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Computer-assisted Instruction at Stanford*

Patrick Suppes

Stanford University
Stanford, California 94305

In most areas of technology perhaps the best way to forecast the operational
applications in the coming decade is to look at the research and development
efforts in the preceding decade. I am not certain how true this generaliz~tion is,
but it is the approach I would like to use in considering the prospects fat
computer-assisted instruction during the seventies. I shall spend most of my time
in discussing the history of our efforts at Stanford in this area, and only at the
end of my lecture, will I attempt some specific forecasts of the future.

History of Computer-assisted Instruction at Stanford

In January 1963, the Institute for Mathematical Studies in the Social Sciences
at Stanford University began a program of research and development in computer
assisted instruction. The Institute's program in computer-assisted instruction
is under my direction and that of Richard C. Atkinson. We are both memb.ers of the
Stanford faculty. In its initial inception, John McCarthy of the Department of
Computer Science at Stanford played an important role in the design and operation
of the Institute's computer facilities. The various research projects have been
supported by the National Science Foundation, the United States Office of Education
and the Carnegie Corporation of New York.

The initial instructional system in the Institute consisted of a medium-sized
computer (a PDP-l) and six student stations placed within 100 feet of the computer.
Each student booth contained two visual-display devices. The first was a random
access optical-display device developed for the laboratory by IBM Corporation that
presented microfilmed source material on a lO-inch by 13-inch ground-glass screen.
It was possible to encode the equi';alent of a 512-page book (8-1/2 inch by ll-inch
standard page) on microfilm and any page, or one-eighth of a page, could be
displayed randomly within :Lsecolld. The. st\1(lent responded to the display by using
a light pen on the face of the screen itself. As the pen was touched to the screen,
the coordinates of that position were sent to the computer for comparison with any
predesignated areas of the screen. The accuracy of the light pen permitted
identification of a 1/4-inch square on the screen. This device, which was the
predecessor Of the IBM-1500 system mentioned below, has been phased out and is no
longer in the Institute.

The second display device, which is still in use, was developed for the
Institute by the Philco-Ford Corporation. It is a cathode-ray tube, commonly
called a "scope;" It can display points of light in an area 10 inches high by
10 inches wide with 1,024 possible positions on .both the horizontal and vertical

*Work on this paper has been supported by two NSF Grants to Stanford, G-18709
and GJ-443X. It was given orally at a conference on L'Homme et l'Informatique
sponsored by the Institut de la Vie in Bordeaux, France in June 1970.
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axes. In addition to individual points, 120 prearranged characters may be displayed
in five different sizes. It is also possible to display vectors by simply
identifying the end points. A typewriter keyboard is attached to the scope and may
be Qsed to send information from the student to the computer.

Until JQne 1968, the central compQter was a PDP-l designed by Digital E~uipment

Corporation. It has a 32,000 word core and a 4,000 word core, which can be inter
changed within the 32 bands of a magnetic drQm on files stored on two IBM-1301 disks.
The two IBM-130ldisks were repl.aced by two IBM-2314 disks in the fall of 1968, and
a PDP-IO became the main computer, although the PDP-l is still in operation. The
computer configQration as of June 1969 is shown in FigQre 1.

The first operational instrQction program available in any form at all was a
program in elementary mathematical logic. This program was first demonstrated on
December 12, 1963, and two lessons consisting of 23 problems were rQD with four
sixth-grade stQdents on December 20, 1963. An additional two fifth graders were
rQD for demonstration pQrposes on JanQary 7, 1964. An occasional demonstration
was given every month or so during the spring. More importantly, some·20 lessons
giving a fairly detailed introdQction to sentential logic were written and programmed
dQring the spring. In the SQffiffier of 1964, these lessons, which were presented on the
scopes, wererQn with two fifth-grade boys. One boy had 32 sessions for a total of
more than 15 hOQrs at the terminal, and the second boy had 38 sessions for a total of
more than 36 hOQrs at the terminal.

BecaQse the logic program is the oldest and in many ways the most sophisticated
of OQr CAl programs, a brief description of its curriculQill content from year to year
is inclQded, beginning with 1964~65.

DQring the spring of 1964, preliminary experiments Qsing first-grade mathematics
material were also conducted in the InstitQte with 29 kindergarten children.
ThroQghoQt 1964, staffmemhers worked to write and code the compQter CAl programs
for first-grade and fOQrth-grade mathematics and for mathematical logic.

DQring the 1964-65 school year, two groQps of six first-grade children were
given a preliminary version of the first-grade arithmetic program dQTing the regQlar
school year (September 14 to JQne 11, 1965). Two kindergarten children were given a
revision of the first-grade program in the spring (March 15 to JQDe 25,1965).

By remote control, 41 fOQrth-grade children were given daily arithmetic drill
and-practice lessons on a teletype machine in their classroom at Grant Sch-ool in
the CQpertino Union School District (April 19 to JQDe 4, 1965). This installation
constitQted an important first step in moving terminals from the Stanford campQs to
elementary sChools, with direct connection from the compQter to the terminals by
telephone lines.
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Two very capable second-grade boys (slightly under eight years in age) worked
through a portion of the logic program (March 15 to May 19, 1965). The two students
covered 29 lessons in sentential logic. A listing of the lessons is given,in
Table 1.

The most important feature of the program in logic already exemplified in ~he

work beginning at the end of 1963 is that the computer program accepts any'logically
valid response of the student. The'student is not restricted to a few multiple
choice answers, or more generally, there is not a unique constructed answer that
must be given. The student input~ on the keyboard the rule ofini'erence he ",ishes
to apply to given premises; or to previous lines in a proof. He is not asked to
type out the line of'th\,\;proof itself; this is done by the computer upon command.
Here are some examples:op,the program. In these examples, Rule AA--affirm the
antecedent--is the classical rule of modus ponendo ponens.

The first two examples emphasize working with English rather than with
mathematical sentences.

Example 1. Derive: We need good shoes.

Premise 1. If we buy sleeping bags, then we are warm at night.

Premise 2. If we are warm at night, then we feel good in the morning.

Premise 3. If we feel good in the morning, then we take a long walk.

Premise 4. If we take a long walk, then we need good shoes.

Premise 5. We buy sleeping bags.

In Example 1, the student would input "AA 1.5" to obtain as line (6):

6. We are warm at night.

He would 'next input "AA 2. 6"to obtain:

7. We feel good in the morning.

After this would follow "AA 3.7" to obtain:

8. We ijake a long walk.

and finally "AA 4.8'" to obtain the derived conclusion:

9. We need good shoes.

Example 2. Derive: Jack and Bill are not the same height.

Premise 1. If Jack is taller than Bob, then Sally is shorter than Mavis.
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TABLE 1

List of 29 Logic Lessons, Spring of 1965

1. Rule AA (ponendo ponens). One"step proofs only.

2. Rule AA with two"step proofs.

3. Denials and Rule DC (tollendo tollens).

4. Rules AA and DC together in multi"step proofs.

5. Dominance and use of parentheses; law of double negation.

6. More on law of double negation.

7. Rule DD (tollendo ponens).

8. Truth and validity.

9. Truth and validity in relation to the law of double negation.

10. Analysis of inclusive "or" and validity of Rul-e DD.

11. Truth diagrams (analysis of the truth of compound sentences given the
truth of the atomic sentences).

l-2. Truth-functional analysis of conjunction.

13. Rules of conjunction and simplification for inferences about conjunctions.

14. Truth-functional analysis of conditionals.

15. Truth tables.

16. Tautologies.

17. Relation between conditionals and logical arguments.

18. Valid arguments and tautologies.

19. P the denial of not P.

20. DeMorgan's laws.

21. Using DeMorgan's laws in derivations.

22. Hypothetical syllogisms.

23. More on hypothetical syllogisms.

24. Commutative laws for conjunctions and disjunctions.

25. Rule of addition (from P infer P or Q).
26. More on the rule of addition.

27. Disjunctive syllogisms.

28. More on disjunctive syll-ogisms.

29.' Validity of disjunctive syllogisms.
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Premise 2. Sally is not shorter than Mavis.

Premise 3. If Jack and Bill are the same height, then Jack is taller
than Bob.

In this example, the student must use modus tollendo tollens, which we call
Rule DC. 'DC' stands for the fact that we deny the consequent of theconditlonal
premise. Thus in Example 2, the student who.is responding correctly would input
first "DC 1.2" to obtain:

4. Jack is nQtta:Uer than Bob .

and then "DC 3.4" to obtain the derived conclclsion:

5. Jack and Bill are not the same height.

Example 3. Derive: y+ 8 <;: 12

Premise 1. x + 8 = 12 or x f 4

Premise 2. x = 4 and y,< x

Premise 3. If x + 8 = 12 and y< x then y+8 < 12.

In this example, the student must u~emodus tolle~do ponens, which we call
Rule DD--deny a disjunct, as well as two rules dealing with conjunctions--the
rule of conjunction (FC) for putting two sentences together to form ~ conjunction,
and the rule of simplification for deriving one member of a conjunction, Rule LC
to derive the left conjunct and Rule RC to derive the right conjunct. We show
the steps of the derivation in oneblock; but it is to be emphasized that the
student inputs only the rule abbreviations and the numbers at the left of each line.

LC 2 4. x 4

DC 1.4 5. x + 8 = 12

RC 2 6. y< x

A 5.6 7. x + 8 12 and y <x

AA 3.7 8. y+ 8< 12

In these simple examples the possibilities for different proofs by different
students are restricted, but already in this last example, the order of the lines
can be changed, and the possibilities of variation inCrease rapidly as. the com
plexity of the problems increases.
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It should be mentioned that when the student makes an error, which means he
attempts to take a logically invalid step, the computer program prints out the
reason the step is in error and waits for him to make another move. For example,
if the student attempts to apply, Rule AA to a sentence in which the major connective
is "and" rather than "if ... then' the computer program simply prints out the message
"line n is not a conditional sentence." The ability to analyze mistakes lillerringly
is an lillusual feature of the logic program and rests upon the well-understood
character of logical inference. In more diverse and open-ended subjects, the same
lillerring analysis of student errors is considerably more difficult.

In the spring of 1965, the second version of the logic program was prepared.
This program was designed for an experimental class of 26 second graders run in the
summer of 1965. Two variants of the program were written. One utilized English
sentences throughout, while the other introduced logical symbolism. In both cases
each new topic was introduced intuitively in English sentences. The purpose of
writing two separate tracks was to iietermine whether the use of English senten.ces
or abbreviated logical symbolism was easier for the students. In all, 20 lessons
were prepared in both the English and symbolic tracks for the summer session. In
addition, remedial lessons were prepared for each of the above lessons. The number
of responses per lesson ranged from 10 for the introductory multiple-choice questions
to 60 (including line numbers) for later lessons.

During the 1965-66 school year, drill-and-practice teletype programs were
conducted in three schools. In September, the arithmetic drill program at Grant
School was expanded, with two teletypes for each of Grades 4, 5 and 6. On February 2,
1966, two more teletypes were added for third-grade classes. By the end of the year,
of the 270 participating students, 62 were third graders, 76 were fourth graders,
70 were fifth graders and 62 were sixth graders. A detailed description of this
first year of relatively large-scale operation of the drill-and-practice ·teletype
program is to be found in Suppes, Jerman and Brian (1968).

On March 1, 1966, one teletype was installed at Ravenswood High School in
the Sequoia Union High School District. The machine was used by seven arithmetic
classes. About. 60,students used the machine on alternate days.

During the sp~ing of 1966, four teletypes were used for drill-and-practice work
in spelling at Costano School in Ravenswood City School District. Audio was provided
from the Institute's central computer facilities by a second telephone line and ear
phones. For an accolillt of the research in spelling, see Knutson (1967) and Fishman,
Keller and Atkinson (1968).

During 1965-66, work on tutorial programs was continued in both the mathematics
and the mathematical logic programs. Two groups of four kindergarten children were
given a revised version of the first-grade program during the regular school year
(April 11, 1966 to June 10, 1966). Two groups of first-grade children were given a
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revised version of the second-grade program (April n, 1966 to June 10, 1966).
Drill-and-practice lessons in symbolic logic were given to 30 sixth-grade students
one day each week from May 5, 1966 through June 9, 1966. A group of 7 fourth-grade
students were given the same lessons in logic for a period of four weeks, one day
each week (May 19, 1966 to June 9, 1966).

In the summer of 1964, the Institute was granted a contract by the United
states Office of Education to investigate the feasibility of teaching mathematics
and reading as an integral part of an elementary-school program by using individual
ized, tutorial computer-assisted instruction over an extended period of time. The
site chosen was the Brentwood Elementary School (Ravenswood City School District)
in East Palo Alto, California. The Laboratory was housed in a specially built unit
and was eQuipped with an IBM-1500 Instructional System operated by an IBM-1800
computer. (Use of this eQuipment was terminated on July 1, 1968). The first
students were run on the system on October 27, 1966. For the 1966-67 school year,
over 100 children, including all the first-grade students at Brentwood, participated
in the project. Half of the students had daily computer-assisted instruction in"
mathematics, and the other half had daily sessions in reading. For a description
of the reading program, see Atkinson (1967), Atkinson & Hansen (1966), and Wilson
& Atkinson (1967).

In addition, the drill-and-practice program was expanded during 1966-67.
Summary statistics are given in Table 2. In March 1967 i two teletypes were put in
operation at the Morehead State University Laboratory School in Morehead, Kentucky,
more than 2,000 miles from Stanford. As in the case of other schools, the connection
to the Institute's computer was by ordinary telephone line. Teletypes were added at
other schools, mostly in California, so that the starting number of 877 students
increased to slightly over 1,500 students at the end of the school year.

In addition, 31 students (average age about 10 years) at Walter Hays Elementary
School in Palo Alto, California participated in a teletype program on symbolic logic
and modern algebra. Lessons were prepared for two courses of stUdy, sentential logic
and elementary algebra. Both courses used the same logic program, but had separate
introductory tracks for rule names and applications. For most of the year the
sentential logic stressed derivations using symbols, and the algebra emphasized
numerical derivations; however, rules from both were required for some proofs near
the end of the year. Each child alternated his course of study from one day to the
next; logic one day, algebra the next.

The logic program was intended to be self-contained as tutorial computer
assisted instruction at a teletype terminal, but students were able to question a
staff member who was available in the teletype room when the logic program was
running. Although a considerable amount of individual instruction was given to some
students while they were working at the terminals, very little group instruction
occurred.
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TABLE 2

stanford Programs in Computer-assisted Instruction
~-

._.

Program 66-67 67-68 68-69 69-70

Drill-and-practice mathematics
.

•

Grades 1-8 (block structure)
California 1,500 1,441 2,475 122
Iowa - 640 - -
Kentucky - 1,632 1,060 - ..

Mississippi - 640 2,113 -
Ohio - - 101 -
Washington - - 92 139

College level
Tennessee (algebra) - - 206 183

.

Tutorial primary"grade mathematics 53 73 - -

Tutorial reading, Grade 1 50 88 - -

Drill-and-practice in initial reading
Grades 1-3, Remedial 4-6

California - - 442 642

Language Arts - - - 30

Drill-and-practice mathematics
Grades 1-6 ( strands structure)

California - - - 1,713
Ohio - - - 165
Washington, D. C. - - - 39

Tutorial computer programming - - 115 177

Tutorial logic and algebra
Grades 4-8 76 195 49 459

Tutorial problem-solving
Grades 5,6 - 27 20 18

First- and second-year Russian 10 30 52 77



The format used for the logic problems was similar to that used in earlier
years.

Lesson 1 of the sBntential logic contained 19 problems that were written in
symbolic format with two or three premises and that required one-step proofs applying
modus ponendo ponens, a rule of inference familiar to all the students. As already
indicated, the rulB was abbreviated AA for affirm the antecedent. The students
needed to know that 'R ~ S' meant 'if R then S', that 'R ~S' was a conditional
sentence whose antecedent was R and consequent was S, that 'p' was the abbreviation
for 'premise', and that the use of AA required two line numbers with the line number
of the conditional sentence followed by the line number of .its antecedent. A period
separated the two line numbers. After the teletype had printed what the student was
to derive and the given prBmises, the typewheel positioned itself for the student's
instructions. The student then typed the abbreviation for the rule and the line
numbers required for its application. The next information printed by the teletype
was either a valid step based on the student's input or an error message if the
student had given instructions for an invalid step. The teletype proceeded to the
next problem when the student had completed the desired derivat.ion. .An example
from Lesson 1 is the following:

Derive: L

P (1) K ~L

p (2) M

P (3) K

AA1.3 (4 ) L.

The underlined phrase indicates what the student typed for this problem. The
remainder of the typing was performed automatically under computer control.

Lesson 2 contained 8 more problems that had either two or three premises and
that required only a one-step proof. Mathematical sentences were included, as well
as the usual symbols of sentential logic. Each of the 7 problems in Lesson 3 had
three premises and used Rule AA. Two-step problems were presented for the first
time in this lesson.

The Rule of Conjunction was introduced in Lesson 4 as the rule that would Form
a Conjunction (FC). The 17 problems in this lesson involved one-step, two-step, and
three-step derivations using modusponendo pon"ns and the Rule of Conjunction.

In Lesson 5, the Rule of Simplification was presented as two separate commands
for the student to give the computer: to derive the Left Conjunct he typed LC, or to
derive the Right Conjunct he typed BC with a designated line number to complete the
instruction. For example:
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Derive: R

P (1) 8--.R&Q

P (2) 8

AA1.2 (~) R& Q

LC~ (4 ) R.

The underlined sections of the problem indicate the student's input for the deriva
tion. There were 21 problems in Lesson 5 that involved one-step, two-step, and
three-step derivations that used from one to five premises.

In Lesson 6 there were 20 problems that contained two, three, or four premises
using all the rules introduced up to that place in the curriculum. The problems
required from one-step to four-step derivations. Another new rule, modus tollendo
ponens, was introduced as the rule that would Deny a Disjunct (DD). For example:

Derive: D

p (1) A v (B &C)

P (2) D v ·B

P (~) -A

DDl.~ (4) B & C

Lc4 (5) B

DD2.5 (6) D.

As before, the underlined sections indicate the student's typed work, and the
teletype printed the remainder of the problem.

Lesson 7 contained 21 problems that required from one to four lines to solve
problems based on two or three premises. Another new rule, modus.tollendo tollens,
was introduced as Deny the Consequent (DC). The underlined statements represent the
.student's work in the following problem:

Derive: R

P (1) N

P (2 ) -R --. -8

p (3) N --. 8

AA~.l (4 ) 8

DC2.4 (5 ) R.

At approximately this stage in the curriculum (depending on each student's
individual rate of progress), a multiple-choice mode was available for use at the
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teletype terminals. Two inserted lessons used tbis multiple-cboice mode for review
and practice on logical vocabulary. One new rule, Double Negation (DN) , was intro
duced by using tbe multiple-cboice mode for direct instruction. Tbe first inserted
lesson contained 20 problems and tbe second lesson 19 problems.

Lesson 8 contained 18 problems baving from aneta tbree premises and required
one-step tbrougb four-step derivations to derive tbe conclusions. Practice in
applying tbe Double Negation Rule was empbasized. For example:

Derive: B

P (1) --(A --. B)

P (2) A

DNl ( 5) A .:.... B

AA5.2 (4) B.

Tbe problems in Lesson 9 featured anotber new rule, Hypotbetical Syllogism (HS).
Tbere were 21 problems in tbis lesson tbat required from one-step tbrougb five-step
derivations. From one to tbree premises were provided for eacb problem. One problem
required tbe use of an algebraic rule. in its derivation. Tbe rule of tbe Hypotbetical
Syllogism was applied in tbe following typical problem:

Derive: A --.D

P (1) A --. B

P (2) B --.C

P (3) C --.D

HS1.2 (4) A --. C

Hs4.3 (5 ) A --.D.

Lesson 10 contained 27 problems with from one to five premises that required
from one-step to twelve~step proofs for solution. Many applications of the algebra
rules were necessary for the problems in tbis lesson. Also, the Law of Addition,
Form a DisjQnction (FD), was presented. This rule permitted the student to type
the second part of a disjunction formula. The underlined sections indicate work
typed by the student. For example:

Derive: -S

P (1) S --. - (R v T)

P (2) R

FD2 (3) R v (~)

DC1.3 (4 ) _So

12



In Lesson 11 some of the 17 problems required derivations and some of the prob
lems were presented in the multiple-choice mode. Those problems of the multiple
choice type reviewed the vocabulary and required the student to identify a certain
type or part of a formula. The derivations contained from one to six premises with
from two to twelve lines of rule applications for the solutions.

Lesson 12 combined both derivations and multiple-choice problems for the intro
duction of two new rules that applied the Commutative Laws. The first rule was
called Commute Disjunction (CD), and the second rule was called Commute Conjunction
(CC). There were 18 problems in this lesson; the nine derivations had either one
or two premises and were one-step or two-steps in length. The Rule CD was applied
as follows:

Derive: AvB

P (1) B

FDl (2) B v (~)

CD2 ()) A vB.

Lesson 13 e~phasized the combined use of algebra rules and logic rules. The 27
problems included both multiple-choice problems and derivations having one to three
premises with as many as six lines of rule applications. The 16 problems in Lesson
14 followed the same format of combining multiple-choice problems with derivations
that included the use of algebra rules.

The algebra curriculum was presented in much the same format to the students as
the logic curriculum, with the exception that rules were introduced in a notebook
written in a programmed format. This approach was initiated because there was no
multiple-choice mode available when the algebra program started.

Directions written into the program instructed the student when to read the
introduction and when to solve the problems for a new rule in his notebook. The
student then used the answer section in his notebook to check his work. The first
two pages of the notebook included the rule names for both the logic and algebra
programs and examples of their application. Each student had his notebOOk at the
teletype terminal available for reference each day.

Lesson 1 contained 10 problems in which the student practiced the Rule of
Number Definition (ND). (Each positive integer greater than 1 is defined as its
predecessor plus 1. Thus 2 = 1 + 1, 3 = 2 + 1, etc.) This rule was printed with a
prefix that indicated which number the machine was to present and define. For
example:

Derive: 6 5 + 1

6ND (1) 6 5 + L

The underlined section shows the student's command to the computer.
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Lesson 2 presented 15 problems that required the student to apply the Rule of
Number Definition and then the new rule, Definition (D), that ~llowed the definition
of a particular number to be substituted for (the name of) the number in a given
number sentence. A prefix number in front of the rule abbreviation indicated the
number that was to be replaced by its definition, and a postfix number indicated
which occurrence of the number in i{he given sentence was to be defined. For example:

Derive: 8 ((5 t 1) t 1) tl

8ND (1) 8 ~ 7 t 1
7Dl (2) 8 (6 t 1) t 1
6Dl (3) 8 ~ ((5 tl) t 1) t1.

Lesson 3 contained 20 problems using both the Rule of Number Definition and
the Rule of Definition for two-step to four-step derivations. Lesson 4 provided
further practice using the same rules for 15 problems that required three or four
lines of proof.

In Lesson 5 a new rule, Commute Addition (CA), was introduced. To apply this
rule to the previous line of the problem, a postfix number indicated which occurrence
of the plus sign was used for the commutation. For example:

Derive: 7 ~ 1 t 6

7ND (1) 7 "= 6 t 1
CAl (2) 7 ~ 1 t 6.

For the 20 problems in this lesson, both the Rule of Number Definition and the Rule
of Definition were used continuously.

Lesson 6 contained 23 problems that required as many as four steps of proof.
The three rules available for algebra proofs were used. Lesson 7 provided further
practice with the same rules. The 22 problems required as many as seven steps for
a solution. Lesson 8 extended the use of the same three rules. The 13 problems
needed as many as eight lines of proof for the derivation.

In Lesson 9 a new rule, Associate Addition to the Right (AR), was introduced.
The student typed a postfix number to indicate which plus sign was to be dominant
after applying Associate Addition to the Right. For example:

P

AR2

(1) (4 t 3) t 1

(2) 4 t (3 t 1)
(4 t 3) t 1

(4 t 3) t 1.

There were 20 problems in this lesson that needed as many as five steps of proof
for solution.
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Lesson 10 provided practice with all rQles that had been presented. There
were 21 problems that re'lQired as many as seven steps of proof. Lesson 11 contained
11 problems that provided fQrther practice with the same rQles.

Lesson 12 contained a new rQle, Inverse Definition (ID). This rQle put a
number in place of its definition. A postfix n=ber was re'luired to indicate which
occurrence of a n=ber's definition was to be replaced by the number. For example;

P

6ID2

(1) 5 + 1 ~ 5 + 1

(2) 5 + 1 ~ 6.

The postfix 2 indicates that the second OCCQrrence of the definition of 6 is to be
replaced. There were 20 problems in this lesson and some re'luired as many as sevep
steps of proof for a solQtion.

,
In Lesson 13 there w",re 17 problems that needed.as many as six steps for a

derivation. Lesson 14.introduced a new rule, Associate Addition to the Left CAL).
This rule allowed the students to reassociate n=bers to the left using the same
format as Associate Addition to the Right. There were 17 problems in this lesson.

Thus, in these 17 algebra lessons a total of six a,lgebraic rules of. inference
were introduced. The introduction of these rules gave the students experience with
the sort of mathematical inferences that are widely used in elementary algebra and
that are rather different from the rules of sentential inference. I emphasize again
that the students were about 10 years of age.

Seventy-three students continued in the 1967-68 tutorial mathematics program
at the Br",ntwood Laboratory. A new mathematics curriculum.was initiated for the
second grade.

The drill-and-practice mathematics program expanded again during 1967-68. From
the end of January, 1968, to the end of May, 1968, the .eprollment jumped froll) 2,387
to 4,353 for 30 schools in California, Iowa, Kentucky, and Mississippi.

The 640 students enrolled in the drill-and-practice program in the Job Corps
C",nter in Clinton, Iowa were high-school-age girls and older. These girls concurrently
attempted to l",arn a trade and to earn a high school diploma. The majority of these
students worked at the fourth:grade level.

In September 1967, 30. students at Stanford University enrolled in a course of
computer-based elementary RQssian for credit. Professor Joseph Van Campen of the
Department of Slavic Languages at Stanford was responsible for the development of
the computer-based Russian course. A control class received regular classroom
instruction, attended a language laboratory, and submitted written homework assignments.
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In a computer-based instruction class, regular classroom instruction was eliminated
and work at Model-35 teletypes with Cyrillic keyboard and audiotapes with earphones
was substituted. The students received .instruction at the terminals for a period
of 50 minutes per day, 5 days a week, throughout the entire academic year.

The statistical evaluation of the Russian course has been positive in two
major aspects.

Of the 30 students who started the first-year computer-based course, 1 left
during the first quarter, 3 left between the first and second quarters, 1 left
during the second quarter, and 3 left between the second and third quarters. Two
new students entered the computer-based section at the beginning of the second
quarter .. Of the 38 students enrolled for the autumn quarter in the regular Russian
section, 10 left the course during the first quarter, 13 .left between the first and
second quarters, and 3 left between the second and third quarters. Four new students
entered the regular section at the beginning of the third quarter, 1 of them having
transferred from the. computer~based class. Of the 30 students originally enrolled
in the computer-based program,.22 (73 percent) finished all three quarters, whereas,
of the 38 students in the regular class, only 12 (32 percent) finished ·the year's
curriculum. This finding suggests that the computer-based course held the. interest
of the students much better than the regular course did. Probably because Russian
is more difficult than French,Spanish, or German for ·American students, the dropout
rate in Russian at Stanford and other universities is traditionally high.

Approximately 66 percent of the content of the final examinations for the autumn
and winter quart~rs was identical for the computer-based and the regular Russian
sections; the complete final examination for the spring quarter was identical for the
two groups. The number of errors for each student, when the students are ranked
according to their performance on the final examination, is shown in Figures 2, 3 and
4 for the fall, winter and spring quarters, respectively. Although the average
number of errors was lower for the computer-based students in all three quarters-
15.8 relative to 49.0 in the fall quarter, 21.8 relative to 25 .Sin the winter
quarter, and 53.0 relative to 71.1 in the spring quarter--the difference was statis
tically significant for the fall quarter (Mann-Whitney U test, P < .001) and the
spring quarter (p < .05), but not for the winter quarter. Since the selection
process resulting from the poorer students' leaving the r~gular course biases the
results on the examination against the computer-based group, the superiority of the
computer-based group on the spring examination is more impressive than the difference
indicated by the average number of errors.

The logic and algebra tutorial program increased to 195 students in seven schdols
in California and Mississippi. This was the only program aimed mainly at very bright
students and was offered as a supplement or enrichment to the regular mathematics
program. An additional feature of the logic program was· some work on problem solving
aimed at obtaining a better understanding of the difficulties students encounter in
solving word'·problems. This was done by giving the s-tudentsa routine for computa
tions to be performed by the computer program.
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InstrlJ.ctions were presented, via complJ.ter, to teach the stlJ.dents how to<(jommand
the complJ.ter to perform operations on given nlJ.mbers. The following seqlJ.ence of
interactions between the stlJ.dent and the complJ.ter illlJ.strates how a problem is
solved in this context. Student entries are underlined. The computer first types
out the problem, and then types out the numbers in that problem. The student sees
on the printout sheet before him:

Tom collected 500 seashells and placed 43 of them in a showcase.

How many shells were not placed in the showcase .••

G (1) 500

G (~) 43

"Gil stands for II • I'glven number.

The stlJ.dent then responds by telling the computer the operation he wants the
complJ.ter to perform, and the line nlJ.mbers to which the operation sholJ.ld apply. In
the present case, the stlJ.dent ordinarily types OlJ.t "1.2S" meaning "from the numper
shown on line 1 subtract the number shown on line 2". The computer responds by
typing the result of applying the operation, or by typing an error message if the
operation could not be applied validly.

The stlJ.dent also learned to indicate the answer by typing the line number
followed by an X. The complete protocol for a correct response in the above
example, then, might be:

Tom collected 500 seashells and placed 43 of them in a showcase.

How many shells were not placed in the showcase ...

G (1) 500

G (2) 43

1.2S (3) 457

3X

Correct

Similar notation was used for the other three rational operations of addition,
multiplication and division. A detailed report of this study is to be found in
Suppes, Loftus and Jerman (1969). A subseqlJ.ent stlJ.dy is reported in Loftus (1970).
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The project in East Palo Alto schools shifted major emphasis from tutorial
programs to drill-and-practice programs in elementary mathematics and reading. All
eight elementary schools in the Ravenswood district were involved. Forty teletype
terminals modified for audio were used in the reading program for Grades 1, 2, and
3, and 50 teletype terminals were used for arithmetic in Grades 1 to 6.

The total number of students enrolled in the drill-and-practice program in
elementary arithmetic grew to over 6,000 during the year. Again, summary data are
shown in Table 2.

Under the direction of Professor Atkinson, an initial reading program was
designed and prepared that would complement any classroom reading series by providing
drill and practice in the basic subskills for the complex task of learning to read.
This program, pioneering the use of digitized aUdio, was made available to 442 first-,
second- and third-grade students.

A remedial mathematics course for college students was prepared and run with
students at Tennessee State University. The drill-and-practice program emphasized
computational skills in arithmetic and elementary algebra. The program included
sections on concept development as well. Students spent 20 minutes a day on :terminals
and the remainder in regular class sessions. The terminal installation consisted of
20 teletypes and a PDP-8 computer serving as a mUltiplexing device, connected by
high-speed phone line to the Institute's central computer at Stanford.

The students who began work in logic and algebra on terminals in their school
in 1966-67 continued during 1967-68 and 1968-69. By June of 1969 they were about
twelve years in age and had proved most of the standard elementary theorems that
hold for ordered fields. A list of the theorems used in the curriculum is given in
Table 3. At this point their intensive work terminated because of their graduation
from elementary school.

The second-year computer-based Russian course consisted of 113 lessons and was
offered for credit at Stanford University through the Department of Slavic Languages
and Literature. Disk-generated, computer-generated individualized review sessions
and analyses of student performance were initiated and preliminary tests were made
in the computer-based generation of sentences from individual vocabulary items.

For the autumn quarter, 1968, 19 students enrolled in the computer-based class
and 11 enrolled in the conventional class; for the winter quarter, 1969, 18 students
enrolled in the computer-based class and 8 enrolled in the conventional class; for
the spring quarter, 1969, 15 enrolled in the computer-based class and 6 enrolled in
the conventional class. The results paralleled those for the previous year.

The system was expanded during the year, as shown in Figure 1, into a network
that included students in Kendall School for the Deaf in Washington, D. C. on the
east coast and students in the Special Education Unit of the University of Washing
ton in Seattle on the west coast.
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TABLE 3

Logic and Algebra Course Outline

1968-1969

Second Year*

Recognition of true and false sentences; recognition of types of
sentences; equations; inequalities.

Review of atomic and molecular sentences; conditionals; when a
conditional is true.

AA: affirm the antecedent;
Truth value of conditionals as related to·truth value of antecedent
and consequent.

ND: number definition.

WP-CP: wor~ing premise and conditional proof.

Valid rule of inference.

CE: commute equals.

AE: add equals.

SE: subtract equals.

LT: rule of logical truth.

HE: replace equals (long form).

HE: replace equals (short form).

CA: commute addition axiom
A + B =B + A
short form of CA.

AS: associate-addition axiom
(A + B) + C =A + (B + C);

AR: associate addition right;
AL: associate addition left.

Z~ zero axiom
A + 0 = A.

N: negative number axiom
A+.-B = A :.. B.
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AI: additive inverse axiom
A + -A ~ O.

Theorem 1:
Theorem 2:
Theorem 3:
Theorem 4:
Theorem 5:

o + A ~ A
(-A) + A ~ 0
A - A ~ 0
o - A ~ -A
o -0

Theorem 6:
Theorem 7:
Theorem 8:
Theorem 9:
Theorem 10:

A - 0 ~ A.
A+B~A+e->B~e

A+B~e->A~e-B

A~e~B->A+B C.
A + B ~ 0 -> A ~ -B

(-A) - B

(-B) - A
-(A-B) ~ B -A
(A - B) - C ~ A + (( (-B) - e)
(A - B) - e ~ A - (B+ c)
A + (B - A) " B

A",~B->A+B~O

A + B ~ A -> B ~ O.
-(-A) ~ A;
(-(A + B)) + B ~ -A
- (A + B)

Theorem 11:
Theorem 12:
Theorem 13:
Theorem 14:
Theorem 15:

Theorem 16:
Theorem 17:
Theorem 18:
Theorem 19:
Theorem 20:

Theorem 21:
Theorem 22:

A - (A + B) ~ -B.
(A - B) + (B - e) ~ A-C.

eM: commute multiplication axiom
A X B ~ B X A.

MU: mu1tiplication-by- unity axiolli
A X 1 ~ A.

Theorem 30: ~. X A ~ A.

ME: multiply e'luals.
DE: divide e'luals.

MI: multiplicative inverse axiom
-,A ~ 0 ->A xCi/A) ~ 1;
Theorem 31: -, A ~ 0 -> (l/A) X A ~ 1.

U: unity axiom
-, 1 ~ O.

IP: indirect proof.
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FR: axiom for fractions
.., B ~ 0 --. AlB ~ A X (liB)

Theorem 32: III ~ 1
Theorem 33: All ~ A

Theorem 34: .., B ~ 0 & A X (liB) ~ C --. A ~ B X C
Theorem 35: .., A ~ 0 & B ~ IIA --. A X B ~ 1

Theorem 36, B ~ 1 & .., A ~ 0 --. A X B ~ A

DL: distributive axiom;:
Theorem 37: A X 0 ~ 00

MS: associate-multiplication axiom
(A X B) X C ~ A X (B X C);

MR: associate multiplication right;
ML: associate multiplication lefto

Theorem 38: A X B ~ 0 & .., A ~ 0 --. B ~ 0
Theorem 39: .., A ~ 0 --. 01 A ~ 0
Theorem 40: .., A ~ 0 & A X B ~ A X C --. B ~ C

Theorem 41: .., B ~ 0 & A ~ B X C --. A X (liB) ~ C
Theorem 42: ..,A ~ 0 & A X B ~ 1 --.B ~ l/A
Theorem 43: .., A ~ 0 & A X B ~ A --. B ~ 1
Theorem 44: (A + B)X:(¢ + D) ~ (A X C + A X D) + (B X C + BX D)
Theorem 45: A X (-B) ~ -(A X B)

Theorem 46: (-A) X B ~ -(A X B)
Theorem 47: (-A) X B ~ A X (-B)
Theorem 48: (-A) X (-B) ~ A X B
Theorem 49: A X (B - C) ~ A X B - A X C
Theorem 50: -A ~ (-1) X A

Truth assignment mode

Counterexample mode

Axiom 13: A < B --. .., B < A
Theorem 60: .., A < A
Problems using counterexample mode

Theorem 61:
Theorem 62:

A~B--...,A<B&..,B<A

A<B--...,A~B&..,B<A

Axiom 14: A < B --. A + C < B + C
Theorem 63: A < 0 --. 0 < -A
Theorem 64: 0 < -A --. A < 0
Theorem 65: A + B < B + C --. B < C

24



Theorem 66:
Theorem 67:
Theorem 68:
Theorem 69:
Theorem 70:

A < B -> -B < -A
-B < -A -> A < B
A + (-B) < A + (-C) -> C < B
C<B->A+ (-B) <A+(-C)
(A < a & B < c) -> A X C < A X B

Theorem 71: (A < a &A x B <A X c) ->C <B
Theorem 72: (0 <A&A X B <A X C) ->B < C
Theorem 73: 0<1
Theorem 74: A< a -> (l/Al < a
Axiom 15: (A <B & B < C) -> A < C

Theorem 75: (0 < A & B < a & C < 0) ->A X B < B X C
Theorem.76: (A < a & O<B& 0< c) ->A X B <B X C
Theorem 77: a < (A/B) ->O<A X B
Theorem 78: O<A X B ->0< (A / B)

Axiom 16: ,A ~ B ->A<B vB <A
Tlleorem 79: (, A ~ B &,A < B) ->B <A

Third year*

Theorem 80:
Theorem 81:

Z + B ~ a -> Z '" -B
Z + B < a -> Z < -B

Definition: A > B
Definition: A > B

H B < A
h A>BVA~B

'l;heorem 82:
Theorem 83:
Theorem 84:
Theorem 85:

Theorem 86:
Theorem 87:
Theorem 88:

. Theorem 89:
Theorem 90:

Theorem 91:
Theorem 92:
Theorem 93:
Theorem 94:
Theorem 95:
Theorem 96:

Z + B :> a -> Z > -B
AX ~ a &,A·~; O~X ~ a
AX>O&A>O->X>O
AX>O&A<O->X<O

AX<O&A>O->X<O
AX '" a &.A < a -> x > a
AX + B ~ a & ,A ~ 0 -> x ~- (B/A)
AX + B > 0 & A > 0 -> x > -(B/A)
AX + B > 0 & A < 0 -> x < -(B/A)

AX+ B < 0 & A > 0 -> x < -(B/A)
AX + B < a & A <0 -> X > -(B/A)
X+Y~A->X~A-Y&Y~A-X

,A ~ a & AX + BY a -> x ~ -(B/A)Y
,A~B&X+Y O&AX+BY~C->Y

,A ~ B & X + Y ~ a & AX + BY ~ C ->X '"
C/(B-A)
C/(A-B)

*Second Year and Third Year refer to the curriculum as laid out for
a year's tutorial work and assume that the first year of curriculum has
already been completed. The Third Year does not represent a full year,
but rather only the first part.
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A tutorial program in computer programming was initiated with high school
students in Woodrow Wilson High School in San Francisco. Two languages, SIMPER and
LOGO, were taught. The nonstandard languages were developed especially to provide
an introduction to some of the basic ideas underlying computer programming. The
terminal installation consisted of 15 teletypes.

Fewer terminals were in the system than in the previous year, because two of the
major centers (Mississippi and Kentucky) continued with systems of their own, and
because there was a decrease in the level of federal support to other schools.

The block program for Tennessee State University was continued throughout the
year. New course material was prepared. The content of the program included a
review of arithmetic and intermediate algebra in a, drill-and-practicemode.

The number of instructional programs increased as shown in Table 2. In the
spring, the block version of the drill-and-practice mathematics program (for a
detailed description of the block version, see Suppes, Jerman and Brian (1968) or
Suppes and Morningstar (1969)) was replaced by a new program, which I now describe.

During the summer of 1968, development began on a major reVlSlon of the drill
and-practice program in arithmetic. The revised program evolved when attention was
diverted from a program that could duplicate and expedite classroom procedures for
a given grade to a program that could provide the most efficient drill for a given
individual from the start of Grade 1 through the end of Grade 6. The question used
to determine what types of problems a child should receive on a drill changed from
"What grade is the child in?" and ''what is usually taught at that grade level?" to
"What concepts has this child mastered?" and "What should this child learn next?"

Attention to the child rather than to the classroom resulted in a reorganization
of the drill-and-practice material in elementary-school mathematics into ungraded
strands. The student, working on several strands simultaneously, begins at the
bottom of a strand and moves upward on each strand as a function of his ability to
perform correctly on that strand. Since movement along a strand depends on the
student, the level of performance on one strand relative to the level of performance
on other strands creates a problem set for one student different from the problem
set for another student. Thus, unlike in the traditional classroom, each student
is solving a different set of problems, a~d.each set of problems contains problem
types from each strand appropriate to the ability level of the student involved.

The strand system consists of three major elements:

1. A curriculum structure that classifies the problems appropriate fOr an
elementary-school mathematics program;

2. A set Of rules for determining the problems to be presented to each student;
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). A set of rQles to define the progress of a stQdent throQgh the strQctQre.

The present cQrricQ1Qm strQctQre contains 15 strands. Each strand inclQdes
all problem types of a given concept, e.g., fractions, eqQations, or of a major
sQbtype of a concept, e.g., horizontal addition, vertical mQltiplication, presented
in Grades 1-6. Table 4 shows the 15 strands and the portion of the six-year
cQrricQ1Qm for which they are appropriate.

Within each strand, problems of a homogeneoQs type, e.g., all horizontal
addition problems with a SQm between zero and five, are groQped into eqQivalence
classes. Each strand contains either 5 or 10 classes per half year with each
class labeled in terms of a grade-placement eqQivalent. A problem COQllt of problem
types occQrring in three major elementary_school mathematics texts and data
collected dQring the past three years of the drill-and-practice program at Stanford
were Qsed to arrange the eqQivalence classes in an increasing order of difficQlty
and to insQre that new skills, e.g., regroQping in addition, were introdQced at the
appropriate point in the cQrricQlum.

In addition to the ordering of the problems within a strand, we mQst know how
mQch emphasis is needed on each strand at a given point in the year. To determine
this, we divided the cQrricQ1Qm into 12 parts, each corresponding to half a year.
A probability distribQtion was defined for the proportion of problems on each
strand for each half year. Both the problem COQllt from the three textbooks and
the average latency for problem types based on past data were Qsed to characterize
the cQrricQlum distribQtion. The final proportions in terms of time and problems
for each half year for each strand are shown in Table 5, with the exception of
Strand 15 (problem solving) which is handled separately.

A stQdent's progressthroQgh the strand strQctQre is a fQnction of his
performance on each strand. As certain criteria of performance are satisfied for
a given strand, the eqQivalence class from which the stQdent is receiving problems
changes, with a corresponding change in the stQdent's grade placement on the
strand. The criterion for a given eqQivalence class is a fQilction of the strand
and half year of which that class is a member.

For each eqQivalence class the criterion is stated in terms of three integers,
W, Y and Z. After every Y problems on a strand the stQdent's performance is
examined; if he did W or fewer problems correctly, he moves down one eqQivalence
class; if he did more than Wand fewer than Z problems correctly, he stays at
the same eqQivalence class; if he did at least Z problems correctly, he moves QP
one eqQivalence class. An exception to the criterion for movement is made when a
stQdent is presented problems from a given eqQivalence class for the first time.
In SQch a case, a check is made after the first three problems; if the stQdent did
all three incorrectly, he moves down one eqQivalence class.

The calcQlation of the valQes of W, Y and Z for each eqQivalence class
involved the combination of known facts, estimated facts, and several assumptions.
Knowing the amoQnt of time a stQdent WOQld spend doing problems dQring a half year,
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Strand

1

2

3

4

5

6

7

8

9
.

10

11

12

13

14

15

TABLE 4

Content and Duration of Each Strand

Content

Counting and place value

Vertical addition

Horizontal addition

Vertical subtraction

Horizontal subtraction

Equations

Horizontal mUltiplication

Vertical multiplication

Fractions

Division

Large numbers and units of measure: time, money, linear
measure, dozen, liquid measure, weight, Roman numerals,
metric measure

Decimals

Commutative, associative, and distributive laws

Negative numbers

Problem solving

28

Grade range

1.0-7.0

1. 0-6. 0

1.0-3.5

1. 5-6.0

1.0-3.5

1.5-7.0

2.5-5.5

3.5-7.0

3.5-7.0

3.5-7.0

1.5 -7.0

3.0-7.0

3.0-7.0

6.0-7.0



and estimating the average latency from presentation of. a problem to a response
from the student for each problem type (equivalence class), we estimated the number
of problems a student would receive from each strand during a half year. Then,
assuming that a student has an average probability correct of .70, the values of
W, Y, and Z were computed so that a student would be expected to increase his
grade placement by .5 on all strands during a half year of time at the computer
terminal.

A programmed tutorial course in BASIC was added as another computer programming
course during the year. Students in both Wilson High School and the Stanford
Medical Center were enrolled in the program. In addition, a small number of students
at Wilson High School took a more advanced programming course in the computer
language AID.

Due to federal cut-backs in the 1969-70 school year, the initial reading program
was operative in only two Ravenswood elementary schools. Selected kindergarten
students, all first and second graders, and remedial third-through-sixth-grade stu
dents took part in the program on a daily basis.

The mathematics and logic programs were continued for the students at Kendall
School for the Deaf in Washington, D. C. Thirty special lessons were written and
used by deaf students at Kendall School during April, May and June. The lessons
included the grammar of single noun phrases and an introduction to interrogative
transformations. One teletype terminal was located in a school in Cupertino School
District in California for handicapped children who were trainable.

The first- and second-year computer-based Russian language courses were
offered for credit by Stanford University. In the autumn quarter, 49 students
registered for the first-year course and 31 registered for the second-year course.
The spring quarter ended with 39 first-year students and 22 second-year students.
Approximately 90 students were turned away from the first-year course in September
because of lack of facilities to accommodate more than 80 students. While the
second-year course continued to be revised, the first-year course ran without
further changes.

Using the experience gained from the logic and algebra course for bright
elementary-school students, we prepared and tested an introductory college course
in elementary mathematical theories with Stanford students. As in the case of the
Stanford Russian courses, the bulk of the instruction took place at teletype termi
nals. A revised version of the material on sentential logic and the algebra of
ordered fields was used. In addition, axioms for Boolean algebra in quantifier_
free form were presented and the students were asked to prove a number of elementary
theorems. The emphasis throughout the course is on getting practice in proving
theorems. To this end the students were encouraged to experiment with various lines
of attack on a theorem and to view the teletype output as creating a "work .space"
or scratch pad for thinking through a proof. Because the program formally checks
the correctness of a proof, false starts and blind alleys remain part of the output
and provide us with an Q~paralleled opportunity to study the methods of attack
tried by the students.
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On Monday, May 18 and Friday, May 22, 1970 the Institute made what is perhaps
the first use of a communication satellite to distribute CAl, The demonstration was
important because it proved that satellite distribution of CAl through low-cost
satellite ground stations had the potential for making CAl as accessible to isolated
rural areas as to large cities,

Prediction for the Seventies

I turn now to some predictions about the development of computer-assisted
instruction for the coming decade, Rather than engage in general long-range
speculations that will not be realized for another fifty years, I shall attempt to
make my predictions relatively concrete and definite and pertinent to the coming
decade, As a reference, I shall use the history of our efforts at Stanford. In a
general way I have divided my projections for the future into four parts. The first
part deals with research on dialogue and the interaction between student and computer
program. The second deals with the theoretical problem of building an adequate
psychological model of the student. The third deals with some operational predictions
concerning the simplest applications and their spread during the next ten years.
Finally, the last part deals with the social and cultural impact of the continued
spread in use of computers for instruction.

1. Research ~ dialogue

Without giving the subject much reflection, one might think the appropriate
model for a dialogue should be Socrates at work in the Platonic dialogues, but it
does not take much perusal of Plato's writings to recognize that this is not a seri
ous pedagogical or psychological model of how an instructive or tutorial conversation
should take place·. The real problem is that we do not have a good intellectual model
that is well enough developed for the interaction between a tutor and his pupil. We
therefore do not have a sharply defined analytical model that we can plan to simulate
in formulating powerful computer programs. The central difficulty in the area of
interaction between student and program is not the clumsiness or limitations of the
computer, but our ignorance in understanding in any explicit way the character of a
successful dialogue. A large number of topics being studied either as a part of
computer-assisted instruction or as part of artificial intelligence should contribute
to a deeper understanding of the nature of dialogue. I shall mention only a few
special topics, since I see no point in trying to deal with this difficult problem
in a general way.

Let me mention some of the things we are planning under this general heading
for the logic and mathematics programs I have described as part of our activity at
Stanford during the past decade, Perhaps the central limitation of these programs
at the present time is their requirement that the student construct an explicit
formal proof for every theorem. Somehow the routine steps of more advanced mathe
matical work must be compressed and eliminated from the student's explicit focus
of concern in order to provide adequate time to concentrate on the crucial con
ceptual steps in a given proof. Published mathematical proofs, even in relatively
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elementary textbooks, are far from formally complete. We mQst close the gap
between this formal incompletE:ness and the theoretical conception of a proof in the
formal sense. The most promising approach to this central problem in the develop
ment of more advanced mathematics COQrSeS in CAl is the Qse of theorem provers for
instrQctional pQrposes. With theorem provers the stQdent •can instrQct the program
to move from one point to another in the proof. The steps in these moves are modest
and of the right level of difficQlty for theorem provers; they cover the many
rOQtine steps that are tedioQs and far too boring for the stQdent to make explicitly
if he is called Qpon to prove any genQinely interesting theorems. For example,
repeated Qse of the commQtative and associative laws in a fashion that .is common in
elementary algebraic argQffients WOQld be tQrned over to the theorem prover to execQte.
The same remark applies to all standard arguments Qsing sentential or predicate
logic. Once the stQdent has learned the elements of sentential and predicate logic,
the rOQtine applications may properly be assigned to the theorem prover by the
stQdent.

As one mode of operation for the Qse of theorem. Provers, we introdQce an addi
tional instrQction into the proof procedQres, an instrQction called show. . In this
case the stQdentinpQts what he wants the theorem prover to show; he also indicates
the preceding theorems and axioms from which the intermediate resQlt shOQld be
derived. Our theorem prOVer is of sQfficientpawer to take these intermediate
steps, bQt not adeqQate to take the larger steps reqQired for an entire proof.
There is good reason to believe that.this will probably be the sitQation for several
years. My awn feeling is that the instrQctional Qse of theorem provers is perhaps
one of the best operational arenas in which to develop and improve on the resQlts
accomplished thQS far. WithoQt a facility SQch as a theorem prover I see little
hope of being able to give self-contained COQrses that catch the spirit of more
advanced parts of mathematics in the sense of reqQiring the stQdent to give proofs
of the main theorems.

A second and closely related activity for which theorem provers are a
necessary ingredient is that of monitoring a stQdent's activity while he is in the
process of searching for a proof and then giving him hints of how he may complete
the proof he has begQll. Again, at least in elementary and semi-elementary domains
of mathematics, there is hope of concretely realizing programs of this sort. The
data base is simple, namely, the elementary mathematical theory, together with the
data on the stQdent's cQrrent attempt at a proof. Investigations ·of ways in which
to complete the proof begQn by the stQdent are in SQch contexts not overly difficQlt.
The theorem prover searches for a way to complete the proof and then gives the
stQdent a hint of the next step to take when he has rQll OQt of conjectQres himself.
Preliminary work that we have begQn on this line of attack seems promising. I do
not for a moment Qnderestimate the problems of extending our work to more complex
bodies of mathematics. I do think it is an important direction for developing
richer mathematical COQrses in a compQter-based environment.

In many respects we can expect to make the most rapid progress in the domain
of mathematics, becaQse of its limited data base, the formality and explicitness of
its langQage, and oQr own very explicit Qllderstanding of the strQctQre. The
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development of tools to provide aids and hints in other domains will not be a simple
matter. There is cQrrently a variety of attacks on the development of good qQestion
answering systems. AlthoQgh adeqQate systems are still far from available, it seems
likely that the development of qQestion-answering systems for Qse in instrQctional
settings will be an important part of research in CAl dQring the seventies.

I WOQld like briefly to mention some of my own work in this area, especially
work condQcted in conjQnction with Dr. H~l~e BestoQgeff of the University of Paris.
Dr. BestoQgeff and I are attempting to write a qQestion-answering system with certain
featQres that have previoQsly been missing in theliteratQre and that we think are
probably highly desirable for fQtQYe progress in this domain. The central objectives
of OQr stQdy can be described very simply. We are attempting to define· for· the
qQestion inpQts and answers a machine-independent grammar and semantics SQch that
when the program is constrQctedwe can prove a theorem asserting that every qQestion
is answered correctly. Of cOQrse, by saying that every qQestion is answered correctly
we mean that every qQestion is answered correctly relative to the data base. WithoQt
an explicit grammar for the fragment of a natural language used for theinpQt questions
and without an explicit semantics for this fragment, it is impossible to prove a formal
theorem aboQt the natQreof the question-answering system. As in other domains of·
science, there is also a hope that by introdQcing a deeper structure into the
question-answering system--such as the kind introdQced by an explicit grammar and
semantics--we shall be able to handle more efficiently and develop more easily the
actual system itself. Whether or not my conjectures aboQt this direction of develop
ment are correct, there seems to be little doubt that progress in this area will be a
significant part of CAl work in the coming decade.

Closely related to what I have said aboQt question-answering systems is the
whole domain of developing genuine voice-to-voice interaction between stQdentand
program. We are beginning to have an understanding of natural language grammar and
semantics for fragments of natural langQages, adeqQate to produce a reasonable line
of talk on the part of the compQter. By making the grammar and semantics proba
bilistic, we can also avoid the stereotyping that otherwise WOQld be a disturbing
character of the computer talk.

Important work on speech recognition by Dr. D. Rajagopal Reddy and others has
taken place during the past decade. Reddy and his groQp are able to recognize in
reasonable time a vocabulary of QP to about 500 words. While it is trQe that the
machine power reqQired for this recognition is awe-inspiring and far too great for
operational applications in CAl, there is reason to hope that fairly soon at least
a small vocabulary may be recognized easily. Then we shall be in a position to
have a genuine voice-to-voice interaction between compQterand program with the
beginnings of a genQine verbal dialogue.

2. Research on model of the stQdent

The bulk of OQr research at Stanford and research conducted elsewhere on
student performance in computer-based courses is at a very empirical level. ROQghly
speaking, the behavioral research falls into two classes. One class of stQdies is
concerned with external evaluation by achievement test data of the comparative
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performance of ~tudents in CAl. In these studi~~, control groups of a comparable
nature either receive ordinary instruction or 0r'dinar'J' instruction without benefit
of supplementarY CAl work. The second class of studies is concerned to analyze
the detailed perfqrmance of student's responses in a CAl course. Regression
studies of. item difficulty, reported extensively in Suppes, Hyman and Jerman (1967)
and in Suppes, Jerman and Brian (1968), are typical. The structural variables that
are defined as independent variables in these linear regression studies involve
almost without exception complexities of the subject matter and the curriculum,
not postulated complexity of the student. Structural assumptions about the •student
only enter through .consideration of the dependent variable, which in these studies
has been either probability of a correct response or latency of response.

It might be thought thai; the developments in cognitive psychology, especially
the structuralism of Piaget and others, would provide basis for going beyond
sheer empiricism in considering student responses. UnfortuIlately, however, it
does not take an extended perusal of the literature. in cognitive psychology to deter
mine that the models are not· suffiCientlY developed in .a mathematical fashion to
provide a genuine tool for the analysis of data. Perhaps the best way to put the
matter is that the current cognitive theories are simply not specific and definite
enough in thetr formulation of basic assumptions to lead to specific predictions"
There simply are not the tools in the writings of Piaget, nor in those of Bruner
and others, adequate to provide predictions of differential difficulty over a
selection of items drawn from some complex domain like that of elementary arithmetic
or elementary fOreign-language learning. I do not claim that Piaget or Bruner, for
example, have stated that they offer such tools. I me"ely make explicit the fact
that such tools are not available in the theoretical work they have as yet offered
us 0

I do think, however, that within the general tradition of stimulus-response
psychology, tools of an adequate precision apd complexity are now available for at
least the elementary parts of skill subjects, Such as. mathematics and foreign-
language learning. Concerning models for f~reign-language learning, some preliminary,
but at least specific, models are offered by Crothers and me (1967), along with
extensive tests of these models. In a more recent and promising vein, we have begun
to use probabilistic automaton models to study the performance of students in
elementary arithmetic. Theoretical formulation of these models is begun in Suppes
(1968) and is currently w1der active development in our work at the Institute. Our
objective is to build a large probabilistic automaton model for the individual
student, with individual parameters reflecting his state of learning and performance,
and then to present instruction differentially and contingently so as to change the
values of critical parameters in the model of the individual student in a manner
that can be characterized in one specific sense as optimal. I shall not enter into
details here, but I do emphasize that I think the task of building an automaton to
model the individual student, even in a subject as well defined as elementary arith
metic, is far from trivial. We are currently successfully testing models for individual
parts of arithmetic of this sort, and these models have a full information-processing
capacity. But, putting together a common model for a given student across, say, the
skills of addition, subtraction, multiplication and division is already proving to be
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a more complex and difficult problem than we had originally anticipated. While I
would not want to be overly sanguine about the depth of what we shall be able to
accomplish in the next few years, I do think this is the direction in which we must
move. The computer program must have a more sophisticated and complex representa
tion of the student in order to provide instruction that is properly tailored to
the individual student.

3. Some operational predictions
~

It is not possible to construct an adequate data base from which to make a
serious prediction about the operational use of CAl in the United States or in
any other country during the course of the next decade. Certainly in the past,
sanguine predictions have been made that have turned out not to be true, and I do
pot want to engage in any overly optimistic forecasts in the present discussion.
There are, however, already signs thl;lt the effort, at least in the United States,
will be substantial during the seventies, and by this I mean that a substantial
effort will be made on the part of school systems and not simply on the part of
research centers like ours at Stanford.

I do think that the following prediction is a reasonable one. By 1980, 15
percent of the students in the United States at all grade levels will be in daily
contact with a computer for some aspect of their instruction. At the elementary
school level this will probably be especially in the areas of reading and mathematics.
One large_scale operational system is already installed in New York City, and the city
of Chicago is in the process of making a similar installation that will become opera_
tional in the fall of 1971. A number of smaller school systems have already purchased
systems. The list is too long to enumerate here. It is on the bl;lSis of the above
information that I predict that over the course of the next ten years at least 15
percent of the students will have such involvement. My forecast is the same for
secondary schools and for colleges, but let me pursue the analysis a bit for the case
of the elementary school. There are approximately a million elementary-school
classrooms in the United States. Fifteen percent of these is approximately 150,000.
The ordinary classroom has between 25 and 30 students. For drill and practice in
mathematics or in reading, one terminal per classroom would be an appropriate alloca
tion. During the seventies, the cost per terminal will probably be about $3,000.
This means that by the end of the decade we will incur a cost of approximately half
a billion dollars to service 15 percent of these students. In terms of current
school costs in the United States, this is not an unrealistic allocation. Certainly
the expenditure of fifty million dollars a year for ten years is a relatively modest
expenditure, considering the enormous concentration on basic reading and mathematics
skills in the elementary school and the fact that about a billion-and-a-half dollars
is being allocated each year primarily for such concentration as part of Title I of
the Elementary-Secondary Act of 1965.

I believe that similar forecasts can be made for the secondary schools and
colleges. However, in the case of the COlleges, the use may be somewhat" different.
For example, the student may operate in more of a tutorial mode as in the case of
the Russian and logic cOurses at Stanford described earlier. I have recently been



involved in the implementation of a tutorial course in basic English at the college
level. This course is designed for students who are not able to pass a standard
placement examination upon entrance into college and who need remedial work in
grammar and composition. At Stanford we have also been involved in similar work in
remedial mathematics. The work described at Tennessee State University is an example.

4. Social and cultural impact of CAI

In the Hellenistic world of, say, 100 B.C., a scholar who wanted to read and
study literature or science ina domain of his interest was able to do so only in
a small number of places. He could go, for example, to Alexandria and work in the
great library and museum. He could also find papyri in other great cities such as
Athens and Syracuse. Unless he were a man of great wealth, he would have few of
these papyrus manuscripts in his own house. With the development of printing 1500
years later, it became possible (starting in the sixteenth century) for a man of
ordinary affluence to acquire a substantial library for his personal use. In the
twentieth century, even a person of modest means has access to large libraries with
extensive holdings in most domains of science and literature. The bulk of the
population in Europe and the United States is within relatively east traveling
distance to a library of some serious proportions. The cultural impact of 'this
slow, but increasing accessibility of learning has without question been enormous
and one of the most important features of modern culture.

It is reasonable to ask ourselves if the same will be true of the slow, but
inevitable spread of computer facilities. What can we anticipate? I do not want
to attempt to forecast all the dimensions of development, but just to concentrate
on that concerned with instruction. I believe the most important social change
that will begin in the seventies, but not have a major impact until after that
decade, will be the placement of computer terminals in homes and the availability
of a wide range of courses for the continuing education of adults. We are already
formulating plans at the Institute for a large-scale experiment on the use of
computers installed in homes for instructional purposes during the seventies.
Initially, we have been thinking of two sorts of students. One sort is citizens who
need additional education in basic skills and vocational training in order to com
plete their education. At the present time only about 70 percent of the'population
completes their secondary school education. In hospitals, in factories, in businesses
and in government there is substantial employment of individuals who are blocked
from further advancement because of their lack of education and who now perceive the
advantages of completing secondary school and possibly taking additional work. We
would like to have an organized set of courses that would allow students who are now
in their mature years and who are fully employed to complete secondary school
requirements.

The second sort of students include professional people who already have a
relatively high degree of formal education, but who wish to develop additional skills,
such as mastery of an additional language or acquisition of technical skills like
those of computer programming or statistics.

35



It is not possible to predict how successful such Courses would be or how well
they would be received by the individuals initially in the experiment, but they do
represent a development that seems almost inevitable. It will be an important
aspect of CAl in the seventies to identify those skills and subject matters that
adults',vill want to learn or acquire in the privacy of their own homes.

Bringing computer terminals into the home is in· one sense the ultimate act of
decentralization in education. It Can apply not only to adults, but also to children.
A social problem of the future is the extent and nature of such decentralization.
The answers will depend on social and cultural, rather than technical considerations.

A bibliography of articles and technical reports on research in the Institute
relevant to CAl is included.
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