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Abstract

Understanding colloid transport in porous media under transient-flow condi-

tions is crucial in understanding contaminant transport in soil or the vadose

zone where flow conditions vary constantly. In this article, we provide a review

of experimental studies, numerical approaches, and new technologies available

to determine the transport of colloids in transient flow. Experiments indicate

that soil structure and preferential flow are primary factors. In undisturbed

soils with preferential flow pathways, macropores serve as main conduits for

colloid transport. In homogeneously packed soil, the soil matrix often serves as

filter. At the macroscale, transient flow facilitates colloid transport by frequently

disturbing the force balance that retains colloids in the soil as indicated by the

offset between colloid breakthrough peaks and discharge peaks. At the pore-

scale and under saturated condition, straining, and attachment at solid–water
interfaces are the main mechanisms for colloid retention. Variably saturated

conditions add more complexity, such as immobile water zones, film straining,

attachment to air–water interfaces, and air–water–solid contact lines. Filter rip-

ening, size exclusion, ionic strength, and hydrophobicity are identified as the

most influential factors. Our review indicates that microscale and continuum-

scale models for colloid transport under transient-flow conditions are rare, com-

pared to the numerous steady-state models. The few transient flow models that

do exist are highly parameterized and suffer from a lack of a priori information

of required pore-scale parameters. However, new techniques are becoming

available to measure colloid transport in real-time and in a nondestructive way

that might help to better understand transient flow colloid transport.
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1 | INTRODUCTION

Particles with an effective diameter of 1 nm to 10 μm are considered colloids (Chrysikopoulos & Sim, 1996; Gao, Cao,
Dong, Luo, & Ma, 2011; Sirivithayapakorn & Keller, 2003a; Smith et al., 2007; Vasiliadou & Chrysikopoulos, 2011;
Wan & Wilson, 1994b; Wang, Schneider, Parlange, Dahlke, & Walter, 2018). In the subsurface environment colloids
comprise many naturally occurring substances including clays, metal oxides, mineral precipitates, and organic com-
pounds as well as biological organisms such as pathogenic bacteria (Wang et al., 2017, 2018; Wang, Schneider,
et al., 2018), viruses (Torkzaban, Hassanizadeh, Schijven, Bruijn, & Husman, 2006; Torkzaban, Hassanizadeh,
Schijven, & van den Berg, 2006; Zhang, Hassanizadeh, Raoof, van Genuchten, & Roels, 2012), and protozoa (Bradford,
Wang, Kim, Torkzaban, & Šimůnek, 2014; Sen, 2011). Many known environmental pollutants can attach to and move
with colloids, a process referred to as colloid-facilitated transport, which has been identified as one of the most impor-
tant mechanisms responsible for the mobilization of reactive heavy metals in soils (Barton & Karathanasis, 2003; Gao
et al., 2011; Grolimund & Borkovec, 2005; Kretzschmar & Schafer, 2005). Other contaminants transported by colloid-
facilitated transport include radionuclides from mines (Artinger et al., 2002; Malkovsky et al., 2015; Severino,
Cvetkovic, & Coppola, 2007), heavy metals (Chekli et al., 2016; Ouyang, Shinde, Mansell, & Harris, 1996), organic com-
pounds such as pesticides and herbicides from agricultural land (Barton & Karathanasis, 2003), or excess nutrients such
as phosphorous from farmland (de Jonge, Moldrup, Rubæk, Schelde, & Djurhuus, 2004). Biocolloids (i.e., colloidal-sized
microbes and pathogens) and many of the pollutants transported with colloids listed above are known to pose a threat
to public and environmental health (e.g., eutrophication from excess nutrients, poisoning by heavy metals, disease out-
breaks from waterborne pathogens; Haygarth et al., 2006; Heathwaite, Haygarth, Matthews, Preedy, & Butler, 2005;
Kouznetsov et al., 2007; Ren & Packman, 2005). Therefore, understanding colloid transport in surface and subsurface
environments is crucial to protect public health and aquatic ecosystems from potential contaminants of concern
(Masliyah & Bhattacharjee, 2006).

To date, several decades of research have been devoted to improve understanding of the fate and transport of col-
loids in porous media (Anderson, 1989; Bradford & Torkzaban, 2008; de Jonge et al., 2004; Elimelech, Nagai, Ko, &
Ryan, 2000; Masliyah & Bhattacharjee, 2006; McCarthy & McKay, 2004; Wan & Wilson, 1994a). It has been found that
colloid transport and retention in porous media are generally governed by advection, dispersion, and inactivation, as
well as by colloid interactions with various interfaces (Keswick & Gerba, 1980; Schijven & Hassanizadeh, 2000). Based
on years of research, it is widely accepted that due to their small size, colloidal suspensions moving through porous
media are excluded from pores through which they physically cannot fit (i.e., straining; Bradford & Bettahar, 2005),
they have limited diffusivity (James, Wang, & Chrysikopoulos, 2018; Soto-Gómez, Perez-Rodriguez, Vazquez Juiz,
Lopez-Periago, & Paradelo Perez, 2019; Yu et al., 2019), and are generally electrostatically repelled from like-charged
porous media surfaces (Johnson, Rasmuson, Pazmino, & Hilpert, 2018; Rasmuson, VanNess, Ron, & Johnson, 2019;
VanNess, Rasmuson, Ron, & Johnson, 2019). Because of these features, their transport is both enhanced and impeded
in the subsurface, compared to non-sorbing solutes (Bradford, Šimůnek, Bettahar, van Genuchten, & Yates, 2003;
McCarthy & Zachara, 1989; McDowell-Boyer, Hunt, & Sitar, 1986). Research has also shown that depending on the
flow regime (e.g., steady-state vs. transient) and water content of the porous media, the dominant processes controlling
colloid transport, attachment, retention, and remobilization can vary substantially influencing the arrival time, peak
concentration, and travel distance of colloids transported in porous media (Carstens, Bachmann, & Neuweiler, 2017;
Cheng & Saiers, 2010; Flury & Aramrak, 2017; Keller & Auset, 2007; Knappenberger, Flury, Mattson, & Harsh, 2014;
Sen, 2011). It is further understood that solution chemistry including pH (Chotpantarat & Kiatvarangkul, 2018; Ma
et al., 2018; Rastghalam, Yan, Shang, & Cheng, 2019), ionic strength (Jahan, Alias, Bin Abu Bakar, & Bin Yusoff, 2019;
Magal, Weisbrod, Yechieli, Walker, & Yakirevich, 2011; Rod et al., 2018; Zhuang et al., 2010), and organic matter
(Ma et al., 2018; Ma, Guo, Weng, et al., 2018; Yang et al., 2019) as well as the texture and soil grain surface roughness
(Kretzschmar & Sticher, 1997; Rasmuson et al., 2019; Redman, Grant, Olson, & Estes, 2001) enhance or impede these
processes.

In principle, the Derjaguin–Landau–Verwey–Overbeek (DVLO) theory is widely accepted in describing colloid
attachment and detachment processes and general interactions between colloids and soil grains in porous media
(Hahn, Abadzic, & O'Melia, 2004; Muller, 1994; Redman, Walker, & Elimelech, 2004; Tufenkji & Elimelech, 2005). Col-
loids may be attached or deposited to grain surfaces when the net attractive forces (sum of the interactions of electrical
double layers and van der Waals–London forces) fall into either the primary or secondary energy minimum (Gao
et al., 2011). However, solution chemistry, grain size, pore flow velocity, and colloid concentration all influence the
shape of the DLVO interaction energy curve, the magnitude of the energy barrier, and the depth of the primary and
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secondary minimum (Carstens et al., 2017; Liu et al., 2018; Rasmuson et al., 2019; Rastghalam et al., 2019; Xu
et al., 2016; Yang et al., 2019) and with that the deposition efficiency of colloids from bulk solution. These parameters
have also been found to control colloid detachment, the release of deposited colloids from the soil grain, which is
dependent on the balance of repulsive forces between colloid and grain surfaces (Chequer, Bedrikovetsky, Carageorgos,
Badalyan, & Gitis, 2019; Ma et al., 2016; Ma, Guo, Lei, et al., 2018; Mohanty, Saiers, & Ryan, 2016; Sepehrnia, Fishkis,
Huwe, & Bachmann, 2018; VanNess et al., 2019). In ideal porous media and saturated conditions, colloid retention is
mainly controlled by the net rate of colloid deposition and release. This mechanism, also known as the classic “clean-
bed” filtration model (see Yao, Habibian, & Omelia, 1971), describes the removal of suspended colloids by first-order
kinetics and assumes an exponential decrease in colloid retention with transport distance in porous media (Logan, Jew-
ett, Arnold, Bouwer, & O'Melia, 1995; Tufenkji & Elimelech, 2004b). Despite its widespread use in modeling and experi-
mental studies (Albinger, Biesemeyer, Arnold, & Logan, 1994; Baygents et al., 1998; Bolster, Mills, Hornberger, &
Herman, 2000; Camesano & Logan, 1998; Martin, Logan, Johnson, Jewett, & Arnold, 1996; Redman, Estes, &
Grant, 2001), observations have shown hyperexponential (a decreasing rate of deposition coefficient with distance;
Albinger et al., 1994; Baygents et al., 1998; Bolster et al., 2000; Bradford & Bettahar, 2005; Bradford, Yates, Bettahar, &
Simunek, 2002; DeFlaun & Condee, 1997; Redman, Estes, & Grant, 2001; Simoni, Harms, Bosma, & Zehnder, 1998) or
nonmonotonic (a peak in retained colloids away from the injection source; Bradford, Yates, Bettahar, & Simunek, 2002;
Tong, Kashima, Shirai, Suda, & Matsumura, 2005) deposition profiles, which have been attributed to soil grain surface
and physical properties, surface charge heterogeneity, interfacial electrodynamics, and colloid deposition in the second-
ary DLVO energy minimum (Bradford & Torkzaban, 2008; Gao et al., 2011). Other processes controlling colloid trans-
port in porous media that are not included in the filtration theory are pore straining (i.e., deposition of colloids in small
pore spaces such as those formed at grain-to-grain contacts; Bradford, Simunek, Bettahar, van Genuchten, &
Yates, 2006; Bradford, Simunek, & Walker, 2006), thin-water films (i.e., film straining; Wan & Tokunaga, 1997), air–
water–solid interfaces (i.e., capillary retention; Gao et al., 2008), and immobile waters (i.e., immobile-water trapping;
Gao, Saiers, & Ryan, 2006).

Motivated by the need to advance understanding of contaminant transport through groundwater systems
(Grolimund & Borkovec, 2005; Roy & Dzombak, 1997; Saiers & Hornberger, 1999; Turner, Ryan, & Saiers, 2006;
Zhuang, Flury, & Jin, 2003), much of the existing research on colloid transport has focused on saturated porous media
(Vasiliadou & Chrysikopoulos, 2011; Wang et al., 2012; Yang et al., 2019; Zhuang et al., 2003). Fewer studies have cen-
tered on colloid transport in unsaturated porous media, despite the recognition that substantial amounts of colloids
are either generated in or passed through the vadose zone (Cheng & Saiers, 2010; Ranville, Chittleborough, &
Beckett, 2005; Seaman, Bertsch, & Strom, 1997). The vadose zone plays a crucial role in mitigating the risk of contami-
nation of drinking-water aquifers and surface water bodies (Cey, Rudolph, & Passmore, 2009; Flury, Fluhler, Jury, &
Leuenberger, 1994). Colloid transport in the unsaturated zone (i.e., vadose zone) is more complicated than under satu-
rated conditions due to the presence of air, capillary forces, and transients in flow and chemistry, which in part due to
heterogeneity in soil structure often restrict the water flow and colloid transport to smaller pore space regions in the
vadose zone (Bradford & Torkzaban, 2008; Cheng & Saiers, 2010; Denovio, Saiers, & Ryan, 2004). The physical and
geochemical heterogeneity present in the unsaturated zone can cause greater velocity variation and more dispersion,
since only a fraction of the soil moisture is involved in the flow and colloid transport (Bradford & Torkzaban, 2008;
Germann, Alaoui, & Riesen, 2002; Keller & Sirivithayapakorn, 2004; Krupp & Elrick, 1968). Research has further
shown that the presence of air creates additional potential retention sites at the solid–water interfaces (SWI; Chu, Jin,
Flury, & Yates, 2001; Lance & Gerba, 1984; Torkzaban, Hassanizadeh, Schijven, Bruijn, & Husman, 2006) and the air–
water interfaces (AWI; Cherrey, Flury, & Harsh, 2003; Mitropoulou, Syngouna, & Chrysikopoulos, 2013; Schafer,
Harms, & Zehnder, 1998; Torkzaban, Hassanizadeh, Schijven, & van den Berg, 2006; Wan & Wilson, 1994a, 1994b).
Colloids can also be retained in water films enveloping the soil grains (i.e., film straining; Saiers &
Lenhart, 2003a, 2003b; Wan & Tokunaga, 1997) and at solid–air–water triple points (Chen & Flury, 2005; Crist
et al., 2004; Crist, Zevi, McCarthy, Throop, & Steenhuis, 2005; Steenhuis et al., 2006; Zevi, Dathe, McCarthy,
Richards, & Steenhuis, 2005).

An important distinction between studies of colloid transport in unsaturated porous media versus colloid transport
in transient flow conditions is the state of the hydrologic regime. Most unsaturated porous media studies have been
conducted under unsaturated but steady water content conditions (i.e., constant trickling flow; Keller &
Sirivithayapakorn, 2004), while transient flow studies specifically investigate colloid transport during nonsteady flow
transients (i.e., variable flow, wetting-drying cycles; Cheng & Saiers, 2010). Transient pore water flow most closely
resembles the flow occurring in the unsaturated zone in response to rainfall, snowmelt or irrigation events, when the
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water potential and the energy required to move water in the soil changes over time between the wilting point, field
capacity, and saturation (O'Geen, McDaniel, & Boll, 2002; O'Geen, McDaniel, Boll, & Brooks, 2003). Transient flow has
been shown to mobilize more colloids, because the variation in soil water content (e.g., during infiltration/imbibition
or drainage) can lead to sudden changes in the local soil water potential, pore water saturation, AWI surface area, AWI
locations, and thickness of water films (Zhuang, McCarthy, Tyner, Perfect, & Flury, 2007). The dynamic nature of non-
steady state flow can cause shifts in chemical factors (e.g., ionic strength, pH, surface charge, and chemical composition
of the pore water) and physical factors (e.g., pore size distribution, shrinking, and swelling of the soil) in the unsatu-
rated zone, which might fundamentally influence the importance and magnitude of some of the processes assumed to
be primary controls on colloid transport in steady-state flow systems (Saiers, Hornberger, Gower, & Herman, 2003;
Saiers & Lenhart, 2003a, 2003b; Torkzaban, Hassanizadeh, Schijven, Bruijn, & Husman, 2006; Torkzaban,
Hassanizadeh, Schijven, & van den Berg, 2006; Wang et al., 2019). Despite the fact that colloid transport in transient
flow has received the least attention in colloid research to date (Baumann, 2007; Lazouskaya & Jin, 2008; Lazouskaya,
Jin, & Or, 2006; Sang et al., 2013; Wan & Wilson, 1994a), transient flow experiments are often considered suitable for
making inferences on the mobilization of colloids, in addition to the transport and retention mechanisms (Cheng &
Saiers, 2010; Chequer et al., 2019; Ma et al., 2016; Mohanty et al., 2016; Sepehrnia et al., 2018). This is particularly
important for nonpoint source pollution mitigation since transient flow more closely mimics the phenomenon of colloid
transport and colloid-facilitated transport of contaminants as it occurs in real vadose zone environments (Gao
et al., 2006; McCarthy & McKay, 2004; Saiers & Lenhart, 2003a; Zhuang et al., 2007).

The study of colloid transport under transient flow conditions is also of interest because the soil structure and soil
heterogeneity play a much greater role in these conditions. Macropores and naturally occurring soil layers have been
shown to have profound effects on colloid transport (Bond, 1986). Depending on soil structure, pore connectivity, and
the presence of macropores, preferential flow (e.g., short-circuiting flow, finger flow, funnel flow; Kung, 1990a;
Nimmo, 2012; Seyfried & Rao, 1987) can occur which can increase the vertical transport distance of colloids and
attached contaminants (Kung, 1990b). Although colloid and contaminant mobility has been shown to decline with
decreasing volumetric moisture content because of a decrease in colloid mobility and an increase in contaminant
desorption from mobile colloids (Chen, Flury, Harsh, & Lichtner, 2005; Harter, Wagner, & Atwill, 2000; Lenhart &
Saiers, 2002), during re-saturation (i.e., imbibition) when the water film thickness around the solid phase is increasing,
retained colloids can be remobilized into the mobile phase and recovered in the outflow, showing that the retention of
colloids is reversible and mainly controlled by the degree of water saturation (Chen & Flury, 2005; Crist et al., 2005).
Colloid remobilization is increasing with water saturation (El-Farhan, Denovio, Herman, & Hornberger, 2000;
Kjaergaard, Moldrup, de Jonge, & Jacobsen, 2004; Kjaergaard, Poulsen, Moldrup, & de Jonge, 2004; Saiers &
Lenhart, 2003a). However, during flow transients even higher colloid concentrations have been observed (El-Farhan
et al., 2000; Flury, Mathison, & Harsh, 2002; Litaor et al., 1998; Ryan, Illangasekare, Litaor, & Shannon, 1998; Saiers &
Lenhart, 2003a; Shang, Flury, Chen, & Zhuang, 2008; Totsche, Jann, & Kogel-Knabner, 2007; Zhuang et al., 2007),
highlighting the importance of and need to study the short-lived but often abrupt changes in soil moisture content, flow
velocity, and pore water chemistry.

The above literature indicates that many colloid retentions and remobilization processes in flow transients are still
poorly understood and quantified. This is in part due to a lack of laboratory studies able to observe these processes at
the spatial–temporal time scales they occur at. However, the incomplete understanding of colloid transport processes in
transient flow systems has major implications for contaminant transport mitigation as it presents a challenge to numer-
ical modeling (van Genuchten & Šimůnek, 2004). Most colloid transport models simulate systems in steady-state condi-
tions and only a few attempt to simulate transient flow conditions. This is because, in saturated steady-state systems,
water flow is a function of location only for which analytical solutions are available (Denovio et al., 2004; Flury &
Qiu, 2008). In contrast, under transient flow conditions, water flow is a function of both location and time. In this case,
not many analytical solutions are available, hence most models turn to numerical solutions for these systems (van Gen-
uchten & Šimůnek, 2004).

In this article, we review our current understanding of the main transport and retention mechanisms associated
with colloid transport in transient flow. Transient flow here is defined as flow undergoing temporal change due to tran-
sients in soil moisture content and flow velocity. We begin our review by summarizing recent literature findings from
laboratory experiments at the column scale (i.e., macroscale) and investigate the role that soil structure
(e.g., homogeneous vs. intact/undisturbed/heterogeneous soils) and saturation of different subregions within the soil
play in colloid recovery and breakthrough. We then review the main mechanisms and factors influencing colloid trans-
port and retention at the microscale and explore the importance of these mechanisms in transient flow systems. We
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exclude the role of biota, microbes, and particulate organic matter on colloid fate (growth, inactivation, and degrada-
tion) and transport in this review. Finally, we continue with a survey of current mathematical and numerical models
that describe colloid transport in transient flow and conclude with a summary of research gaps and recommendations
for future research.

2 | MECHANISTIC UNDERSTANDING GAINED FROM EXPERIMENTS

Most of the mechanisms controlling colloid transport have been discovered through laboratory and field experiments,
however, the understanding gained depends on the scale at which the transport phenomenon has been observed. In
this first part of our review, we summarize important experimental discoveries made at the macroscale (e.g., column
and lysimeter experiments) and microscale (e.g., pore and interface scale). We will first summarize discoveries from
macroscale experiments, which mostly analyze breakthrough patterns from systems subject to different transient flow
conditions. We will then focus on microscale processes by starting with a review of colloid transport mechanisms under
saturated conditions before reviewing the complexity added through the variably saturated conditions.

2.1 | Macroscale phenomena

Review of literature studies on colloid transport through soil under transient flow conditions reveals that most column
scale experiments can be grouped into two categories: Colloid transport (a) through homogeneously packed soil
(Table 1) and (b) through intact/undisturbed or artificially packed heterogeneous soil columns (Table 2). The latter soil
column experiments are often characterized by a dual permeability system consisting of fast preferential flow pathways
and the slower flow and transport through the soil matrix (Kinsall et al., 2000). Homogeneously packed soil is often
seen as an equivalent to the soil matrix in dual permeability systems. Among known preferential pathway types
(e.g., short-circuiting flow, funnel flow, finger flow; Gerke, 2010), the preferential pathways covered in this review
mainly include the flow through continuous macropores and the flow at the interface of two soil layers comprised of
two types of porous media (Wang, Bradford, & Simunek, 2014).

Most macroscale (i.e., column scale) experiments investigating colloid transport processes in transient flow infer
governing processes and drivers from the breakthrough curve, specifically, the magnitude and timing of the colloids
peak in the discharge compared to the discharge peak itself. Early arrival or peaks in colloid concentration in the efflu-
ent are typically attributed to the occurrence of preferential flow (Kinsall et al., 2000; Majdalani, Michel, Di Pietro,
Angulo-Jaramillo, & Rousseau, 2007; Wang et al., 2014) (Figure 1a), or the occurrence of sharp changes in water flow
caused by, for example, (a) the onset of rainfall or irrigation (Liu, Flury, Zhang, et al., 2013; Mohanty, Bulicek,
et al., 2015; Zhuang et al., 2007; Figure 1b) or (b) a sharp increase or decrease in discharge or soil water content due to
the movement of the wetting or drying front (Cheng & Saiers, 2010; El-Farhan et al., 2000; Liu, Flury, Harsh, Mat-
hison, & Vogs, 2013; Shang et al., 2008; van den Bogaert et al., 2016; Wang et al., 2019; Zhuang et al., 2007; Figure 1c).
Colloids that are transported through macropores have been observed to result in the highest recovery rates, while col-
loids transported through the soil matrix have very low recovery rates (Mohanty, Bulicek, et al., 2015; van den Bogaert
et al., 2016). Auset et al. (2005), Kinsall et al. (2000), and Rousseau et al. (2004) observed colloid concentration peaks
that were concurrent with discharge peaks or soil water content peaks (Figure 1d). They concluded that these colloids
likely moved through the soil matrix in a similar way as conservative solutes. Finally, the occurrence of colloid concen-
tration peaks during drainage (Figure 1b) has been interpreted to be indicative of colloids moving with the drying front
(Kinsall et al., 2000; Powelson & Mills, 2001; Zhuang et al., 2007).

2.2 | Microscale mechanisms

The column scale phenomena discussed above are macroscale demonstrations of pore scale or interface scale colloid trans-
port mechanisms. The microscale mechanisms influencing colloid transport include (a) the basic colloid transport mecha-
nisms under fully saturated condition and (b) mechanisms added due to variably saturated condition. Note that unless
explicitly stated otherwise, all mechanisms discussed in Section 2.2 were demonstrated through direct experimental obser-
vations in the original research. We list a few examples where pore-scale mechanisms were inferred by parameter fitting.
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TABLE 1 Colloid transport experiments through homogeneously packed soil under transient flow conditions

Experiment Colloid type
Colloid concentration
peak timing Key processes, forces or factors

Powelson and Mills (2001) Escherichia coli Out of phase with soil
water content peaks

Moving air–water–solid (AWS) contact
lines

Auset, Keller, Brissaud, and
Lazarova (2005)

Escherichia coli Concurrent with discharge
peaks

Attachment to and release from
air–water interfaces (AWIs) and film
straining; attachment to solid–water
interfaces (SWIs) was irreversible

Keller and
Sirivithayapakorn (2004)

Carboxylate-modified
polystyrene latex spheres (3.0
μm and 50 nm); bacteriophage
MS2 (~25 nm)

After discharge peak Retention at AWIs; film straining; cluster
formation

Crist et al. (2004) Hydrophilic negatively charged
microspheres in two different
sizes (0.3 and 0.8 μm)

No breakthrough curve Trapping at or near AWS interface

Gao et al. (2006) Carboxylate-modified
polystyrene latex microspheres
with a mean diameter of
2.0 μm

No breakthrough curve Persisted attachment to air bubble
surfaces and SWIs; trapped by and
released from AWIs of the pendular
rings and thin-water films; retained in
and released from immobile water
zones

Zhuang et al. (2010) Fluorescent latex microsphere
(980 nm in diameter)

No breakthrough curve Coupled effects of solution surface
tension and ionic strength

Zhuang et al. (2007) In situ colloids Primary peak soon after
the beginning of
imbibition; drainage
induced secondary
peaks

Moving AWIs and extension/shrinkage
of water films; capillary, electrostatic,
van der Waals and hydrophobic forces;
ionic strength

Shang et al. (2008) In situ colloids Concurrent with sharp
increases of discharge
(i.e., the arrival of
infiltration fronts)

Capillary force dominated

Cheng and Saiers (2009) In situ colloids Concurrent with passage
of wetting or drying
fronts

Moving wetting and drying fronts; ionic
strength; flow rate

Cheng and Saiers (2010) In situ colloids Concurrent with sharp
changes of discharge
and moisture content,
both sharp increases
and sharp decreases

During drainage, AWIs scouring; during
imbibition, expansion of thin-water
films, reconnection of stagnant water
with water flow, increased shear forces
and redeposition

Zhuang, Tyner, and
Perfect (2009)

Montmorillonite clay Primary peak soon after
the beginning of
imbibition; drainage
induced secondary
peaks

Coupled effects of water content, flow
velocity and ionic strength

Liu et al. (2013) Eu-hydroxy-carbonate colloids Correlated with
precipitation/irrigation

Accumulation of dispersive colloids by
physical straining during drying
period; moving AWIs created by
transfer between wetting and drying

Note: In situ colloids are soil mineral particles that are being mobilized during transient flow. AWS and AWI are abbre-
viations for air–water–solid and air–water interface.
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2.2.1 | Colloid transport mechanisms under fully saturated condition

In saturated soil columns, straining and attachment are the two main mechanisms that hinder colloid transport.
Straining is the retention at the wedge-shaped, grain to grain contacts (Zhang et al., 2010). Colloids collide with soil
grains by three mechanisms: sedimentation, interception, and Brownian motion (McDowell-Boyer et al., 1986;
Sakthivadivel, 1969). Whether a collision leads to an attachment is determined by the colloid-surface interaction forces,
mainly electrostatic and London–van der Waals forces. The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory is
the fundamental theory describing the forces involved in the attachment mechanisms (McDowell-Boyer et al., 1986).
However, other forces can also act on colloids, such as the hydrophobic force, Born repulsion force, among others. The

TABLE 2 Colloid transport experiments through intact/undisturbed or artificially packed heterogeneous soil under transient flow

conditions

Experiment Colloid type
Colloid concentration peak
timing Key processes or forces

Kinsall, Wilson, and
Palumbo (2000)

GFP bacteria (Pseudomonas
putida modified by the
addition of the green
fluorescent protein [GFP]
gene)

The first short lasting peak
was concurrent with
discharge peak; the second,
long lasting peak was
during drainage

Dual pore system: Preferential flow pathways
and pores in soil matrix

El-Farhan et al. (2000) In situ colloids Concurrent with sharp
changes of discharge, both
sharp increases and sharp
decreases

Moving AWIs

Rousseau, Di Pietro,
Angulo-Jaramillo,
Tessier, and
Cabibel (2004)

In situ colloids Concentration correlated with
discharge

Hydrodynamic shear; ionic strength, size
exclusion

Liu, Flury, Harsh,
et al. (2013)

In situ colloids Concurrent with sudden
changes of discharge

Physical disturbance

Mohanty, Saiers, and
Ryan (2015)

In situ colloids Peaked at the start of rainfall
events

Preferential flow and matrix flow; colloid
generated mainly from fractures; colloid
released by moving wetting and drying fronts

Zhang et al. (2016) In situ colloids Concurrent with the flow
generation (including
surface runoff, interflow at
the interface of soil and
mudrock, and fracture flow
at the interface of mudrock
and sandstone)

Four types of preferential pathways: surface
runoff, macropore flow, interflow, and
fracture flow; size selection effect: <10 μm
colloids dominated in surface runoff, and
>10 μm colloids dominated in subsurface
flow; moving AWI; hydrodynamic shear force

Mohanty, Bulicek,
et al. (2015)

Fluorescent polystyrene
microspheres of two sizes
(0.5 and 1.8 μm)

Peaked at the start of rainfall
events

Preferential flow induced by macropores;
during wetting periods, shear, water film
expanding, and AWI scouring; during drying
periods, AWI scouring; less redeposition in
macropores; size exclusion

van den Bogaert, Cornu,
and Michel (2016)

Rain-applied fluorescent
colloids

Concurrent with a sharp
increase of discharge

Preferential flow; during drying periods, water
drained faster in macropores, and moved
towards narrower pores; during wetting
periods, water saturated the soil matrix, and
infiltrated into macropores

Wang et al. (2019) DNA-labeled microsphere
(~850 nm)

Peaked at the start of rainfall
events

Straining; physical–chemical filtration;
preferential flow along capillary barrier; size
exclusion; cluster formation

Note: AWS and AWI are abbreviations for air–water–solid and air–water interface.
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inclusion of these forces results in various kinds of extended DLVO theories (Bradford & Torkzaban, 2008; Lazouskaya
et al., 2013). Auset and Keller (2006), for example, demonstrated through direct pore-scale observation that when the
pore throat to colloid diameter ratio (T/C) is less than 1.8, straining dominates; if T/C is larger than 2.5, attachment
dominates; while if T/C is between 1.8 and 2.5, both mechanisms are important. And, both can lead to filter ripening.

Straining
In contrast to mechanical filtering and attachment, straining of colloids occurs in soil pores that are defined by the
intersection of at least two solid–water interfaces (SWIs) such as grain-to-grain contacts or surface roughness (Auset &
Keller, 2006; Bradford & Bettahar, 2006; Bradford, Simunek, Bettahar, et al., 2006). Straining often only occurs in a frac-
tion of the soil pore space and is largely dependent on the structure of the porous media skeleton, the relative size of
the colloid to the pore throats, and the surface roughness of the media grains (Auset & Keller, 2006). Auset and Kel-
ler (2006) demonstrated through optical microscopy that straining happens mainly in the first one or two pore throats
as the colloids enter the porous media. They also found that straining is not influenced by flow rate. Sang et al. (2013)
more recently demonstrated that straining occurs irrespective of changes in ionic strength or saturation conditions.
Tufenkji and Elimelech (2004a, 2004b) also found that straining increases with increasing surface roughness. As such,
straining is of significant importance for colloid retention in natural soil and vadose zone environments, for contami-
nated waste sites, and during riverbank filtration. Approximating soil pores as a bundle of tortuous cylindrical capillary

FIGURE 1 Different colloid discharge concentration peak timings compared to water transients. (a) Occurrence of colloid concentration

peaks as a result of preferential flow (note the occurrence of the colloid concentration peak before the discharge peak; Reprinted with

permission from Majdalani et al. (2007). Copyright 2007 John Wiley and Sons); (b) colloid concentration peaks soon after the onset of

irrigation and during drainage (i.e., drainage-induced secondary peaks; Reprinted with permission from Zhuang et al., 2007); (c) occurrence of

colloid concentration peaks concurrent with sharp changes in discharge (the line indicates flow rate and the dots indicate concentrations;

Reprinted with permission from El-Farhan et al. (2000). Copyright 2000 American Chemical Society); (d) colloid concentration peaks

concurrent with discharge peaks (Reprinted with permission from Auset et al. (2005). Copyright 2005 John Wiley and Sons)
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tubes, Bradford, Simunek, Bettahar, et al. (2006) estimated the straining of common viruses, bacteria, and protozoa will
occur in 10–92% of the pore space depending on soil texture. Straining can be released by reversing the flow direction
(Foppen, Herwerden, & Schijven, 2007) or by breaking down the porous media skeleton (Sang et al., 2013). However, a
broader definition of straining may lead to other influencing factors as discussed by Bradford and Torkzaban (2008) in
their “pore scale” section.

Attachment at the solid–water interface
One of the main mechanisms of colloid deposition is the collision with and subsequent retention of colloids at the
solid–water interface. A solid–water interface (SWI) is the part of a soil particle surface that is in contact with water
(Auset et al., 2005; Gao et al., 2006). In saturated porous media or saturated regions in partly saturated porous media,
colloids often solely attach to SWI. According to DLVO theory or the extended DLVO theories, a colloid particle can be
held at the secondary minimum or primary minimum depending on its distance to the SWI. Retention at the secondary
minimum is often an intermediate state, as the colloid can be re-entrained into the bulk fluid or it can overcome the
energy barrier and become attached to the SWI at the primary minimum (Johnson & Hilpert, 2013). Retention at the
secondary minimum can be released by sharply reducing the ionic strength, for example, through flushing with
deionized water (Sang et al., 2013). However, colloid attachment to SWIs in the primary minimum is irreversible under
saturated conditions (Auset et al., 2005; Gao et al., 2006; Figure 2a). Once colloids attached to a SWI, the variation in
local pore flow velocity cannot mobilize them under the experimental conditions as long as the local pore remains
saturated.

Filter ripening
Colloids attached to SWIs can serve as extended attachment sites for bypassing colloids in solution (Keller &
Auset, 2007). This phenomenon is called filter ripening, clogging, or blocking. Several colloids attached at the same
location may even form a cluster (Keller & Auset, 2007; Figure 2a). Filter ripening hinders colloid transport and
removes colloidal and colloidal borne contaminants. As a result of filter ripening, the permeability of the porous media
can be decreased (McDowell-Boyer et al., 1986). Filter ripening is largely dependent on the flow velocity, and zeta
potential and the size of the colloid (Salkar & Tembhurkar, 2016).

Size exclusion
Size exclusion refers to the phenomenon when colloids are unable to move into soil pores due to the ratio of pore throat
to colloid size. Particles that do not physically fit into smaller pores tend to be transported at larger flow velocities along
with more conductive flow pathways that are physically accessible. Sirivithayapakorn and Keller (2003a) directly
observed this phenomenon when the throat to colloid diameter ratio was 1.5 and colloids preferentially entered larger
pore throats where most of the flow was directed. They found, the larger the colloid particles, the stronger the size
exclusion (Bradford & Torkzaban, 2008; Mohanty, Bulicek, et al., 2015; Sirivithayapakorn & Keller, 2003a; Wang
et al., 2019). When macropores are present, smaller colloid particles are attached more strongly to macropore walls
because of the relatively large specific surface area and relatively large surface charge, while larger colloid particles are
more susceptible to hydrodynamic shear and capillary forces (Rousseau et al., 2004). Wang et al. (2014) also found that
the size exclusion effect was more pronounced under low ionic strength (≤1 mM) conditions.

2.2.2 | Colloid transport mechanisms under variably saturated condition

Under variably saturated condition, the water and air distribution within a porous medium is controlled by capillary
forces (Bradford & Torkzaban, 2008). Wetting-drying cycles together with the soil physical heterogeneity add complex-
ity to straining and attachment. Immobile water zones emerge. Besides the straining at the grain-to-grain contacts, film
straining occurs. Similarly, besides attachment at SWIs, attachment at air–water interfaces (AWIs) and air–water–solid
(AWS) contact lines occur.

Wetting–drying cycles
The dynamic changes in flow velocity, flow region as well as the configuration of AWIs are the main drivers of colloid
transport under transient flow conditions (Liu, Flury, Harsh, et al., 2013; Zhuang et al., 2007). Transient flow induces
movement of AWS contact lines and AWIs, extension/shrinkage of water films, and connection/disconnection of
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pendular rings and immobile water zones. During wetting periods, colloids are mobilized by shear (as a result of the
flow increase), expanding water films, reconnecting pendular rings and immobile water zones, and AWS contact lines/
AWI scouring. During drying periods, colloids can only be mobilized by AWS contact lines/AWI scouring (Mohanty,
Bulicek, et al., 2015).

Transient flow also induces frequent reconfiguration of electrostatic, van der Waals, hydrodynamic shear, capillary
forces, and surface tension. As such, the force equilibrium, which retains colloids in the soil by the pore-scale mecha-
nisms reviewed above, experiences frequent disturbances under transient flow conditions, and, as a result, more col-
loids can be mobilized than under steady-state conditions (Zhuang et al., 2007). Under transient flow conditions, the
hydrodynamic shear force is the dominant force during imbibition (Cheng & Saiers, 2010; Rousseau et al., 2004) and
more colloids are mobilized by a higher flow rate (Shang et al., 2008). During drainage, the capillary force is the domi-
nant force (Gao et al., 2008; Shang et al., 2008; Shang, Flury, & Deng, 2009).

Soil physical heterogeneity
During our review, the existence or absence of macropores in porous media emerged as the main soil physical heteroge-
neity factor influencing colloid transport in transient flow (based on a comparison of studies listed in Tables 1 and 2).
In contrast, soil texture (e.g., clay-rich soil vs. sandy soil) was found to be insignificant irrespective of whether
macropores existed or not. When water is flowing through macropores, colloids are mobilized by the moving water
(Kinsall et al., 2000; van den Bogaert et al., 2016); however, when the water content is too low to allow flow in
macropores, colloids move with the remaining water to smaller pores and are filtered by the soil matrix along the way
(Kinsall et al., 2000; van den Bogaert et al., 2016). By direct observation, Wang et al. (2014) discovered that it was the
length and connectivity of macropores that mainly impacted the preferential transport of colloids. And, this impact was
more pronounced under high ionic strength (≥20 mM).

Soil physical heterogeneity was found to enhance the effect of wetting-drying cycles, especially the drying duration
and drying condition (Majdalani, Michel, Pietro, & Angulo-Jaramillo, 2010; van den Bogaert et al., 2016). For colloids

FIGURE 2 The mechanisms of colloid retention at SWIs, release from an immobile/stagnant water zone, and retention at and release

from air–water interfaces (AWIs). In the filter ripening process, (a) colloids attached to SWIs can serve as extended retention sites (Reprinted

with permission from Keller & Auset (2007). Copyright 2007 Elsevier). (b) Colloids are released from an immobile water zone when the

wetting front passes and the immobile water zone reconnects to the bulk water flow (Reprinted with permission from Gao et al. (2006).

Copyright 2006 John Wiley and Sons). (c) Colloids continuously retained at an air bubble surface (Reprinted with permission from Gao et al.

(2006). Copyright 2006 John Wiley and Sons), but (d) colloids can be released from pendular rings when water invades the pore space

(Reprinted with permission from Gao et al. (2006). Copyright 2006 John Wiley and Sons)
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applied with rainfall, van den Bogaert et al. (2016) observed that when preferential flow dominates, colloid retention
increases with increased drying duration. Whereas, when matrix flow dominates, extensive colloid retention occurs,
and the effect of drying duration is negligible. Based on these results, van den Bogaert et al. (2016) speculated that at
the beginning of a drying period, water drains faster in macropores and redistributes toward the narrower pores in the
soil matrix due to capillary force (Graphical Abstract). During the next rainfall event, when the soil matrix is saturated
with the colloid suspension and the soil matrix permeability is exceeded by the rainfall intensity, the colloid suspension
infiltrates into the macropores, preferential flow occurs, and colloids are transported with the higher velocity flow in
the macropores (Graphical Abstract). When drying duration increases, the colloid suspension passes through an
increasing number of increasingly narrower pores in the soil matrix (Graphical Abstract). As a result, the colloids get in
contact with an increasing area of SWIs and are more likely to attach to the soil matrix due to the larger contact area
(Kretzschmar, Robarge, & Amoozegar, 1994).

By testing the mineral composition of the effluent colloids, Mohanty, Saiers, and Ryan (2015) proved that in situ col-
loids (i.e., colloids naturally present in soil) were generated mainly from the macropore walls in the intact soil. They
also observed that in regions with abundant macropores, increasing the drying duration helped to generate more col-
loids until a critical drying duration was reached (2.5 days), after which less colloids were generated with longer drying
duration. Whereas, at the regions without abundant macropores, the colloid generation was kept at a low level, which
is not affected by drying duration. The generated colloids, regardless of the sources, were available for mobilization dur-
ing the subsequent wetting period. Mohanty, Saiers, and Ryan (2014) also demonstrated that a freezing–thawing cycle
during a drying period could create more preferential pathways, which in turn mobilized more in situ colloids during
the subsequent wetting period. In addition, if the drying–wetting cycle was repeated several times, even more colloids
could be mobilized during later wetting periods (Mohanty et al., 2014).

The role of immobile water zones
Immobile water (or stagnant water) is the pore water that connects to the bulk pore water only through very thin water
films (Auset et al., 2005; Gao et al., 2006). Colloids retained in an immobile water zone are released when the wetting
front passes through and the immobile water zone reconnects with the bulk flow (Auset et al., 2005; Cheng &
Saiers, 2010; Gao et al., 2006; Figure 2b).

Film straining
Film straining is caused by either disconnected pendular rings or very thin water films (Wan & Tokunaga, 1997; Figure 3a).
A water film is a thin layer of water covering a soil grain surface that is retained on the grain surface by adsorption
(Tokunaga, 2011; Figure 3a). A pendular ring forms at the contact of two-grain particles by capillarity. When the local satu-
ration is below a critical threshold, a pendular ring can become disconnected from adjacent pendular rings (Wan &
Tokunaga, 1997; Figure 3a). When the local saturation is above the critical saturation, pendular rings are connected by water
films to neighboring pendular rings. The colloids entrapped in a disconnected pendular ring cannot move to other regions
(Gao et al., 2006; Wan & Tokunaga, 1997). Water films expand/thicken during imbibition and shrink/thin during drainage
(Auset et al., 2005; Cheng & Saiers, 2010; Gao et al., 2006). When the film thickness is less than the hydrodynamic diameter
of the colloid particle, the colloid particle is film strained due to surface tension (also known as capillary force; Lazouskaya
et al., 2013; Figure 3b). Surface tension has also been identified as the dominant force responsible for colloid mobilization
(Lazouskaya et al., 2013). When the water film expands, the colloid particle can be released from the soil grain surface due
to surface tension (Lazouskaya et al., 2013; Sharma, Flury, & Zhou, 2008). When the water film is thick enough to connect
the adjacent pendular rings, the colloids entrapped in the pendular rings can move again (Wan & Tokunaga, 1997). Overall,
more colloids are deposited as the water content decreases, the grain size decreases and the colloid size increases, creating
the characteristic hyperexponential colloid deposition profiles (Wan & Tokunaga, 1997).

Air–water interfaces
An air–water interface is the interface of the two immiscible fluids—air and water—in soil pores (Auset et al., 2005;
Cheng & Saiers, 2010; Gao et al., 2006; Powelson & Mills, 2001; Zhuang et al., 2007). In unsaturated flow systems, as
the water content of the porous medium decreases, the average size of water-filled pores decreases, while the air–water
interfacial area tends to increase (Bradford & Torkzaban, 2008). Changes in the water content of the porous media have
been found to increase interfacial sorption of colloids onto AWIs (Saiers & Lenhart, 2003b). Once colloids are attached
to air bubble surfaces, they remain attached (Gao et al., 2006). Transient flow cannot detach colloids from air bubble
surfaces under experimental conditions (Gao et al., 2006; Figure 1c). When water invades the pore space and the air
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bubble dissolves, the colloids attached to the air bubble can form a cluster (Sirivithayapakorn & Keller, 2003b). Colloids
attached to the AWIs of pendular rings (i.e., capillarity retained corner water ducts around the contact of two soil parti-
cles) can be released when water invades the pore space and the AWI configuration changes (Gao et al., 2006; Keller &
Auset, 2007; Wan & Tokunaga, 1997) (Figures 2d and 3a). Some research suggests that colloids preferentially attach to
AWIs relative to SWIs in transient flow systems (Wan & Wilson, 1994a).

Air–water–solid contact lines
An air–water–solid (AWS) contact line, or a triple-phase contact (TPC), is the contact line of a solid–water interface
and an air–water interface (Crist et al., 2004; Powelson & Mills, 2001). During drainage, the AWS contact lines scour
the solid surfaces and release the attached colloids into suspension. During imbibition, suspended colloids in the newly
added soil water attach to available attachment sites on solid surfaces, which were scoured by the AWS contact lines
during the previous drainage (Powelson & Mills, 2001). Some researchers demonstrated that trapping at or near the
AWS contact lines, rather than the previously suggested attachment to air–water interfaces (AWIs), is a main colloid
retention mechanism in unsaturated soil (Crist et al., 2004; Gao et al., 2008; Powelson & Mills, 2001).

Redeposition
Redeposition refers to a deposited colloid particle mobilized at a certain location, which is then subsequently deposited
at a deeper location (Cheng & Saiers, 2010). By comparing short and long soil columns, it was found that colloids mobi-
lized during imbibition were more susceptible to redeposition at a deeper location than during drainage (Cheng &
Saiers, 2010). Mohanty, Bulicek, et al. (2015) found that because of less chances to collide with a grain particle, less col-
loids redeposit in macropores.

Effect of ionic strength
High ionic strength (≥1 mM) can reduce the electrical double layer repulsion between the negatively charged colloids
and like-charged AWIs or soil grain surfaces (Mitropoulou et al., 2013; Zhuang et al., 2007). Several studies have found
that higher ionic strength leads to higher colloid attachment to AWIs and SWIs and lower colloid mobility
(Mitropoulou et al., 2013; Shein & Devin, 2007; Zhuang et al., 2007, 2009). However, Magal et al. (2011) observed that

FIGURE 3 Illustration of film straining

mechanisms. Illustration of pendular rings and water

films, and colloids retained in disconnected pendular

rings and thin water films (a) (Reprinted with

permission from Wan & Tokunaga (1997). Copyright

1997 American Chemical Society) and illustration of the

thin water film straining mechanism (b) (Reprinted

with permission from Wan & Tokunaga (1997).

Copyright 1997 American Chemical Society)
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after reaching a critical value (15.8 mM), a further increase in ionic strength would not lead to more retention. At the
highest natural ionic strength, that is, Dead Sea brines (7.94 M), about 30% of the colloids were still mobile despite
favorable conditions for colloid–surface interaction. Under transient flow conditions, a high enough water content
(≥0.38 water saturation) and flow velocity (≥6.6% saturated hydraulic conductivity) can compensate for high ionic
strength (up to 100 mM) and mobilize colloids (Zhuang et al., 2009). Moreover, via direct observation, Bradford and
Kim (2010) demonstrated that not only the ionic strength but also the ion species and the order and magnitude of the
ionic strength sequence matters. For instance, by first using multivalent ions to exchange with the monovalent ions at
soil grain and colloid surfaces, and then decreasing the solution ionic strength to 0, they could dramatically enhance
colloid mobilization. This was because first the zeta potential of both soil grains and colloids was increased after which
the thickness of the electrical double layers was expanded (Bradford & Kim, 2010). In addition, changing both the ionic
strength and input colloid concentration can influence colloid retention (Zhang et al., 2010). Zhang et al. (2010), for
example, observed that greater colloid input concentrations resulted in increased colloid retention at ionic strength
above 0.1 mM, which they attributed to filter ripening at SWIs and AWS contact lines. In contrast, when using
deionized water (i.e., 0 mM ionic strength), colloid retention was not affected by input colloid concentration.

Effect of hydrophobicity
Colloid surface hydrophobicity can be characterized by measuring the water contact angle at the junction of a thin layer
of dry colloid particles, air, and a water drop (Wan & Wilson, 1994a). Hydrophobic colloids generally have contact
angles larger than 90� (Lazouskaya et al., 2013; Wan & Wilson, 1994a). The larger the contact angle, the higher the
hydrophobicity (Lazouskaya et al., 2013; Wan & Wilson, 1994a). Colloid surface hydrophobicity enhances colloid
attachment to AWIs and SWIs, and hence colloid retention in both saturated and unsaturated porous media (Wan &
Wilson, 1994a). In the DLVO theory, the secondary-minimum attachment is a weak reversible association of colloids
compared to the irreversible strong primary-minimum attachment (Sang et al., 2013). Using confocal microscopy with
sulfate (hydrophobic) and carboxylate-modified (hydrophilic) polystyrene microspheres, Lazouskaya and Jin (2008)
evaluated hydrophobic interaction in the calculation of total interaction energy. Through experimental data, they pro-
posed that retention of colloids at AWIs occurs mainly via secondary-minimum retention due to hydrophobic attrac-
tion. They further observed that the secondary-minimum retention serves as a means to deliver colloids to AWS contact
lines. When ionic strength was low (e.g., in deionized water), hydrophilic colloids did not attach to AWIs; and those
that had attached to SWIs, could be mobilized by AWS contact lines (Lazouskaya et al., 2011).

3 | FACTORS AND NUMERICAL APPROACHES FOR COLLOID FATE AND
TRANSPORT MODELING

Accurate simulation of the retention and mobilization of colloids in the vadose zone, in particular under transient flow
conditions, is currently limited by the lack of basic understanding of colloid retention processes at the interface, collec-
tor, pore, and continuum scale. The below summary provides a short overview of our current knowledge of conceptual
quantitative and numerical approaches available at the microscale and continuum scale to simulate the fate and trans-
port of colloids in transient flow. We will start with a review of quantitative concepts and models at the interface scale,
which describes the interaction energy and hydrodynamic forces and torques that act on colloids near interfaces. Next,
we will describe the collector scale models, summarizing the numerical methods available to describe colloid transport
and interaction processes on a single solid grain or air bubble collector. The pore scale model section will describe the
same process system while considering the role of several collectors and multiple interfaces. Finally, the continuum
scale model section will review models predicting colloid breakthrough curves and/or soil retention profiles. For each
type, we recommend one or two models that are advanced but also easy to understand and use.

3.1 | Microscale models

3.1.1 | Interface scale models

According to Bradford and Torkzaban (2008), at the interface scale, the transport and retention of colloids depend not
only on the force balance of the adhesion force (FA), capillary force (Fσ, also known as surface tension force), lift force
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(negligible), drag force (FD), and Brownian diffusion force, but also on the torque balance of the adhesive torque and
the applied torques (Figure 4). The equations of the above forces and torques are readily available in the comprehensive
review by Bradford and Torkzaban (2008).

Recently, Lazouskaya et al. (2013) analyzed the forces and torques acting on colloids at the imbibition and drainage
fronts (i.e., AWS contact lines) during colloid mobilization under transient flow, considering the hydrophobic and
hydrophilic surface characteristics of the colloids and the media surface. Besides the electrostatic, van der Waals, and
hydrophobic forces, they added the born repulsion force in the adhesion force (FA) calculation. According to
Lazouskaya et al. (2013), consideration of Born repulsion in the DLVO calculation results in a finite depth of the pri-
mary minimum and a more accurate prediction of the force required for colloid mobilization. As a result, the maximum
adhesion force, FA, can be found as the maximum attractive (negative) force in the DLVO force profile.

Lazouskaya et al. (2013) further adjusted the drag force, FD, to reflect the varying shear flow conditions during imbi-
bition or drainage (the drag force is smaller for a partially submerged particle):

FD = �1:701 6πμGr2
� � ð1Þ

where μ is fluid viscosity [ML−1 T−1], r is colloid radius [L], G is shear rate [LT−1], and the sign indicates drainage (−)
or imbibition (+).

Likewise, as the liquid advances (or recedes) during transient flow, the angle, φ, determining the AWI position on
the colloid surface, changes from 180� to 0� (or 0�–180�), and the surface tension force assumes two magnitude maxima
if the surface tension force, F*σ, is directed away from or directed towards the liquid (Lazouskaya et al., 2013; Figure 4).
The surface tension force acts along the contact between the colloid and the AWI. As such, Lazouskaya et al. (2013)
proposed to calculate the surface tension force in two directions (Fz

σ and Fy
σ ), while also taking the substrate dynamic

contact angle, α, into account:
When ϕ < θ (when surface tension force is directed away from the liquid, and maximum occurs at ϕ= θ=2):

FIGURE 4 Colloids interacting with imbibition (a,

b, e) and drainage (c, d, f) fronts on a hydrophilic and a

hydrophobic substrate (Reprinted with permission from

Lazouskaya et al. (2013), Figures 1 and 2). Two interface

positions on the particle (for the two surface tension

force directions, that is, φ > h and φ < h) are shown

(left and right column). The earlier interface position is

represented with the dashed line; only the surface

tension force F*σ and position angle φ* are shown for

this interface. For the later interface position, the

direction and components of the surface tension force

and other forces are shown. Force arrows do not

represent force magnitudes. Panels e and f show the

corresponding torques denoted as TD = FDlD, TA = FAlA,

and Tr = Frlr. The torques are analogous for a

hydrophobic substrate and are not shown. Point O

denotes the point of rotation and all torques are

calculated with respect to O. The large arrows indicate

flow direction
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Fz
σ =2πrσsin2 θ=2ð Þcosα ð2aÞ

Fy
σ =2πrσsin2 θ=2ð Þsinα ð2bÞ

When ϕ > θ (when surface tension force is directed toward the liquid, and maximum occurs at ϕ=90� + θ=2):

Fz
σ = −2πrσsin2 90� + θ=2ð Þcosα ð2cÞ

Fy
σ = −2πrσsin2 90� + θ=2ð Þsinα ð2dÞ

where ϕ is the angle determining the AWI position on the colloid surface, θ is the dynamic contact angle of the liquid
on the colloid surface, σ is the liquid surface tension [MT−2], and α is the substrate dynamic contact angle.

The friction force, Ff, acts at the colloid contact with the substrate and is proportional to the net normal (downward)
force, FN, holding the particle and substrate together (Lazouskaya et al., 2013; Figure 4). For the transient flow condi-
tions shown in Figure 4, the friction force, Ff, is:

Ff = �μfFN = �μf Fz
σ +FA

� �
,Fz

σ +FA < 0 ð3Þ

where μf is the coefficient of static friction, FN is the net normal force [MLT−2]. The sign indicates drainage (−) or imbi-
bition (+), and FA has a negative value.

Lazouskaya et al. (2013) were one of the first to consider the mechanisms of colloid mobilization (i.e., lifting, sliding,
and rolling) with receding and advancing wetting fronts (corresponding to drainage and imbibition, respectively). Col-
loid mobilization due to rolling can occur when a net nonzero torque occurs (Figure 4e,f). The torques identified for
imbibition and drainage fronts include the resisting torque due to the adhesion force, TA = FAlA, and applied torques
due to the drag force, TD = FDlD, and surface tension forces, Tσ = Fσlσ.

Lazouskaya et al. (2013) further provided criteria determining whether mobilization due to particle lifting would
happen. Lifting happens when Fz

σ +FA > 0, while sliding occurs when Fz
σ +FA ≤ 0 and Fy

σ + FD

�� ��> Ffj j. Rolling occurs
when |FDlD| + |Fσlσ| > |FAlA|. Otherwise, the colloid remains attached. A detailed analysis of forces and torques under
chemically heterogeneous conditions can be found in Bradford, Saeed, and Alexander (2013).

3.1.2 | Collector scale models

At the collector scale, the liquid flow field around a solid grain or an air bubble and the rate of mass (i.e., colloid) trans-
fer to a simple collector surface can be simulated with the Navier–Stokes equation (Bradford & Torkzaban, 2008):

ρ
∂v
∂t

+v �rv

� �
= −rp+ μr2v + ρg ð4Þ

where ρ is the fluid density [ML−3], v is the velocity vector [LT−1], t is time [T], p is pressure [ML−1 T−2], and g is the
gravitational acceleration vector [LT−2].

For ideal systems, composed of a spherical collector with a smooth surface and assuming a perfect sink at the collec-
tor boundary, the rate of mass transfer to a solid grain or an air bubble can be obtained by solving the advection–
diffusion equation:

∂C
∂t

=r� D �rCð Þ−r� vCð Þ−r� D �F
kBTk

C

� �
ð5Þ

where C is the aqueous colloid concentration [NL−3; N denotes the number of colloids], D is the colloid diffusion tensor
[L2T−1], F is the external force vector [MLT−2], kB is the Boltzmann constant (= 1.38 × 10−23 JK−1), and TK is the abso-
lute temperature.
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Under unfavorable attachment conditions (i.e., if both the colloid and the collector show surface charge heterogene-
ity), if the zeta potential distributions of either the collector or the colloid is known or assumed, it is possible to deter-
mine the fraction of the surface area that is accessible for attachment for a given solution chemistry when the charge
heterogeneity (colloid or collector) is uniformly distributed across the collector surface into N categories. In this case,
the fraction of available attachment sites on a grain surface, Sf, can be calculated as the sum of the fractional contribu-
tion of each surface charge category of colloids, fiSi, whereby the charge heterogeneity is uniformly distributed across
the collector surface into N categories (Bradford & Torkzaban, 2008).

3.1.3 | Pore-scale models

In contrast to the collector scale, the pore scale is defined by an ensemble of collectors and the presence of multiple
interfaces such as SWIs, AWIs, and contact points (e.g., grain-to-grain contacts, solid–water–air triple points) that are
mainly defined by the pore space geometry. At the pore scale, the pore structure strongly influences the aqueous flow
field, the mass transfer rate, and the forces and torques acting on colloids. Bradford and Torkzaban (2008) provide a
detailed overview of the types of retention at the pore scale, but only provide equations for determining the AWI shape
(Equation 6) for a given capillary pressure, while Tuller, Or, and Dudley (1999) provided relationships to determine the
saturation that corresponds to a given interface curvature:

ρgψ = σ
1
R1

+
1
R2

� �
ð6Þ

where R1 and R2 are principal radii of curvature of the interface [L], ψ is matric potential head [L], and g is the gravita-
tional acceleration [LT−2].

In unsaturated conditions, the thickness of the water film around grains is changing depending on water content
and capillary pressure. Iwamatsu and Horii (1996) quantified the equilibrium thickness of water films (w [L]) at a given
capillary pressure:

w=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Asaw

6πρgψ
3

s
ð7Þ

where Asaw is the Hamaker constant for the AWS system [ML2T−2].
Pore-scale models are often a part of a multi-scale model, or provide parameters for continuum scale models

(Johnson & Hilpert, 2013). For instance, Smith et al. (2007) quantified the attachment and detachment rates through
pore-scale observations under saturated conditions. Recently, Ryan and Tartakovsky (2011) and Hilpert, Rasmuson,
and Johnson (2017) developed more advanced pore-scale models that can be upscaled to continuum scale models.

Ryan and Tartakovsky (2011) divided the pore-scale simulation domain into two nonoverlapping subdomains: The
pore space subdomain, ΩA, and the solid grain subdomain, ΩS. Under saturated conditions, the ΩA subdomain consists
purely of the aqueous phase, at which point colloid transport in the domain can be simulated by solving the Navier–
Stokes (Equation 8) and the advection–diffusion (Equation 9) equations, similar to the above collector scale model.

−rp+ μr2v + ρg= 0 ð8Þ

DC x, tð Þ
Dt

=r� D xð Þ �rC x, tð Þð Þ ð9Þ

where D is the diffusion coefficient [L2T−1], and x is the position vector [L].
The pore-scale model provides the effective diffusion coefficients (DIGD [L2T−1]) for the hybrid model, which is able

to simulate colloid transport in connected macropores (Ryan & Tartakovsky, 2011). The hybrid model divides the simu-
lation domain into two nonoverlapping subdomains in a slightly different way: a macropore domain, ΩF, and a soil
matrix domain, ΩM. Compared to the macropore domain, advection is negligible in the soil matrix domain. Therefore,
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the same Navier–Stokes equation (Equation 8) is used to describe the flow field in ΩF; while a diffusion equation
(Equation 10) is used to describe the diffusion in both the macropore and soil matrix domains.

D ε xð Þ �C x, tð Þ½ �
Dt

=r� DIGD xð Þ � ε xð Þ �rC x, tð Þ� � ð10Þ
where ε is the porosity. In the soil matrix domain, ε is equal to the actual porosity of ΩM, while in the macropore
domain ε is set to 1. DIGD is the effective diffusion coefficient obtained by the pore-scale model in ΩM, and the molecu-
lar diffusion coefficient in ΩF.

More recently, Hilpert et al. (2017) conceptualized the porous media as a series of unit cells. A unit cell is composed
of a grain and a pore, and it contains a near-surface fluid domain (NSFD), where the distance between the colloid and
the grain surface corresponds to the secondary energy minimum. A colloid can enter a unit cell through the bulk pore
water (State p), or through the NSFD of the upstream unit cell (State n). A colloid can also overcome the energy barrier
and attach to a grain surface via the primary energy minimum (State a). Hilpert et al. (2017) assumed that a colloid tra-
jectory is a Markov chain, that is, the next state depends on the current state but not on previous states. The transition
from one state to another has a certain probability and takes a certain amount of time. In Equations 11a and 11b below,
each of the ppa, ppp, ppn, pna, pnp, pnn denotes the transition probability, p, from the first state to the second. Accord-
ingly, each of the tpa, tpp, tpn, tna, tnp, tnn denotes the required time to transit from the first state to the second.

Assuming a chain of a total number of Ntot unit cells, the pore-scale model can be upscaled to a continuum scale
model. A colloid moving through the chain experiences the same total number of p and n states (i.e., Np + Nn = Ntot).
The number of times the colloid transitions from state p to state n along the chain is denoted as Nc. Then, the contin-
uum scale residence time of the colloid can be described as:

t pð Þ N tot,Nn,Ncð Þ= Np−Nc−1
� �

tpp +Nctpn + Nn−Ncð Þtnn +Nctnp ð11aÞ

t nð Þ N tot,Nn,Ncð Þ= Np−Nc
� �

tpp +Nctpn + Nn−Ncð Þtnn + Nc−1ð Þtnp ð11bÞ

where t(P) and t(n) means the trajectory ends in state p and state n, respectively. According to Hilpert et al. (2017), applica-
tion of the model is not limited to systems in which the immobilization of colloids is due to irreversible attachment in
the primary energy minimum. Other mechanisms such as straining can also be simulated with the model. The Hilpert
model is one of the first models that explicitly consider the longitudinal colloid transport in the near-surface fluid
domain, in particular processes such as the grain-to-grain transport of colloids and the re-entrainment of colloids into
the bulk fluid domain via diffusion or via expulsion at the rear-flow stagnation zone. All of these processes are important
to explain the residence time of colloids at the column scale, specifically the extended tailing (Schijven, Hoogenboezem,
Hassanizadeh, & Peters, 1999), and the hyper-exponential and nonmonotonic retention profiles observed (Bolster,
Haznedaroglu, & Walker, 2009; Molnar, Johnson, Gerhard, Willson, & O'Carroll, 2015). In spite of the recent advances
made in multi-scale models, pore-scale models for unsaturated or transient flow conditions are still largely lacking.

3.2 | Continuum scale models

To study colloid transport under controlled but nearly natural conditions, continuum scale models that can predict col-
loid concentration in discharge or the soil profile are most useful. Most macroscale models for colloid transport have
only been validated under steady-state flow conditions, and only few models were derived and have been validated
under transient flow conditions (Chen, Liu, Tawfiq, Yang, & Banks, 2009; Denovio et al., 2004; Engstrom, Thunvik,
Kulabako, & Balfors, 2015; Flury & Qiu, 2008). In this review, we introduce the macroscale models available in the
HYDRUS software package (Šimůnek, van Genuchten, & Šejna, 2008) that can simulate colloid transport under tran-
sient flow conditions. We further present two other macroscale models that were particularly derived for and validated
with colloid transport experiments under transient flow conditions. For simplicity, in this review, we neglect models
that account for inactivation and degradation of microorganisms (i.e., bio-colloids), and only focus on the transport pro-
cesses of nonbiological colloids. But, for most models, inactivation and degradation of microorganisms can be included
by simply adding a sink term.
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3.2.1 | Models available in HYDRUS

The finite element model HYDRUS (Šimůnek et al., 2008) offers an attachment-detachment model or two-site kinetic
sorption model for colloid transport:

∂θc
∂t

+ ρ
∂se
∂t

+ ρ
∂s1
∂t

+ ρ
∂s2
∂t

= λLθv
∂2C
∂x2

−θv
∂C
∂x

ð12Þ

ρ
∂s1
∂t

= θka1ψc−kd1ρs ð13Þ

ρ
∂s2
∂t

= θka2ψc−kd2ρs ð14Þ

where c is the colloid concentration in the aqueous phase [NL−3], s is the concentration of colloids at kinetic sorption
sites [NL−3], v (=q/θ) is the average interstitial water velocity [LT−1], ka and kd are first-order attachment and detach-
ment rate coefficients, respectively [T−1], subscripts e, 1, and 2 refer to the equilibrium and two kinetic sorption sites,
and ψ is a dimensionless colloid retention function. The colloid transport model assumes that for the two kinetic sorp-
tion sites, the attachment and detachment follow first-order kinetic processes.

Note that this model only allows simulation of colloid transport, not colloid-facilitated solute transport which is
implemented in the C-Ride module (Šimůnek, He, Pang, & Bradford, 2006). The full version of the model uses two
kinetic sorption sites to account for two different processes such as straining and physical–chemical filtration, or attach-
ment to AWIs and SWIs. But, one or two of the ρ ∂s

∂t terms can be dropped based on the simulated system, and the model
can be easily reduced to a one-site kinetic sorption model and equilibrium sorption model, respectively.

The attachment rate coefficient, ka, in the model can be calculated with the filtration theory model (Bradford, Yates,
Bettahar, & Simunek, 2002; Logan et al., 1995; Rajagopalan & Tien, 1976), which is able to account for colloid size and
the efficiency of different physical–chemical filtration mechanisms (e.g., Brownian diffusion, interception, and gravita-
tional sedimentation; Bradford et al., 2002):

ka =
3 1−θð Þ
2dc

ηαv ð15Þ

where dc is the diameter of the soil particles [L], α is the sticking efficiency (the ratio of the rate of colloids sticking to a
collector and the rate at which they collide with the collector), v is the pore water velocity [LT−1], and η is the single-
collector efficiency, which composed of three terms, representing colloid removal from the aqueous phase by diffusion,
interception and gravitational sedimentation, respectively (see Bradford et al., 2002 for details).

The dimensionless colloid retention function, ψ , can account for colloid clogging or filter ripening, that is, the pro-
cess that earlier attached colloids could influence the attachment of later colloids, and it has several different formats
(see Adamczyk, Siwek, Zembala, & Belouschek, 1994; Bradford & Bettahar, 2006; Bradford et al., 2003; Johnson &
Elimelech, 1996; and Wang et al., 2012 for details).

The attachment-detachment model (i.e., the two-site kinetic sorption model or its reduced formats—the one-site
kinetic sorption model or the equilibrium sorption model) has wide application in colloid transport under steady-state
conditions. For instance, using one site for straining and the other site for attachment, Foppen et al. (2007) successfully
simulated the straining and attachment of Escherichia coli in saturated packed sand columns of various grain sizes, col-
umn lengths, injected colloid concentrations, and flow rates. They used Equation 15 to calculate the attachment rate
coefficient, ka, and used the Langmuir format of ψ suggested by Adamczyk et al. (1994) to describe the filter-ripening
phenomenon. Using one site for reversible attachment–detachment and the other site for irreversible straining and
favorable deposition, Cornelis, Pang, Doolette, Kirby, and Mclaughlin (2013) were able to capture the transport and
retention of silver nanoparticles in saturated natural soils of various physical and chemical properties very well. Using
one attachment–detachment site and the Langmuir format of ψ , Balkhair (2016) successfully described the transport
and retention of fecal bacteria in both saturated and partially saturated soils of different physical and chemical proper-
ties. Using the one-site kinetic sorption model and the Bradford and Bettahar (2006) format of ψ , Rahmatpour,
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Mosaddeghi, Shirvani, and Šimůnek (2018) simulated the transport and retention of silver nanoparticles in both satu-
rated and unsaturated undisturbed calcareous soils of different textures.

However, testing of the attachment–detachment model with experimental data under transient flow conditions has
been very limited. The only example we could find was the study of Schijven and Šimůnek (2002). Using the two-
dimensional two-site kinetic sorption model, they successfully captured the measured transport and retention of virus
colloids under transient flow conditions in a dune recharge field experiment conducted by Schijven et al. (1999) and in
a deep well injection field experiment conducted by Schijven, Medema, Vogelaar, and Hassanizadeh (2000). More stud-
ies such as the ones listed here are needed to test the applicability of the attachment–detachment model to predict col-
loid transport under transient flow conditions.

In addition, the equations used for solute transport in the dual-porosity models (Philip, 1968; Šimůnek, 2008;
Šimůnek, Jarvis, van Genuchten, & Gärdenäs, 2003; van Genuchten, 1981; van Genuchten & Wagenet, 1989; van Gen-
uchten & Wierenga, 1976) and dual permeability models (Gerke & van Genuchten, 1993, 1996, 2010; Pot et al., 2005;
Šimůnek, 2008; Šimůnek et al., 2003; van Genuchten & Dalton, 1986) in HYDRUS, although not explicitly written for
colloid transport, could be adjusted to simulate colloid transport through soil with the existence of preferential flow.

More recently, Bradford, Wang, Torkzaban, and Šimůnek (2015) developed a model (Bradford model) that explicitly
considers colloid attachment to SWIs and colloid mobilization by moving AWI or AWS contact lines in transient flow,
especially during drainage and imbibition cycles. Detailed equations of the mathematical model can be found in Brad-
ford et al. (2015).

In the Bradford model, variably saturated water flow is described using Richards’ equation and colloid transport in
the aqueous phase is described using the advection–dispersion equation with two additional terms that allow quantifi-
cation of the exchange of colloids between the aqueous phase and SWIs and AWIs, respectively (Bradford et al., 2015).
Furthermore, the model allows estimating the mass balance for colloids retained and released from SWI and AWIs.
Retention and release of colloids from solid–water interfaces are estimated using a retention rate coefficient to the
SWI and a steady-state release rate coefficient as well as a colloid release term that partitions colloids from the SWI to
the AWI. Colloid retention and release from air–water interfaces is estimated by simulating the changes in the area of
AWIs. During drainage, the area of AWIs increases and a fraction of the colloids attached to the SWIs are partitioned
to the aqueous phase and the AWIs or AWS contact lines. During imbibition, the model simulates the decrease in area
or the destruction of AWIs, and the partitioning of colloids from the AWIs or the AWS contact lines to the mobile
water.

The Bradford model was successfully used to simulate E. coli release during drainage and imbibition cycles when
saturation and AWIs configuration varied (experimental results from Wang, Bradford, and Šimůnek (2015)). According
to Bradford et al. (2015) the developed equilibrium, kinetic, and combined equilibrium and kinetic models provided a
reasonable description of the colloid release behavior for various changes in the fraction of the solid surface area that
contributes to colloid retention when parameters were optimized to the experimental data. Experimental data further
indicated that the microscopic surface roughness and grain-to-grain contacts played a larger role in E. coli retention,
even when the primary minimum and secondary minimum were eliminated by a decrease in solution ionic strength.
Further, temporal changes in water velocity were found to not have a large influence on bacteria release, which they
again attributed to the microscopic surface roughness and grain-to-grain contacts that decreased the hydrodynamic tor-
que. The largest weakness of the Bradford model is the complexity of the model, which requires a precise definition of
the initial conditions, the removal efficiency, and the specific transient conditions of the release model, for which often
only limited a priori information exists. The Bradford model is available in HYDRUS-1D, which will promote its wider
application in the coming years.

3.2.2 | Other continuum scale models

One of the numerical models that couples transient pore water flow with the mobilization, transport, and redeposition
of colloids in unsaturated porous media is the Saiers–Cheng–Zhang model. Saiers and Lenhart (2003a) couple the
advection–dispersion equation with an equation that estimates the temporal change in the total concentration of immo-
bile colloids (Equation 16). This is done by discretizing the immobile-phase colloid population into compartments, each
of which is characterized by its critical (θcri) and actual (θ) moisture content (Equations 19a, 19b), which determines
the kinetics of colloid release. The critical moisture content distribution is described by a piecewise linear density
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function. Only when the moisture content in a compartment exceeds its critical moisture content, colloids in that com-
partment can be mobilized.

Colloid transport and mass transfer:

∂ θCð Þ
∂t

+ ρb
∂ST
∂t

=
∂

∂z
Dθ

∂C
∂z

� 	
−
∂ qCð Þ
∂z

ð16Þ

∂ST
∂t

=
XNC
i=1

∂Si
∂t

ð17Þ

∂Si
∂t

=
θ
ρb

1
NC

kfC−αiSi ð18Þ

αi = 0 for θ < θcri (19a).

αi = Nvκ for θ ≥ θcri (19b).

where ST is the total concentration of immobile colloids [MM−1, mass of colloids per unit mass of sand], and D is the hydro-
dynamic dispersion coefficient [L2T−1], NC is the number of compartments, Si is the concentration of colloids held within
the ith compartment [MM−1, mass of colloids per unit mass of liquid], kf is a rate coefficient for colloid removal by straining
[T−1] and it can be quantified by an empirical relationship depending on volumetric moisture content and average pore
water velocity, αi is a rate coefficient for colloid release from compartment i [T−1], and θcri is the critical moisture content
associated with compartment I, and k and N [L-kTk-1] are empirical coefficients quantifying the kinetics of colloid release.

The Saiers and Lenhart model was successfully applied to capture the colloid mobilization in packed sand during a series
of imbibition events (Saiers & Lenhart, 2003a). And, a more detailed pore water velocity function may further improve the
accuracy. After all, the model provides a fundamental framework to simulate real-world variably saturated conditions.

Cheng and Saiers (2009) modified the Saiers–Lenhart model to account for colloid mobilization during drainage and
imbibition and to quantify the colloid mobilization kinetics according to the porous medium water retention characteris-
tics (Saiers–Cheng model). The main difference to the Saiers–Lenhart model is that Cheng and Saiers (2009) compared
the pressure head (Ψ ) with the snap off pressure head of compartment i (Ψ si [L]), instead of comparing the volumetric
water content (θ) with the critical moisture content of compartment i (θcri). According to Cheng and Saiers (2009), pore
snap off occurs in pores that fill with water during imbibition or empty during drainage as a result of changes in pres-
sure head during transient flow. Changes in pressure head are not only dependent on water content but also on pore
size and since pore sizes in any porous medium are nonuniform, the model assumes a distribution in snap off pressures
and subsequently a distributed colloid mobilization response (αi [T

−1]) that is different for drainage (Equations 20a,
20b) and imbibition (Equations 20c, 20d).

During drainage and before the next imbibition:

αi = 0 for Ψ >Ψ si (20a)
αi =Nd

∂θ
∂t

�� �� for Ψ ≤Ψ si (20b)
During imbibition:

αi = 0 for Ψ <Ψ si (20c)
αi =N imb

∂θ
∂t for Ψ≥Ψ si (20d)

where αi is the coefficient that quantifies the rate of colloid mobilization from the ith compartment and Nd and Nimb

are empirical coefficients quantifying the kinetics of colloid mobilization during a drainage event and an imbibition
event, respectively. The Saiers–Cheng model captured well in situ colloid mobilization and transport in packed sand
during both drainage and imbibition events at various ionic strength and flow rates (Cheng & Saiers, 2009). Both the
experimental results and the theoretical simulation demonstrate that the moving drainage and imbibition fronts (AWS
contact lines at microscale) could substantially mobilize colloids.

Zhang et al. (2012) further extended the Saiers–Cheng model by regarding the attachment to and detachment from
AWIs as an equilibrium sorption process. The size of the available AWI for colloids to attach to is formulated to be line-
arly dependent on saturation (Saiers–Cheng–Zhang model):
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∂θRCw
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� �
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AkaD
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ð22Þ
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D = θkaatt=Ak
a
det ð23Þ

A=Ao 1−Swð Þ3Sw ð24Þ

where Cw [NL−3] is the colloid concentration in water, Caw [NL−3] is the concentration of colloids attached to the AWI
in terms of number of colloids per unit air–water interfacial area, A [L2L−3] is the air–water interfacial area per unit vol-
ume of porous medium, q [LT−1] is the Darcy-Buckingham flow rate, katt

s and kdet
s [T−1] are attachment and detach-

ment rate coefficients, respectively, of colloids to and from the SWI, katt
a and kdet

a are similar attachment and
detachment rate coefficients, respectively, associated with the AWI, KD

a [L] is the equilibrium distribution coefficient
for attachment to the AWI, and Sw is the degree of fluid saturation.

The Saiers–Cheng–Zhang model successfully captured observed virus transport behaviors under both saturated and
unsaturated conditions and during both drainage and imbibition periods (experimental results from Torkzaban,
Hassanizadeh, Schijven, Bruijn, and Husman (2006) and Torkzaban, Hassanizadeh, Schijven, and van den Berg (2006);
Zhang et al., 2012). When comparing the saturation-dependent attachment coefficient to a constant–attachment model
simulation, they found that the constant-attachment model simulation performed surprisingly well, which they attrib-
uted to the large values of the transient detachment coefficients that might have obscured any variation. Zhang
et al. (2012) further point out that the ability of the model to simulate virus transport through porous media needs to be
further tested for undisturbed, and medium- and fine-textured soils.

Majdalani et al. (2007) developed a model (Majdalani model) to simulate colloid transport through structured soil.
The preferential water flow is described by a kinematic–dispersive wave model, and colloid detachment from
macropore walls is simulated by first-order kinetics. One novelty that the Majdalani model has, is that they introduce a
detachment efficiency term that captures the dynamic nature of the activation/deactivation of colloids in the porous
media due to detachment, clogging, and particle filtration depending on changes in water content and ionic strength.
The frequency and amount of colloid detachment are made dependent on the cumulative mass removed from a particu-
lar location in the porous medium. Because particles cannot infinitely be released into the bulk fluid flow, as particle
stocks get exhausted over time. Further, the detachment efficiency is characterized by hysteresis, instead of the com-
monly used constant detachment efficiency.

The preferential water flow in macropores (noncapillary pores) is simulated by a nonlinear kinematic dispersive
wave model developed by Pietro, Ruy, and Capowiez (2003):

∂u z, tð Þ
∂t

+ c u z, tð Þ½ �∂u z, tð Þ
∂z

= v u z, tð Þ½ �∂
2u z, tð Þ
∂z2

ð25Þ

where u(z, t) is the water flux at instant t and depth z, c[u(z,t)] and v[u(z,t)] are, respectively, the convective celerity and
the dispersivity distorting the advancing water front.

The colloid transport in macropores is described by a convection–dispersion equation with two source (S1 and S2)
and one sink term (P), which represent the colloid detachment and colloid deposition, respectively.

∂ θm z, tð ÞC z, tð Þð Þ
∂t

= −
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P= kattθm z, tð ÞC z, tð Þ ð27Þ

S1 = kacc
∂u z, tð Þ

∂t with
kacc > 0, if t≤ ts
kacc = 0, if t> ts


 �
(28)
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S2 = kdetE z, tð Þθm z, tð Þu z, tð ÞC� z, tð Þ ð29Þ

where C(z, t) [ML−3] is the mass concentration of colloids in the flowing solution at depth z and time t, D(z, t) [L2T−1]
is the particle dispersion coefficient, S [ML−3 T−1] is the source term that accounts for colloid detachment, P [ML−3 T−1]
is the sink term that describes colloid deposition along macropore walls, kacc [M V−1 T L−1] is a flux acceleration coeffi-
cient, kdet [L

−1] is the particle detachment coefficient, and C*(z, t) [M V−1] is the crust particle concentration.
The Majdalani model performed well when simulating the mobilization and transport of in situ soil particles in

unsaturated undisturbed soils, especially those with macropores (experimental results from Rousseau et al. (2004)).
During model validation, Majdalani et al. (2007) noted that the attachment and detachment coefficients (katt, kdet) were
mainly influenced by the nature of the soil, incoming solution ionic strength, and rainfall intensity, while the water flux
acceleration coefficient (kacc), as well as the shape of the cumulative particle detachment curve over time (determined
through α and β) depend more on the macropore network structure and column history. In later studies, Majdalani
et al. (2007) showed that wetting/drying cycles in unsaturated porous media generate erosive-like releases of colloids
that increase with increasing drying period length. Mohanty, Saiers, and Ryan (2015) note that this mechanism was
more important for colloid release than ionic strength or rainfall intensity.

4 | COMMENTS AND FUTURE RESEARCH NEEDS

Although colloid transport has been heavily investigated over the last decades, our understanding of colloid transport
under transient flow remains limited. Specifically, a clear understanding of retention and mobilization mechanisms,
controlling factors and their interaction during imbibition and drainage is needed to accurately characterize and predict
colloid transport in transient flow systems. In this section, we summarize our comments and vision for this field after
reviewing the experimental needs, new technologies available, and modeling advances made in the last few years.

4.1 | Experimental studies

In spite of the many experimental studies conducted so far, processes of colloid transport during the transitional stages
of transient flow, when specific discharge and volumetric moisture content abruptly increase or decrease, remain still
incompletely understood and quantified. During rewetting of the soil, for example, the conversion of immobile water to
mobile water contributes to the release of colloids from immobile zones into the bulk fluid flow, a process that last on
the order of seconds and therefore is difficult to observe and quantify (Gao et al., 2006). Other studies suggest that the
colloid release behavior changes during repeated cycles of drainage and imbibition. For example, colloid concentration
on the AWI may increase during imbibition due to retention of colloids released from SWIs; during rewetting, air
entrapment, preventing full saturation of the porous media, may prevent complete release of colloids from AWIs
(Bradford et al., 2015). These effects are expected to be even more pronounced for hydrophobic and/or larger colloids
that have a propensity to more readily attach to AWIs, and for colloid transport in finer textured soils that have a larger
interfacial area (Bradford et al., 2015; Bradford & Leij, 1997). More recently, Zhou et al. (2019) pointed out that most
transient flow studies (particularly those studying wetting-drying cycles) used very simplified experimental designs,
such as ideal porous media (e.g., sand, sand quartz), that present a gross oversimplification of the dynamic, heteroge-
neous conditions found in most subsurface environments. In order to more accurately capture colloid transport mecha-
nisms in transient flow systems, they postulate for experimental designs where physical and chemical conditions vary
with time and space reflecting the vertical variations and horizontal variations in the composition of soil porous media
due to rainwater and evaporation (Mohanty et al., 2016; Shang et al., 2008).

As indicated in our review, although existing experiments at the column scale provided valuable insights into col-
loid transport through soil under transient flow conditions, they provide only limited information about the processes
involved, especially if limited to breakthrough curve analysis only. While important for understanding the role of scale
and soil structure, there is a need to augment column scale studies with more intricate theoretical and experimental
pore-scale studies to more precisely determine the underlying processes responsible for colloid detachment, attachment,
and remobilization during transient imbibition and drainage periods. Unfortunately, to date, there exist only a few stud-
ies that quantified nanoscale physical and chemical parameters for developing these theoretical approaches
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(e.g., Lazouskaya et al., 2013; Mohanty, Saiers, & Ryan, 2015; Zhou et al., 2019), hence more research is needed to over-
come these data limitations. In particular, more experiments are needed to test the behavior of colloids of different sizes
and surface properties, from different source locations (e.g., autochthonous, injected), and of different ages in the sys-
tem to better understand colloid behavior in the natural vadose zone and its underlying transport processes. With
respect to colloid fate and transport mechanisms, the role of colloid hydrophobicity, transient changes in water chemis-
try, soil texture, soil structure, and frequency and duration of wetting/drying cycles and associated imbibition/drainage
dynamics on the fate and transport of different-sized colloids in natural soil systems is needed.

4.2 | New technologies

To properly track transport pathways of colloids and attached contaminants in the environment without the risk of
infection or field contamination, nontoxic particle tracers should mimic as closely as possible the transport behavior of
the particle suspension(s) of concern. To simultaneously address the issues of limited tracer varieties and
unrepresentativeness for suspensions, novel synthetic-free DNA tracers and DNA-labeled particle tracers (Dahlke
et al., 2015; Liao, Yang, Wu, Luo, & Yang, 2018; McNew, Wang, Walter, & Dahlke, 2018; Sharma, Luo, & Walter, 2012;
Wang et al., 2019) could potentially provide a new experimental tool. DNA-labeled particle tracers deliver an unlimited
number of distinguishable colloids of desired sizes and surface properties that could be used to investigate the transport
pathways of colloids from different source locations that entered the transient flow soil system at different wetting–
drying stages (Figure 5).

New visualization techniques, such as confocal microscopy (e.g., spectral or laser scanning) (Dathe et al., 2014; Gao
et al., 2006; Sang et al., 2013; Smith et al., 2007; Zevi et al., 2005, 2009, 2012; Zevi, Dathe, Gao, Richards, &
Steenhuis, 2006), epi-fluorescent microscopy (Auset & Keller, 2006; Baumann & Werth, 2004; Gao et al., 2006), and X-
ray microtomography (Li, Lin, Miller, & Johnson, 2006) have greatly aided colloid transport research over the past two
decades. At the column scale, magnetic resonance imaging has provided real-time noninvasive visualization of bacteria
transport in saturated porous media (Olson, Ford, Smith, & Fernandev, 2004; Sherwood et al., 2003). Synchrotron radia-
tion X-ray fluorescence has been used to measure the in situ colloid concentration and moisture content in soil column
experiments (DiCarlo et al., 2006). More recently, X-ray computed tomography (CT) has been used to extract macropore
networks in soil columns (Carrel et al., 2017, 2018; Soto-Gómez, Pérez-Rodríguez, Vázquez-Juiz, López-Periago, &
Paradelo, 2018) allowing to link the characteristics of the extracted macropore networks to the transport characteristics
of colloids. Development and wider application of existing as well as new techniques such as the 19-port sampling sys-
tem by Mohanty, Bulicek, et al. (2015) (Figure 6) to visualize and measure in situ moisture content and colloid concen-
tration in porous media (Crist et al., 2004; DiCarlo et al., 2006; Keller & Auset, 2007; Soto-Gómez et al., 2018, 2019),
and to differentiate different flow pathways and colloid attachment sites (Auset & Keller, 2006; Baumann &

FIGURE 5 Illustration of the novel DNA-labeled particle tracing technique (Reprinted with permission from McNew et al. (2018).

Copyright 2018 Elsevier)
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Werth, 2004; Lanning & Ford, 2002; Zhang, Hassanizadeh, Liu, Schijven, & Karadimitriou, 2014) offer promising
methods and technologies to advance understanding of the fate and transport of colloids in transient flow systems.

4.3 | Modeling

Microscale models have advanced rapidly after the review provided by Bradford and Torkzaban (2008). Most advances
have been made in the areas of interface scale models and upscaling models that link the pore scale and continuum
scale. To date, interface scale models are the main ones considering more complicated transient flow conditions, such
as AWS movement and transients in solution chemistry. Upscaling of models that link the pore scale and the contin-
uum scale are the future research trend of pore-scale models. However, one of the biggest gaps in microscale and con-
tinuum scale modeling continues to be the formulation of colloid transport mechanisms in structured soils and
representation of flow conditions in two- or three-dimensions.

Among the continuum scale models, the HYDRUS software package can simulate colloid transport through soil
under transient conditions due to (a) its ability to simulate transient water flow, (b) availability of add-on options to
modify the attachment rates of the one- or two-site kinetic sorption models, and (c) availability of dual-porosity and
dual-permeability models to account for preferential flow. Availability of the Bradford model within HYDRUS explicitly
allows simulation of pore-scale colloid transport processes and simulation of colloid transport through packed soil.

Besides the HYDRUS software package, the Saiers–Cheng–Zhang model also simulates colloid transport through
packed soil well; whereas, the Majdalani model is best applied to simulate colloid transport through undisturbed soil.
These two models include explicit descriptions of physical transport mechanisms, but whether they can be used to
broadly simulate colloid transport through soil under different transient conditions needs to be tested with more experi-
mental data. Moreover, they are not readily available to the hydrologic community and public, thus, limiting their use
to advance understanding of the fate and transport of colloids in variably saturated systems. Often researchers need to
write their own code to implement the models.

Due to the complexity of colloid transport in transient flow, there is a need to more openly share existing source
code so that new numerical or analytical solutions of physical colloid transport and retention mechanisms can be added
and tested for different soil material configurations (different porous media types, dual permeability system) and water
flow transients to advance colloid transport through soil under transient flow conditions. In addition, application of col-
loid transport models in field studies of natural soil or vadose zone systems remains an enormous challenge. This, in
part requires more studies on the importance of colloid transport and retention mechanisms in transient flow systems
at different scales (e.g., nano to column, plot, and field scale).

FIGURE 6 The 19-port sampling system at the bottom of an intact/undisturbed soil column to differentiate different flow pathways

(a) and the water flux collected by the 19-port sampling system (b) (Reprinted with permission from Mohanty, Bulicek, et al. (2015).

Copyright 2015 John Wiley and Sons)
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Pot, V., Šimůnek, J., Benoit, P., Coquet, Y., Yra, A., & Martínez-Cordón, M. J. (2005). Impact of rainfall intensity on the transport of two her-

bicides in undisturbed grassed filter strip soil cores. Journal of Contaminant Hydrology, 81(1), 63–88.
Powelson, D. K., & Mills, A. L. (2001). Transport of Escherichia coli in sand columns with constant and changing water contents. Journal of

Environmental Quality, 30(1), 238–245.
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