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1. introduction

Spacelike branes, or S-branes, are spacelike surfaces similar to ordinary branes with the

special characteristic that one of its transverse dimensions includes time. They can be

interpreted as soliton-like, time dependent field configurations. In string theory, the study

of the potential for the open string tachyon field [1] and the search for solutions describing

cosmological scenarios [2] have led to the introduction of S-branes. Their study has received

special attention over the past few years, motivated principally by interest in understanding

the dynamics of time dependent backgrounds in string theory. In particular, S-branes

can be considered as describing the formation and decay of unstable branes. From the

physical point of view, the process associated with the formation and decay of a brane

is expected to be smooth. In the supergravity approximation, however, it turns out that

S-branes solutions are plagued by singularities [1, 3], raising the question of whether these

singularities appear as a result of the supergravity approximation or due to other reasons.

Many other time dependent, asymptotically flat S-branes solutions have been analyzed in

several works [3, 4], but they contain either null singularities or naked timelike singularities

inside internal static regions. Recently, it has been proved that this singular behavior is
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an intrinsic property of a large class of solutions [5]. The question arose as to whether,

in general, there exist regular S-brane solutions. This problem is known as the singularity

problem of S-branes.

Among the alternatives suggested to solve the singularity problem [1], the reduction

of the R-symmetry of the S-branes represents an interesting approach. The idea is that

by reducing the R-symmetry, which represents the symmetry transverse to the S-brane

worldvolume, the S-brane could be localized in space and time. In fact, this procedure

has been performed recently in [6] and [7], in the framework of the low-energy limit of

string theory, where it was shown that regular solutions exist which are less symmetric

than the S-brane solutions already discussed in the literature. The new regular solution

has been obtained by applying the method of analytical continuation to the Kerr spacetime

and it has been interpreted as a twisting S-brane [6]. The “rotational” part of the Kerr

geometry transforms into a twist in space and the Kerr angular momentum is reinterpreted

as a twist parameter that determines the global properties of the S-brane solution. In the

limiting case where the Kerr angular parameter vanishes, it contains as a special case the

singular S0-brane. Otherwise, the Kerr S-brane solution is regular on the entire manifold

and can also be generalized to include the case of higher dimensions [7, 8]. One could

then imagine that the twist in space is a necessary condition in order to get rid of the

singularity. We will see that this is not necessarily true. In fact, in a recent work [9] an

analytical continuation of an array of Reissner-Nordstrom black holes has been interpreted

as a regular S-brane configuration. In a different approach [10], regular solutions have been

found in an analytical continuation of an AdS black hole.

In this work, we present a family of regular, non-twisting S-brane solutions which we

derive from the static axisymmetric Zipoy-Voorhees spacetime by applying the method of

analytical continuation. In a previous work [11], we introduced the horizon method as

a procedure for generating Gowdy cosmological models in General Relativity. We have

shown [12] that the Kerr geometry inside the horizons can be interpreted as a Gowdy

cosmology with topology S1 × S2. More recently [13], we proposed that the cosmological

configurations, or ordinary D-branes, obtained by the horizon method can be used to

generate iD-branes which correspond to S-branes. In the present work we generate a

special type of S-brane solution by applying the method of analytical continuation (which

would correspond to the i-horizon method, in our terminology). In fact, we will see that

instead of performing the analytical continuation of the Schwarzschild geometry “outside

the horizon”, one can also perform a similar transformation “inside the horizon” and this

is sufficient to avoid the timelike naked singularity present in the non-regular S0-brane

solution.

All the solutions we present in this work are asymptotically flat and can be classified

by a real parameter that determines the explicit time dependence of the corresponding

metric and curvature of the S-branes. In general, these solutions are simpler than previous

regular S-brane solutions known in the literature and can be interpreted as the simplest

regular generalizations of the singular S0-brane solution. We analyze the main properties

of the simplest representative of this family of regular solutions. We show that the regular

S0-brane inherits all the symmetry properties of the original Zipoy-Voorhees solution, but
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their physical interpretation is quite different. In particular, we will see that the i-rotation

eliminates the original singularity and that a free parameter entering the metric can even be

used to eliminate the only existent Killing horizon. But if we insist on preserving the Killing

horizon, no changes in the signature of the metric occur when crossing the horizon, i.e. all

the coordinates are well behaved on both sides of the horizon. In this case, the near horizon

limit of the regular S0-brane solution can be shown to be described by a de Sitter space.

We analyze the R-symmetry of the solution and show that it corresponds to the general

lorentzian symmetry of a 2-dimensional conformally flat euclidean space. In the analysis

of the asymptotic behavior of the solution we find that the spatial asymptote corresponds

to a Rindler space with an exponential expansion in the angular direction, a behavior that

coincides with that of the regular Kerr S-brane. For the temporal asymptote we find that

the spacetime transverse to the worldvolume of the brane corresponds to a 2-dimensional

Minkowski spacetime with an exponential expansion in the additional angular direction.

We also derive the charged generalization of the regular S0-brane solution and generate a

solution which contains the additional dilatonic field that arises in the low-energy limit of

the IIA string theory. We show that the dilatonic field modifies the asymptotic temporal

behavior of the regular S0-brane solution and reduces its lorentzian R-symmetry to an

SO(2) symmetry.

The paper is organized as follows. After briefly reviewing the main properties of

the 4-dimensional Zipoy-Voorhees spacetime in section 2.1, in section 2.2 we use the

Schwarzschild metric in the Zipoy-Voorhees form “inside the horizon” to derive the sim-

plest regular non-twisting S-brane solution which we will call the regular S0-brane solution.

To this end we apply the method of analytical continuation that has been used in previous

works to generate S-brane solutions. In section 3 we study the main global properties of

this solution. Then, in section 4, we derive different generalized solutions of the regular

S0-brane solution. In particular, we generate and briefly analyze a solution that includes,

in addition to an electric charge monopole, a dilatonic field. In section 5 we present a

family of 4-dimensional, non-twisting regular S-brane solutions which depend on two real

parameters, δ and µ, and reduces to the special case analyzed in section 2.2 when both

parameters coincide and are taken as δ = µ = 1. Finally, in section 6 we comment on our

results and discuss the possibility of generalizing our results to include the case of higher

dimensions and additional fields of interest in string theory.

2. A regular non-twisting S-brane

This section is devoted to the construction and discussion of the main properties of the

simplest, non-twisting, singularity-free S-brane solution. We first present a brief review of

the Zipoy-Voorhees spacetime which is described by a static, axially symmetric solution of

the Einstein vacuum field equations and contains the Schwarzschild solution as a special

case. Then we consider the special Schwarzschild solution “inside the horizon” and apply

the method of analytical continuation to derive the corresponding S-brane solution, under

the condition that it is regular on the entire manifold.

– 3 –



J
H
E
P
0
7
(
2
0
0
4
)
0
0
5

2.1 The Zipoy-Voorhees spacetime

The Zipoy-Voorhees [14] metric in Lewis-Papapetrou form and prolate spheroidal coordi-

nates (t, x, y, ϕ) has the form

ds2 = −fdt2 + σ2f−1(x2 − 1)(1 − y2)dϕ2 + σ2f−1e2γ(x2 − y2)

[

dx2

x2 − 1 +
dy2

1− y2

]

, (2.1)

with

f =

(

x− 1
x+ 1

)δ

, e2γ =

(

x2 − 1
x2 − y2

)δ2

, (2.2)

where σ is a real constant that is used to “control” the physical units of the spatial co-

ordinates. The constant parameter δ lies in the range −∞ < δ < +∞ with no other

restrictions. The degenerate case δ = 0 can be shown to correspond to a flat Minkowski

metric. In general, this spacetime describes a static, axisymmetric, vacuum gravitational

field. Usually it is interpreted in terms of its multipole moments and corresponds to a non

spherically symmetric mass distribution. The parameter δ determines all multipole mo-

ments higher than the monopole. In the special case of δ = 1 it reduces to the Schwarzschild

metric, as can easily be seen by performing the coordinate transformation x = −1 + r/m

and y = cos θ, and choosing σ = m, m the Schwarzschild mass. For this reason, in the

general case (δ 6= 1) one usually demands that the spatial coordinates lie in the range x ≥ 1
(r ≥ 2m) and −1 ≤ y ≤ 1. The hypersurface x = 1, (r = 2m), represents a true curvature
singularity, in accordance with the uniqueness theorems of black holes.

If we extend the Zipoy-Voorhees manifold to x ≥ −1, then a second curvature singu-
larity appears at x = −1. The sector of the manifold contained in the range −1 ≤ x ≤ 1,
with −1 ≤ y ≤ 1, can be interpreted as a Gowdy cosmology by means of an appropriate re-
definition of the coordinates [13]. This metric is the general solution of the S 1×S2 Gowdy

equations where ? depends only on time. This shows that the outer (x = +1) and inner

(x = −1) “horizons” are actually surfaces of infinite curvature (naked singularities), but
between the “horizons” this metric represents a perfectly viable Gowdy cosmology. Notice

that in this case, an apparent singularity appears at the hypersurface x = y which, however,

can be removed by means of a suitable coordinate transformation for any integer values of

the parameter δ. For values within the range δ2 < 3/2 with δ2 6= 1, the hypersurface x = y

corresponds to a true curvature singularity.

There exist certain generalizations of this metric [17] and a study of the geodesic mo-

tion in the special case δ = 2 was performed in [18]. Nevertheless, the global properties of

the Zipoy-Voorhees spacetime have not been analyzed in detail in the literature except, of

course, for the limiting case of the Schwarzschild metric (δ = 1). This is probably due to

the fact that only the sector outside the “horizon” (x ≥ 1) has been considered of physi-
cal interest in the context of possible applications for describing the exterior gravitational

field of astrophysical objects; however, more general solutions exist in the literature (for a

review see, for example, [15]) that are more adequate than the Zipoy-Voorhees metric to

study non spherically symmetric mass distributions and their multipole moments and, con-

sequently are more interesting from the point of view of possible astrophysical applications.

– 4 –



J
H
E
P
0
7
(
2
0
0
4
)
0
0
5

Nevertheless, the reinterpretation of a sector inside the “horizon” of the Zipoy-Voorhees

manifold as a cosmological Gowdy model [13] and also as a regular S-brane solution, could

focus new attention on this metric.

2.2 The regular S0-brane

In this subsection we derive a special solution for a non-twisting regular S-brane by applying

an analytical continuation of the Zipoy-Voorhees metric from “inside the horizon”. The

most general solution that can be obtained in this manner will be presented in section 5.

Here we restrict ourselves to the special case where δ = 1. As mentioned before, this

limiting case corresponds to the Schwarzschild metric with x = −1 + r/m, y = cos θ, and

σ = m. By applying an analytical i-rotation given by

t→ ir , r→ it , θ → iθ , m→ im , (2.3)

this black hole solution has been used previously in [16] to generate the well-known 4-

dimensional S0-brane solution

ds2 = −
(

1− 2m
t

)−1

dt2 +

(

1− 2m
t

)

dr2 + t2(dθ2 + sinh2 θ dϕ2) . (2.4)

The disadvantage of this solution is that it possesses a time-like naked singularity. Therefore

it is not appropriate for describing the formation and decay of unstable branes which is

expected to be a smooth process free of singularities.

In the terminology of the horizon method, the i-rotation (2.3) can be interpreted as

an analytical continuation from “outside the horizon”. What we will show now is that

in order to avoid the appearance of singularity it is sufficient to apply an i-rotation from

“inside the horizon”.

Due to the signature change, between the horizons, x2 < 1, the coordinate x becomes

timelike and t becomes spacelike. Let us define the coordinates

x = cos τ , t = r (2.5)

for the cosmological sector of this manifold. Then, from eq. (2.1) we obtain

ds2 =
1− cos τ
1 + cos τ

dr2 + σ2(1 + cos τ)2(1− y2)dϕ2 + σ2(1 + cos τ)2
(

dy2

1− y2
− dτ 2

)

. (2.6)

After an appropriate coordinate transformation [13], this metric can be interpreted as

a 4-dimensional Gowdy cosmological model characterized by a big bang singularity at

cos τ = −1. We now perform the following i-rotation in the cosmological sector of the

Zipoy-Voorhees metric (2.6):

τ → iθ , y → i
τ

σ
, r → ir . (2.7)

This analytical continuation leads to the following metric

ds2 = −σ
2(cosh θ + 1)2

τ2 + σ2
dτ2 +

cosh θ − 1
cosh θ + 1

dr2 + (cosh θ+ 1)2
[

σ2dθ2 + (τ2 + σ2)dϕ2
]

. (2.8)
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As we discuss in the Conclusions, this process does not guarantee that the resultant metric

is an axisymmetric time and angular dependent solution of the vacuum Einstein equations,

but one can show that the metric of eq. (2.8) is indeed a solution. An analysis of the

corresponding curvature shows that it is asymptotically flat. Moreover, the Kretschmann

scalar

K = RαβγδR
αβγδ =

48

σ4(cosh θ + 1)6
(2.9)

is perfectly well defined for all values of θ and does not depend on the time coordinate τ .

One important point about this solution is that it does not require a “twist” in space in

order to avoid the singularity, as has been demanded in previous regular solutions [6]. This

property makes this metric the simplest possible regular S-brane solution. From now on,

we will refer to the metric (2.8) as the regular S0-brane solution. Generalizations of this

solution will be presented in section 5.

3. Global structure

In this section we investigate the main properties of the regular S0-brane derived above.

In particular, we are interested in the analysis of its isometries, asymptotic behavior and

the underlying R-symmetry.

3.1 Symmetries

Since the spacetime metric (2.8) does not depend explicitly on the spatial coordinates ϕ

and r there exist two Killing vector fields KI = ∂ϕ and KII = ∂r. KI describes the axial

symmetry and its norm |KI | = (cosh θ+1)2(σ2+τ2) is regular on the entire manifold. The

norm of the second Killing vector

|KII | =
cosh θ − 1
cosh θ + 1

(3.1)

vanishes for θ = 0. This shows the existence of a Killing horizon at this hypersurface.

Outside this horizon, the norm of KII is positive definite, indicating that the coordinate

r is spacelike at all points of the manifold outside the horizon. Notice, however, that if

we preserve the additional parameter µ > 1 (see section 5) in the case δ = 1, the norm

of this Killing vector KII = (µ cosh θ − 1)/(µ cosh θ + 1) is positive definite on the entire
spacetime manifold. In this case no horizon is present. Thus, the parameter µ can be used

to eliminate the horizon.

The metric (2.8) is invariant under the discrete symmetry θ → −θ, indicating that
it is symmetric with respect to the hypersurface θ = 0. None of the metric functions

change their sign when passing through the Killing horizon θ = 0 so that no closed timelike

geodesics exist and no Cauchy horizon appears. An observer traveling along the spatial

coordinate θ is not affected by the presence of the Killing horizon at θ = 0.

3.2 R-symmetry

The coordinate τ in (2.8) is always timelike. The explicit dependence on the spacelike

coordinate θ indicates that the metric can represent a spatially localized source. The S-

brane worldvolume lies along the spatial direction r so that ϕ and θ are spatial directions

– 6 –
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transverse to the worldvolume. While in the singular S0-brane solution (2.4) and in the

regular Kerr S-brane solution [6, 7] both transverse directions θ and ϕ contain factors

which depend explicitly on time. In the case of the regular S0-brane presented here only

the ϕ direction has cosmological expansion. This fact represents the main difference in the

topology of the previous known (singular and regular) S-branes solutions and the regular

S0-brane solution (2.8).

The original singular S0-brane solution corresponds to a 4-dimensional manifold of

the form R1,1 × H2, where H2 is a hyperbolic space that determines the R-symmetry.

Therefore, it possesses a SO(1, 2) R-symmetry. In the case of the regular Kerr S-brane

solution, the 4-dimensional manifold can be identified as a globally non trivial fiber bundle

with fiber H2 over the base space R1,1. The twisting in two of the spatial directions, which

is the cause of the elimination of the singularity in this spacetime, induces a non trivial

global topology in the fiber bundle that corresponds to R1,1 n H2, and the R-symmetry

reduces to SO(2) [6].

In the regular S0-brane solution (2.8), the metric of the transverse directions ϕ and θ

becomes

ds2
R-sym = (cosh θ + 1)

2(σ2dθ2 + σ̃2dϕ2) , (3.2)

where σ̃ is a real constant. This is a conformally flat 2-dimensional euclidean space which,

in general, is invariant with respect to transformations belonging to the group S0(1, 3).

This corresponds to the complete lorentzian symmetry and is therefore the most general

R-symmetry of all known regular solutions.

3.3 Asymptotic behavior

The asymptotic behavior of the regular S0-brane (2.8) is determined by the behavior of

the metric as θ → ∞ and as τ → ∞. Let us first consider the spatial asymptote. The
only function to be considered is cosh θ which behaves as exp(θ)/2 for θ→∞. The spatial
asymptote is then given by

ds2
θ→∞ =

e2θ

4

[

− σ2dτ2

τ2 + σ2
+ σ2dθ2 + (τ2 + σ2)dϕ2

]

+ dr2 . (3.3)

If we consider, in addition, values of the constant σ such that σ2 ¿ τ2, this metric reduces to

ds2
θ→∞ = −ξ2dt2 + dξ2 +

τ2
0

σ2
ξ2e2t + dr2 , (3.4)

where we have introduced the new timelike coordinate t = ln(τ/τ0) and the spacelike coor-

dinate ξ = (σ/2) exp(θ). This metric corresponds to a Rindler space with an exponential

expansion in the direction of the angle ϕ. This coincides exactly with the spatial behavior

of the regular Kerr S-brane solution [6, 7]. In the general case of metric (3.3) it can easily

be shown that it corresponds to a Rindler space with an expansion in the angular direction

given by a hyperbolic cosine function of time.
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We now analyze the temporal asymptote. In the asymptotic limit τ →∞ we obtain

ds2
τ→∞ = (cosh θ + 1)

2(−σ2dt2 + σ2dθ2 + τ2
0 e

2tdϕ2) +
cosh θ − 1
cosh θ + 1

dr2 , (3.5)

where the time coordinate is given as before by t = ln(τ/τ0). In the special case r = const.,

this corresponds to a conformal 2-dimensional Minkowski spacetime with an exponential

expansion in the angular direction ϕ.

Although in section 3.1 we have shown that the Killing horizon at θ = 0 can be

removed by means of the free parameter µ > 1, it is interesting to investigate the limiting

case (µ = 1) in which the horizon is present. From eq. (2.8) we can obtain the 3-dimensional

metric in the near horizon limit which can be written as

ds2
nhl = 4σ

2(−dT 2 + dθ2 + cosh2 T dϕ2) +
1

4
(eθ − 1)2dr2 , (3.6)

where we have introduced a new timelike coordinate by means of τ = σ sinhT . This shows

that near the horizon the regular S0-brane behaves as de Sitter space with a time expansion

in the angular direction ϕ. This resembles the behavior of the regular Kerr S-brane, but

in the present case crossing the horizon does not imply a change in the signature of the

metric so that all the coordinates remain well-behaved.

4. A dilatonic generalization

In this section we will generalize the regular S0-brane solution to include the dilaton field

which arises in the low-energy limit of IIA string theory. We first apply a Harrison trans-

formation to the Gowdy cosmological model presented in section 2.2. As a result we obtain

an electrovacuum Gowdy solution. The analytic continuation of this solution is then in-

terpreted as describing a regular charged S-brane configuration. Then we make use of a

particular symmetry property of the field equations, which follow from the low-energy ac-

tion of string theory, to generate the dilatonic generalization. We briefly discuss the main

properties of this generalized, regular S0-brane solution.

4.1 A charged regular S0-brane

In this section we derive the charged generalization of the regular S0-brane presented in 2.2.

The first step consists in deriving a solution of the Einstein-Maxwell field equations which

contains the Zipoy-Voorhees metric (with δ = 1) in the limiting case of vanishing electro-

magnetic field. Clearly, there is in principle an infinite number of possible generalizations

of a vacuum solution which include an electromagnetic field, each one corresponding to dif-

ferent sets of charge multipole moments. Here we will present the simplest generalization in

which only an additional charge monopole moment is included. In fact, this case has been

analyzed by Harrison [20] who proposed a transformation which generates electrovacuum

solutions from vacuum ones in the following manner. Let f0 and γ0 represent a vacuum

solution with metric (2.1), and f and γ represent the corresponding electrovacuum solution

– 8 –
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with only a charge monopole moment. Then, these two solutions are related by (see, for

instance, [21] for details of computations):

f = 4f0[1 + f0 + η0(1− f0)]
−2 , γ = γ0 , η0 = (1− e2)−1/2 , (4.1)

where e is a real constant which is interpreted as the specific charge, i.e., the ratio be-

tween the net charge and the total mass of the source. With this transformation one can

easily derive the charged generalization of the Zipoy-Voorhees solution. In the region con-

tained within the “horizons”, −1 ≤ x ≤ 1, we proceed as in section 2.2 and introduce the
coordinates t = r and x = cos τ to obtain the metric

ds2 =
sin2 τ

(η0 + cos τ)2
dr2 + σ2(η0 + cos τ)

2

[

(1 − y2)dϕ2 +
dy2

1− y2
− dτ 2

]

, (4.2)

and the electromagnetic potential

A = − eη0

η0 + cos τ
dr . (4.3)

From here we recover the metric (2.6) in the limiting case e = 0. Consequently, we can

interpret this solution as describing a Gowdy cosmology endowed with a specific electric

charge e. We now apply the i-rotation (2.7) on the solution (4.2) and introduce the angle

coordinate θ. To obtain a real Maxwell potential we also need to i-rotate the specific

charge, i.e. we change e→ ie. The resulting metric can be written in the following form:

ds2 = −σ
2(η + cosh θ)2

τ2 + σ2
dτ2+

sinh2 θ

(η + cosh θ)2
dr2+(η+cosh θ)2

[

σ2dθ2+(τ2+σ2)dϕ2
]

, (4.4)

with the potential 1-form,

A =
eη

η + cosh θ
dr , η = (1 + e2)−1/2 . (4.5)

In the limiting case e = 0, this metric reduces to the regular S0-brane presented in sec-

tion 2.2. An analysis of the corresponding curvature shows that the regularity property is

not affected by the presence of the additional charge. As one might expect, the constant e

determines the charge of the S0-brane.

4.2 The dilatonic field

In this section we generalize the charged regular S0-brane solution to include a dilatonic

field. Let us consider the Einstein-Maxwell-dilaton action

S = −
∫

d4x
√−g[−R+ 2(4φ)2 + e−2αφF 2] , (4.6)

where φ is the dilatonic field and α is the dilatonic coupling constant which determines the

special cases of the theories contained in (4.6). Indeed, if α =
√
3 one obtains the Kaluza-

Klein field equations which result from the dimensional reduction of the 5-dimensional

Einstein vacuum field equations. In the special case α = 1, the action (4.6) coincides with

the low-energy limit of string theory with vanishing dilaton potential. It turns out that
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if we restrict ourselves to spacetimes with two commuting Killing vector fields, the field

equations following from the variation of (4.6) possess certain symmetry properties which

are very helpful in the search for new solutions. In particular, one particular symmetry leads

to a transformation that allows us to generate dilatonic solutions from static electrovacuum

solutions. This specific transformation can be formulated in the following way. Let

f0 , γ0 , φ0 = 0 , F0 = dA0 (4.7)

represent a particular solution of the field equations following from the action (4.6) with

line element (2.1). Then, a simple dilatonic generalization of (4.7) can be obtained by

means of the transformation:

f = (f0)
1

1+α2 , γ =
γ0

1 + α2
, A =

A0√
1 + α2

, e2φ = (f0)
α

1+α2 . (4.8)

This transformation can easily be generalized to the case of time and angular dependent

charged solutions with no twist such as the solution of section 4.1. The proof essentially

resembles the procedure we have used in section 2.2 to derive the regular S0-brane solution.

The final result is a new solution of the form:

ds2 = − (η + cosh θ)2β
(

cosh θ +
τ2

σ2

)α2β σ2dτ2

τ2 + σ2
+

(

sinh θ

η + cosh θ

)2β

dr2 +

+(η + cosh θ)2β
[

σ2

(

cosh2 θ +
τ2

σ2

)α2β

dθ2 + (sinh θ)2α
2β(τ2 + σ2)dϕ2

]

, (4.9)

e2φ =

(

sinh θ

η + cosh θ

)2αβ

, β =
1

1 + α2
, (4.10)

A =
eη√

β(η + cosh θ)
dr . (4.11)

This solution is regular for all values of θ and τ . There is no change in the signature of

the metric when crossing the Killing horizon situated at θ = 0. It can be considered as the

low-energy limit of a solution of IIA string theory (in the Einstein frame). It is therefore

possible to construct the corresponding exact S-brane solution in string theory for which

one would expect it to describe the decay of an unstable D-brane.

It should be mentioned that the inclusion of the dilatonic field modifies some of the

global properties of the original regular S0-brane solution. Unlike the regular S0-brane solu-

tion in which only the transverse direction ϕ changes in time, the dilatonic field introduces

an additional time dependence along the spatial direction θ. For the sake of concreteness,

we consider now the special case α = 1 of the S-brane solution (4.9)-(4.11). At spatial

infinity the asymptotic behavior of the metric remains unchanged and is described by the

Rindler space (3.3), the electric field vanishes, and the dilatonic field approaches a constant

value. Differences appear in the temporal asymptote which is now given by

ds2
τ→∞ = σ2(η + cosh θ)(−4dτ̃ 2 + τ̃2 dθ2 + τ̃4 sinh θ dϕ2) +

sinh θ

η + cosh θ
dr2 , (4.12)

– 10 –



J
H
E
P
0
7
(
2
0
0
4
)
0
0
5

where the new time coordinate τ̃ is defined by τ̃ 2 = τ/σ. Both spatial directions θ and ϕ

present an asymptotic power expansion, which is different from the asymptotic exponential

expansion in the ϕ-direction of the regular S0-brane solution.

Another interesting feature of this solution is that the dilatonic field also modifies the

R-symmetry of the original S0-brane solution. Indeed, for the special case α = 1 it is easy

to see that the hypersurface transverse to the worldvolume of the brane is described by the

metric

ds2
R-sym = σ2(η + cosh θ)

[

√

cosh2 θ + τ 2
0 dθ2 + sinh θ dϕ̃2

]

, (4.13)

where τ0 = τ/σ is a constant and ϕ̃ =
√

1 + τ 2
0 ϕ. Unlike the case of the S0-brane solution,

this metric is not conformally flat. In fact, without the contribution of the conformal factor

(cosh θ + η) the curvature scalar of the metric (4.13) is given by

R =
(τ2

0 − 1) cosh2 θ − 2τ 2
0

2σ2 sinh2 θ (cosh2 θ + τ 2
0 )

5/2
, (4.14)

which vanishes (as well as the curvature components) only asymptotically at spatial infinity.

Since it is possible to introduce a local two-bein for the metric (4.13) such that the local

metric is euclidean, we conclude that underlying symmetry is SO(2). This means that the

lorentzian R-symmetry of the original, regular S0-brane solution becomes reduced to an

SO(2) R-symmetry by the presence of the dilatonic field.

To conclude this section we would like to mention that it is possible to consider more

general electromagnetic and dilatonic fields. The Harrison transformation makes it possi-

ble to generate simple charged generalizations from static vacuum solutions. This simple

generalization determines in turn the corresponding dilatonic field according to the trans-

formation (4.8). In fact, all the fields are determined by the seed function f0 of the static

vacuum solution. However, as has been shown in [22], the field equations which follow from

the Einstein-Maxwell-dilaton action (4.6) possess more general symmetry properties which

can be used to generate electromagnetic and dilatonic fields in terms of an arbitrary har-

monic function. This harmonic function is completely independent of the value of the seed

function f0. This means that for the regular S0-brane solution presented in section 2.2

(or its generalization of the next section) we can generate different dilatonic fields with

completely different local and global properties. This opens the possibility of searching for

regular S-brane solutions with dilatonic fields with any desired properties.

5. A family of non-twisting S-branes

The Zipoy-Voorhees metric (2.1) is valid for any real values of the parameter δ. In this

section we generalize the special, regular S0-brane solution of section 2.2 to include the

case of an arbitrary value of the parameter δ.

Applying an i-rotation “between the horizons” of the metric (2.1) and choosing the

coordinates in a way similar to that of section 2.2, it can be shown that the resulting

solution can be written as

ds2 = σ2f−1e2γ
(

µ2 cosh2 θ +
τ2

σ2

)[

− dτ2

τ2 + σ2
+
µ2 sinh2 θ dθ2

µ2 cosh2 θ − 1

]

+
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+fdr2 + f−1(µ2 cosh2 θ − 1)(τ 2 + σ2)dϕ2 , (5.1)

with

f =

(

µ cosh θ − 1
µ cosh θ + 1

)δ

, e2γ =

(

µ2 cosh2 θ − 1
µ2 cosh2 θ + τ 2/σ2

)δ2

, (5.2)

where µ is an arbitrary real constant in the range 1 < µ2 < ∞. This is a 4-dimensional
axisymmetric, time and angular dependent solution of Einstein’s vacuum field equations.

It is regular on the entire manifold as can be seen from the Kretschmann scalar

K =
16δ2

σ4

(µ cosh θ − 1)−2δ2+2δ−2

(µ cosh θ + 1)2δ
2+2δ+2

(

µ2 cosh2 θ +
τ2

σ2

)2δ2−3

L(τ, θ) , (5.3)

where

L(τ, θ) = 3(µ cosh θ−δ)2
(

µ2 cosh2 θ+
τ2

σ2

)

+(δ2−1)
(

1+
τ2

σ2

)

[δ2−1+3µ cosh θ(µ cosh θ−δ)] .
(5.4)

For µ2 > 1 and any values of the parameter δ this scalar does not diverge at any point of

the manifold. The solution is also asymptotically flat. For δ = 1 we recover the regular

S0-brane solution discussed in section 2.2. Only in this special case, the parameter µ can

take the degenerate value µ = 1. However, one could also keep this parameter positive and

µ > 1 and use it to eliminate the Killing horizon which appears along the spatial coordinate

θ (see section 3).

It is clear that the solution (5.1) admits a much richer structure than the regular

S0-brane solution (2.8). For instance, whereas the curvature of the regular S0-brane does

not depend explicitly on time, the curvature of the generalized solution is always time-

dependent, and this dependence can be changed arbitrarily by means of the parameter δ.

This indicates that the global properties will also depend on the parameter δ.

The generalization of this family of regular solutions to include an electromagnetic field

and a dilatonic field is straightforward. The symmetry properties mentioned in section 4

are valid and can be applied in this general case also.

6. Conclusions

We have derived a family of 4-dimensional regular S-brane solutions that solve the singu-

larity problem of S-branes without requiring a twist in space. The simplest representative

of this family of solutions is obtained by applying the method of analytic continuation to

the Schwarzschild spacetime, but instead of applying it from “outside the horizon”, we first

“cross” the horizon where the spacetime can be interpreted as a Gowdy cosmology and then

perform the i-rotation. This shows that the analytical continuation of the Schwarzschild

spacetime “inside the horizon” can get rid of the singularity without introducing a twist

in space. In the general case, the family of metrics can be interpreted as a Zipoy-Voorhees

regular S-brane solution.

It is important to clarify a point concerning the method used here and in other works

to derive this type of new spacetimes. Modern solution generating techniques were de-

veloped almost thirty years ago and have been extensively used to generate solutions of
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the Einstein-Maxwell field equations with two Killing vector fields. Simple examples of

these methods are the Harrison transformation [20] as given in eq. (4.1) and the dilatonic

transformation (4.8). All these methods are based upon the existence of certain continuous

deformations (Lie transformations) of the field equations which are the elements of an infi-

nite dimensional group of transformations, first discovered by Geroch [23] in the stationary,

axisymmetric Einstein vacuum field equations. The study of the Geroch group gave rise

to the development of well established methods that allow us to generate new solutions

from a known seed solution. It is clear that the “horizon method”, the i-rotation and other

similar methods cannot be included within the category of continuous deformations of the

field equations and should be considered at most as “tricks” that incidentally happen to

generate new solutions. Consequently, one can not assure a priori that the application of

these “tricks” really lead to new solutions. One always should test the resulting metrics

with the corresponding field equations. In fact, in our experience we have found cases in

which these “tricks” fail to work. Probably, the reason why they sometimes happen to lead

to new solutions is related to the existence of yet unknown discrete symmetries of the field

equations.

The S-branes solutions presented here correspond to asymptotically flat, time and

angular dependent backgrounds. They depend on a real parameter δ, which could be used

to “control” the time and angular dependence of the corresponding spacetime metric and

curvature, and on an additional parameter µ, which in the limiting case δ = 1 can be used

to remove the Killing horizon that appears along one of the spatial coordinates.

In this work we have analyzed in detail the global properties of only the simplest

regular S0-brane, i.e., when δ = µ = 1. This case is relatively simple because the curvature

does not depend explicitly on time. Although this regular solution does not have a twist in

space, its asymptotic behavior resembles to some extent that of the twisting Kerr S-brane.

We have seen that the R-symmetry of the regular S0-brane solution corresponds to that of a

2-dimensional conformally flat space, in contrast to the hyperbolic space R-symmetry of the

singular S0-brane. This kind of symmetry reduction has been proposed earlier as a possible

approach to avoid the singularity, and has been used recently to derive regular twisting

S-brane solutions. Our results show that non-twisting, simpler, regular solutions can be

obtained when the R-symmetry corresponds to the general lorentzian symmetry. However,

when we consider the additional dilatonic field the R-symmetry becomes SO(2) as in the

case of the twisting Kerr S-brane. This is again in the spirit of the idea that the reduction

of the R-symmetry allows us to overcome the singularity problem of S-branes. Our analysis

of the properties of the regular S0-brane solution and its dilatonic generalization shows that

it can be used to describe the formation and decay of an unstable D-brane.

The family of regular S-brane solutions derived in section 5 offers several possibilities

to continue the investigation of regular S-brane configurations. For instance, it would be

interesting to study the case δ = 2 and µ2 > 1 for which one can show that the curvature

depends explicitly on time, unlike the regular S0-brane solution whose curvature depends

only on one spatial coordinate. Also, the corresponding metric contains an explicit time and

angular dependence in both spatial directions θ and ϕ which are the directions transverse

to the worldvolume of the brane. The asymptotic behavior of the corresponding S-brane
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solution and its dilatonic generalization will present different possible scenarios that could

be of interest, especially in the context of the formation and decay of more general unstable

branes. This task is currently under investigation.
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