yn. Suppose the following:

1. The family {
[Y̊n]2ij

}
n∈N,1≤i,j≤n

is uniformly integrable, where for a random variable Z, Z̊ := Z − E(Z).
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2. For each n, there exists dn and a partition Π = {P1, P2, . . . , Pm} of
{[Yn]ij}1≤i≤j≤n such that:

(a) For each 1 ≤ k ≤ m, |Pk| ≤ dn.

(b) For each 1 ≤ k ≤ m, every entry in Pk is independent of ⋃l 6=k Pl.
(c) As n→∞,

dn
log n → 0.

Then the empirical law of eigenvalues µXn of Xn converges weakly to its mean in
probability.

We remark that Assumption (1) above is the analogue of the assumption of
finite variance of the entries in the case where the entries are assumed to be i.i.d.;
Assumption (2) roughly says that we can allow for small groups of dependence of the
entries if these groups are independent of each other and each group has size less than
log n.

Proof. Suppose
{

[Y̊n]2ij
}
n∈N,1≤i,j≤n

is uniformly integrable. We will first suppose for
every i, j, n that ran ([Yn]ij) is contained in an interval of length 2R; we will remove
this assumption later in the proof (on page 51).

Let ε > 0, and let f : R → R be Lipschitz. For each n, let Ỹn = Yn +
√
δGn

and X̃n = 1√
n
Ỹn, where Gn is a random symmetric matrix whose upper triangular

entries are independent (and independent of Yn) and all have a Gaussian distribution
with mean 0 and variance 1, and δ = δ(n) is a positive real number that we will send
to 0 as n→∞ (later in the proof).

Let ν be the joint law of entries of Yn, and ν̃ be the joint law of entries of Ỹn.
By Assumption (2b), ν can be expressed as a product ν = ν1 ⊗ ν2 ⊗ · · · ⊗ νm, where
each νk is a probability measure on R|Pk|. By construction, ν̃ = γδ ∗ ν. Since γδ is
itself a product of Gaussians, convolution by γδ distributes across product so we have
ν̃ = (γδ ∗ ν1) ⊗ (γδ ∗ ν2) ⊗ · · · ⊗ (γδ ∗ νm). (We suppress further notation, but each
Gaussian here is now of the appropriate dimension.) By Assumption (2a), each νk is
supported in a ball of radius at most R

√
|Pk| ≤ R

√
dn. So by Theorems 1.2.5 and
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5.0.8, ν̃ satisfies a LSI with constant

c(δ) ≤K(R
√
dn)2 exp

(
20dn + 5(R

√
dn)2

δ

)

≤KR2 exp
(

21dn + 5R2dn
δ

)

since dn ≤ exp(dn).

Now
P
(∣∣∣∣∫ f dµXn − E

(∫
f dµXn

)∣∣∣∣ ≥ ε
)

≤P
(∣∣∣∣∫ f dµXn −

∫
f dµ

X̃n

∣∣∣∣ ≥ ε

3

)
+P

(∣∣∣∣∫ f dµ
X̃n
− E

(∫
f dµ

X̃n

)∣∣∣∣ ≥ ε

3

)
+P

(∣∣∣∣E(∫ f dµ
X̃n

)
− E

(∫
f dµXn

)∣∣∣∣ ≥ ε

3

)
,

(5.1)

where µXn and µ
X̃n

are the empirical laws of eigenvalues for Xn and X̃n. We will
show that each of the three terms on the right hand side of (5.1) tend to 0 as n→∞.

Lemma 5.0.10.

P
(∣∣∣∣∫ f dµXn −

∫
f dµ

X̃n

∣∣∣∣ ≥ ε

3

)
≤

9||f ||2Lip

ε2
δ.

Proof. Let λn1 ≤ λn2 ≤ . . . ≤ λnn and λ̃n1 ≤ λ̃n2 ≤ . . . ≤ λ̃nn be the eigenvalues of Xn and
X̃n. Then by the Cauchy-Schwarz inequality and Lemma 5.0.9,∣∣∣∣∫ f dµXn −

∫
f dµ

X̃n

∣∣∣∣ =
∣∣∣∣∣ 1n

n∑
i=1

f(λni )− f(λ̃ni )
∣∣∣∣∣ ≤ 1

n

n∑
i=1
||f ||Lip

∣∣∣λni − λ̃ni ∣∣∣
≤ ||f ||Lip√

n

(
n∑
i=1

(λni − λ̃ni )2
)1/2

≤ ||f ||Lip√
n

(
Tr[(Xn − X̃n)2]

)1/2
.
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By Markov’s inequality, we therefore have

P
(∣∣∣∣∫ f dµXn −

∫
f dµ

X̃n

∣∣∣∣ ≥ ε

3

)
≤ P

(
||f ||Lip√

n

(
Tr[(Xn − X̃n)2]

)1/2
≥ ε

3

)

= P
(

Tr[(Xn − X̃n)2] ≥ ε2n

9||f ||2Lip

)

≤
9||f ||2Lip

ε2n
E
(
Tr[(Xn − X̃n)2]

)
=

9||f ||2Lip

ε2n

∑
1≤i,j≤n

E
(
([Xn]ij − [X̃n]ij)2

)

=
9||f ||2Lip

ε2n

∑
1≤i,j≤n

E
(
δ

n
[Gn]2ij

)

=
9||f ||2Lip

ε2
δ.

Lemma 5.0.11.

P
(∣∣∣∣∫ f dµ

X̃n
− E

(∫
f dµ

X̃n

)∣∣∣∣ ≥ ε

3

)
≤ 2 exp

(
−n2ε2

36c||f ||2Lip

)
,

where c = c(δ) is the log Sobolev constant for ν̃.

Proof. This is immediate from Theorem 5.0.7.

Lemma 5.0.12. If δ(n)→ 0 as n→∞, then

P
(∣∣∣∣E(∫ f dµ

X̃n

)
− E

(∫
f dµXn

)∣∣∣∣ ≥ ε

3

)
= 0

for all n sufficiently large.

Proof. Note that the sequence∣∣∣∣E(∫ f dµ
X̃n

)
− E

(∫
f dµXn

)∣∣∣∣
is a sequence of real numbers, so the above probability will eventually be equal to 0
if
∣∣∣E (∫ f dµ

X̃n

)
− E (

∫
f dµXn)

∣∣∣ converges to 0 as n → ∞. Doing similar estimates
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as in Lemma 5.0.10, we get∣∣∣∣E(∫ f dµ
X̃n

)
− E

(∫
f dµXn

)∣∣∣∣ ≤ E
(∣∣∣∣∫ f dµ

X̃n
−
∫
f dµXn

∣∣∣∣)
≤ E

(
||f ||Lip√

n

(
Tr[(Xn − X̃n)2]

)1/2
)

≤ ||f ||Lip√
n

(
E
(
Tr[(Xn − X̃n)2]

))1/2

= ||f ||Lip

√
δ(n)

→ 0 as n→∞,

the third inequality above following from the Cauchy-Schwarz inequality applied to(
Tr[(Xn − X̃n)2]

)1/2
and the constant function 1. So

P
(∣∣∣E (∫ f dµ

X̃n

)
− E (

∫
f dµXn)

∣∣∣ ≥ ε
3

)
= 0 for all sufficiently large n.

We now construct our δ = δ(n) so that δ → 0 at the appropriate rate as
n→∞. For each n sufficiently large, let

δ(n) = 5R2dn
log n

KR2 − 21dn
.

Note δ(n) > 0, and δ(n)→ 0 by Assumption (2c). We have

c(δ(n)) ≤KR2 exp
(

21dn + 5R2dn
δ(n)

)

= n.

Applying Lemmas 5.0.10, 5.0.11, and 5.0.12, to (5.1), we get that for sufficiently large
n,

P
(∣∣∣∣∫ f dµXn − E

(∫
f dµXn

)∣∣∣∣ ≥ ε
)

≤
9||f ||2Lip

ε2
δ(n) + 2 exp

(
−n2ε2

36c(δ(n))||f ||2Lip

)
+ 0

≤
9||f ||2Lip

ε2
δ(n) + 2 exp

(
−nε2

36||f ||2Lip

)

→ 0 as n→∞.

We therefore have weak convergence in probability.



52

To obtain convergence in the general case where the entries of the Yn need not
be bounded, we apply a standard “cutoff" argument. Let ε > 0, and let η > 0. By
uniform integrability, there exists some C ≥ 0 such that

E
(
[Y̊n]2ij · 1{|[Y̊n]ij |>C}

)
< min(1, η) · ε2/(9||f ||2Lip)

for all i, j, n. Let Ŷn be the matrix defined by

[Ŷn]ij = [Yn]ij − [Y̊n]ij · 1{|[Y̊n]ij |>C},

and [X̂n]ij = 1√
n
[Ŷn]ij. Note that for all n, i, j,

[Ŷn]ij − E([Yn]ij) =[Yn]ij − [Y̊n]ij · 1{|[Y̊n]ij |>C} − E([Yn]ij)

=[Y̊n]ij − [Y̊n]ij · 1{|[Y̊n]ij |>C}

=[Y̊n]ij · 1{|[Y̊n]ij |≤C}

so
ran

(
[Ŷn]ij

)
⊆ [E([Yn]ij)− C,E([Yn]ij) + C] ,

which is an interval of length 2C. (We remark that it is not necessary to normalize
Ŷn since no assumptions on the values of the mean or the variance of Yn were used.)
Then, similarly as before, we have

P
(∣∣∣∣∫ f dµXn − E

(∫
f dµXn

)∣∣∣∣ ≥ ε
)

≤P
(∣∣∣∣∫ f dµXn −

∫
f dµ

X̂n

∣∣∣∣ ≥ ε

3

)
+P

(∣∣∣∣∫ f dµ
X̂n
− E

(∫
f dµ

X̂n

)∣∣∣∣ ≥ ε

3

)
+P

(∣∣∣∣E(∫ f dµ
X̂n

)
− E

(∫
f dµXn

)∣∣∣∣ ≥ ε

3

)
.

(5.2)

The first term on the right hand side of (5.2) is bounded using the same
reasoning as done in the proof of Lemma 5.0.10:

P
(∣∣∣∣∫ f dµXn −

∫
f dµ

X̂n

∣∣∣∣ ≥ ε

3

)
≤

9||f ||2Lip

ε2n

∑
1≤i,j≤n

1
n
E
(
([Yn]ij − [Ŷn]ij)2

)

=
9||f ||2Lip

ε2n

∑
1≤i,j≤n

1
n
E
(
[Y̊n]2ij · 1{|[Y̊n]ij |>C}

)
< η.
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The second term on the right hand side of (5.2) goes to 0 as n → ∞ by the
case we just proved.

The third term is bounded as done in Lemma 5.0.12:∣∣∣∣E(∫ f dµ
X̂n

)
− E

(∫
f dµXn

)∣∣∣∣ ≤ ||f ||Lip√
n

(
E
(
Tr[(Xn − X̂n)2]

))1/2

= ||f ||Lip√
n

 ∑
1≤i,j≤n

1
n
E
(
[Y̊n]2ij · 1{|[Y̊n]ij |>C}

)1/2

<
ε

3 ,

so P
(∣∣∣E (∫ f dµ

X̂n

)
− E (

∫
f dµXn)

∣∣∣ ≥ ε
3

)
= 0. So

lim sup
n→∞

P
(∣∣∣∣∫ f dµXn − E

(∫
f dµXn

)∣∣∣∣ ≥ ε
)
≤ η.

Since η > 0 was arbitrary, we have P (|
∫
f dµXn − E (

∫
f dµXn)| ≥ ε)→ 0 as n→∞,

giving convergence in probability.

Chapter 5 is, in part, a reprint of material from the following article: D.
Zimmermann. Bounds for logarithmic Sobolev constants for Gaussian convolutions.
Submitted for publication in Annales de l’Institute Henri Poincaré. (See [31].) The
dissertation author was the author for this material.
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