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EPIGRAPH

In mathematical language, the integral called action, instead of being always a minimum, is
often a maximum; and often it is neither the one nor the other: though it has always a certain

stationary property, of a kind which has been already alluded to, and which will soon be more
fully explained. We cannot, therefore, suppose the economy of this quantity to have been
designed in the divine idea of the universe: though a simplicity of some high kind may be

believed to be included in that idea. And though we may retain the name of action to denote the
stationary integral to which it has become appropriated–which we may do without adopting

either the metaphysical or (in optics) the physical opinions that first suggested the name–yet we
ought not (I think) to retain the epithet least: but rather to adopt the alteration proposed above,

and to speak, in mechanics and in optics, of the Law of Stationary Action.

Sir William Rowan Hamilton
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ABSTRACT OF THE DISSERTATION

Geometric Variational Integrators for Multisymplectic PDEs and Adjoint Systems

by

Brian Kha Tran

Doctor of Philosophy in Mathematics with Specialization in Computational Science

University of California San Diego, 2023

Professor Melvin Leok, Chair

Variational integrators are a class of geometric structure-preserving numerical integrators

that are based on a discretization of Hamilton’s variational principle. We construct, analyze

and investigate the applications of variational integrators to multisymplectic partial differential

equations and to adjoint systems.

The variational structure of multisymplectic PDEs encodes both the conservation laws

admitted by these systems via Noether’s theorem and multisymplecticity, a covariant spacetime

generalization of symplecticity. We develop variational integrators for these systems which

preserve these properties at the discrete level, in both the Lagrangian and Hamiltonian settings.

In the Lagrangian setting, we utilize compatible finite element spaces to develop these variational

xv



integrators and utilize their preservation of the de Rham complex to define discrete geometric

structures associated to these integrators and naturally relate them to their continuous counterparts.

In the Hamiltonian setting, we utilize a discrete Type II variational principle, based on the notion

of a Type II generating functional for multisymplectic PDEs, to construct structure-preserving

variational integrators for multisymplectic Hamiltonian PDEs.

Adjoint systems are ubiquitous in optimization and optimal control theory since they

allow for efficient computation of sensitivities of cost functionals in optimization problems

and arise as necessary conditions for optimality in optimal control problems via Pontryagin’s

maximum principle. Adjoint systems admit a fundamental quadratic conservation law which

is at the heart of the method of adjoint sensitivity analysis; this conservation law arises from

the symplectic geometry of these systems. We develop a geometric theory for continuous and

discrete adjoint systems associated to ordinary differential equations and differential-algebraic

equations, by investigating their underlying symplectic and presymplectic structures, respectively.

We develop a Type II variational principle for such systems at the continuous level. Subsequently,

we discretize this variational principle to construct variational integrators for adjoint systems

which preserve the quadratic conservation law at the discrete level and thus, allow for sensitivities

of cost functions to be computed exactly. We further extend this framework to the Lie group

setting and develop a variational integrator based on novel continuous and discrete Type II

variational principles on cotangent bundles of Lie groups.

xvi



Introduction

In this dissertation, we explore the construction, analysis, and application of variational

integrators to the numerical simulation of multisymplectic PDEs and adjoint systems. Mul-

tisymplectic PDEs are a class of geometric partial differential equations arising in classical

field theories of physics; the multisymplectic geometry is an integral part of such theories, as

it encodes symmetries and conservation laws covariantly. Adjoint systems are widely used in

dynamically-constrained optimization and optimal control; the symplectic geometry of these

systems leads to a quadratic conservation law which allows one to compute sensitivities of cost

functions. A major theme in this thesis is to understand, at the continuous level, the relation

of the geometry of these systems with their associated conservation laws. By understanding

these relations at the continuous level, we elucidate the construction of structure-preserving

discretizations of these systems, in order to preserve these relations at the discrete level.

This dissertation can be broadly divided into two parts. In Chapters 1 and 2, we study

structure-preserving discretizations of multisymplectic PDEs, in the Lagrangian and Hamiltonian

frameworks, respectively. In Chapters 3 and 4, we study structure-preserving discretizations of

adjoint systems, on vector spaces and on Lie groups, respectively. The chapters in this dissertation

can be read mostly independently; however, the material in Chapter 4 is built upon the material in

Chapter 3, so it is recommended to read Chapter 3 before Chapter 4. Furthermore, although the

two parts study different types of systems (multisymplectic PDEs and adjoint systems), they do

share a common thread in the construction of the methods used in this dissertation; in particular,

Chapters 2, 3, and 4 all develop Type II variational principles in order to construct geometric

variational integrators.
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Chapter 1

Variational Structures in Cochain Projec-
tion Based Variational Discretizations of
Lagrangian PDEs

1.1 Introduction

The problem of structure-preservation in numerical discretizations of partial differ-

ential equations has primarily been studied in two disjoint stages, the first involving the

semi-discretization of the spatial degrees of freedom, and the second having to do with the

time-integration of the resulting coupled system of ordinary differential equations. Implicit in

such an approach is the use of tensor product meshes in spacetime. In the context of spatial

semi-discretization, the notion of structure-preservation is focused on compatible discretiza-

tions (see Arnold [6], and references therein), that preserve in some manner the functional and

geometric relationships between the different function spaces that arise in the partial differential

equation, and in the context of time-integration, geometric numerical integrators (see Hairer et al.

[51], and references therein) aim to preserve geometric invariants like the symplectic or Poisson

structure, energy, momentum, and the nonlinear manifold structure of the configuration spaces,

like its Lie group, homogeneous space, or Riemannian structure.

Lagrangian partial differential equations are an important class of partial differential

equations that exhibit geometric structure, and they can benefit from numerical discretizations
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that preserve such geometric structure. This can either be viewed as an infinite-dimensional

Lagrangian system with time as the independent variable, or a finite-dimensional Lagrangian

multisymplectic field theory [87] with space and time as independent variables. Lagrangian

variational integrators [84; 85] are a popular method for systematically constructing symplectic

integrators of arbitrarily high-order, and satisfy a discrete Noether’s theorem that relates group-

invariance with momentum conservation. A group-invariant (and hence momentum-preserving)

variational integrator can be constructed from group-equivariant interpolation spaces [40].

In this paper, we will demonstrate how compatible discretization, multisymplectic varia-

tional integrators, and group-equivariant interpolation spaces can be combined to yield a natural

geometric structure-preserving discretization framework for Lagrangian field theories.

1.1.1 Multisymplectic Formulation of Classical Field Theories

The variational principle for Lagrangian PDEs involve a multisymplectic formulation

[85; 87]. The base space X consists of independent variables, denoted by (x0, . . . ,xn) ≡ (t,x),

where x0 ≡ t is time, and (x1, . . . ,xn) ≡ x are space variables. The dependent field variables,

(y1, . . . ,ym)≡ y, form a fiber over each spacetime basepoint. The independent and field variables

form the configuration bundle, π : Y ! X . The configuration of the system is specified by a

section of Y over X , which is a continuous map φ : X ! Y , such that π ◦φ = 1X . This means

that for every (t,x) ∈ X , φ((t,x)) is in the fiber π−1((t,x)) over (t,x).

X

t

x
φ

Figure 1.1. A section of the configuration bundle: the horizontal axes represent spacetime, and the vertical axis
represent dependent field variables. The section φ gives the value of the field variables at every point of spacetime.

For ODEs, the Lagrangian depends on position and its time derivative, which is an

3



element of the tangent bundle T Q, and the action is obtained by integrating the Lagrangian in

time. In the multisymplectic case, the Lagrangian density is dependent on the field variables

and the partial derivatives of the field variables with respect to the spacetime variables, and the

action integral is obtained by integrating the Lagrangian density over a region of spacetime.

The multisymplectic analogue of the tangent bundle is the first jet bundle J1Y , consisting of

the configuration bundle Y , and the first partial derivatives of the field variables with respect to

the independent variables. In coordinates, we have φ(x0, . . . ,xn) = (x0, . . .xn,y1, . . .ym), which

allows us to denote the partial derivatives by va
µ = ya

,µ = ∂ya/∂xµ . We can think of J1Y as a

fiber bundle over X . Given a section φ : X ! Y , we obtain its first jet extension, j1φ : X ! J1Y ,

that is given by

j1
φ(x0, . . . ,xn) =

(
x0, . . . ,xn,y1, . . . ,ym,y1

,0, . . . ,y
m
,n
)
,

which is a section of the fiber bundle J1Y over X . We refer to sections of J1Y of the form j1φ ,

where φ is a section of Y , as holonomic. The configuration space is the space of sections of Y

and the velocity phase space is the space of holonomic sections of J1Y . The Lagrangian density

is a bundle map L : J1Y ! ∧n+1(T ∗X) and hence, induces a map on the space of sections

L : Γ(J1Y )! Ωn+1(X). Thus, we can define the action functional S : Γ(Y )! R by S[φ ] =∫
X L ( j1φ). Hamilton’s principle states that δS = 0, subject to compactly supported variations.

As we will see, this is the basis of Lagrangian multisymplectic variational integrators [85].

The variational structure of a Lagrangian field theory is given by the Cartan form, which

in coordinates has the expression

ΘL =
∂L
∂va

µ

dya∧dnxµ +

(
L− ∂L

∂va
µ

va
µ

)
dn+1x. (1.1)

This can be defined intrinsically as the pullback of the canonical (n+1)-form on the dual jet

bundle by the covariant Legendre transform FL : J1Y ! J1Y ∗. Then, the action can be expressed
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as S[φ ] =
∫

X L ( j1φ) =
∫

X( j1φ)∗ΘL . The variation of the action is then expressed as

dS[φ ] ·V =−
∫

X
( j1

φ)∗( j1Vy ΩL )+
∫

∂X
( j1

φ)∗( j1Vy ΘL ),

where ΩL = −dΘL defines the multisymplectic form and j1V denotes the jet prolongation

of the vector field V (for details, see Gotay et al. [44]). Hence, the variation of the action is

completely specified by the Cartan form; we will show that a finite element discretization of the

variational principle gives rise to a discrete form and subsequently we will express variational

properties of the discrete system in terms of the discrete Cartan form.

In this paper, we will take the fields to be elements of HΛk(X), the space of square

integrable k−forms on X with square integrable exterior derivative. In this setting, the appropriate

analogue of the configuration space is HΛk and the appropriate analogue of the velocity phase

space is J1
HΛk := HΛk×dHΛk, where the jet extension of a field φ ∈ HΛk, only depending on

the exterior derivative, is j1
dφ ≡ (x,φ ,dφ), i.e., we consider Lagrangian theories that depend on

the exterior derivative of the field and not depending more generally on all first-order derivatives;

for scalar fields, k = 0, these are equivalent. We refer to j1
d : HΛk ! J1

HΛk as the exterior jet

extension.

1.1.2 Finite Element Exterior Calculus

The notion of compatible discretization is a research area that has garnered significant

interest and activity in the finite element community, motivated by the seminal work of Arnold

et al. [7] on finite element exterior calculus that provides a broad generalization of Hiptmair’s

work on mixed finite elements for electromagnetism [54]. This arises from the fundamental role

that the de Rham complex of exterior differential forms plays in mixed formulations of elliptic

partial differential equations, and the realization that many of the most successful mixed finite

element spaces, such as Raviart–Thomas and Nédélec elements, can be viewed as finite element

subspaces of the de Rham complex that satisfy a bounded cochain projection property, so that
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the set of mixed finite elements form a subcomplex that provides stable approximations of the

original problem.

1.1.3 Group-equivariant interpolation

The study of group-equivariant approximation spaces [40] for functions taking values

on manifolds is motivated by the applications to geometric structure-preserving discretization

of Lagrangian and Hamiltonian PDEs with symmetries. In particular, when the Lagrangian

density for a Lagrangian PDE with symmetry is discretized using a Lagrangian multisymplectic

variational integrator constructed from an approximation space that is equivariant with respect to

the symmetry group, the resulting numerical method automatically preserves the momentum map

associated with the symmetry of the PDE. In essence, such variational discretizations exhibit

a discrete analogue of Noether’s theorem, which connects symmetries of the Lagrangian with

momentum conservation laws.

Many intrinsic geometric flows such as the Ricci flow and the Einstein equations involves

computing the evolution of a Riemannian or pseudo-Riemannian metric on spacetime. Addi-

tionally, these intrinsic geometric flows can often be formulated variationally, so it is natural

to consider group-equivariant approximation spaces taking values on Riemannian or pseudo-

Riemannian metrics with a view towards constructing variational discretizations that preserve

the associated momentum maps.

A now standard approach to constructing an approximation space for functions taking

values on a Riemannian manifold that is equivariant with respect to Riemannian isometries is the

method of geodesic finite elements introduced independently by Sander [105] and Grohs [48].

Given a Riemannian manifold (M,g), the geodesic finite element ϕ : ∆n!M associated with a

set of linear space finite elements {vi : ∆n! R}n
i=0 is given by the Fréchet (or Karcher) mean,

ϕ(x) = arg min
p∈M ∑

n
i=0 vi(x)(dist(p,mi))

2,
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where the optimization problem involved can be solved using optimization algorithms developed

for matrix manifolds (see Absil et al. [2], and references therein). The spatial derivatives of the

geodesic finite element can be computed in terms of an associated optimization problem. The

advantage of the geodesic finite element approach is that it inherits the approximation properties

of the underlying linear space finite element, but it can be expensive to compute, since it entails

solving an optimization problem on a manifold.

An alternative approach to group-equivariant interpolation for functions taking values on

symmetric spaces was introduced in Gawlik and Leok [40], which, in particular, is applicable to

the interpolation of Riemannian and pseudo-Riemannian metrics. It uses the generalized polar

decomposition [91] to construct a local diffeomorphism between a symmetric space and a Lie

triple system, and thereby lift a scalar-valued interpolant to a symmetric space-valued interpolant.

1.1.4 Lagrangian Variational Integrators

Variational integrators (see [84], and references therein) are a class of geometric structure-

preserving numerical integrators that are based on a discretization of Hamilton’s principle. They

are particularly appropriate for the simulation of Lagrangian and Hamiltonian ODEs and PDEs,

as they automatically preserve many geometric invariants, including the symplectic structure,

momentum maps associated with symmetries of the system, and exhibit bounded energy errors

for exponentially long times.

In the case of Lagrangian ODEs, variational integrators are based on constructing com-

putable approximations Ld : Q×Q! R of the exact discrete Lagrangian,

LE
d (q0,q1,h) = ext q∈C2([0,h],Q)

q(0)=q0,q(h)=q1

∫ h

0
L(q(t), q̇(t))dt,

which can be viewed as Jacobi’s solution of the Hamilton–Jacobi equation. Given a discrete

Lagrangian Ld , one introduces the discrete action sum Sd = ∑
n−1
k=0 Ld(qk,qk+1), and then the

discrete Hamilton’s principle states that δSd = 0, for fixed boundary conditions q0 and qn. This
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leads to the discrete Euler–Lagrange equations,

D2Ld(qk−1,qk)+D1Ld(qk,qk+1) = 0,

where Di denotes the partial derivative with respect to the i-th argument. This implicitly defines

the discrete Lagrangian map FLd : (qk−1,qk) 7! (qk,qk+1) for initial conditions (qk−1,qk) that

are sufficiently close to the diagonal of Q×Q. It is also equivalent to the implicit discrete

Euler–Lagrange equations,

pk =−D1Ld(qk,qk+1), pk+1 = D2Ld(qk,qk+1),

which implicitly defines the discrete Hamiltonian map F̃Ld : (qk, pk) 7! (qk+1, pk+1), which is

automatically symplectic. This clearly follows from the fact that these equations are precisely the

characterization of a symplectic map in terms of a Type I generating function. The two equations

in the implicit discrete Euler–Lagrange equations can be used to define the discrete Legendre

transforms, F±Ld : Q×Q! T ∗Q:

F+Ld : (q0,q1)! (q1, p1) = (q1,D2Ld(q0,q1)),

F−Ld : (q0,q1)! (q0, p0) = (q0,−D1Ld(q0,q1)).

The following commutative diagram illustrates the relationship between the discrete Hamiltonian

flow map, discrete Lagrangian flow map, and the discrete Legendre transforms,

(qk, pk)
F̃Ld // (qk+1, pk+1)

(qk−1,qk)

F+Ld

??

FLd

// (qk,qk+1) FLd

//

F+Ld

==

F−Ld

__

(qk+1,qk+2)

F−Ld

bb
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If the discrete Lagrangian is invariant under the diagonal action of a Lie group G, i.e., Ld(q0,q1)=

Ld(gq0,gq1), for all g ∈ G, then the discrete Noether’s theorem states that there is a discrete

momentum map that is automatically preserved by the variational integrator. The bounded energy

error of variational integrators can be understood by performing backward error analysis [11; 49],

which then shows that the discrete flow map is approximated with exponential accuracy by the

exact flow map of the Hamiltonian vector field of a modified Hamiltonian. Similarly, backward

error analysis for Lagrangian variational integrators is considered in [117].

1.1.5 Multisymplectic Hamiltonian Variational Integrators.

For Hamiltonian PDEs (see, for example, Marsden and Shkoller [83]) the action is a

functional on the field and multimomenta values (more precisely, sections of the restricted dual

jet bundle),

S[φ , p] =
∫
[pµ

∂µφ −H(φ , p)]dn+1x,

where the integration is over some (n+ 1)-dimensional region of spacetime. The variational

principle gives the De Donder–Weyl equations ∂µ pµ =−∂H/∂φ , ∂µφ = ∂H/∂ pµ . Defining

z = (φ , p0, . . . , pn) and Kµ as the (n+2)× (n+2) skew-symmetric matrix with value −1 in the

(0,µ + 1) entry, 1 in the (µ + 1,0) entry, and 0 in every other entry (with indexing from 0 to

n+1), the De Donder–Weyl equations can be written in the form

K0
∂0z+ · · ·+Kn

∂nz = ∇zH.

This formulation of Hamiltonian PDEs was studied in Bridges [18]; in particular, it was shown

that such a system admits a multisymplectic conservation law of the form ∂µωµ(V,W ) = 0,

where the ωµ are two-forms corresponding to Kµ and the conservation law holds when evaluated

on first variations V,W . For discretizing such equations, multisymplectic integrators have been

developed which admit a discrete analogue of this multisymplectic conservation law (see, for

example, Bridges and Reich [22]). Such multisymplectic integrators have traditionally not been
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approached from a variational perspective.

However, in Tran and Leok [112], we developed a systematic method for constructing

variational integrators for multisymplectic Hamiltonian PDEs which automatically admit a

discrete multisymplectic conservation law and a discrete Noether’s theorem by virtue of the

discrete variational principle. The construction is based on a discrete approximation of the

boundary Hamiltonian that was introduced in Vankerschaver et al. [116],

H∂U(ϕA,πB) = ext
[∫

B
pµ

φdnxµ −
∫

U
(pµ

∂µφ −H(φ , p))dn+1x
]
,

where ∂U =AtB, boundary conditions are placed on the field value φ on A and normal momenta

value on B, and one extremizes over the sections (φ , p) over U satisfying the specified boundary

conditions. The boundary Hamiltonian is a generating functional in the sense that the Type II

variational principle generates the normal momenta value along A and the field value along B,

δH∂U

δϕA
=−pn|A,

δH∂U

δπB
= φ |B.

A variational integrator is then constructed by first approximating the boundary Hamiltonian

using a finite-dimensional function space and quadrature, and subsequently enforcing the Type II

variational principle. For example, with particular choices of function spaces and quadrature,

Tran and Leok [112] recover the class of multisymplectic partitioned Runge–Kutta methods.

In this paper, we take a different approach in several regards. First, we focus on La-

grangian field theories as opposed to Hamiltonian field theories. For Hamiltonian field theories,

the momenta are related to the field and its derivative by the Legendre transform; this falls out

from the variational principle so one does not need to enforce it beforehand. Thus, in this sense,

the momenta and field values can be considered as independent before enforcing the variational

principle. On the other hand, for Lagrangian field theories, the Lagrangian depends on both the

field value and its first derivative, so one cannot naı̈vely treat the two as independent; that is, the
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Lagrangian depends on holonomic sections of the jet bundle. As we will see, this will mean

that we need to pay particular attention to the holonomic condition when discretizing via a finite

element projection. Furthermore, as opposed to constructing variational integrators from a gener-

ating functional (the analogue in the Lagrangian framework would be the boundary Lagrangian,

see Vankerschaver et al. [116]), in this paper, we instead investigate directly discretizing the

variational principle δS = 0 utilizing projections into finite-dimensional subspaces. Finally, for

simplicity, we do not utilize any quadrature approximations of the various integrals which we

encounter; for strong nonlinearities in the Lagrangian, one generally has to utilize quadrature to

construct an efficient discretization. However, the theory that we outline is also applicable to the

case of quadrature approximation by first applying the quadrature approximation of the action

before enforcing the variational principle, so that the resulting discretization is still variational;

we will elaborate on this in Remark 1.2.5. For this reason, we will assume exact integration in

order to keep the exposition simple.

Main Contributions. This paper studies the variational finite element discretization of La-

grangian field theories from two perspectives; we begin by investigating directly discretizing the

full variational principle over the full spacetime domain, which we refer to as the “covariant”

approach, and subsequently study semi-discretization of the instantaneous variational principle

on a globally hyperbolic spacetime, which we refer to as the “canonical” approach. This paper

can be considered a discrete analogue to the program initiated in Gotay et al. [44, 45], which

lays the foundation for relating the covariant and canonical formulations of Lagrangian field

theories through their (multi)symplectic structures and momentum maps. One of the goals of

understanding the relation between these two different formulations is to systematically relate the

covariant gauge symmetries of a gauge field theory to its initial value constraints. This is seen,

for example, in general relativity, where the diffeomorphism gauge invariance gives rise to the

Einstein constraint equations over the initial data hypersurface (see, for example, Gourgoulhon

[46]). When one semi-discretizes such gauge field theories, the discrete initial data must satisfy
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an associated discrete constraint. We aim to make sense of the discrete geometric structures

in the covariant and canonical discretization approaches as a foundation for understanding the

discretization of gauge field theories.

In Section 1.2, we begin by formulating a discrete variational principle in the covariant ap-

proach, utilizing the finite element construction to appropriately project the variational principle.

We show that a cochain projection from the underlying de Rham complex onto the finite element

spaces yields a natural discrete variational principle that is compatible with the holonomic jet

structure of a Lagrangian field theory. In Section 1.2.2, we then show that discretizing by cochain

projections leads to a naturality relation between the continuous variational problem and the

discrete variational problem; this naturality then implies that discretization and the variational

principle commute and also, that discretizing at the level of the configuration bundle or at the

level of the jet bundle are equivalent. Subsequently, by decomposing the finite element spaces

into boundary and interior components, we define a discrete weak Cartan form in analogy with

the continuum weak Cartan form which will, in a sense, encode the discrete variational structure.

With particular choices of finite element spaces, this discrete weak Cartan form recovers the

notion of the discrete Cartan form introduced by Marsden et al. [85]. However, we note that

our notion of a discrete weak Cartan form is more general and furthermore, since our discrete

variational problem is naturally related to the continuum variational problem, we are able to

explicitly discuss in what sense the discrete weak Cartan form converges to the continuum

weak Cartan form. Using this discrete weak Cartan form, in Sections 1.2.3 and 1.2.4, we state

and prove discrete analogues of the multisymplectic form formula and Noether’s theorem. In

Section 1.2.5, we reinterpret and concisely summarize the preceding sections by interpreting the

discrete variational structures as elements of a discrete variational complex. In Section 1.2.6, we

provide an example of a multisymplectic integrator for the scalar Poisson equation and prove the

convergence of the discrete weak Cartan form to the weak Cartan form.

In Section 1.3, we study the semi-discretization of the canonical formulation of a La-

grangian field theory on a globally hyperbolic spacetime. In Section 1.3.1, we discretize the
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instantaneous variational principle utilizing cochain projections onto finite element spaces over a

Cauchy surface, which gives rise to a semi-discrete Euler–Lagrange equation. In Section 1.3.2,

we relate this semi-discrete Euler–Lagrange equation to a Hamiltonian flow on a symplectic semi-

discrete phase space. We will discuss in what sense the symplectic structure on the semi-discrete

phase space arises from a symplectic structure on the continuum phase space. Subsequently, we

will investigate the energy-momentum map structure associated to the semi-discrete phase space

in Section 1.3.3, and discuss how, under appropriate equivariance conditions on the projection,

the energy-momentum map structure on the semi-discrete phase space arises as the pullback of

the energy-momentum map structure on the continuum phase space. This lays a foundation for

understanding initial value constraints when discretizing field theories with gauge symmetries.

Finally, in Section 1.3.4, we relate the covariant and canonical discretization approaches in the

case of tensor product finite element spaces.

The underlying theme of this paper is that, when one discretizes the variational principle

utilizing compatible discretization techniques, the associated (covariant or canonical) discretiza-

tion inherits discrete variational structures which can be viewed as pullbacks or projections of

the associated continuum variational structures. These discrete variational structures allow one

to investigate structure-preservation under discretization of important physical properties, such

as momentum conservation, symplecticity, and (gauge) symmetries.

1.2 Covariant Discretization of Lagrangian Field Theories

In this section, we discretize the covariant Euler–Lagrange equations which arise from

the variational principle δS[φ ] = 0 for the action S : φ 7!
∫

X L ( j1
dφ) where φ ∈ HΛk is an

element of the configuration space and j1
dφ = (x,φ ,dφ). To utilize the finite element method, we

take our base space X to be a bounded (n+1)−dimensional polyhedral domain with boundary

∂X , equipped with a finite element triangulation Th. We will assume X has a Riemannian

or Lorentzian metric. For this discretization, we perform the variation over a finite element
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space, and subsequently study how the multisymplectic and covariant momentum map structures

are affected by discretization. In particular, we show how these structures are preserved for

particular choices of finite element spaces, namely spaces whose projections are cochain maps

or group-equivariant interpolation spaces. To begin, we first discuss the weak formulation of

Lagrangian field theory.

1.2.1 Weak Lagrangian Field Theory

In this section, we formulate a weak version of Lagrangian field theory on the Hilbert

space HΛk. Since we wish to work in the Sobolev space setting, it does not make sense to

consider pointwise values of (e.g., square integrable) sections. However, we will assume that the

Lagrangian density makes sense as a map on sections, L : J1
HΛk !Ωn+1(X), i.e., given a section

φ ∈ HΛk, the quantity L ( j1
dφ) is a top-dimensional form on X . Hence, we can define the action

S : HΛk!R via S[φ ] =
∫

X L ( j1
dφ). Thus, from our perspective, a weak Lagrangian field theory

is defined by a Lagrangian density L : J1
HΛk !Ωn+1(X) with associated action S : HΛk! R.

We derive the weak Euler–Lagrange equations in the Hilbert space setting, where the

velocity phase space is J1
HΛk = HΛk × dHΛk. Fixing the trace of φ on ∂X , the variational

principle is to find φ ∈ HΛk such that δS[φ ] · v = 0 for all v ∈ H̊Λk ≡ {v ∈ HΛk : Tr(v) = 0}.

This yields the weak Euler–Lagrange equations

0 = δS[φ ] · v =
∫

X

(
δ2L ( j1

dφ) · v+δ3L ( j1
dφ) ·dv

)
(2.1)

= (∂2L ( j1
dφ),v)L2Λk +(∂3L ( j1

dφ),dv)L2Λk+1

= (∂2L ( j1
dφ),v)L2Λk +(d∗∂3L ( j1

dφ),v)L2Λk ,

where δi denotes the variation with respect to the ith argument, the codifferential d∗ is interpreted

in the weak sense, and in the second line we apply the Riesz representation theorem to express the

linear functional v∈ L2Λk 7!
∫

X δ2L ( j1
dφ) ·v as an element ∂2L ( j1

dφ) of L2Λk and similarly, the

linear functional w ∈ L2Λk+1 7!
∫

X δ3L ( j1
dφ) ·w as an element ∂3L ( j1

dφ) of L2Λk+1, assuming
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that these linear functionals are bounded.

Remark 1.2.1. As mentioned above, the linear functionals v ∈ L2Λk 7!
∫

X δ2L ( j1
dφ) · v and

w ∈ L2Λk+1 7!
∫

X δ3L ( j1
dφ) ·w should be bounded in order to represent them as elements of

L2Λk and L2Λk+1, respectively. We give some examples of classes of Lagrangian densities for

which this holds.

Consider a Lagrangian density containing at most quadratic terms in φ and dφ , of the

form

L ( j1
dφ) =

1
2

a1dφ ∧∗dφ +
1
2

a2φ ∧∗φ +a3 f ∧∗dφ +a4g∧∗φ ,

where ai ∈ L∞, f ∈ L2Λk+1,g ∈ L2Λk are given. The variation of the associated action can be

computed

δS[φ ] · v =
∫

X

(
(a2φ +a4g)∧∗v+(a1dφ +a3 f )∧∗dv

)
.

We see that the functional v ∈ L2Λk 7!
∫

X δ2L ( j1
dφ) · v =

∫
X(a2φ +a4g)∧∗v is bounded, since

∣∣∣∫
X
(a2φ +a4g)∧∗v

∣∣∣= (a2φ ,v)L2Λk +(a4g,v)L2Λk

≤ (‖a2‖L∞‖φ‖L2Λk +‖a4‖L∞‖g‖L2Λk)‖v‖L2Λk .

Thus, we can represent this functional as an element of L2Λk; explicitly, ∂2L ( j1
dφ) = a2φ +a4g.

Similarly, w∈ L2Λk+1 7!
∫

X δ3L ( j1
dφ) ·w =

∫
X(a1dφ +a3 f )∧∗w is bounded and ∂3L ( j1

dφ) =

a1dφ +a3 f .

One can also consider nonlinearities, given sufficient control on the nonlinearity. For

example, with k = 0 (for simplicity; one could consider k ≥ 1 with the nonlinearities acting

on the components of φ ), consider a Lagrangian density which contains a term of the form

V (φ)dn+1x, where V ∈C1(R,R) has bounded derivative V ′ ∈ L∞(R,R). The variation of this
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term in the associated action gives the linear functional

v ∈ L2 7!
∫

X
V ′(φ)vdn+1x.

Since the domain X is bounded, we have the continuous embedding L2 ↪! L1 with ‖v‖L1 ≤C‖v‖L2 .

Hence, the above linear functional is bounded, since

∣∣∣∫
X

V ′(φ)vdn+1x
∣∣∣≤ ‖V ′‖L∞‖v‖L1 ≤C‖V ′‖L∞‖v‖L2.

An example of such a nonlinearity occurs in the sine–Gordon Lagrangian density, which contains

a term of the form V (φ)dn+1x = cos(φ)dn+1x.

We now define a weak analogue of the Cartan form (1.1), relative to a region U ⊂ X . If

we only assume HΛ regularity on the fields and variations, we define the weak Cartan form, at a

solution of the weak Euler–Lagrange equations, to be the variation of the action

ΘU(φ) · v≡ dS[φ ] · v;

note that this is in general nonzero since we are not assuming that v has vanishing trace on the

boundary. In some sense, the weak Cartan form encodes the contribution of the boundary term

to the variation of the action. To see this explicitly, we need to assume higher regularity.

To make sense of such a boundary term, we require higher regularity, at least locally on

U ; namely, since the trace acts as a bounded operator Tr : HΛm(U)! H−1/2Λm(∂U) ([7]) and

as a bounded operator Tr : H1Λm(U)! H1/2Λm(∂U), the solution φ and the Lagrangian have

to have enough regularity so that ∂3L ( j1
dφ) is in H1Λk+1(U). For example, in the first class of

Lagrangians discussed in Remark 1.2.1, if the solution φ has H2 regularity and the given f has

H1 regularity, then this is satisfied. Assuming this higher regularity, the weak Cartan form is

defined to be the boundary term which arises for a variation v with generally nonzero boundary
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trace. That is,

ΘU(φ) · v≡
∫

∂U
v∧∗∂3L ( j1

dφ). (2.2)

We refer to this as the weak Cartan form since it involves integration, whereas (in the

smooth setting) the Cartan form is the integrand of the above expression. With this definition,

the variation of the action with respect to v ∈ HΛk can be expressed

δS[φ ] · v = EL(φ) · v+Θ(φ) · v,

where EL(φ) · v≡ (∂2L ( j1
dφ),v)L2Λk +(d∗∂3L ( j1

dφ),v)L2Λk is the weak Euler–Lagrange form

which, by definition, vanishes for a solution φ of the weak Euler–Lagrange equations.

It will also be useful to think of variations as vector fields over the configuration space.

With the identification T (HΛk)∼= HΛk×HΛk, we can view a vector field V ∈X(HΛk) as a map

V : HΛk! HΛk. Thus, we define the weak Cartan form and weak Euler–Lagrange form, acting

on vector fields, as

ΘΘΘ(φ) ·V ≡Θ(φ) ·V (φ),

EL(φ) ·V ≡ EL(φ) ·V (φ).

The variation of the action with respect to V can then be expressed dS[φ ] ·V = EL(φ) ·V +

ΘΘΘ(φ) ·V . With the above notation, we now derive weak analogues of the multisymplectic form

formula and Noether’s theorem.

Weak Multisymplectic Form Formula. Let V,W be first variations of a solution φ

of the weak Euler–Lagrange equations, i.e., their respective flows on φ still satisfy the weak

Euler–Lagrange equation. Then, one has the weak multisymplectic form formula

dΘ(φ) · (V,W ) = 0. (2.3)
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The proof follows from d2S(φ) · (V,W ) = 0. We will perform the proof in the discrete setting in

Theorem 1.2.1, where the computation is analogous.

Weak Noether’s Theorem. Suppose there is a Lie group action of a Lie group G on

HΛk, which we denote by g ·φ for g ∈ G,φ ∈ HΛk. For a Lie algebra element ξ ∈ Lie(G), we

denote by ξ̃ its associated infinitesimal generator, which is a vector field on HΛk defined by

ξ̃ (φ) = lim
t!0

etξ ·φ −φ

t
.

Furthermore, suppose that the action SU : HΛk! R is G-invariant for any region U ⊂ X , i.e.,

SU [g · φ ] = S[φ ] for all g ∈ G,φ ∈ HΛk. Thus, SU [etξ · φ ] = SU [φ ] for all ξ ∈ Lie(G). By

differentiating, this gives the expression

dSU [φ ] · ξ̃ = 0 for all ξ ∈ Lie(G).

Explicitly, one has

0 = dSU [φ ] · ξ̃ = (∂2L ( j1
dφ), ξ̃ (φ))L2Λk(U)+(∂3L ( j1

dφ),dξ̃ (φ))L2Λk+1(U)

= (∂2L ( j1
dφ), ξ̃ (φ))L2Λk +(d∗∂3L ( j1

dφ), ξ̃ (φ))L2Λk+1(U)+
∫

∂U
ξ̃ (φ)∧?∂3L ( j1

dφ).

The first two terms in the second line above vanish by the weak Euler–Lagrange equation, so that

0 =
∫

∂U
ξ̃ (φ)∧?∂3L ( j1

dφ) = ΘU(φ) · ξ̃ .

Thus, Noether’s theorem in the weak setting states that the integrated Cartan form paired with an

infinitesimal generator of a G action vanishes, ΘU(φ) · ξ̃ = 0, if the action is G-invariant. In the

smooth setting, by applying Stokes’ theorem and noting that U is arbitrary, one has the stronger

statement that the exterior derivative of the integrand above vanishes (Marsden et al. [85]).
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1.2.2 Variational Discretization

To formulate a discrete variational principle, let {Λm
h }

n+1
m=0 be a subcomplex of finite

element spaces approximating {HΛ} with projections πm
h : HΛm ! Λm

h . This provides an

approximation of J1
HΛk = HΛk× dHΛk by πk

hHΛk× π
k+1
h (dHΛk). Consider the degenerate

Lagrangian density Lh : J1
HΛk !Ωn+1(X), Lh( j1

dφ)≡L (x,πk
hφ ,πk+1

h dφ) and the associated

degenerate action Sh : HΛk! R defined by

Sh[φ ] =
∫

X
L (x,πk

hφ ,πk+1
h dφ). (2.4)

We refer to these as degenerate since the projections have nontrivial kernels, as projections from

infinite-dimensional spaces to finite-dimensional subspaces.

The variational principle associated to the degenerate action Sh is to find φ ∈ HΛk such

that

0 = δSh[φ ] · v = (∂2Lh( j1
dφ),πk

hv)L2Λk +(∂3Lh( j1
dφ),πk+1

h dv)L2Λk+1 , for all v ∈ H̊Λ
k. (2.5)

The issue with (2.5) is that the in the second term on the right hand side, the projection π
k+1
h dv

occurs after taking the exterior derivative, so one cannot in general integrate by parts to obtain a

boundary term, which is necessary in the continuous theory to define the Cartan form (which,

recall, is defined to be the boundary term induced by a variation which does not vanish on the

boundary).

On the other hand, one can produce the desired boundary term if one instead utilizes a

different degenerate action defined by S̃h ≡ S◦πk
h ,

S̃h[φ ] =
∫

X
L (x,πk

hφ ,dπ
k
hφ), (2.6)
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since the associated variational principle is to find φ ∈ HΛk such that

0 = δ S̃h[φ ]

= (∂2L (x,πk
hφ ,dπ

k
hφ),πk

hv)L2Λk +(∂3L (x,πk
hφ ,dπ

k
hφ),dπ

k
hv)L2Λk , for all v ∈ H̊Λ

k. (2.7)

One can now integrate by parts in the second term, since the exterior derivative is taken after

the projection. However, the issue with the latter degenerate action, S̃h, is that there is in

general no associated degenerate Lagrangian density, i.e., there is in general no map L̃h :

J1
HΛk ! Ωn+1(X) such that L̃h( j1

dφ) = L (x,πk
hφ ,dπk

hφ). One would want there to be an

associated degenerate Lagrangian density, in order to compare to the continuous theory, e.g.,

when examining convergence.

Thus, the degenerate action Sh has the issue that one cannot in general extract a boundary

term in the variation, whereas the degenerate action S̃h has the issue that one cannot in general

associate to it a degenerate Lagrangian density. Both of these issues are resolved with the

assumption that the projections commute with the exterior derivative, π
k+1
h dφ = dπk

hφ , since

then S̃h = Sh. We will henceforth assume this through the paper.

Assumption 1.2.1 (Cochain Projections). The projections πm
h : HΛm! Λm

h are cochain projec-

tions, i.e., π
k+1
h d = dπk

h .

Furthermore, we will generally denote the projections as πh, where the degree of the

differential forms that they act on are suppressed for notational convenience.

With this assumption, the two variational principles (2.5) and (2.7) are equivalent. How-

ever, even ignoring issues of degeneracy of the Lagrangian density itself, e.g., due to gauge

freedom, these equivalent variational principles are underdetermined due to the nontrivial kernels

of the projections. As such, the action is constant on fibers of the projection, which corresponds

to a symmetry of the action. Thus, instead of enforcing the variational principle over the full

field space, the finite-dimensional reduction to the problem is given by enforcing the variational
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principle over the discrete space: find φ ∈Λk
h such that δS[φ ] ·v = 0 for all v ∈Λk

h with vanishing

trace on the boundary; we denote the space of such v by Λ̊k
h. The variational principle thus yields

a discrete weak form of the Euler–Lagrange equation: find φ ∈ Λk
h such that

0 = δS[φ ] · v =
(
∂2L ( j1

dφ),v
)

L2Λk +
(
∂3L ( j1

dφ),dv
)

L2Λk+1, for all v ∈ Λ̊
k
h. (2.8)

Integrating by parts, this gives

0 =
(
∂2L ( j1

dφ),v
)

L2Λk +
(
d∗∂3L ( j1

dφ),v
)

L2Λk +
∫

∂X
v∧∗∂3L ( j1

dφ), for all v ∈ Λ̊
k
h, (2.9)

where the codifferential d∗ is interpreted in the weak sense. Note the boundary term vanishes

since v ∈ Λ̊k
h, but we include it explicitly since it will be necessary in the formulation of the

multisymplectic form formula and Noether’s theorem, where one generally has nonzero variations

on the boundary.

We refer to these equivalent equations, (2.8) and (2.9), as the discrete Euler–Lagrange

equations (DEL). Fixing a basis of shape functions {vi} for Λ̊k
h, expressing φ = φ jv j, and

choosing v = vi, (2.8) is equivalent to a (generally nonlinear) system of equations for the

unknown components φ i. Letting [i] denote the set of indices j such that supp(v j)∩ supp(vi) has

positive measure, the system of equations can be written as

(
∂2L ( j1

d( ∑
j∈[i]

φ
jv j)),vi

)
L2Λk +

(
∂3L ( j1

d( ∑
j∈[i]

φ
jv j)),dvi

)
L2Λk+1 = 0, i = 1, . . . ,dim Λ̊

k
h.

In order to provide local statements of the multisymplectic form formula and Noether’s

theorem, we now localize the DEL. For a region U ⊂ X , we say that a node i is an interior point

of U if U contains all simplices touching i. Denote Ū as the union of all simplices touching

interior nodes i of U ; we say that U is regular if U = Ū . We define the admissible variations

with respect to a regular region U as the space of all v ∈ Λ̊k
h such that v|U ∈ Λ̊k

h(U). We define
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the localized action SU [φ ] =
∫

U L ( j1
dφ) and the associated localized DEL,

0 = δSU [φ ] · v =
(
∂2L ( j1

dφ),v
)

L2Λk(U)
+
(
∂3L ( j1

dφ),dv
)

L2Λk+1(U)
(2.10)

=
(
∂2L ( j1

dφ),v
)

L2Λk(U)
+
(
d∗∂3L ( j1

dφ),v
)

L2Λk(U)
+
∫

∂U
v∧∗∂3L ( j1

dφ),

which is enforced for all regular U and admissible v. As before, the boundary term vanishes for

admissible v, but we write it explicitly as it will arise later.

Proposition 1.2.1. The localized DEL (2.10), ranging over all regular U and admissible v, are

equivalent to the DEL (2.9).

Proof. To see that the localized DEL imply the DEL, choose U = X which is trivially regular;

the space of admissible variations with respect to X is then just Λ̊k
h. To see that the DEL imply

the localized DEL, let U be regular and v be admissible. Since supp(v)⊂U , the integrals over X

in the DEL can be replaced by integrals over U .

In this section, we aim to elucidate the variational structure that arises from discretizing

the variational principle utilizing cochain projections. Recalling that the Cartan form (1.1) en-

codes the variational structure of a Lagrangian field theory, we will construct a discrete analogue

of the Cartan form, which will naturally encode the variational structure of the discretized theory.

We first show that the restricted variational principle over the finite-dimensional subspace

Λ̊k
h can be interpreted as a Galerkin variational integrator. Restricting the configuration space to

Λ̊k
h, we can view the action as a function of the components φ i in the expansion φ = φ ivi.

S[φ i] =
∫

L (x,φ ivi,φ
idvi).
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Taking the variation of S with respect to φ j,

δS[φ i]

δφ j =
∫ (

δL

δφ
· δ (φ

ivi)

δφ j +
δL

δ (dφ)
· δ (φ

idvi)

δφ j

)
=
∫ (

δL

δφ
· v j +

δL

δ (dφ)
·dv j

)
= (∂2L ,v j)+(∂3L ,dv j),

which shows that the conditions δS/δφ j = 0 is equivalent to the DEL (2.9). Similarly, the

localized DEL (2.10) is equivalent to the conditions δSU/δφ j = 0 for all interior nodes j. That

is, the DEL can be interpreted as a Galerkin variational integrator. From this viewpoint of

the DEL, we see that given appropriate choices of function spaces (and possibly a choice of

quadrature rule), our discrete Euler–Lagrange equation reproduces multisymplectic variational

integrators based on finite differences or nodal value finite element spaces (e.g., as discussed

in Marsden et al. [85] and Chen [30]). However, the discrete variational principle in the form

δS[φ ] · v = 0, for φ ∈ Λk
h and v ∈ Λ̊k

h, is expressed explicitly at the level of function spaces and

hence, will allow us to examine the discrete variational structure more directly. Along with

allowing more general approximating finite element spaces, this also has the advantage of stating

properties of the discrete variational principle at the level of function spaces. Consequently,

as we will see, properties such as multisymplecticity and Noether’s theorem can be stated in a

geometric way, which makes no explicit reference to finite differencing or quadrature.

By the above, we can view the Lagrangian structure associated to the equations (2.8) as

the restriction of the full Lagrangian structure to the discrete space. The next natural question to

ask would be: is there some sense in which the discrete equations, which arises as a restriction of

the variational principle, can instead be viewed as a variational principle on the full configuration

bundle? Since we assume that the projection maps πh : HΛm! Λm
h are cochain projections on

the Hilbert de Rham complex, there is a natural relation between the dynamics of the restricted

Lagrangian structure and variations on the full space of the degenerate Lagrangian. To see

this, recall that we view the Lagrangian density as a map on the space of sections, L : J1
HΛk !

Ωn+1(X). Furthermore, recall the degenerate Lagrangian density, Lh : J1
HΛk !Ωn+1(X) given
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by Lh( j1
dφ) = L (x,πhφ ,πhdφ) with associated degenerate action Sh[φ ] =

∫
X Lh( j1

dφ). In the

case of a cochain projection, we can then view the variations of S restricted to Λk
h as variations of

Sh on the full configuration bundle.

Proposition 1.2.2. (Naturality of Discrete Variational Structure)

The restricted variational structures are related to the degenerate variational structures by

L ( j1
dπhφ) = Lh( j1

dφ), (2.11)

δS[πhφ ] ·πhv = δSh[φ ] · v, (2.12)

for φ ∈ HΛk and v ∈ HΛk.

Proof. For (2.11), since πh is a cochain projection,

L ( j1
dπhφ) = L (x,πhφ ,dπhφ) = L (x,πhφ ,πhdφ) = Lh(x,φ ,dφ) = Lh( j1

dφ).

Thus, it follows that S[πhφ ] = Sh[φ ].

Then, (2.12) follows similarly using the cochain property,

δS[πhφ ] ·πhv =
d

dε

∣∣∣
ε=0

S[πhφ + επhv)] =
d

dε

∣∣∣
ε=0

S[πh(φ + εv)]

=
d

dε

∣∣∣
ε=0

Sh[φ + εv] = δSh[φ ] · v.

Remark 1.2.2. The above proposition is subtle, in that there are two degenerate actions that

one could define, recalling Sh and S̃h defined by (2.5) and (2.7), respectively. which are both

maps from HΛk! R. As discussed previously, the latter is not, without the cochain projection

assumption, holonomic in the sense that it does not implicitly depend on φ through its exterior

jet extension, j1
dφ = (x,φ ,dφ), while the former is. Thus, the former degenerate action is the
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more suitable degenerate action when comparing the discrete theory to the continuous theory,

due to its holonomic dependence on j1
dφ . On other hand, as previously remarked, the former

action has the issue that, without the cochain property, one cannot make sense of a boundary

term in the variation (which we will need to make sense of a discrete Cartan form), whereas one

can in the latter. Assuming a cochain projection, these respective issues of the two degenerate

actions are both solved simultaneously, since Sh = S◦πh.

The naturality equations (2.11) and (2.12) reveal that the process of discretization of

the variational principle, i.e., by restricting the action and its variations to a finite-dimensional

subspace, with the assumption of cochain projections for discretization, is itself associated to an

action which arises from a holonomic Lagrangian density on the full field space. Simply put,

the discretization is compatible with the structure of a Lagrangian theory. A corollary is that

equation (2.8) can be seen as either arising from the discrete variation of the full action S at a

discrete field πhφ , or as from the full variation of the discrete action Sh at the full field φ . This

shows that the variations associated to Sh on the full field space are degenerate, since they are

equivalently given by the variations of S on the projected space. Thus, the finite-dimensionality

of the restricted variational principle on S can be interpreted as the degeneracy of the variational

principle of Sh on the full space, where two fields are equivalent if their difference is in ker(πh).

In other words, our finite-dimensional variational problem on the discrete space arises as a

degenerate (symmetric) variational problem over the infinite-dimensional space, where the set of

equivalence classes forms a finite-dimensional space, with the canonical representative ihπhφ for

the equivalence class of φ , where ih : Λk
h ↪! HΛk is the inclusion map.

Furthermore, the above naturality relation shows that projecting the equations obtained

from the variational principle applied to the continuum action is equivalent to first discretizing

the action through the projection and subsequently applying the variational principle. Thus,
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when discretizing via cochain projections, the variational principle and discretization commute:

S : HΛk! R Sh : Λk
h! R

Weak EL Discrete EL .

Variational
Principle

Discretize

Discretize

Variational
Principle

This generalizes the result of Leok [73] where it was shown that discretization via discrete

exterior calculus and the variational principle commute in the case of electromagnetism. In

particular, the result of Leok [73] follows from the above, since one can view discrete exterior

calculus in the framework of finite element exterior calculus as a particular low-order example;

namely, through the use of Whitney forms.

As a final remark on the above naturality relation, a more fundamental issue for dis-

cretization is whether one should discretize at the level of the configuration bundle or the jet

bundle. One can discretize the field first via φ 7! πhφ and take the argument of the Lagrangian

density to be j1
dπhφ = (x,πhφ ,dπhφ), or one can take the argument of the Lagrangian density

to be (x,πhφ ,πhdφ); in general, these methods are not equivalent. However, in the case of

cochain projections, these two discretization processes are equivalent, i.e., the following diagram

commutes

φ
� πk

h //

_

j1d
��

πhφ
_

j1d
��

j1φ
� πk

h×π
k+1
h // j1

d(πhφ),

so there is no ambiguity as to which discretization procedure to use. Furthermore,

regarding Assumption 1.2.1, the above diagram shows that we only need the existence of the

space Λ
k+1
h and the projection π

k+1
h such that the above diagram commutes and thus, one can

perform the discretization solely using Λk
h and πk

h , without reference or implementation of Λ
k+1
h

and π
k+1
h . In particular, as discussed in, for example, Arnold et al. [7, 8] and Arnold [6], there is
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a large class of classical finite element spaces for which such cochain projections exist, so the

discussion is broadly applicable.

In order to state discrete analogues of the multisymplectic form formula and Noether’s

theorem, we will have to consider variations with nonzero boundary trace with respect to a

regular region U . To do this, let U be a regular region and let v ∈ Λk
h, and consider v restricted

to U . In general, since we no longer assume that v is an admissible variation relative to U , v

may have nonzero trace along ∂U . Decompose v = v∂ + vin where v∂ denotes the boundary

component of v consisting of the expansion of v with respect to all shape functions which have

nonzero trace on ∂U and vin = v− v∂ corresponds to the expansion of v into shape functions

with vanishing trace on the boundary. Let T [∂U ] denote the set of all top-dimensional elements

in Th on which shape functions with nonvanishing trace on ∂U are supported.

Remark 1.2.3. If one considers Lagrange polynomial nodal shape functions (corresponding to

point value degrees of freedom), then the shape functions which are nonzero on the boundary

are those associated to the nodes on ∂U. In this case, T [∂U ] consists of those top-dimensional

elements touching the boundary, i.e., the one-ring of the boundary ∂U. For general (local) shape

functions, internal nodes may give rise to shape functions which are nonzero on the boundary,

so T [∂U ] will generally consist of the elements touching ∂U and the elements touching those

elements, i.e., the two-ring of the boundary ∂U. In any case, we consider discretization by the

finite element method due to the local support property of the shape functions, which will allow

the discrete Cartan form defined below to be localized on T [∂U ].

We can now consider variations with nonvanishing trace on ∂U . In particular, we compute

for a solution φh of the discrete Euler–Lagrange equation and for a variation v,

δSU [φh] · v = ∑
T∈T [∂U ]

∫
T
(∂2L ( j1

φh)∧∗v∂ +∂3L ( j1
φh)∧?dv∂ ) = δSU [φh] · v∂ ,

i.e., for a solution of the DEL, δSU [φh] · v = δSU [φh] · v∂ , since δSU [φh] · vin = 0 by the DEL.
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This boundary variation formula will be our candidate for a discrete weak Cartan form, as it

encodes the contribution to the action from V nonvanishing on and near the boundary, and will

allow us to state discrete analogues of the multisymplectic form formula and Noether’s theorem.

We refer to it as “weak”, since its definition involves integration and it is not a pointwise-defined

quantity. Note that, unlike the weak Cartan form (2.2), which required the higher regularity

assumption ∂3L ( j1
dφ) ∈ H1, the above makes sense even when φ ,v ∈ HΛk. However, if the

finite element subspace does have enough regularity to make sense of the pairing of the traces on

the boundary, the above can be rewritten as

δSU [φh] · v =
∫

∂U
v∧∗∂3L ( j1

φh)+ ∑
T∈T [∂U ]

∫
T
(∂2L ( j1

φh)+d∗∂3L ( j1
φh))∧?v∂ .

Definition 1.2.1 (Discrete Weak Cartan Form). The discrete weak Cartan form on a regular

region U, evaluated at a field φ ∈ Λk
h and a variation v, is defined by

Θ
h
U(φ) · v≡ δSU [φ ] · v∂ . (2.13)

Remark 1.2.4. Analogous to our discussion of the weak Cartan form in Section 1.2.1, we can

instead think of the discrete weak Cartan form as acting on vector fields. We make identification

T Λk
h
∼= Λk

h×Λk
h, so that a vector field can be viewed as a map V : Λk

h! Λk
h. Hence, the action of

the discrete weak Cartan form on V can be expressed as

ΘΘΘ
h
U(φ) ·V = Θ

h
U(φ) ·V (φ).

This identification will be useful when we prove the discrete multisymplectic form formula, since

we will view first variations as vector fields on Λk
h whose flow preserves the DEL.

Even though the weak Cartan form only involves integration on ∂U whereas the discrete

weak Cartan form involves integration on ∂U and over regions T ∈T [∂U ], this is the appropriate
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definition in the discrete setting because it encodes the boundary variation of the action, i.e., it

equals the variation of the action when the discrete Euler–Lagrange equations are imposed.

Remark 1.2.5 (Quadrature). Although, in our exposition, we have assumed that with the given

Lagrangian and choice of finite element space, one can evaluate the integrals involved exactly,

one can more generally utilize quadrature to approximate the action before enforcing the

variational principle. For a regular region U, let us consider quadrature nodes {ca ∈U} and

associated quadrature weights {ba}. With finite element shape functions {v j} and expressing the

density as L = Ldn+1x, the associated discrete action is given by applying quadrature,

SU [{φ j}] = ∑
a

baL( j1
d(φ

ivi))|ca. (2.14)

The variation in the direction w = wkvk is given by

δSU [{φ j}] · {wk}= ∑
a

ba
∂

∂φ k

[
L( j1

d(φ
ivi))

∣∣
ca

]
wk. (2.15)

The associated discrete Euler–Lagrange equation is given by enforcing the variational principle

for variations w with vanishing trace on ∂U. Then, the discrete Cartan form with quadrature (at

a solution of the discrete Euler–Lagrange equation), is defined by taking an arbitrary variation

and removing the term on the interior which vanishes by the discrete Euler–Lagrange equation.

In particular, it is given by summing over all a such that ca is contained in the support of some

shape function with nonvanishing trace on the boundary; we denote the set of all such a by

I [∂U ]. Hence, the discrete Cartan form with quadrature is given by

Θh
U(φ) ·w = ∑

a∈I [∂U ]

ba
∂

∂φ k

[
L( j1

d(φ
ivi))

∣∣
ca

]
wk.

Using this discrete Cartan form, an analogous statement of discrete multisymplecticity

that we state below holds in this setting, with the caveat that the first variations are defined
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relative to the discrete Euler–Lagrange equations with quadrature. Similarly, an analogous

statement to the discrete Noether’s theorem below also holds in this setting, with the caveat that

the group action leaves the discrete action with quadrature, equation (2.14), invariant. This is a

direct consequence of the fact that the formulation with quadrature is still variational, since we

applied the quadrature rule to the action, before enforcing the variational principle (see Section

1.2.5). In general, if one applies quadrature after enforcing the variational principle, i.e., to the

equations of motion (2.9), the system is not variational. To see this, we compute the variation of

the action first,

δSU [φ
jv j] · (wkvk) =

∫
X
[∂2L ( j1

d(φ
ivi))+d∗∂3L ( j1

d(φ
ivi))]∧?wkvk,

(for w with vanishing trace on ∂U) and subsequently apply quadrature, so that the above becomes

∑
a

ba

[
∗
(
[∂2L ( j1

d(φ
ivi))+d∗∂3L ( j1

d(φ
ivi))]∧?wkvk

)]∣∣∣
ca
.

In general, this is not equal to (2.15), except when φ a scalar field, using nodal interpolating

shape functions and quadrature points at those nodes, in which case they are the same. Thus, for

a variational formulation, one should generally apply quadrature before enforcing the variational

principle. For the rest of the paper, we will revert to the assumption that one can evaluate the

various integrals exactly, but keeping in mind that similar results hold in the case of quadrature.

We make several additional remarks regarding this candidate (2.13) for a discrete Cartan

form. We defined the discrete Cartan form as the variation of the action, for variations that

may be nonvanishing on the boundary, at a solution of the discrete Euler–Lagrange equations.

Even though this functional involves integration over top-dimensional regions T ∈ T [∂U ], it

only depends on the degrees of freedom which contribute to the nonzero value of V on ∂U

and so makes sense as a candidate for a discrete Cartan form. In the continuum variational

problem, boundary variations can be supported arbitrarily close to ∂U , whereas in the finite
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element variational problem, this is not the case, so the discrete Cartan form, which encodes

the contribution of the variation of the action by boundary variations, should indeed contain the

additional terms involving integration over the elements of T [∂U ]. These terms shrink relative

to the integral over ∂U in the following heuristic sense. The terms involving T [∂U ] are O(h)

smaller than the term over ∂U : the cardinality of T [∂U ] scales like the number of boundary

faces in ∂U , which is O(h−n); on the other hand, the size of T is O(hn+1), so the terms in the

discrete Cartan form involving the sum over T [∂U ] is O(h), whereas the first term is O(1) for a

fixed region U . Thus, as h! 0, for a fixed region U , the Cartan form formally only involves

the first contribution, as expected. In other words, as we refine the mesh, ∂U stays (roughly)

the same, while the region containing only elements touching ∂U shrinks, and a similar remark

applies to the discrete multisymplectic form formula and the additional terms involving the sum

over T [∂U ], so that the multisymplectic form formula is formally recovered in the limit. This

can be combined with bounds on the integrands to show convergence more rigorously. More

precisely, to show that the discrete weak Cartan form converges to the weak Cartan form, we

would aim to show that for a solution φh of the DEL and a solution φ of the weak Euler–Lagrange

equations and a variation v,

∣∣∣Θh
U(φh) ·πhv−ΘU(φ) · v

∣∣∣! 0,

as h! 0+. This error can be decomposed as

∣∣∣Θh
U(φh) ·πhv−ΘU(φ) · v

∣∣∣≤ ∣∣∣(Θ
h
U(φh)−Θ

h
U(πhφ)

)
·πhv

∣∣∣
+
∣∣∣ΘU(φ) · (v−πhv)

∣∣∣+ ∣∣∣(ΘU(φ)−Θ
h
U(πhφ)

)
·πhv

∣∣∣ .
The first term on the right hand side can be shown to converge with an appropriate quasi-

optimatility bound between the discrete solution φh and the projected weak solution πhφ , and

assuming the projection πh is bounded. The second term can be shown to converge if ‖v−πhv‖
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converges in some appropriate norm. The third term can be shown to converge with an appropriate

quasi-optimality bound between the projected weak solution and the weak solution, and again

assuming the projection is bounded. Here, “appropriate” qualifies the fact that the above terms

involve the Cartan form which is defined in terms of derivatives of the Lagrangian density and

hence, will be dependent on the particular theory under consideration. We provide an example in

Section 1.2.6.

We now show that Definition 2.7 recovers the notion of the discrete Cartan form intro-

duced in Marsden et al. [85] and further examined in Chen [30], in the case that the degrees of

freedom are the nodal values of the field with nodal interpolating shape functions. As previously

remarked, in this case, the shape functions which are nonzero on ∂U are those associated to

nodes on ∂U . Consider a single node i on ∂U and let vi be the shape function associated to the

degree of freedom on the node. Note that vi (restricted to U) is supported in some Ti ∈T [∂U ]

and denote Fi = ∂Ti∩∂U . Consider a variation of the form Vivi (Vi ∈R). Marsden et al. [85] and

Chen [30] define the discrete Cartan form associated to this node as δSU [φ jv j]

δφ i Vi (no summation

over i), viewing the action as a function of the components in the expansion of φ = φ jv j. Then,

compute

δSU [φ
jv j]

δφ i Vi =
∫

U

(
δL

δφ
·

δ (φ jv j)

δφ i Vi +
δL

δ (dφ)
·

δ (φ jdv j)

δφ i Vi

)
=
∫

U

(
δL

δφ
·Vivi +

δL

δ (dφ)
·Vidvi

)
=
∫

U

(
∂2L ∧?Vivi +∂3L ∧?Vidvi

)
.

Summing over all such variations on each node on ∂U , one recovers our discrete Cartan form,

equation (2.13). There are several generalizations which our discrete Cartan form makes relative

to the discrete Cartan form of Marsden et al. [85] and Chen [30]. First, note that their Cartan form

is defined in terms of the nodal values of the field, which implicitly suppresses the fact that the

Cartan form involves integration over both ∂U and elements of T [∂U ]. Our explicit formula for

the discrete Cartan form lends itself more easily to showing convergence to the continuum Cartan

form, as we sketched heuristically above and will discuss further when discussing Noether’s
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theorem. That the discrete Cartan form involves integration over elements neighboring the

boundary is inevitable, since a variation of the field value on the boundary induces changes to the

field values on elements of T [U ]. Furthermore, since we allow for general finite element spaces,

we immediately obtain several generalizations. First, note that the dimension of the spacetime

is arbitrary in our formulation, so this discrete Cartan form holds beyond the 1+1 spacetime

dimensions that they utilize explicitly in their framework (although this is not a fundamental

restriction in their theory). Furthermore, our framework allows for differential forms of arbitrary

degree, as opposed to just scalar fields. In particular, the degrees of freedom associated to the

boundary variations need not be nodal values, but can be determined by more general degrees

of freedom, such as moments or flux type degrees of freedom, e.g., when considering a theory

involving vector fields, which one can identify with 1−forms via the metric. Furthermore, these

degrees of freedom determining the boundary variations may be close to, i.e., in T [∂U ], but not

necessarily on ∂U .

In the next two sections, we will utilize the discrete Cartan form to state discrete analogues

of multisymplecticity and Noether’s theorem. We will see that these statements, involving Θh
U ,

will be in direct analogy to the continuum theorems, involving ΘU .

1.2.3 Discrete Multisymplectic Form Formula

We now state a discrete analogue of the multisymplectic form formula, which generalizes

the preservation of the symplectic form under the flow of a symplectic vector field. In the smooth

setting, if φ is a solution to the Euler–Lagrange equations and V,W are first variations at φ , i.e.,

their respective flows on φ are still solutions, then

∫
∂U

( j1
φ)∗
(

j1Vy j1WyΩL

)
= 0, (2.16)

where U ⊂ X is a submanifold with smooth closed boundary (Marsden et al. [85]). The multi-

symplectic form formula encompasses many physical conservation laws appearing in Lagrangian
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field theories. For example, viewing a Lagrangian field theory in the instantaneous canonical

formulation, multisymplecticity gives rise to the usual field-theoretic notion of symplecticity

(Marsden et al. [85]). Furthermore, multisymplecticity encompasses the notion of reciprocity in

many physical systems, relating the infinitesimal perturbation of a system by a source and the

associated infinitesimal perturbation of the response by the system (see, for example, Vanker-

schaver et al. [116] for Lorenz reciprocity in electromagnetism and McLachlan and Stern [90] for

reciprocity in semilinear elliptic PDEs, within the context of multisymplecticity). Additionally,

for wave propagation problems, multisymplecticity provides a geometric formulation for the

conservation of wave action (Bridges [18, 19]). Since multisymplecticity is an important property

of Lagrangian field theories encompassing many natural physical conservation laws, we will

investigate multisymplecticity within our discretization framework.

In the literature, integrators which admit a discrete analogue of this formula are referred

to as “multisymplectic integrators”. We show that our discrete system (2.9) admits a discrete

multisymplectic form formula. The main idea of the derivation for the multisymplectic form

formula is to look at second variations of the action at φ with respect to first variations V and

W , d2S[φ ] · (V,W ) = 0. More specifically, one decomposes the variation of the action into two

functionals, corresponding to interior and boundary variations:

dS[φ ] ·V =−
∫

U
( j1

φ)∗( j1VyΩL )︸ ︷︷ ︸
≡ELU (φ)·V

+
∫

∂U
( j1

φ)∗( j1VyΘL )︸ ︷︷ ︸
=ΘU (φ)·V

.

Then, 0 = d2S[φ ] · (V,W ) = dELU(φ) · (V,W )+ dΘU(φ) · (V,W ). The term dELU(φ) · (V,W )

vanishes from the first variation property, so the multisymplectic form formula can be expressed

as

dΘU(φ) · (V,W ) = 0,

which is equivalent to equation (2.16).

In our construction, the first difference is that we are working in the weak setting, as

34



discussed in Section 1.2.1. Furthermore, in the discretized theory, the main impediment for a

discrete analogue of the multisymplectic form formula is that a solution of the discrete equation

(2.9) does not in general satisfy an Euler–Lagrange equation locally (i.e., for arbitrary U) but

rather integrated over a regular region U . Additionally, there is an additional contribution from

the boundary components of the variation in the elements neighboring the boundary T ∈T [∂U ].

It is in this restricted setting that we have a discrete multisymplectic form formula.

To prepare for the proof of the discrete multisymplectic form formula, we will express

variations in terms of vector fields. As briefly discussed in Remark 1.2.4, we can express the

action of the Cartan form in terms of vector fields, instead of variations, which follows from

the identification T (Λk
h)
∼= Λk

h×Λk
h and thus, a vector field V ∈ X(Λk

h) can be viewed as a map

V : Λk
h! Λk

h. Similarly, for a vector field V , the variation of the action can be expressed as

dS[φ ] ·V = δS[φ ] ·V (φ).

Furthermore, we decompose a vector field into its interior and boundary components,

Vin : φ 7! (V (φ))in,

V∂ : φ 7! (V (φ))∂ .

Theorem 1.2.1. (Discrete Multisymplectic Form Formula) Let U be a regular region and let φh

be a solution of the local DEL (2.10) and V,W ∈ X(Λk
h) be first variations for φh, i.e., their flow

on φh still satisfies the DEL, but for arbitrary boundary variations, then

dΘΘΘ
h
U(φh) · (V,W ) = 0. (2.17)
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Proof. Decompose the variation of the action into interior and boundary variations,

dSU [φh] ·V = dSU [φh] ·Vin︸ ︷︷ ︸
≡ELh

U (φh)·V

+dS[φh] ·V∂︸ ︷︷ ︸
=ΘΘΘ

h
U (φh)·V

.

so that dS[φh] ·V = ELh
U(φh) ·V +ΘΘΘ

h
U(φh) ·V . Observe that, by definition of ELh

U , the DEL

is equivalent to the statement that ELh
U(φh) ·V = 0 for all V ∈ X(Λk

h). Thus, we define a first

variation W as a vector field which preserves the DEL, d(ELh
U(φh) ·V ) ·W = 0. Thus, we have

0 = d2SU [φh] · (V,W ) = dELh
U(φh) · (V,W )+dΘΘΘ

h
U(φh) · (V,W ).

Then, express

dELh
U(φh) · (V,W ) = d(ELh

U(φh) ·V ) ·W −d(ELh
U(φh) ·W ) ·V −ELh

U(φh) · [V,W ].

The first two terms on the right hand side of the above equation vanish by the definition of first

variation; furthermore, the third term vanishes by the DEL. Hence, dELh
U(φh) · (V,W ) = 0. Thus,

we have

dΘ
h
U(φh) · (V,W ) = d2SU [φh] · (V,W ) = 0.

Remark 1.2.6. Although we immediately see that the discrete multisymplectic form formula

dΘΘΘ
h
U(φh) · (V,W ) = 0 is in direct analogy with the continuum multisymplectic form formula

dΘU(φ) · (V,W ) = 0, if we write the discrete formula using the definition of the discrete Cartan

form, we see that there is an additional contribution corresponding to the integration over

elements T ∈T [∂U ]. Although we will not write this out explicitly, we see that this additional

contribution involves a sum-integral of the form ∑T∈T [∂U ]

∫
T , which is O(h) as discussed

previously. As such, we only need control of the residual associated to the linearized equations
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to formally show convergence of the discrete multisymplectic form formula to the continuum

multisymplectic form formula.

We note that the aforementioned convergence is formal since it must also be combined

appropriately with convergence of the discrete solution to a continuum weak solution using

bounds on the projection. One possible method for combining these is the following observation.

Since, by assumption, the projections are cochain projections, we have that

d2Sh[φ ] · (V,W ) = d2(π∗h S)[φ ] · (V,W ) = d2S[πhφ ] · (T πh ·V,T πh ·W ).

In particular, for first variations V,W ∈ X(Y ) for the degenerate action, T πh ·V,T πh ·W cor-

respond to first variations of the discrete Euler–Lagrange equations, and the discrete mul-

tisymplectic form formula can be reinterpreted as the multisymplectic form formula for the

degenerate action. Note also that for cochain projections, a simple calculation shows that

j1(T πh ·V ) = T (πk
h ×π

k+1
h ) · j1V , so that the terms in the integrand of the discrete multisym-

plectic form formula, (2.17), are in the image of the (tangent) projections. This allows us to

formulate the discrete multisymplectic formula in terms of the projection and its tangent lift, and

hence more directly determine in what sense the discrete multisymplectic form formula converges

as h! 0.

Of course, without specifying a particular field theory and finite element spaces, we

cannot proceed further to show convergence. We aim to investigate more rigorous convergence

results for particular field theories in future work. See also the discussion below regarding

convergence of the discrete Noether theorem to its continuum analogue.

Remark 1.2.7. As noted before, the discrete Cartan form, in the case of nodal interpolating

shape functions, gives precisely the discrete notion of Cartan form introduced in Marsden et al.

[85]. In this case, our discrete multisymplectic form formula dΘΘΘ
h
U(φh) · (V,W ) = 0 (for first

variations V,W) gives precisely the discrete multisymplectic form formula derived in Marsden

et al. [85].
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1.2.4 Discrete Noether’s Theorem

In this section, we establish a discrete analogue of the weak Noether’s theorem as

discussed in Section 1.2.1.

To derive a discrete analogue, we first must restrict to regular regions instead of allowing

arbitrary regions, analogous to the discussion of the discrete multisymplectic form formula.

Furthermore, we must make sense of a group action on the discrete space Λk
h ⊂ HΛk. In general,

one cannot expect the group action G×HΛk! HΛk to restrict to a group action G×Λk
h! Λk

h,

i.e., the group orbit G ·Λk
h is not necessarily contained in Λk

h. However, suppose there exists a

Lie group homomorphism ψh : G! G such that

ψh(g) ·πhφ = πh(g ·φ), for all g ∈ G,φ ∈ HΛ
k.

In such a case, we say that the projection πh is G-equivariant with intertwining homomorphism

ψh.

Remark 1.2.8. In essence, the motivation behind this definition is that when one discretizes a

theory, a symmetry group of the original theory may be reduced to a smaller subgroup. This is

encoded in the homomorphism ψh, where the smaller subgroup is ψh(G)∼= G/kerψh. We will

see some examples of this after proving a discrete Noether’s theorem.

We are now ready to state a discrete Noether’s theorem.

Theorem 1.2.2. Let U be a regular region. Suppose the action S is G-invariant and the projection

is G-equivariant with intertwining homomorphism ψh. Then, for a solution φh ∈ Λk
h of the DEL,

ΘΘΘ
h
U(φh) ·T πh(ξ̃ ) = 0, (2.18a)

or, equivalently,

ΘΘΘ
h
U(φh) · (̃ψh)∗ξ = 0, (2.18b)
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where (ψh)∗ is the induced Lie algebra homomorphism.

Proof. Since φh ∈ Λk
h and πh : HΛk ! Λk

h is surjective, there exists some φ ∈ HΛk such that

φh = πhφ . Then, for any g ∈ G,

SU [πh(g ·φ)] = SU [ψh(g) ·πhφ ] = SU [πhφ ],

where G-equivariance of the projection was used in the first equality and G-invariance of the

action was used in the second equality. The above holds for all g and in particular, for ξ ∈ Lie(G),

one has that

SU ◦πh[etξ ·φ ] = SU ◦πh[φ ].

Differentiating the above yields

0 = d(SU ◦πh)[φ ] · ξ̃ = π
∗
h dSU [φ ] · ξ̃ = dSU [πhφ ] ·T πhξ̃ = dSU [φh] ·T πhξ̃ .

Finally, we decompose the variation of the action as

0 = dSU [φh] ·T πhξ̃ = ELh
U(φh) ·T πhξ̃ +ΘΘΘ

h
U(φh) ·T πhξ̃ .

The term ELh
U(φh) ·T πhξ̃ vanishes since φh satisfies the DEL and T πhξ̃ is a vector field on Λk

h.

Thus, equation (2.18a) follows.

To see that this is equivalent to equation (2.18b), it suffices to show

T πhξ̃ (φ) = (̃ψh)∗ξ (φh).

To see this, recall that

ξ̃ (φ) = lim
t!0

etξ ·φ −φ

t
.
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Thus, the pushforward can be computed as

T πhξ̃ (φ) = lim
t!0

πh(etξ ·φ)−πhφ

t

= lim
t!0

ψh(etξ ) ·πhφ −πhφ

t

= (̃ψh)∗ξ ,

where G-equivariance was used in the second equality and the third equality is simply the

definition of an infinitesimal generator.

Remark 1.2.9. Note that the proof above is still valid if one weakens the notion of G-equivariance

to only hold infinitesimally up to o(t), i.e.,

ψh(etξ ) ·πhφ = πh(etξ ·φ)+o(t), for all ξ ∈ Lie(G),φ ∈ HΛ
k.

We give two simple examples of group-equivariant cochain projections and subsequently

remark on how one might construct more general group-equivariant cochain projections.

Example 1.2.1 (Global Linear Group Action). First, note that although we took our field

configuration bundle to be Λk(X), we could have more generally taken our fields to be vector-

valued forms, corresponding to the bundle Λk(X)⊗V for some finite-dimensional vector space

V . With a basis {ei} for V , the only modification to the discrete Euler–Lagrange (2.9) equation

is that there are dim(V ) equations corresponding to each component of the field φ i ∈ Λk(X) in

the expansion φ(x) = ∑i φi(x)⊗ ei.

Suppose that a Lagrangian with such a configuration bundle is invariant under the

global action by a group representation D : G! GL(V ). That is, D acts on φ ∈ Λk(X)⊗V as

1Λk(X)⊗D:

D(g)φ(x) = ∑
i

φi(x)⊗ (D(g)ei),

where D(g) is independent of x.
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Let πk
h : HΛk ! Λk

h and π
k+1
h : HΛk+1 ! Λk

h be cochain projections, i.e., they satisfy

π
k+1
h d = dπk

h . We can extend these to cochain projections on vector-valued forms by π̃h = πh⊗1V .

Furthermore, group-equivariance follows from linearity of the group action and the above

definitions,

D(g)π̃hφ = D(g)π̃h

(
∑

i
φi⊗ ei

)
= D(g)∑

i
πh(φi)⊗ ei = ∑

i
πh(φi)⊗D(g)ei

= π̃h

(
∑

i
φi⊗D(g)ei

)
= π̃h

(
D(g)∑

i
φi⊗ ei

)
= π̃hD(g)φ .

Thus, the discrete Noether’s theorem holds in this case, where the intertwining homomorphism is

just the identity.

A simple example of such a theory is the Schrödinger equation with V = C, G =U(1),

and the group representation given by the fundamental representation of U(1) in GL(C). The

corresponding Noether conservation law is conservation of mass in the L2 norm.

Example 1.2.2 (Yang–Mills Theory). As an example of a non-global (but still linear) group

action, consider Yang–Mills theories with a structure group G. In this setting, the field A ∈

Λ1(X)⊗ g, i.e., A is valued in the Lie algebra g associated to G. More precisely, the field is

valued in the adjoint representation of the Lie algebra. This class of theories is invariant under

the linear action of Λ0(X)⊗g, viewed as a group under addition, on Λ1(X)⊗g given by

α ·A≡ A+dα,

for any α ∈ Λ0(X)⊗g. Unlike the previous example, this action is local in the sense that D(α)

depends on the position in spacetime.

Now, suppose that we have cochain projections for the sequence HΛ0 d
! HΛ1 d

! HΛ2,

i.e., π2
h d = dπ1

h ,π
1
h d = dπ0

h . Extend these to projections π̃h on HΛ⊗g as in the previous example.

The relation π̃2
h d = dπ̃1

h is required for naturality of the variational structure. On the other hand,
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the relation π̃1
h d = dπ̃0

h gives group equivariance in the following sense,

π̃
1
h (α ·A) = π̃

1
h (A+dα) = π̃

1
h A+ π̃

1
h dα = π̃

1
h A+dπ̃

0
h α = π̃

0
h (α) · π̃1

h A.

Thus, the discrete Noether’s theorem holds where the intertwining homomorphism is ψh = π̃0
h .

In the continuum Hilbert space setting, the associated conservation law is the weak

Gauss’ law, where Gauss’ law holds tested against any element of the Hilbert space. In the

discrete setting, the discrete Noether’s theorem gives a discrete Gauss’ law, where Gauss’ law

holds tested against any element of the finite-dimensional subspace.

The previous two examples were simple in the sense that they had a linear or global group

action. Although the second example was local, the acting group is contained in the Hilbert

complex of forms and group-equivariance arose from having cochain projections.

To construct group-equivariant cochain projections for more general actions, one pos-

sible method would be to utilize group-equivariant interpolation [40; 74] in constructing the

projection. One method to construct cochain projections from interpolants is to place an interme-

diate sequence between the sequence of Hilbert spaces and the sequence of finite-dimensional

subspaces,

HΛk HΛk+1

Ck Ck+1

Λk
h Λ

k+1
h ,

σ k

d

σ k+1

D

I k

d

I k+1

where {σm} are the degrees of freedom mapping into the coefficient spaces {Cm}, {I m} are

interpolants from the coefficient spaces into the finite-dimensional subspaces, D realizes d in the

coefficient space, and the projections are defined by πh = I ◦σ . The degrees of freedom must
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be unisolvent when restricted to the image of the interpolants. Constructing cochain projections

amounts to ensuring that the top diagram commutes. Then, fixing group-equivariant interpolants

I k,I k+1, group-equivariant cochain projections could be achieved by choosing the degrees of

freedom such that they are unisolvent for this choice of interpolants and ensuring that the top

diagram commutes. We will pursue such a construction in future work.

1.2.5 A Discrete Variational Complex

The variational bicomplex is a double complex on the spaces of differential forms over

the jet bundle of a configuration bundle used to study the variational structures of Lagrangian

field theories defined on this bundle (see, for example, Anderson [4]). The differential forms

arising in Lagrangian field theory, such as the Lagrangian density, the Cartan form, and the

multisymplectic form, can be interpreted as elements of this variational bicomplex. The cochain

maps in this double complex are the horizontal and vertical exterior derivatives on the jet bundle,

which give a geometric interpretation to the variations encountered in Lagrangian field theories.

The variational bicomplex has also been extended to problems with symmetry in Kogan and

Olver [63], and to the discrete setting for difference equations corresponding to discretizing

Lagrangian field theories on a lattice in Hydon and Mansfield [56].

In this section, we interpret and summarize the results from the previous sections in terms

of a discrete variational complex which arises naturally in our discrete construction and, in a

sense, resembles the vertical direction of the variational bicomplex.

In our previous discussion, we saw a complex which arises from the space of discrete

forms,

Λ
0
h

d
−! Λ

1
h

d
−! · · · d

−! Λ
n
h

d
−! Λ

n+1
h ,

which forms a complex due to the cochain projection property. Now, consider instead the

following “vertical” complex; consider the spaces of smooth forms on Λk
h, which we denote

Ω(Λk
h), with the “vertical” exterior derivative dv : Ωm(Λk

h)!Ωm+1(Λk
h) being the usual exterior
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derivative over the base manifold Λk
h (which is a vector space). This gives a discrete variational

complex:

Ω
dim(Λk

h)(Λk
h)

...

Ω1(Λk
h)

Ω0(Λk
h) .

dv

dv

dv

Note that in the previous sections, we used d to denote both the exterior derivative corre-

sponding to the de Rham complex and the vertical exterior derivative, e.g., the multisymplectic

form formula dΘΘΘ
h
U(V,W ) = 0 is more precisely dvΘΘΘ

h
U(V,W ) = 0, where it was understood which

was meant by the spaces where the relevant quantities were defined. However, we will distinguish

the two in this section to be more precise. We call the above a vertical complex for two reasons:

first, the vertical exterior derivative corresponds to differentiation with respect to the fiber values

as we will see below. Furthermore, it resembles the vertical direction of the variational bicomplex.

However, in our construction, there is no horizontal direction, since in the discrete setting, we are

considering transgressed forms, i.e., forms integrated over a region, so the horizontal direction

collapses.

Examples of forms in the discrete variational complex include the restricted action

S ∈ Ω0(Λk
h), the discrete weak Cartan form ΘΘΘ

h ∈ Ω1(Λk
h), and the discrete multisymplectic

form dvΘΘΘ
h ∈ Ω2(Λk

h). Let {vi} be a basis for Λk
h; we then coordinatize the vector space Λk

h

by the components of the expansion of any φ = ∑i φ ivi ∈ Λk
h, which we denote as a vector
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(φ i) = (φ 0, . . . ,φ dim(Λk
h)) ∈ Λk

h. For example, the vertical exterior derivative of the action is

dvS[φ ] = ∑
j

∂S[(φ i)]

∂φ j dvφ
j.

The naturality of the variational principle and the interpretation of the weak Euler–Lagrange

equations as a Galerkin variational integrator, discussed in Section 1.2.2, relate the vertical

exterior derivative of S to the variation of the degenerate action Sh. Now, let Πi be the projection

onto the ith coordinate φ i and let I [∂U ] denote the set of indices i such that vi has nonvanishing

trace on ∂U . Then, for v = (vi) ∈ Λk
h, we have that

v∂ = ∑
i∈I [∂U ]

Πi(v),

vin = v− v∂ = ∑
i6∈I [∂U ]

Πi(v).

Recall that we can view vector fields V ∈ X(Λk
h) as maps V : Λk

h! Λk
h, and we extend this to the

vector fields V∂ (φ) ≡ (V (φ))∂ and Vin(φ) ≡ (V (φ))in. In particular, the discrete weak Cartan

form in this notation is given by

ΘΘΘ
h(φ) ·V = dvS[φ ] ·V∂ .

The variation of the action can then be expressed as

dvS[φ ] ·V = ELh(φ) ·V +ΘΘΘ
h(φ) ·V.
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More explicitly, these can be expressed as

ΘΘΘ
h(φ) = ∑

j∈I [∂U ]

∂S[(φ i)]

∂φ j dvφ
j,

ELh(φ) = ∑
j 6∈I [∂U ]

∂S[(φ i)]

∂φ j dvφ
j.

In particular, the discrete Euler–Lagrange equations are given by the null Euler–Lagrange

condition, EL(φ) = 0, i.e., EL(φ) ·V = 0 for all V . Assuming a solution φ of the null Euler–

Lagrange condition, we immediately see that

dvS[φ ] ·V = ΘΘΘ
h(φ) ·V,

and in particular, for a symmetry of the action dvS[φ ] · ξ̃ = 0, we have the discrete Noether’s

theorem ΘΘΘ
h(φ) · ξ̃ = 0. By taking the second exterior derivative of the action, we have that

0 = d2
v S[φ ] = dvEL(φ)+dvΘΘΘ

h(φ).

The space of first variations at φ is precisely the kernel of the quadratic form dvEL(φ), so

this gives the discrete multisymplectic form formula dvΘΘΘ
h(φ)(·, ·) = 0 when evaluated on first

variations. Thus, the results of the previous sections can be concisely summarized in terms of the

structure given by the discrete variational complex.

Furthermore, this framework also encompasses the discrete variational principle with

quadrature, as discussed in Remark 1.2.5. Namely, from the discrete viewpoint, a discrete action

is an element of Ω0(Λk
h) and in particular, the discrete action with quadrature S from (2.14) is

an element of Ω0(Λk
h). Then, the variation of S can be decomposed into interior and boundary
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one-forms as before,

dvS[(φ)] = EL(φ)+Θh(φ),

Θh(φ) = ∑
j∈I [∂U ]

∂S[(φ i)]

∂φ j dvφ
j,

EL(φ) = ∑
j 6∈I [∂U ]

∂S[(φ i)]

∂φ j dvφ
j.

The discrete Euler–Lagrange equations with quadrature are given by the null Euler–Lagrange

condition EL(φ) = 0, and subsequently, the discrete Noether’s theorem and discrete multi-

symplectic form formula (in the case of quadrature) then follow analogously to before, where

symmetries are with respect to S and the space of first variations at φ is the kernel of the quadratic

form dvEL(φ).

1.2.6 Numerical Example

We consider the scalar Poisson equation in (1+1)-spacetime dimensions on a rectangular

domain, X = [a,b]× [c,d],

∂
2
t φ +∂

2
x φ = f (x,y).

The Lagrangian is given by L = 1
2(∂tφ)

2 + ε
1
2(∂xφ)2 + f (x,y)φ , or equivalently, the Lagrangian

density is given by

L =
1
2

dφ ∧?dφ + f ∧∗φ .

Compute ∂3L ( j1
dφ) = dφ , ∂2L ( j1

dφ) = f , where we assume f ∈ L2Λ0, so the discrete Euler–

Lagrange equation reads: find φ ∈ Λ0
h such that

(dφ ,dv)L2 = ( f ,v)L2, for all v ∈ Λ̊
0
h.

We subdivide X into a regular rectangular mesh and use a tensor-product basis of hat functions

ψi j(t,x) = χi(t)ξ j(x) subordinate to this mesh.
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Expressing φ = φ i jψi j and taking v = ψmn, the above equation reads as

∑
i j∈[mn]

(
φ

i j(χ ′i (t),χ
′
m(t))L2(ξ j(x),ξn(x))L2 +φ

i j(χi(t),χm(t))L2(ξ ′j(x),ξ
′
n(x))L2

)
= ( f ,ψmn)L2.

Since [m] = {m−1,m,m+1}, this gives a nine-point stencil on the interior elements of the mesh.

Explicitly, we compute the stiffness and mass matrix elements

{(χ ′i (t),χ ′m(t))L2}i∈[m] =
1
∆t
{−1,2,−1},

{(χi(t),χm(t))L2}i∈[m] = ∆t
{

1
6
,
2
3
,
1
6

}
,

and similarly for the x direction. This gives

φ m+1ñ−2φ mñ +φ m−1ñ

∆t2 +
φ m̃n+1−2φ m̃n +φ m̃n−1

∆x2 +
1

∆t∆x
( f ,ψmn),

where φ mñ = 1
6(φ

mn+1 + 4φ mn + φ mn−1) and φ m̃n = 1
6(φ

m+1n + 4φ mn + φ m−1n). Noting that

(N′(φ),ψmn) = δN /δφ mn, where N =
∫

N(φ)dt ∧ dx, this reproduces the nine-point varia-

tional integrator derived by Chen [30]. As was shown in Chen [30], using mid-point quadrature,

this method reduces to the multisymplectic integrator derived by Marsden et al. [85].

Now, we consider the discrete Cartan form for this example. Consider a regular region

U ⊂ X ; for simplicity, we take U to be a rectangular region U = [t0, tM]× [x0,xN ], without loss of

generality, since any regular region on a rectangular mesh is a union of such rectangular regular

regions, where the vertices of U are given by {(ti,x j)}M,N
i, j=0 where ti = t0 + i∆t,x j = x0 + j∆x.

We index the piecewise linear nodal interpolating shape functions ψi j(t,x) = χi(t)ξ j(x) by the

node (ti,x j) which it interpolates, i.e., ψi j(tk,xl) = χi(tk)ξ j(xl) = δikδ jl . Let

φh =
M,N

∑
i, j=0

φ
i j
h ψi j
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be a solution of the associated discrete Euler–Lagrange equation, restricted to U .

Recall the definition of the discrete weak Cartan form as the variation of the action

by w ∈ Λ0
h(U), with generally nonvanishing trace on ∂U . Letting w = win +w∂ ∈ Λ0

h(U) and

W ∈ X(Λ0
h) such that W (φh) = w, we have δSU [φh] ·win = 0 and hence,

Θ
h
U(φh) ·W = δSU [φh] ·w = δSU [φh] · (w−win) = δSU [φh] ·w∂ (2.19)

= ∑
T∈T [∂U ]

∫
T

dφh∧∗dw∂ .

As discussed above, in the case where the degrees of freedom are the nodal values and the

finite-dimensional function space is given by nodal interpolating shape functions, the discrete

weak Cartan form reproduces the discrete Cartan form in Marsden et al. [85] and Chen [30].

However, we will now explicitly show this for this example. We express the action as a function

of the components φ
i j
h :

SU [{φ i j
h }] =

∫
U
[dφh∧∗dφh−N(φh)dt ∧dx] =

∫
U

[
1
2 ∑

i, j
∑
k,l

φ
i j
h φ

kl
h dψi j∧∗dψkl

]
.

Let i j ∈I [∂U ], i.e., the index corresponds to a node on ∂U , consisting of indices i j such that

either i = 0 or M or j = 0 or N. Marsden et al. [85] and Chen [30] define the discrete Cartan

form associated to this node to be

∂SU [{φ kl
h }]

∂φ
i j
h

dφ
i j
h , (2.20)

where d is the vertical exterior derivative along the fiber and not the exterior derivative on the

base space. Compute
∂SU [{φ kl

h }]
∂φ

i j
h

=
∫

U

[
∑
k,l

φ
kl
h dψi j∧∗dψkl

]
.

With coordinates φ
i j
h on Λ0

h, we can express the vector field W = ∑k,l W kl∂/∂φ kl
h and hence

W kl(φh) = wkl . Pairing (2.20) with W and summing over all i j ∈I [∂U ], we see that this gives
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(2.19), since w∂ = ∑i j∈I [∂U ]wi jψi j and ψi j for i j ∈I [∂U ] are supported on ∪T∈T [∂U ]T .

Finally, we now discuss in what sense the discrete weak Cartan form for this example

converges to the weak Cartan form. Consider a node i j ∈I [∂U ] along, say, the {t = t0} edge

of ∂U , so that i = 0. We compute part of the discrete Cartan form for a boundary variation

w0 j associated to this node. Namely, we compute the part associated to the derivative in the t

direction, since this is the normal direction along this edge. This is given by

∫
U

∑
k,l

φ
kl
h χ
′
k(t)ξl(x)w0 j

χ
′
0(t)ξ j(x)dt ∧dx =

∫
U

1

∑
k=0

j+1

∑
l= j−1

φ
kl
h χ
′
k(t)ξl(x)w0 j

χ
′
0(t)ξ j(x)dt ∧dx

=
j+1

∑
l= j−1

φ 0l
h −φ 1l

h
∆t

(ξl,ξ j)L2w0 j.

Since (ξl,ξ j)L2 for l = j− 1, j, j + 1 has total mass ∆x, this formally converges to
∫ ∂φ

∂n wdx,

where we note that the normal vector on this edge is −t̂. Repeating this over all nodes on ∂U ,

the discrete Cartan form formally converges to

∫
∂U

∂φ

∂n
wdl,

where dl is the codimension one measure on ∂U , which is the weak Cartan form for a solution φ

of the weak Euler–Lagrange equation.

To be more rigorous about the convergence of the discrete weak Cartan form to the weak

Cartan form, we have the bound

∣∣Θh
U(φh) ·πhv−ΘU(φ) · v

∣∣
≤
∣∣∣(Θ

h
U(φh)−Θ

h
U(πhφ)

)
·πhv

∣∣∣+ ∣∣∣ΘU(φ) · (v−πhv)
∣∣∣+ ∣∣∣(ΘU(φ)−Θ

h
U(πhφ)

)
·πhv

∣∣∣
≤C|φh−πhφ |H1‖πhv‖H1 +C|φh|H1‖v−πhφ‖H1 +C|φ −πhφ |H1‖πhv‖H1

≤ hC(φ , f ),
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where C(φ , f ) is independent of h, and we have applied standard estimates for piecewise-linear

elements applied to the Poisson equation (see, e.g., Larsson and Thomée [66]). Thus, we expect

linear convergence of the discrete weak Cartan form to the weak Cartan form.

As a numerical example, we take U = X = [0,1]× [0,1] with f (x,y) = −π2 sin(πx)−

π2 sin(πy), v(x,y) = ex+ey, and ∆t = ∆x = h for various values of h. Since we have the analytic

solution φ(x,y) = sin(πx)+ sin(πy), we can directly compute the error

E(h) =
∣∣∣Θh

U(φh) ·πhv−ΘU(φ) · v
∣∣∣ .

The linear convergence, i.e.,

∣∣∣Θh
U(φh) ·πhv−ΘU(φ) · v

∣∣∣≤ O(h),

is shown in Figure 1.2.

Figure 1.2. Linear Convergence of the discrete weak Cartan form to the weak Cartan form.
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1.3 Canonical Semi-discretization of Lagrangian Field
Theories

Turning now to the canonical formalism of field theories, we assume that our (n+1)-

dimensional spacetime X is globally hyperbolic, i.e., X contains a smooth Cauchy hypersurface

Σ such that every infinite causal curve intersects Σ exactly once. It was shown in Bernal and

Sánchez [14] that a globally hyperbolic spacetime is diffeomorphic to the product, X ∼= R×Σ.

Identifying X with the product, we have a slicing of the spacetime. Taking an interval I ⊆ R, we

have the spacelike embeddings

it : Σ! X ,

for each t ∈ I, such that the images {Σt := it(Σ)}t∈I form a foliation of X .

We will assume our Lagrangian depends on time-dependent fields as L (xµ ,ϕ, ϕ̇,dϕ),

where the field ϕ(t) ∈ HΛk(Σt), denoted by ϕ as opposed to the full field φ , and the exterior

derivative acts on Λk(Σt) for each t.

Remark 1.3.1. There is a slight subtlety here when comparing to the covariant theory on the

full spacetime X. In the covariant theory, we consider k-forms on X, ΛkX, whereas here we are

considering k-forms on Σ, Λk(Σ). Letting π1 : R×Σ! R,π2 : R×Σ! Σ be the projections, we

have pointwise,

∧k(T ∗X) = ∧kT ∗(R×Σ)∼=
(

π
∗
1 (∧0T ∗R)∧π

∗
2 (∧kT ∗Σ)

)
⊕
(

π
∗
1 (∧1T ∗R)∧π

∗
2 (∧k−1T ∗Σ)

)
.

This congruence does not hold at the level of sections: to see this in coordinates (t,x) on R×Σ,

we have forms which look like f (t)g(x)dx j1 ∧ ·· · ∧ dx jk , f (t)dt ∧ g(x)dx j1 ∧ ·· · ∧ dx jk−1 which

cannot give a form which looks like, e.g., h(t,x)dt ∧dx j1 ∧·· ·∧dx jk−1 where h is some function

that cannot be expressed as a product f (t)g(x). However, we are assuming time-dependent fields

ϕ : t 7!HΛk(Σ) so we do have the forms which look like ϕ(t) = g(t,x)dx j1 ∧·· ·∧dx jk . Thus, we

only need to consider multiple fields to obtain full generality ϕ1 : t 7!HΛk(Σ),ϕ2 : t 7!HΛk−1(Σ).
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Here, we are identifying Λ1(I)∼= Λ0(I), so by ϕ2(t) we really mean ϕ2(t)dt. Of course, this issue

does not arise for scalar functions; however, for k > 0, one needs to consider multiple fields.

To be more precise regarding this decomposition, consider first the case k = 0. Since the

exterior derivative on scalar functions on I×Σ splits into d = dt +dΣ, where, in terms of vector

field proxies, dt = ∂t ,dΣ = ∇Σ, one does not need to consider multiple fields. In this case, one

has

HΛ
0(I×Σ) = HΛ

0(I,L2(Σ))∩L2(I,HΛ
0(Σ)).

For the case k > 0, we first begin with a formal calculation. For any k-form φ on I×Σ,

we can express φ as

φ = ∑
I∈Ik−1

t

ψI(t,x)dt ∧dxI

︸ ︷︷ ︸
≡ψ

+ ∑
J∈Ik

Σ

ϕJ(t,x)dxJ

︸ ︷︷ ︸
≡ϕ

,

where I and J are multi-indices of size k− 1 and k, respectively, and for a multi-index I =

(i1, . . . , im) of size m, dxI ≡ dxi1 ∧ ·· · ∧ dxim . The multi-index set Ik−1
t is defined as the set of

all multi-indices (i1, . . . , ik−1) such that i1 < · · · < ik−1 and such that each of the indices are

non-zero, where we adopt the convention that dx0 = dt. The multi-index set Ik
Σ

is defined as the

set of all multi-indices (i1, . . . , ik) such that i1 < · · ·< ik and such that each of the indices are

non-zero. Note that ϕ and ψ are orthogonal with respect to the L2Λk(I×Σ) inner product, so

square integrability of φ is equivalent to square integrability of both ϕ and ψ . For the square

integrability of dφ , we compute the exterior derivative of φ

dφ = ∑
I∈Ik−1

t

dΣψI(t,x)∧dt ∧dxI + ∑
J∈Ik

Σ

∂

∂ t
ϕJ(t,x)dt ∧dxJ + ∑

J∈Ik
Σ

dΣϕJ(t,x)∧dxJ.

Thus, for square integrability of φ and dφ , it suffices to have ψ ∈ L2Λ1(I,HΛk−1(Σ)) and

ϕ ∈ H1Λ0(I,L2Λk(Σ))∩L2Λ0(I,H1Λk(Σ)). Thus, in the covariant picture, we can view a field

φ as splitting into two fields ϕ and ψ . We will treat the case where ψ = 0, i.e., we consider
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theories depending only on k-forms of the form

φ = ∑
J∈Ik

Σ

ϕJ(t,x)dxJ.

In this case, the exterior derivative splits into temporal and spatial derivatives, so we have the

identification (φ ,dφ)∼= (ϕ, ϕ̇,dΣϕ). We will subsequently refer to the spatial exterior derivative

dΣ simply as d.

We will discuss how a semi-discretization of the variational principle gives rise to finite-

dimensional Lagrangian and Hamiltonian dynamical systems (see, for example, Abraham and

Marsden [1]) and subsequently discuss how the energy-momentum map structure of a canonical

field theory (see Gotay et al. [45]) is affected by semi-discretization.

1.3.1 Semi-discrete Euler–Lagrange Equations

In this section, we formally derive the semi-discrete Euler–Lagrange equations. Given

our Λn+1(X)-valued Lagrangian density, we can produce an instantaneous density by contracting

with the generator of the slicing ∂/∂ t, and pulling back by the inclusion of Σt into X . This

gives a Λn(Σt)-valued density, which we will still call L . In coordinates where the density is

L dt ∧V (t) and V (t) restricts to a volume form on Σt , L = i∗t LV (t). The action in the canonical

framework is given by

S[ϕ] =
∫

I
dt
∫

Σt

L (xµ ,ϕ, ϕ̇,dϕ), (3.1)

where (xµ) = (t,x1, . . . ,xn) = (t,x), and x = (xi) denotes spatial coordinates.

To derive a semi-discrete formulation of the Euler–Lagrange equations, instead of looking

at arbitrary variations of the form v(t,x), we instead consider variations of the form u(t)v(x)

where v ∈ HΛk(Σ) and u ∈C2
0(I,R). The basic idea of the semi-discrete formulation is to allow

u to be arbitrary but restrict v to a finite-dimensional subspace Λk
h. As in the covariant case,

in order to compute the variations formally without going through the Hamilton–Pontryagin
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principle, we will assume that the projections are cochain projections, with respect to the spatial

exterior derivative d on Σ.

Assumption 1.3.1. The projections πm
h : HΛm(Σ)! Λm

h (Σ) are cochain projections, i.e.,

π
k+1
h d = dπ

k
h ,

with respect to d : Λm(Σ)! Λm+1(Σ).

Remark 1.3.2. Note that we assume a finite element discretization Λk
h of the fields on the

reference space HΛk(Σ), with associated projection πh. There are two ways to view the variations

with respect to our slicing {Σt}. On the one hand, the field variation on the reference space

v ∈ Λk
h ⊂ HΛk(Σ) is pulled back to a field variation on a time slice (i−1

t )∗v ∈ HΛk(Σt), where

we restrict the embedding to its image it : Σ! Σt . On the other hand, we can pull back forms

on Σt to forms on Σ via i∗, e.g., the Lagrangian density and its derivatives, and perform any

relevant integration over the reference space Σ. We will utilize the latter since in computation

it is preferable to work on one reference space. For simplicity, we will not explicitly write the

pullbacks i∗t but rather implicitly incorporate it into the spacetime dependence of the Lagrangian.

Theorem 1.3.1. The semi-discrete Euler–Lagrange equations corresponding to the variational

principle δS[ϕ] · (uv) = 0 for all v ∈ Λk
h and u ∈C2

0(I,R) are given by

d
dt
(∂3L ,v)L2Λk(Σ)− (∂2L ,v)L2Λk(Σ)− (∂4L ,dv)L2Λk+1(Σ) = 0, for all v ∈ Λ

k
h and t ∈ I, (3.2)

where L is evaluated at (xµ ,ϕ, ϕ̇,dϕ).
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Proof. With L evaluated at (xµ ,ϕ, ϕ̇,dϕ), compute

0 = δS[ϕ] · (uv) =
d

dε

∣∣∣
ε=0

S[φ + εuv]

=
∫

I
dt
∫

Σ

[
∂2L ∧?u(t)v+∂3L ∧?u̇(t)v+∂4L ∧?u(t)dv

]
=
∫

I
dt
[∫

Σ

(
∂3L ∧?v

)
u̇(t)+

∫
Σ

(
∂2L ∧?v+∂4L ∧?dv

)
u(t)

]
=
∫

I
dt
[
(∂3L ,v)L2 u̇(t)+(∂2L ,v)L2u(t)+(∂4L ,dv)L2u(t)

]
=−

∫
I
dt
[ d

dt
(∂3L ,v)L2− (∂2L ,v)L2− (∂4L ,dv)L2

]
u(t).

Since u ∈C2
0(I,R) is arbitrary, the terms in the brackets vanish, which gives (3.2).

Remark 1.3.3. Similar to our discussion of the covariant case, there is a naturality relation in

the variational principle when using spatial cochain projections for the semi-discrete theory. In

particular,

S[πhϕ] =
∫

I
dt
∫

Σ

L (xµ ,πhϕ,πhϕ̇,dπhϕ) =
∫

I
dt
∫

Σ

L (xµ ,πhϕ,πhϕ̇,πhdϕ) =: Sh[ϕ],

so that the restricted variational principle can be realized as a full variational principle on a

degenerate action, δS[πhφ ] ·(u πhv) = δSh[φ ] ·(uv). Analogous to the discussion in the covariant

case, the cochain property additionally removes the ambiguity of how one should discretize the

spatial derivative of the field, i.e., whether one should project before or after taking the spatial

derivative.

We now show that the semi-discrete Euler–Lagrange equation (3.2) arises from an

instantaneous Lagrangian. To do this, let {vi} be a basis for Λk
h. We define the instantaneous

semi-discrete Lagrangian to be

Lh(t,ϕ i, ϕ̇ i) =
∫

Σ

L (xµ ,ϕ ivi, ϕ̇
ivi,ϕ

idvi), (3.3)
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where ϕ = ϕ i(t)vi ∈C2(I,Λk
h) and the associated action Sh[{ϕ i}] =

∫
I dtLh(t,ϕ i, ϕ̇ i). We enforce

the variational principle over curves u = ui(t)vi ∈C2
0(I,Λ

k
h). The variational principle yields

0 = dSh[{ϕ i}] · {u j}= d
dε

∣∣∣
0
Sh[{ϕ i + εu j}] = ∑

j

∫
I
dt
(

∂Lh

∂ϕ j (t,ϕ
i, ϕ̇ i)u j +

∂Lh

∂ ϕ̇ j (t,ϕ
i, ϕ̇ i)u̇ j

)
= ∑

j

∫
I
dt
[

∂Lh

∂ϕ j (t,ϕ
i, ϕ̇ i)− d

dt
∂Lh

∂ ϕ̇ j (t,ϕ
i, ϕ̇ i)

]
u j.

This holds for arbitrary u j ∈C2
0(I,R), so the term in the brackets,

∂Lh

∂ϕ j (t,ϕ
i, ϕ̇ i)− d

dt
∂Lh

∂ ϕ̇ j (t,ϕ
i, ϕ̇ i) = 0, (3.4)

vanishes for each j by the fundamental lemma of the calculus of variations. Expressing the

derivatives of Lh in terms of L ,

∂Lh

∂ϕ j = (∂2L ,v j)L2Λk(Σ)+(∂2L ,dv j)L2Λk+1(Σ), (3.5a)

∂Lh

∂ ϕ̇ j = (∂3L ,v j)L2Λk(Σ). (3.5b)

Substituting these expressions into equation (3.4), we see that this is equation (3.2) with the

choice v = v j. This holds for each basis form v j and hence for arbitrary v ∈ Λk
h.

We will now introduce a Hamiltonian structure associated with the semi-discretization

and show that, in the hyperregular case, this instantaneous Lagrangian system is equivalent to an

instantaneous Hamiltonian system.

1.3.2 Symplectic Structure of Semi-discrete Dynamics and Hamiltonian
Formulation

Having derived the semi-discrete Euler–Lagrange equation (3.2), we now relate the sym-

plectic structure on the cotangent space of the full field space T ∗HΛk(Σ) to a symplectic structure

on the discretized space T ∗Λk
h, and show that the semi-discrete Euler–Lagrange equations are

57



equivalent to a Hamiltonian flow on T ∗Λk
h if the Lagrangian is hyperregular.

We work with the reference space Σ, since via the diffeomorphism it : Σ! Σt , we can

pullback forms on Σ to Σt or vice versa, or forms on iterated exterior bundles, such as the

symplectic form which is an element of Λ2(T ∗HΛk(Σ)). On the full phase space T ∗HΛk(Σ), the

canonical one-form θ ∈ Λ1(T ∗HΛk(Σ)) is given in coordinates by

θ
∣∣
(ϕ,π)

=
∫

Σ

πAdϕ
A⊗dnx0, (3.6)

and the corresponding symplectic form ω =−dθ is given by

ω
∣∣
(ϕ,π)

=
∫

Σ

(dϕ
A∧dπA)⊗dnx0.

Using the projection map πh : HΛk(Σ)! Λk
h, we have the pullback π∗h : T ∗Λk

h! T ∗HΛk(Σ) and

the twice iterated pullback π∗∗h : Λp(T ∗HΛk(Σ))! Λp(T ∗Λk
h) for any p. We define θh ≡ π∗∗h θ

and ωh ≡ π∗∗h ω = −dθh ∈ Λ2(T ∗Λk
h). To find an expression for θh and ωh, we will introduce

global coordinates on T ∗Λk
h. Let {vi} be a finite element basis for Λk

h; we will use the components

ϕ i of the basis expansion ϕ = ϕ ivi as the coordinates on Λk
h. Similarly, if we identify T Λk

h
∼=

Λk
h×Λk

h, then we have a basis for T ∗ϕ Λk
h consisting of vi := (·,vi)L2 . This gives the trivialization

T ∗Λk
h
∼= Λk

h× (Λk
h)
∗ with global coordinates (ϕ,π)∼ (ϕ i,πi) where ϕ = ϕ ivi and π = πivi. We

will denote these coordinates using vector notation ~ϕ = (ϕ i), ~π = (πi).

Proposition 1.3.1. The 1-form θh is given in the above coordinates by

θh = v j(vi)π jdϕ
i = d~ϕT M~π, (3.7)

where the mass matrix M has components M j
i := v j(vi) =

∫
Σ

viv jdnx0. Furthermore, the 2-form

ωh =−dθh is a symplectic form on T ∗Λk
h with coordinate expression

ωh = dϕ
i∧ v j(vi)dπ j = d~ϕT ∧Md~π. (3.8)
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Proof. Let (ϕ,π) ∈ T ∗Λk
h and U ∈ T(ϕ,π)(T ∗Λk

h), with coordinate expression

U(ϕ,π) = Φ
i ∂

∂ϕ i +Πi
∂

∂πi
.

Note that θ |(ϕ ′,π ′)(V ) gives the canonical pairing between the ∂/∂ϕ ′ component of V and π ′ by

equation (3.6). Then, since π∗h : T ∗Λk
h ↪! T ∗HΛk(Σ) is an inclusion, T π∗h is an inclusion on the

corresponding tangent space, which gives

θh|(ϕ,π)(U) = θ |π∗h (ϕ,π)(T π
∗
hU) = 〈Φ,π〉= Φ

i
π j

∫
Σ

viv jdnx0 = v j(vi)π jΦ
i = v j(vi)π jdϕ

i(U).

Equation (3.8) then follows from taking (minus) the exterior derivative of equation (3.7).

The nondegeneracy and closedness of ωh clearly follow from the (global) coordinate

expression (3.8) above. In particular, since the mass matrix M is invertible (hence nondegenerate),

ωh is nondegenerate. Closedness follows from

dωh = d2~ϕT ∧Md~π−d~ϕT ∧dM∧d~π−d~ϕT ∧Md2~π = 0.

Alternatively, ωh is closed as the pullback of a closed form ω .

Remark 1.3.4. Under a change of basis, ωh can be seen as a canonical symplectic form on

T ∗Λk
h. To see ωh in canonical form, we change basis. Let Q be an orthogonal matrix which

diagonalizes the symmetric mass matrix M, i.e., QMQT = D. Define coordinates ~q = Q~ϕ and

~p = DQ~π; then

ωh = d~ϕT ∧Md~π = d~ϕT ∧QT DQd~π = d(Q~ϕ)T ∧d(DQ~π) = d~qT ∧d~p.

However, we will work with the form of ωh corresponding to the finite element basis (3.8) since

it is more directly applicable to our discretization. Also, if we chose the dual basis l j to be

different from the basis v j = (·,v j), M would not necessarily be symmetric but would still define
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a symplectic form. This follows from the fact that, for a finite element method to be consistent,

one requires that the matrix with components l j(vi) is invertible. Hence, it is more natural to

work with the coordinates (~ϕ,~π).

Let Hd : T ∗Λk
h ! R be a given semi-discrete Hamiltonian, expressed in our global

coordinates as Hd(~ϕ,~π). Later, we will choose the semi-discrete Hamiltonian induced by the

semi-discrete Lagrangian. The dynamics of the Hamiltonian system (ωh,Hd) is given by the

flow generated by the Hamiltonian vector field XHd satisfying XHdy ωh = dH, or with vector

field components XHd = (ϕ̇ i, π̇i),


M j

kϕ̇k = ∂Hd
∂π j

,

M k
j π̇k =−∂Hd

∂ϕ j .

(3.9)

Remark 1.3.5. In the above, we denote row j and column k of M as M k
j and for MT as M j

k,

which allows for the more general case where M is asymmetric that was discussed previously. If

we define~z as the concatenation of ~ϕ and ~π , the equations (3.9) can be written in skew-symmetric

form,
d
dt
~z = JM∇~zHd,

where JM =

 0 (M−1)T

−M−1 0

.

Remark 1.3.6. In our discussion of the covariant discretization of Lagrangian field theories, we

saw that the variation of the discretized action on the discrete space can be naturally related to

the variation of a degenerate action on the full space. In the semi-discrete setting, an analogous

statement can be made in terms of the semi-discrete symplectic structure and a presymplectic

structure on the full space. Namely, we have the symplectic form ωh ∈ Λ2(T ∗Λk
h). Now, consider

the presymplectic form ω̃h ∈Λ2(T ∗HΛk) defined by ω̃h = i∗∗h ωh where ih = (πh)
† : Λk

h ↪!HΛk is

the inclusion. Clearly, ω̃h is closed as the pullback of a closed form. To see that it is degenerate,
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observe that for any V,W ∈ X(T ∗HΛk), we have,

ω̃h(V,W ) = (i∗∗h π
∗∗
h ω)(V,W ) = ω(T (π∗h i∗h)V,T (π

∗
h i∗h)W ).

Since ihπh has a nontrivial kernel, so does T (π∗h i∗h) = T (ihπh)
∗ and hence ω̃h is degenerate.

The flow of a vector field in the kernel of ω̃h, projected back to the semi-discrete space, corre-

sponds to equivalent states in the semi-discrete setting. Quotienting the presymplectic manifold

(T ∗HΛk, ω̃h) by the orbits of the flow of vector fields in the kernel of ω̃h gives the symplectic

manifold (T ∗Λk
h,ωh). This relates a symplectic flow on (T ∗Λk

h,ωh) to an equivalence class of

presymplectic flows on (T ∗HΛk, ω̃h), where the equivalence class is formed by orbits of the flow

of vector fields in the kernel of ω̃h.

We also allow our semi-discrete Hamiltonian to explicitly depend on time, Hd : I×

T ∗Λk
h! R, i.e., the domain of Hd is the extended phase space I×T ∗Λk

h. The dynamics are now

given by any vector field XHd on the extended phase space such that XHdy (ωh +dHd ∧dt) = 0,

where ωh is extended to the full phase space by pulling back along the projection I×T ∗Λk
h!

T ∗Λk
h. If we consider the vertical component XV

Hd
of XHd with respect to the trivial bundle

I×Λk
h! I, then the above is equivalent to XV

Hd
y ωh = dvHd holding for all times. This is given

again by equation (3.9) but with explicit time dependence in Hd . Here, dvHd is the vertical

exterior derivative of Hd with coordinate expression dvHd(t,ϕ,π) =
∂Hd
∂ϕ i dϕ i + ∂Hd

∂π j
dπ j. We

could also allow explicit time dependence in M, but since we pullback our integration to Σ, we

view M as constant and absorb the time dependence into Hd .

Now, we would like to relate the semi-discrete Euler–Lagrange equations (3.2) to the

Hamiltonian dynamics of ωh by making a particular choice of semi-discrete Hamiltonian. The

first step is to produce a Hamiltonian associated to the instantaneous Lagrangian

L(t,ϕ, ϕ̇) =
∫

Σ

L (xµ ,ϕ, ϕ̇,dϕ).
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To do this, we use the Legendre transform, which takes the form π = ∂L/∂ ϕ̇ . The pairing of π

with a tangent vector field with components (ϕ,v) is given by computing the variation

〈π,v〉=
〈

∂L
∂ ϕ̇

,v
〉
=

d
dε

∣∣∣
ε=0

L(t,ϕ, ϕ̇ + εv) = (∂3L ,v)L2Λk .

The instantaneous Hamiltonian is given by

H(t,ϕ,π) = 〈π, ϕ̇〉−L(t,ϕ, ϕ̇),

where the ϕ̇ dependence is removed either by extremizing over ϕ̇ or, assuming L is hyperregular,

by inverting the Legendre transform to obtain ϕ̇ as a function of (ϕ,π). Restricting to our finite

element space T ∗Λk
h gives a semi-discrete Hamiltonian Hh, defined by

Hh(t,ϕ i,πi) = H(t,ϕ ivi,πiv j) = 〈π jv j, ϕ̇ ivi〉−L(t,ϕ ivi, ϕ̇
ivi) = M j

i π jϕ̇
i−L(t,ϕ ivi, ϕ̇

ivi).

Note that Hh corresponds to the Legendre transform of the semi-discrete Lagrangian (3.3), where

we recall the duality pairing between (ϕ j,π j) ∈ T ∗Λk
h and (ϕ i, ϕ̇ i) ∈ T Λk

h is given by M j
i π jϕ̇

i.

Proposition 1.3.2. Assume that Lh is hyperregular, then the dynamics associated with the

Hamiltonian system (ωh,Hh) is equivalent to the semi-discrete Euler–Lagrange equations (3.2).

Proof. Since we assumed that Lh is hyperregular, i.e., that the associated Legendre transform is

a diffeomorphism T Λk
h! T ∗Λk

h, we have ϕ̇ i as a function of (ϕ j,π j). To verify the equivalence,
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we compute the equations (3.9) for our given system. Compute for L evaluated at (t,ϕ ivi, ϕ̇
ivi),

M k
j π̇k =−

∂Hh

∂ϕ j =−
∂

∂ϕ j

(
M k

i πkϕ̇
i−L

)
=−M k

i πk
∂ ϕ̇ i

∂ϕ j +
∂

∂ϕ j

∫
Σt

L (xµ ,ϕ ivi, ϕ̇
ivi,ϕ

idvi)

=−M k
i πk

∂ ϕ̇ i

∂ϕ j +
∫

Σt

[
∂2L ∧?

∂ (ϕ ivi)

∂ϕ j +∂3L ∧?
∂ (ϕ̇ ivi)

∂ϕ j +∂4L ∧?
∂ (ϕ idvi)

∂ϕ j

]
=−M k

i πk
∂ ϕ̇ i

∂ϕ j +
∫

Σt

[
∂2L ∧?v j +∂3L ∧?vi

∂ ϕ̇ i

∂ϕ j +∂4L ∧?dv j

]
=−M k

i πk
∂ ϕ̇ i

∂ϕ j +(∂3L ,vi)
∂ ϕ̇ i

∂ϕ j +(∂2L ,v j)L2 +(∂4L ,dv j)L2

= (∂2L ,v j)L2 +(∂4L ,dv j)L2 ,

where in the second to last line, the first two terms cancel since (∂3L ,vi) = 〈π,vi〉= 〈πkvk,vi〉=

M k
i πk. Then, note the left hand side is equivalently given by

M k
j π̇k = M k

j
d
dt

πk =
d
dt

(
M k

j πk
)
=

d
dt

(
〈vk,v j〉πk

)
=

d
dt
〈π,v j〉=

d
dt
(∂3L ,v j)L2.

Thus,
d
dt
(∂3L ,v j)L2 = (∂2L ,v j)L2 +(∂4L ,dv j)L2,

which holds for each j and hence is equivalent to (3.2).

Remark 1.3.7. In the above proposition, we assumed that Lh was hyperregular for the equiv-

alence. If Lh is not hyperregular, corresponding to a degenerate field theory, the dynamics

associated to Hh evolve over a primary constraint surface. In this case, the dynamics of Hh on

the constraint surface corresponds to a (not necessarily unique) solution of the semi-discrete

Euler–Lagrange equation. In this setting, the dynamics are associated to the modified Hamilto-

nian H̄(~ϕ,~π,λ ) = H(~ϕ,~π)+λ AΦA(~ϕ,~π).

The above also shows that, in the hyperregular case, the semi-discrete Euler–Lagrange

equations correspond to a symplectic flow. The associated symplectic form is the pullback of
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ωh by the Legendre transform FLh : T Λk
h! T ∗Λk

h. In the non-regular case, the semi-discrete

Euler–Lagrange equations correspond to a presymplectic flow.

To summarize, in this section, we have pulled back the symplectic structure on T ∗HΛk

to T ∗Λk
h and showed that the dynamics of the Hamiltonian system (ωh,Hh) is equivalent, in

the hyperregular case, to the semi-discrete Euler–Lagrange equations of the corresponding

Lagrangian system. By applying a numerical integrator for the finite-dimensional Hamiltonian

system associated to Hh, we obtain a full discretization of the evolution problem for a field

theory.

1.3.3 Energy-Momentum Map

In this section, we examine how symmetries in the canonical formulation are affected

by the semi-discretization of the field theory. In the canonical setting, the manifestation of

the covariant momentum map is the energy-momentum map. If a vector in the Lie algebra

of the symmetry group gives rise to an infinitesimal generator on X which is transverse to the

foliation, its pairing with the energy-momentum map equals the instantaneous Hamiltonian

defined by that generator (the “energy” component). On the other hand, if the corresponding

generator is tangent to the foliation, the pairing is given by the usual momentum map of the

instantaneous Hamiltonian theory, corresponding to the canonical form (3.6) (the “momentum”

component). We will see that, in the case of an equivariant discretization, the iterated pullback of

the energy-momentum map provides the natural energy-momentum structure of the semi-discrete

theory.

We start by investigating the momentum map structure of the semi-discrete theory. Let

K be a Lie group acting on HΛk, with Lie algebra k := TeK. For η ∈ K, we denote the group

action ηϕ := η ·ϕ and the associated cotangent action is given by η̃ := (η−1)∗. We use the

same notation for these actions restricted to Λk
h and T ∗Λk

h, where the restriction is well-defined if

the projection is group-equivariant.
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Proposition 1.3.3. Assume that K acts by symplectomorphisms on (T ∗HΛk,ω). Since K acts by

cotangent lifts on T ∗HΛk, it admits a canonical momentum map J : T ∗HΛk! k∗. Furthermore,

assume that the projection map πh is equivariant with respect to the K-action on HΛk and Λk
h,

i.e., πhη̄ϕ = η̄πhϕ . Then, K acts by cotangent-lifted symplectomorphisms on (T ∗Λk
h,ωh) and

the canonical momentum map for this action Jh is given by Jh = π∗∗h J = J ◦π∗h .

Proof. To see that K preserves ωh, for any η ∈ K, by equivariance, we have that

η̃
∗
ωh = (η−1)∗∗π∗∗h ω = (η−1πh)

∗∗
ω = (πhη−1)∗∗ω = π

∗∗
h (η−1)∗∗ω = π

∗∗
h ω = ωh.

A similar result holds for θh, since K preserves θ by virtue of the fact that it acts by cotangent

lifted actions.

The canonical momentum map J is given by 〈J(ϕ,π),ξ 〉 = ξT ∗HΛk(ϕ,π)yθ |(ϕ,π) for

(ϕ,π) ∈ T ∗HΛk whereas 〈Jh(ϕ,π),ξ 〉 = ξT ∗Λk
h
(ϕ,π)yθh|(ϕ,π) for (ϕ,π) ∈ T ∗Λk

h. These are

both momentum maps for their respective actions since K acts by cotangent lifts. Then,

〈Jh(ϕ,π),ξ 〉= ξT ∗Λk
h
(ϕ,π)yθh = ξT ∗Λk

h
(ϕ,π)yπ

∗∗
h θ

= [T π
∗
h ξT ∗Λk

h
(ϕ,π)]yθ =

[
T π
∗
h

d
dt

∣∣∣
t=0

ẽtξ (ϕ,π)
]
yθ

=
[ d

dt

∣∣∣
t=0

π
∗
h (e−tξ )∗(ϕ,π)

]
yθ

=
[ d

dt

∣∣∣
t=0

(e−tξ πh)
∗(ϕ,π)

]
yθ

=
[ d

dt

∣∣∣
t=0

(πhe−tξ )∗(ϕ,π)
]
yθ

=
[ d

dt

∣∣∣
t=0

(e−tξ )∗π∗h (ϕ,π)
]
yθ

= ξT ∗HΛk(π∗h (ϕ,π))yθ = 〈(J ◦π
∗
h )(ϕ,π),ξ 〉.

where we have implicitly evaluated θh at (ϕ,π) and θ at π∗h (ϕ,π). Hence, Jh = J ◦ π∗h or,

equivalently, Jh = π∗∗h J.

Remark 1.3.8. As can be seen in the proof, one does not need full K-equivariance of the
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projection, but only infinitesimal equivariance, i.e., πh(etξ ϕ)− etξ πhϕ = o(t).

Furthermore, one can weaken the notion of equivariance to πhη̄ = ψh(η)πh, where

ψh : K! K is a Lie group homomorphism. In this case, if ψ̃h denotes the induced Lie algebra

homomorphism, we can see from the above proof that the semi-discrete momentum map is related

to the original momentum map via 〈Jh,ξ 〉= 〈J ◦π∗h , ψ̃h(ξ )〉.

As discussed in the covariant case, the weakening of this condition can allow us to

construct more general projections.

Corollary 1.3.1. Assuming as in the proposition, if J is Ad∗-equivariant, then so is Jh.

Proof. This follows immediately from Jh = J ◦π∗h , K-equivariance of πh, and Ad∗-equivariance

of J, J ◦ η̃ = Ad∗ηJ (where Ad∗η := (Ad(η−1))∗),

Jh ◦ η̃ = J ◦π
∗
h ◦ (η−1)∗ = J ◦ (η−1)∗ ◦π

∗
h

= J ◦ η̃ ◦π
∗
h = (Ad∗ηJ)◦π

∗
h = Ad∗η(J ◦π

∗
h ) = Ad∗ηJh,

where the equality (Ad∗ηJ)◦π∗h = Ad∗η(J ◦π∗h ) holds since the coadjoint action acts on J after

it is evaluated on its input, which is then an element of k∗. In particular, (Ad∗ηJ)(ϕ,π) :=

Ad∗η(J(ϕ,π)), so that

((Ad∗ηJ)◦π
∗
h )(ϕ,π) = (Ad∗ηJ)(π∗h (ϕ,π)) = Ad∗η(J(π

∗
h (ϕ,π))) = Ad∗η((J ◦π

∗
h )(ϕ,π))).

Stated another way, this follows from associativity of the composition of functions, viewing Ad∗η

as a function k∗! k∗.

Remark 1.3.9. Of course, since K acts by cotangent lifts and hence by canonical symplecto-

morphisms, J is an Ad∗-equivariant momentum map, and the corollary tells us that Jh is as well.

However, as we remark below, one may consider more general actions which admit momentum

maps, and it is not necessarily the case that those momentum maps are Ad∗-equivariant. The

66



result of the previous corollary still holds in this more general setting.

The naturality of the momentum map structures from the previous proposition and

corollary can be summarized via the following commuting diagram; for any η ∈ K,

T ∗HΛk

η̃

$$

J

��

T ∗Λk
hπ∗h

oo

η̃

||

Jh

��

T ∗HΛk

J
""

T ∗Λk
hπ∗h

oo

Jh
}}

k∗

k∗

Ad∗η
OO

.

Remark 1.3.10. In the above proposition, we only assumed that πh was equivariant with respect

to the K-action on the configuration space, and it follows that π∗h is equivariant with respect to

the lifted action on the cotangent space. However, for more general actions on the cotangent

space that do not arise from a cotangent lift, one must instead assume π∗h is equivariant with

respect to this action. In this case, if the K-action on T ∗HΛk admits a momentum map J, then

Jh = π∗∗h J is a momentum map for the action on T ∗Λk
h. To verify this, let (ϕ,π) ∈ T ∗Λk

h. We

know that d〈J,ξ 〉= iξT∗HΛk
ω . Thus,

d〈Jh,ξ 〉= π
∗∗
h d〈J,ξ 〉= π

∗∗
h (iξT∗HΛk

ω).

Then, observe that by equivariance, ξT ∗HΛk(ϕ,π) = T π∗h ξT ∗Λk
h
(ϕ,π). Then, for any X ∈

T T ∗(ϕ,π)Λ
k
h,

d〈Jh,ξ 〉(X) = (iξT∗HΛk
ω)(T π

∗
h X) = ω(T π

∗
h ξT ∗Λk

h
,T π

∗
h X) = (π∗∗h ω)(ξT ∗Λk

h
,X) = (iξ

T∗Λk
h

ωh)(X),

where the above is evaluated at (ϕ,π), which verifies that Jh is a momentum map. For the

subsequent discussion, we will assume that K acts by cotangent lifts.

We now define the energy-momentum map (Gotay et al. [45]) and its semi-discrete
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counterpart. We consider vectors on Σt with both tangent components in T Σt and components

transverse to the foliation, which in our adapted coordinates are in the span of ∂/∂ t. We extend

the canonical form θ to act on vector fields on the extended phase space in the same way that

we extended ωh in our previous discussion of time-dependence. Let L̃ denote the Lagrangian

density on the full spacetime, which is related to the instantaneous Lagrangian density by

L = i∗t ∂tyL̃ . Define the map J from I×T ∗HΛk to the dual of the space of vector fields on

the extended phase space, via

〈J(t,ϕ,π),V 〉= (Vyθ)(t,ϕ,π)−
∫

Σ

i∗t VtyL̃ (xµ ,ϕ, ϕ̇,dϕ), (3.10)

where we view ϕ̇ as a function of (ϕ,π), and where Vt is the tangent-lift of the bundle projection

I×T ∗HΛk(Σt)! I applied to V .

Proposition 1.3.4. J is the energy-momentum map, in the following sense:

(i) (Energy) Let ΦH
t denote the Hamiltonian flow of H, and XH be the associated generator

on the extended phase space, then,

〈J(t,ϕ,π),XH〉= H(t,ϕ,π).

(ii) (Momentum) If V is tangent to the foliation, then,

〈J(t,ϕ,π),V 〉= (Vyθ)(t,ϕ,π),

and in particular, if there is a K-action as in Proposition (1.3.3) on the phase space over

Σt , its momentum map J is given by

〈J(t,ϕ,π),ξ 〉= 〈J(t,ϕ,π),ξT ∗HΛk〉,
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such that, for each fixed t, d〈J(t,ϕ,π),ξ 〉= ξT ∗HΛkyω(t,ϕ,π).

Proof. For the proof of (i), in local coordinates, we have that

XH =
d
dt

∣∣∣
t=0

Φ
H
t (t
′,ϕ,π) =

∂

∂ t
+ ϕ̇

A ∂

∂ϕA + π̇B
∂

∂πB
,

and (XH)t = ∂/∂ t. Using expressions (3.6) and (3.10), and the definition of the instantaneous

Lagrangian density L = i∗t ∂tyL̃ , we have that

〈J(t,ϕ,π),XH〉= (XHyθ)(t,ϕ,π)−
∫

Σ

i∗t (XH)tyL̃ (xµ ,ϕ, ϕ̇,dϕ)

= ϕ̇
A ∂

∂ϕAy
(∫

Σt

πAdϕ
A⊗dnx0

)
−
∫

Σ

i∗t
∂

∂ t
yL̃ (xµ ,ϕ, ϕ̇,dϕ)

=
∫

Σt

πAϕ̇
Adnx0−

∫
Σ

L (t,xi,ϕ, ϕ̇,dϕ)

= 〈π, ϕ̇〉−L(t,ϕ, ϕ̇) = H(t,ϕ,π).

For the proof of (ii), note that for V tangent to the foliation, Vt = 0, which immediately

gives the first equation of (ii). Setting the vector field to an infinitesimal generator of a K-action

gives the momentum map

〈J(t,ϕ,π),ξT ∗HΛk〉= (ξT ∗HΛkyθ)(t,ϕ,π).

We now define the semi-discrete analogue of the energy-momentum map (3.10). Define

the semi-discrete energy-momentum map Jh from I×T ∗Λk
h to the dual of vector fields on the

extended discrete phase space, via

〈Jh(t,ϕ,π),V 〉= (Vyθh)(t,ϕ,π)−
∫

Σ

i∗t Vt,hyL̃h(xµ ,ϕ, ϕ̇,dϕ), (3.11)

where Vt,h = (T π∗hV )t and L̃h is the restriction of L̃ via precomposition with π∗h . Of course, the
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analogous statement of the previous proposition holds for the semi-discrete energy-momentum

map. Furthermore, Jh is the restriction of J in the following sense.

Proposition 1.3.5. For (t,ϕ,π) in the extended discrete phase space and V a vector field over

this space,

〈Jh(t,ϕ,π),V 〉= 〈J(t,π∗h (ϕ,π)),T π
∗
hV 〉.

Proof. This follows directly from the definitions,

〈J(t,π∗h (ϕ,π)),T π
∗
hV 〉= (T π

∗
hVyθ)(t,π∗h (ϕ,π))−

∫
Σ

i∗t (T π
∗
hV )tyL̃ (t,π∗h [(ϕ, ϕ̇,dϕ)|(ϕ,π)])

= (Vyπ
∗∗
h θ)(t,ϕ,π)−

∫
Σ

i∗t Vt,hyL̃h(t,ϕ, ϕ̇,dϕ)

= (Vyθh)(t,ϕ,π)−
∫

Σ

i∗t Vt,hyL̃h(t,ϕ, ϕ̇,dϕ) = 〈Jh(t,ϕ,π),V 〉.

The significance of this definition of the semi-discrete energy-momentum map is that it

recovers the properties of Proposition 1.3.4 in the semi-discrete setting.

Proposition 1.3.6.

(i) (Semi-discrete Energy) For (t,ϕ,π) in the extended discrete phase space,

〈Jh(t,ϕ,π),XHh〉= Hh(t,ϕ,π).

(ii) (Semi-discrete Momentum) If there is a K-action on the discrete phase space, then the

momentum map Jh is given by

〈Jh(t,ϕ,π),ξ 〉= 〈Jh(t,ϕ,π),ξT ∗Λk
h
〉.

Furthermore, if the K-action on the discrete space arises from an action on the full space
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such that πh is K-equivariant, then for any ξ ∈ k,

〈Jh(t,ϕ,π),ξT ∗Λk
h
〉= 〈J(t,π∗h (ϕ,π)),ξT ∗HΛk〉.

Proof. The first two equations follow from analogous computations to the proof of Proposition

1.3.4. The last equation follows from the equivariance of πh,

T π
∗
h ξT ∗Λk

h
(ϕ,π) = ξT ∗HΛk(π∗h (ϕ,π)),

and Proposition 1.3.5.

The significance of a semi-discrete analogue of the energy-momentum map, aside from

extending the semi-discrete momentum map structure, that was discussed in Proposition 1.3.3, is

in determining semi-discrete analogues of Noether’s second theorem, which we will pursue in

subsequent work.

1.3.4 Temporal Discretization of the Semi-Discrete Theory

To complete the discussion of the semi-discrete theory, we must of course discretize in

time. We obtain a full discretization of the semi-discrete theory by discretizing the semi-discrete

Euler–Lagrange equation (3.2) in time via a Galerkin Lagrangian variational integrator applied

to the instantaneous semi-discrete Lagrangian (3.3), and show that this is equivalent to the full

spacetime DEL (2.8) with tensor product elements. The associated finite element on the full

spacetime is a tensor product mesh, obtained by discretizing the space Σ and extending these

elements in time by a partition of I. Of course, this is not the most general setup for a spacetime

discretization, but often one wishes to discretize in time separately. For example, by choosing

the appropriate temporal basis functions, the computation becomes local in time so that one can

time march the solution from the initial data, instead of solving the entire DEL on the spacetime

grid. Furthermore, there are constructions of cochain projections for tensor product elements
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(Arnold [6]) so that with these finite element spaces, the naturality of the variational principle

discussed in Section 2 carries over in the tensor product setting.

Assume the same setup as in the discussion of the semi-discrete theory. Furthermore,

assume that we have a finite element discretization of H0(I), the space of square integrable

functions in time with square integrable derivative, which vanish on ∂ I, with basis functions

{wα}. Recall the instantaneous semi-discrete Lagrangian (3.3) is a function of the curves

ϕ i(t), ϕ̇ i(t) which are the coefficients of the expansions of ϕ(t), ϕ̇(t) ∈ Λk
h relative to the basis

{vi} of Λk
h. Using the basis {wα}, we discretize these curves as

ϕ
i(t) = (ϕ i)αwα(t),

where ϕ(t) = (ϕ i)αwα(t)vi ∈ Λk
h in this notation. We consider the associated fully discrete

action as a function of the coefficients,

S[{(ϕ i)α}] =
∫

I
dtLh(t,ϕ i(t), ϕ̇ i(t)) =

∫
I
dtLh(t,(ϕ i)αwα ,(ϕ

i)α ẇα).

Enforcing the discrete variational principle in time gives the weak form of the Euler–Lagrange

equations,

0 =
δS

δ (ϕ i)α
=

(
∂Lh

∂ϕ i ,wα

)
L2(I)

+

(
∂Lh

∂ ϕ̇ i , ẇα

)
L2(I)

.

Substituting equations (3.5a) and (3.5b) gives

0 =−((∂3L ,vi)L2Λk(Σ), ẇα)L2(I)− ((∂2L ,vi)L2Λk(Σ),wα)L2(I)− ((∂4L ,dvi)L2Λk+1(Σ),wα)L2(I)

=−(∂3L ,viẇα)L2(I,L2Λk(Σ))− (∂2L ,viwα)L2(I,L2Λk(Σ))− (∂4L ,(dvi)wα)L2(I,L2Λk+1(Σ))

=−
(

∂L

∂ ϕ̇
,viẇα

)
L2(I,L2Λk(Σ))

−
(

∂L

∂ϕ
,viwα

)
L2(I,L2Λk(Σ))

−
(

∂L

∂ (dϕ)
,(dvi)wα

)
L2(I,L2Λk+1(Σ))

.
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Note that these equations can also be obtained directly from the semi-discrete Euler–Lagrange

equations (3.2) by applying the Galerkin method in time with respect to the basis {wα}. Here, d

denotes the spatial exterior derivative on Σ. If dt denotes the temporal exterior derivative and

we identity functions on I with one-forms on I, we have ẇα
∼= dtwα . If dT = d + dt denotes

the total exterior derivative on Σ× I, then dT (viwα) = (dvi)wα + vidtwα , where, as discussed

in Remark 1.3.1, we are considering k-forms of the form ∑J∈Ik
Σ

φJ(t,x)dxJ . We now view the

time-dependent k-form ϕ : t 7! ϕ(t) as a k-form φ on spacetime, so the above can be written as

0 =−
(

∂L

∂φ
,viwα

)
L2Λk(Σ×I)

−
(

∂L

∂ (dφ)
,(dvi)wα

)
L2(I,L2Λk+1(Σ))

−
(

∂L

∂ (dtφ)
,vidtwα

)
L2Λ1(I,L2Λk(Σ))

=−
(

∂L

∂φ
,viwα

)
L2(Σ×I)

−
(

∂L

∂ (dT φ)
,dT (viwα)

)
L2Λk+1(Σ×I)

,

which is the DEL (2.8) with tensor product basis {viwα}.

Note that this result can also be obtained from the semi-discrete Hamiltonian setting,

assuming that Lh is hyperregular, using the fact that the semi-discrete Hamiltonian and semi-

discrete Lagrangian formulations are equivalent by Proposition 1.3.2, and the fact that Galerkin

Lagrangian variational integrators and Galerkin Hamiltonian variational integrators are equivalent

in the hyperregular case, as established in Leok and Zhang [76].

1.4 Conclusion and Future Directions

In this paper, we showed how discretizing the variational principle for Lagrangian field

theories using finite element cochain projections naturally gives rise to a discrete variational

structure which is analogous to the continuum variational structure. Namely, the discrete varia-

tional structure is encoded by the discrete Cartan form. Our discrete Cartan form generalizes the

discrete Cartan form introduced by Marsden et al. [85] to more general finite element spaces

within the finite element exterior calculus framework. Using the discrete Cartan form, we
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expressed a discrete multisymplectic form formula and a discrete Noether theorem in direct

analogy to their continuum counterparts. Furthermore, we studied semi-discretization of La-

grangian PDEs by spatial cochain projections, showing that such semi-discretization gives rise

to semi-discrete symplectic, Hamiltonian, and energy-momentum map structures. Finally, we

related the methods obtained by covariant discretization and canonical semi-discretization in the

case of tensor product finite elements.

In the paper, we outlined several possible research directions, including studying particu-

lar field theories and showing rigorous convergence of the discrete Cartan form, constructing

group-equivariant cochain projections, and establishing a discrete Noether’s second theorem

utilizing the semi-discrete energy-momentum map. Another natural research direction would

be to extend the discrete variational structures presented here to the discontinuous Galerkin

setting and compare them with the results obtained in the multisymplectic Hamiltonian setting

by McLachlan and Stern [90]. In particular, we expect that in this setting, the discrete Cartan

form would only involve integration over ∂U , since boundary variations can be localized to

codimension-one simplices, unlike for conforming finite element spaces. Furthermore, we aim

to investigate how the discrete variational structures presented in this paper in the conforming

setting, and extended to the discontinuous Galerkin setting, can be used to provide a geometric

variational framework for studying lattice field theories, building on the discrete variational

framework for lattice field theories initiated in Arjang and Zapata [5].

1.5 Acknowledgements

Chapter 1, in full, has been submitted for publication of the material as it may appear in

”Variational Structures in Cochain Projection Based Variational Discretizations of Lagrangian

PDEs” (2023). Tran, Brian; Leok, Melvin, Journal of Nonlinear Science. The dissertation author

was the primary investigator and first author of this paper.

BT was supported by the NSF Graduate Research Fellowship DGE-2038238, and by

74



NSF under grants DMS-1411792, DMS-1813635. ML was supported by NSF under grants

DMS-1411792, DMS-1345013, DMS-1813635, by AFOSR under grant FA9550-18-1-0288,

and by the DoD under grant 13106725 (Newton Award for Transformative Ideas during the

COVID-19 Pandemic).

75



Chapter 2

Multisymplectic Hamiltonian Variational
Integrators

2.1 Introduction

Variational integrators have become an important class of geometric numerical integrators

for the simulation of mechanical systems, and provides a systematic method of constructing

symplectic integrators. The variational approach has numerous benefits, the first of which is that

the resulting numerical integrators are automatically symplectic, and if they are group-invariant,

then they satisfy a discrete Noether’s theorem and preserve a discrete momentum map. In

addition, it can be shown that the order of accuracy is related to the best approximation properties

of the finite-dimensional function spaces and the order of the quadrature rule used to construct

the variational integrator [52].

However, the variational integrator approach has traditionally been applied to Lagrangian

formulations of mechanical systems, as summarized in Marsden and West [84], and the develop-

ment of Hamiltonian variational integrators has been less extensive. The notion of Hamiltonian

variational integrators was first introduced in Lall and West [65] as the dual formulation of a

discrete constrained variational principle, but it did not provide an explicit characterization of

the discrete Hamiltonian in terms of the continuous Hamiltonian and the corresponding discrete

Noether’s theorem, which was introduced in Leok and Zhang [76]. This involves constructing

the exact Type II/Type III generating functions for the Hamiltonian flow of a mechanical system,
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which can be viewed as the analogue of Jacobi’s solution of the Hamilton–Jacobi equation. The

variational error analysis result for Hamiltonian variational integrators was established in Schmitt

and Leok [107], and methods based on Taylor expansions were developed in Schmitt et al. [108].

Hamiltonian variational integrators also find application in discrete optimal control and

discrete Hamilton–Jacobi theory, and it was shown in Ohsawa et al. [95] that the Bellman

equations of discrete optimal control are the lowest order approximation of a continuous optimal

control problem arising from a particular choice of Hamiltonian variational integrator. The

Poincaré transformed Hamiltonian was used independently by Hairer [50] and Reich [97] as a

means of constructing time-adaptive symplectic integrators, and an adaptive approach based on

Hamiltonian variational integrators was developed in Duruisseaux et al. [37]. The Hamiltonian

approach is necessary in this case as many monitor functions result in Poincaré transformed

Hamiltonians that are degenerate, for which no Lagrangian analogue exists.

In the setting of Lagrangian and Hamiltonian partial differential equations, multisym-

plectic integrators that can be viewed as generalizations of symplectic integrators for mechanical

systems to field theories were introduced from a Lagrangian perspective in Marsden et al. [85],

and from the Hamiltonian, but non-variational perspective, in Bridges and Reich [20]. Our

approach to constructing a variational description of multisymplectic integrators for Hamiltonian

partial differential equations is based on the notion of generating functionals for multisymplectic

relations that was introduced in Vankerschaver et al. [116].

The advantage of the discrete variational principle approach is that it automatically yields

multisymplectic integrators, and exhibit a discrete analogue of Noether’s theorem. Further-

more, they naturally lend themselves to Galerkin discretizations that allow for the systematic

construction of multisymplectic integrators by choosing a finite-dimensional approximation

space for sections of the configuration bundle, and a numerical quadrature rule. In addition,

group-invariant discretizations that exhibit a discrete Noether’s theorem can be constructed from

finite-dimensional approximation spaces that are equivariant with respect to the Lie symmetry

group that generates the relevant momentum map.

77



2.1.1 Lagrangian and Hamiltonian Variational Integrators

Geometric numerical integration aims to preserve geometric conservation laws under

discretization, and this field is surveyed in the monograph by Hairer et al. [51]. Discrete varia-

tional mechanics [75; 84] provides a systematic method of constructing symplectic integrators.

It is typically approached from a Lagrangian perspective by introducing the discrete Lagrangian,

Ld : Q×Q! R, which is a Type I generating function of a symplectic map and approximates

the exact discrete Lagrangian, which is constructed from the Lagrangian L : T Q! R as

LE
d (q0,q1;h) = ext q∈C2([0,h],Q)

q(0)=q0,q(h)=q1

∫ h

0
L(q(t), q̇(t))dt, (1.1)

which is equivalent to Jacobi’s solution of the Hamilton–Jacobi equation. The exact discrete

Lagrangian generates the exact discrete-time flow map of a Lagrangian system, but, in general, it

cannot be computed explicitly. Instead, this can be approximated by replacing the integral with

a quadrature formula, and replacing the space of C2 curves with a finite-dimensional function

space.

Given a finite-dimensional function space Mn([0,h]) ⊂C2([0,h],Q) and a quadrature

formula G : C2([0,h],Q)! R, G ( f ) = h∑
m
j=1 b j f (c jh) ≈

∫ h
0 f (t)dt, the Galerkin discrete La-

grangian is

Ld(q0,q1) = ext q∈Mn([0,h])
q(0)=q0,q(h)=q1

G (L(q, q̇)) = ext q∈Mn([0,h])
q(0)=q0,q(h)=q1

h∑
m
j=1 b jL(q(c jh), q̇(c jh)).

Given a discrete Lagrangian Ld , the discrete Hamilton–Pontryagin principle imposes

the discrete second-order condition q1
k = q0

k+1 using Lagrange multipliers pk+1, which yields a

variational principle on (Q×Q)×Q T ∗Q,

δ

[
∑

n−1
k=0 Ld(q0

k ,q
1
k)+∑

n−2
k=0 pk+1(q0

k+1−q1
k)
]
= 0.
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This in turn yields the implicit discrete Euler–Lagrange equations,

q1
k = q0

k+1, pk+1 = D2Ld(q0
k ,q

1
k), pk =−D1Ld(q0

k ,q
1
k), (1.2)

where Di denotes the partial derivative with respect to the i-th argument. Making the identification

qk = q0
k = q1

k−1, we obtain the discrete Lagrangian map and discrete Hamiltonian map which

are FLd : (qk−1,qk) 7! (qk,qk+1) and F̃Ld : (qk, pk) 7! (qk+1, pk+1), respectively. The last two

equations of (4.1.2) define the discrete fiber derivatives, FL±d : Q×Q! T ∗Q,

FL+
d (qk,qk+1) = (qk+1,D2Ld(qk,qk+1)),

FL−d (qk,qk+1) = (qk,−D1Ld(qk,qk+1)).

These two discrete fiber derivatives induce a single unique discrete symplectic form ΩLd =

(FL±d )
∗Ω, where Ω is the canonical symplectic form on T ∗Q, and the discrete Lagrangian and

Hamiltonian maps preserve ΩLd and Ω, respectively. The discrete Lagrangian and Hamiltonian

maps can be expressed as FLd = (FL−d )
−1 ◦FL+

d and F̃Ld = FL+
d ◦ (FL−d )

−1, respectively. This

characterization allows one to relate the approximation error of the discrete flow maps to the

approximation error of the discrete Lagrangian.

The variational integrator approach simplifies the numerical analysis of symplectic

integrators. The task of establishing the geometric conservation properties and order of accuracy

of the discrete Lagrangian map FLd and discrete Hamiltonian map F̃Ld reduces to the simpler task

of verifying certain properties of the discrete Lagrangian Ld instead.

Theorem 2.1.1 (Discrete Noether’s theorem (Theorem 1.3.3 of [84])). If a discrete Lagrangian Ld

is invariant under the diagonal action of G on Q×Q, then the single unique discrete momentum

map, JLd = (FL±d )
∗J, is invariant under the discrete Lagrangian map FLd , i.e., F∗Ld

JLd = JLd .

Theorem 2.1.2 (Variational error analysis (Theorem 2.3.1 of [84])). If a discrete Lagrangian Ld

approximates the exact discrete Lagrangian LE
d to order p, i.e., Ld(q0,q1;h) = LE

d (q0,q1;h)+
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O(hp+1), then the discrete Hamiltonian map F̃Ld is an order p accurate one-step method.

The bounded energy error of variational integrators can be understood by performing

backward error analysis, which then shows that the discrete flow map is approximated with

exponential accuracy by the exact flow map of the Hamiltonian vector field of a modified

Hamiltonian [11; 111].

Given a degenerate Hamiltonian, where the Legendre transform FH : T ∗Q ! T Q,

(q, p) 7! (q, ∂H
∂ p ), is noninvertible, there is no equivalent Lagrangian formulation. Thus, a

characterization of variational integrators directly in terms of the continuous Hamiltonian is

desirable. This is achieved by considering the Type II analogue of Jacobi’s solution, given by

H+,E
d (qk, pk+1) = ext(q,p)∈C2([tk,tk+1],T ∗Q)

q(tk)=qk,p(tk+1)=pk+1

[
p(tk+1)q(tk+1)−

∫ tk+1

tk
[pq̇−H(q, p)]dt

]
.

A computable Galerkin discrete Hamiltonian H+
d is obtained by choosing a finite-dimensional

function space and a quadrature formula,

H+
d (q0, p1) = ext q∈Mn([0,h])

q(0)=q0
(q(c jh),p(c jh))∈T ∗Q

[
p1q(t1)−h∑

m
j=1 b j[p(c jh)q̇(c jh)−H(q(c jh), p(c jh))]

]
.

Interestingly, the Galerkin discrete Hamiltonian does not require a choice of a finite-dimensional

function space for the curves in the momentum, as the quadrature approximation of the action

integral only depend on the momentum values p(c jh) at the quadrature points, which are

determined by the extremization principle. In essence, this is because the action integral does not

depend on the time derivative of the momentum ṗ. As such, both the Galerkin discrete Lagrangian

and the Galerkin discrete Hamiltonian depend only on the choice of a finite-dimensional function

space for curves in the position, and a quadrature rule. It was shown in Proposition 4.1 of

[76] that when the Hamiltonian is hyperregular, and for the same choice of function space and

quadrature rule, they induce equivalent numerical methods.

80



The Type II discrete Hamilton’s phase space variational principle states that

δ

{
pNqN−

N−1

∑
k=0

[
pk+1qk+1−H+

d (qk, pk+1)
]}

= 0,

for discrete curves in T ∗Q with fixed (q0, pN) boundary conditions. This yields the discrete

Hamilton’s equations, which are given by

qk+1 = D2H+
d (qk, pk+1), pk = D1H+

d (qk, pk+1). (1.3)

Given a discrete Hamiltonian H+
d , we introduce the discrete fiber derivatives (or discrete

Legendre transforms), F+H+
d ,

F+H+
d : (q0, p1) 7! (D2H+

d (q0, p1), p1),

F−H+
d : (q0, p1) 7! (q0,D1H+

d (q0, p1)).

The discrete Hamiltonian map can be expressed in terms of the discrete fiber derivatives,

F̃H+
d
(q0, p0) = F+H+

d ◦ (F
−H+

d )−1(q0, p0) = (q1, p1),

Similar to the Lagrangian case, we have a discrete Noether’s theorem and variational

error analysis result for Hamiltonian variational integrators.

Theorem 2.1.3 (Discrete Noether’s theorem (Theorem 5.3 of [76])). Let ΦT ∗Q be the cotangent

lift action of the action Φ on the configuration manifold Q. If the generalized discrete Lagrangian

Rd(q0,q1, p1) = p1q1−H+
d (q0, p1) is invariant under the cotangent lifted action ΦT ∗Q, then the

discrete Hamiltonian map F̃H+
d

preserves the momentum map, i.e., F̃∗H+
d

J = J.

Theorem 2.1.4 (Variational error analysis (Theorem 2.2 of [107])). If a discrete Hamilto-

nian H+
d approximates the exact discrete Hamiltonian H+,E

d to order p, i.e., H+
d (q0, p1;h) =
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H+,E
d (q0, p1;h) +O(hp+1), then the discrete Hamiltonian map F̃H+

d
is an order p accurate

one-step method.

It should be noted that there is an analogous theory of discrete Hamiltonian variational

integrators based on Type III generating functions H−d (p0,q1).

Remark 2.1.1. It should be noted that the current construction of Hamiltonian variational

integrators is only valid on vector spaces and local coordinate charts as it involves Type

II/Type III generating functions H+
d (qk.pk+1), H−d (pk,qk+1), which depend on the position at

one boundary point, and the momentum at the other boundary point. However, this does not

make intrinsic sense on a manifold, since one needs the base point in order to specify the

corresponding cotangent space. One possible approach to constructing an intrinsic formulation

of Hamiltonian variational integrators is to start with discrete Dirac mechanics [75], and

consider a generating function E+
d (qk,qk+1, pk+1), E−d (qk, pk,qk+1), that depends on the position

at both boundary points and the momentum at one of the boundary points. This approach can be

viewed as a discretization of the generalized energy E(q,v, p) = 〈p,v〉−L(q,v), in contrast to

the Hamiltonian H(q, p) = extv〈p,v〉−L(q,v) = 〈p,v〉−L(q,v)|p= ∂L
∂v

.

2.1.2 Multisymplectic Hamiltonian Field Theory

While classical field theories can be viewed as an infinite-dimensional Hamiltonian

system with time as the independent variable (see, for example, Abraham and Marsden [1]),

we will adopt the multisymplectic formulation with spacetime as the independent variables,

which has been extensively studied in, for example, Gotay et al. [44, 45], Marsden and Shkoller

[83], Marsden et al. [87]. The description of multisymplectic classical field theories in the

literature is traditionally formulated in the Lagrangian setting or in the Hamiltonian setting via

the covariant Legendre transform to pass between the two settings. However, as we are interested

in constructing variational integrators purely within the Hamiltonian setting, we will outline the

necessary ingredients of multisymplectic Hamiltonian field theory in this section, without the

use of the Lagrangian framework or the covariant Legendre transform.
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Consider a trivial vector bundle E = X×Q! X over an oriented spacetime X (although

we will refer to X as spacetime with evolutionary Hamiltonian PDEs in mind, X could be either

Riemannian or Lorentzian), with volume form denoted dn+1x. Let Θ be the Cartan form on

the dual jet bundle J1E∗, which has coordinates (xµ ,φ A, p, pA
µ), where xµ are the coordinates

on spacetime, φ A are the coordinates on Q, and p and pA
µ are the coordinates of the affine map

on the jet bundle, vA
µ 7! (p+ pµ

AvA
µ)d

n+1x. Define the restricted dual jet bundle J̃1E∗ as the

quotient of J1E∗ by horizontal one-forms; this space is coordinatized by (xµ ,φ A, pA
µ) and is

the relevant configuration bundle for a Hamiltonian field theory; we interpret φ A as the value

of the field and pµ

A as the associated momenta in the direction xµ . The dual jet bundle can

be viewed as a bundle over the restricted bundle, µ : J1E∗! J̃1E∗ (see León et al. [77]). Let

H ∈C∞(J̃1E∗) be the Hamiltonian of our theory. This defines a section of µ , in coordinates

H̃(xµ ,φ A, pµ

A) = (xµ ,φ A,−H, pµ

A) or using the projections π j,k from the bundle of ( j+k)-forms

on E to the subbundle of j-horizontal, k-vertical forms, this can be defined as the set of z ∈ J1E∗

such that πn+1,0(z) =−H(πn,1(z))dn+1x. Using this section, one can pullback the Cartan form

to a form on the restricted bundle,

ΘH = H̃∗Θ = pµ

Adφ
A∧dnxµ −Hdn+1x.

We then define the action SU (relative to an arbitrary region U ⊂ X) as a functional on the sections

of J̃1E∗ (viewed as a bundle over spacetime),

SU [φ , p] =
∫

U
(φ , p)∗ΘH . (1.4)

Hamilton’s principle states that this action is stationary for compactly supported vertical varia-

tions, i.e.,

0 = dSU [φ , p] ·V =
∫

U
(φ , p)∗iV dΘH +

∫
∂U

(φ , p)∗iV ΘH︸ ︷︷ ︸
=0, VbU

.
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Since U is arbitrary, for a sufficiently smooth solution, this gives the strong form of Hamilton’s

equations, (φ , p)∗iV ΩH = 0, where we defined the multisymplectic form ΩH = −dΘH . In

coordinates, for V = δφ A∂/∂φ A +δ pµ

A∂/∂ pµ

A , these equations read

δφ
A(∂µ pµ

A +
∂H
∂φ A )d

n+1x+δ pµ

A(−∂µφ
A +

∂H
∂ pµ

A
)dn+1x = 0.

Since this must hold for δφ A,δ pµ

A independent, this gives the De Donder–Weyl equations

∂µ pµ

A =− ∂H
∂φ A , (1.5a)

∂µφ
A =

∂H
∂ pµ

A
. (1.5b)

To write these equations as a multi-Hamiltonian system, define zA = (φ A, p0
A, . . . , pn

A)
T ; it is clear

that the De Donder–Weyl equations can be written as



0 −1 0 . . . 0

1 0 0 . . . 0

0 0 0 . . . 0
...

...
... . . . ...

0 0 0 0 0


︸ ︷︷ ︸

≡K0

∂0zA + · · ·+



0 0 . . . 0 −1

0 . . . . . . 0 0
...

... . . . ...
...

0 0 0 . . . 0

1 0 0 0 0


︸ ︷︷ ︸

≡Kn

∂nzA = ∇zAH,

or K0∂0zA + · · ·+Kn∂nzA = ∇zAH, where the matrices Kµ are (n+2)× (n+2) skew-symmetric

matrices which have value −1 in the (0,µ + 1) entry and 1 in the (µ + 1,0) entry (we are

indexing the matrices from 0 to n+1), and 0 everywhere else. This form of the equations was

studied in Bridges [18]. We can associate to each of these matrices a degenerate two-form on the

restricted dual jet bundle,

ω
µ ≡∑

A
d(zA)T ⊗KµdzA = (−d pµ

A ⊗dφ
A +dφ

A⊗d pµ

A) = dφ
A∧d pµ

A .
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For simplicity of notation, we will implicitly suppress the duality pairing between (φ A)A (valued

in Q) and (pµ

A)A (valued in Q∗) and write this as ωµ = dφ ∧d pµ (throughout, we will suppress

this duality pairing, e.g. pµφ ≡ pµ

Aφ A). Hamilton’s equations (φ , p)∗iV ΩH = 0 can then be

written as ωµ(∂µz,V ) = 0 (sum over µ), which relates the multisymplectic structure ΩH to

(n+1)-pre-symplectic structures {ωµ}.

Remark 2.1.2. The multisymplectic structure is more fundamental, since the ωµ were con-

structed via a particular coordinate representation. In fact, as discussed in Marsden and

Shkoller [83], the ωµ are a particular coordinate decomposition of the multisymplectic form; in

general, the ωµ are not intrinsic unless the dual jet bundle is trivial, although their combination

as the multisymplectic form is intrinsic. Since we will utilize Cartesian coordinates on a rectan-

gular mesh for discretization and we will assume trivial bundles for the discrete theory, these

coordinate representatives will be simpler to deal with and correspond to the current literature

on multisymplectic Hamiltonian integrators. It would be interesting to investigate variational

discretizations of field theories where the dual jet bundle is not trivial; in this setting, utilizing

the multisymplectic structure is more fundamental.

Multisymplecticity and the Boundary Hamiltonian. The above Hamiltonian system

admits a notion of conserving multisymplecticity, which generalizes the usual notion of sym-

plecticity. In particular, let V,W be two first variations, i.e., vector fields whose flows map

solutions of Hamilton’s equations again to solutions; then, for any region U ⊂ X , one has the

multisymplectic form formula:

∫
∂U

(φ , p)∗(iV iW ΩH) = 0, (1.6)

which follows from d2SU [φ , p] · (V,W ) = 0 for a solution (φ , p) of Hamilton’s equations. In
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coordinates where V = δφ A∂/∂φ A +δ pµ

A∂/∂ pµ

A and V = δyA∂/∂φ A +δπ
µ

A ∂/∂ pµ

A , this reads

0 =
∫

∂U
(φ , p)∗(iV iW ΩH) =

∫
∂U

(δφ
A
δπ

µ

A −δyA
δ pµ

A)|(φ ,p)d
nxµ =

∫
∂U

ω
µ |(φ ,p)(V,W )dnxµ .

Applying Stokes’ theorem and noting that U is arbitrary, the strong form of the multisymplectic

form formula can be expressed ∂µωµ = 0, which holds when evaluated on two first variations at a

solution of Hamilton’s equations (φ , p). In terms of our coordinate representation of Hamilton’s

equations, by taking the exterior derivative of Hamilton’s equations, a first variation is a vector

field V which satisfies

K0dz0(V )+ · · ·+Kndzn(V ) = (DzzH)dz(V ),

where zµ ≡ ∂µz. One of the aims of this paper is to construct variational integrators for multi-

Hamiltonian PDEs which admit a discrete analog of the multisymplectic conservation law for a

suitably defined discrete notion of first variations.

Analogous to how the Type II generating functions are utilized in the construction of

Galerkin Hamiltonian variational integrators (see Leok and Zhang [76]), we will utilize the

boundary Hamiltonian introduced in Vankerschaver et al. [116], which will act as a generalized

Type II generating functional. Consider a domain U ⊂ X and partition the boundary ∂U = A∪B;

we supply fixed field boundary values ϕA on A and fixed normal momenta πB on B. The boundary

Hamiltonian is defined as a functional on these boundary values

H∂U(ϕA,πB) = ext
[∫

B
pµ

φdnxµ −
∫

U
(φ , p)∗ΘH

]
(1.7)

= ext
[∫

B
pµ

φdnxµ −
∫

U
(pµ

∂µφ −H(φ , p))dn+1x
]
,

where one extremizes over all fields (φ , p) satisfying the fixed boundary conditions along A and

B.
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An extremizer of the above expression restricted to the aforementioned boundary condi-

tions satisfies the De Donder–Weyl equations, which follows from

δ

[∫
B

pµ
φdnxµ −

∫
U
(pµ

∂µφ −H(φ , p))dn+1x
]

=
∫

B
��
�δ pµ

φdnxµ +
∫

B
pµ

δφdnxµ

−
∫

U
(δ pµ

∂µφ + pµ
∂µδφ − ∂H(φ , p)

∂ pµ
δ pµ − ∂H(φ , p)

∂φ
δφ)dn+1x

=
∫

B
pµ

δφdnxµ −
∫

∂U=A∪B
pµ

δφdnxµ

−
∫

U
(δ pµ

∂µφ −∂µ pµ
δφ − ∂H(φ , p)

∂ pµ
δ pµ − ∂H(φ , p)

∂φ
δφ)dn+1x

=−
∫

∂U=A
pµ
�
�δφdnxµ −

∫
U

[
(∂µφ − ∂H(φ , p)

∂ pµ
)δ pµ − (∂µ pµ +

∂H(φ , p)
∂φ

)δφ

]
dn+1x,

where we used δ pµ |B = 0 = δφ |A.

This is a Type II generating functional in the sense that it generates the boundary values

for the field along B (denoted φ |B) and the normal momenta along A (denoted pn|A),

δH∂U

δϕA
=−pn|A,

δH∂U

δπB
= φ |B. (1.8)

To obtain (1.8), perform an analogous computation as the one above (take the variation, integrate

by parts, and use that the internal field satisfies the De Donder–Weyl equations), which gives

dH∂U(ϕA,πB) · (δϕA,δπB) =
∫

B
δπB ·φ |B−

∫
A

π|A ·δϕA;

i.e., (1.8). Note that the generating relation (1.8) only determines the normal component of the

momentum along A; this is consistent with the De Donder–Weyl equation (1.5a), since it only

specifies ∂µ pµ .

Since an extremizer of H∂U(ϕA,πB) satisfies the De Donder–Weyl equations, it satisfies
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the multisymplectic form formula. Since the multisymplectic form formula is expressed as

an integral over ∂U and the generating functional gives us the field values on ∂U , (ϕ,π) =

(ϕA,ϕB,πA,πB), the above generating map (1.8) is multisymplectic in the sense

∫
∂U

ω
µ |(ϕ,π)(V,W )dnxµ = 0,

for first variations V and W .

We will utilize a discrete approximation of the boundary Hamiltonian and its property as

a generating functional to construct variational integrators which are naturally multisymplectic.

Noether’s Theorem. Another important conservative property of Hamiltonian systems

arises from symmetries. Suppose there is a smooth group action of G on the restricted dual jet

bundle which leaves the action SU invariant. Let ξ̃ denote the infinitesimal generator vector field

for ξ ∈ g associated to this action. For a solution (φ , p) of Hamilton’s equations, one has

0 = £
ξ̃

SU [φ , p] = dSU [φ , p] · ξ̃ =
∫

U
(φ , p)∗i

ξ̃
dΘH +

∫
∂U

(φ , p)∗i
ξ̃

ΘH .

Note that the term involving the integral over U vanishes, even though ξ̃ is not necessarily

compactly supported in U , since Hamilton’s equations hold pointwise (U is arbitrary). Hence,

Noether’s theorem in this setting is the statement

∫
∂U

(φ , p)∗i
ξ̃

ΘH = 0. (1.9)

In the discrete setting, we will be particularly concerned with vertical variations (where the group

action on the base space X is the identity). In this case, we can write the above in coordinates as

∫
∂U

pµ(i
ξ̃

dφ)dnxµ = 0. (1.10)

We will see that if there is a group action on the discrete analog of the restricted dual jet bundle

88



which leaves the discrete action (the generalized discrete Lagrangian) invariant, then there is a

discrete analog of Noether’s theorem, equation (1.10).

2.1.3 Multisymplectic Integrators for Hamiltonian PDEs

Consider the class of Hamiltonian PDEs,

K0z0 + · · ·+Knzn = ∇zH(z), (1.11)

with independent variable x = (x0, . . . ,xn) ∈ Rn+1, dependent variable z : Rn! Rm, each Kµ is

an m×m skew-symmetric matrix, and the Hamiltonian H : Rm! R is sufficiently smooth.

Defining a two-form for each Kµ , ωµ(U,V ) = 〈KµU,V 〉 (with respect to an inner product

〈·, ·〉 on Rm), the equation (1.11) admits the multisymplectic conservation law

∂µω
µ(U,V ) = 0, (1.12)

for any pair of first variations U,V satisfying the variational equation

K0dz0 + · · ·+Kndzn = DzzH(z).

As we saw, the De Donder–Weyl equations, which arose from the variational principle

applied to the Hamiltonian action (1.4), are an example of a Hamiltonian PDE in the form (1.11).

From our variational perspective, the action and variational principle are more fundamental, as

opposed to the field equations (1.11). However, as shown by Chen [29], the Hamiltonian system

(1.11) arises from the variational principle, so there is no loss of generality working with the

formulation based on the Hamiltonian action (1.4).

For the Hamiltonian system (1.11), a multisymplectic integrator is defined in Bridges
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and Reich [20] to be a method

K0
∂

i0...in
0 zi0...in + · · ·+Kn

∂
i0...in
n zi0...in = (∇zS(zi0...in))i0...in,

where ∂
i0...in
µ is a discretization of ∂µ , such that a discrete analog of equation (1.12) holds,

∂
i0...in
µ ω

µ(Ui0...in,Vi0...in) = 0,

when evaluated on discrete first variations Ui0...in ,Vi0...in satisfying the discrete variational equa-

tions

K0
∂

i0...in
0 dzi0...in + · · ·+Kn

∂
i0...in
n dzi0...in = d

(
(∇zS(zi0...in))i0...in

)
.

We will see that the variational integrators that we construct will automatically satisfy a dis-

crete multisymplectic conservation law, as a consequence of the Type II variational principle.

Furthermore, we will show in Section 2.2.4 that this discrete multisymplectic conservation law

reproduces the Bridges and Reich notion of multisymplecticity.

Example 2.1.1. An example of a multisymplectic integrator in 1+1 spacetime dimensions is the

centered Preissman scheme,

K0
z1

1/2− z0
1/2

∆t
+K1 z1/2

1 − z1/2
0

∆x
= ∇zH

(
z1/2

1/2

)
,

where z0
1/2 =

1
2(z

0
0 + z0

1), etc. and z1/2
1/2 =

1
4(z

1
1 + z0

1 + z1
0 + z0

0). As noted in Reich [99], this can be

obtained from a cell-vertex finite volume discretization on a rectangular grid, or alternatively,

as observed in Reich [98], it is an example of a multisymplectic Gauss–Legendre collocation

method, in the case of one collocation point. Furthermore, the multisymplectic Gauss–Legendre

collocation methods are members of a larger class of multisymplectic integrators, the multi-

symplectic partitioned Runge–Kutta methods (see, for example, Hong et al. [55], Ryland et al.

[104]). In Section 2.2.3, we will derive the class of multisymplectic partitioned Runge–Kutta
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methods within our variational framework.

2.1.4 Main Contributions

In this paper, we introduce a variational construction of multisymplectic Hamiltonian

integrators utilizing a discrete approximation of the boundary Hamiltonian and the corresponding

Type II variational principle. Although variational integrators have been extensively studied

in the setting of Lagrangian PDEs, where they have been used to construct robust and flexible

numerical methods for nonlinear elasticity [78], collision and impact dynamics for continuum

mechanics [36], and geometrically exact beam dynamics [72], the variational perspective has not

been studied in the setting of integrators for Hamiltonian PDEs.

This paper serves as a stepping stone in constructing variational integrators in the Hamil-

tonian PDE setting. Our hope is that, by introducing a variational perspective in the setting of

integrators for Hamiltonian PDEs, the well-developed techniques and machinery of variational

integrators for Lagrangian PDEs can be analogously developed on the Hamiltonian side. It should

be noted that the theory in this paper relies on a trivial configuration bundle, since the notion of

a boundary Hamiltonian is only intrinsic in the case that the bundle is trivial. Analogous to an

intrinsic approach to variational integrators for Hamiltonian mechanics, outlined in Remark 4.1.1,

one possible approach for constructing an intrinsic formulation of multisymplectic integrators is

to start with a discrete notion of a multi-Dirac structure (for details on multi-Dirac structures in

classical field theories, see Vankerschaver et al. [115]) and discretize the variational principle

utilizing the generalized energy as a generating functional; we will investigate this in future

work.

In Section 2.2.1, we begin by developing a discrete notion of Hamiltonian field theory,

the discrete boundary Hamiltonian, and the corresponding Type II variational principle. Subse-

quently, we specialize to the case of a spacetime tensor product rectangular mesh which allows

us to give an explicit characterization of the equations resulting from the Type II variational

principle. We prove discrete analogues of multisymplecticity and Noether’s theorem for these
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equations. In Section 2.2.2, we utilize a Galerkin approximation of the action to complete

the discretization of the boundary Hamiltonian. Subsequently, in Section 2.2.3, we utilize a

particular choice of Galerkin approximation to derive the class of multisymplectic partitioned

Runge–Kutta methods. In Section 2.2.4, we reinterpret the discrete multisymplectic conservation

law as one that is naturally associated to the difference equations which approximate the De

Donder–Weyl equations. Finally, in Section 2.3, we provide a numerical example which allows

us to visualize multisymplecticity as symplecticity in the spatial and temporal directions for the

class of sine–Gordon soliton solutions.

2.2 Multisymplectic Hamiltonian Variational Integrators

2.2.1 Discrete Hamiltonian Field Theory

We will discuss our construction of a discrete boundary Hamiltonian for the general case

of an arbitrary mesh and subsequently study the particular case of a rectangular mesh where the

variational equations can be written explicitly. Let X ⊂ Rn+1 be a polygonal domain and T (X)

an associated mesh. In general, a discrete configuration bundle consists of a choice of finite

element space taking values in the fiber Q that is subordinate to the mesh T (X). To be more

concrete, for every mesh element4∈T (X), we introduce nodes xi ∈4, i ∈ I, and parametrize

the finite element space by the fiber value at each node. A multisymplectic variational integrator

based on finite elements was developed from the Lagrangian perspective in Chen [30].

The discrete analog of the configuration bundle, on an element by element level, is the

base space {xi}i∈I with fiber Q over each node; the total space is {xi}i∈I×Q and a section is a

map from each node to Q, denoted φi ∈ Q. Analogously, the discrete analog of the restricted

dual jet bundle is {xi}i∈I×Q× (Q∗)n+1, where a section is specified by φi ∈ Q, pµ

i ∈ Q∗. Let

S4d [φi, pµ

i ] be some discrete approximation of the action S4[φ , p]. As in the discussion of the

boundary Hamiltonian (1.7), partition the boundary of the element ∂4= A∪B and let ∑

∫
B πBϕB

be some discrete approximation to the boundary integral
∫

B pµφdnxµ , depending only on the
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field and normal momenta boundary values on the nodes xi ∈ B, which we denoted ϕB and πB

respectively. Define the discrete boundary Hamiltonian

H∂4
d (ϕA,πB) = ext

φi∈Q,pµ

i ∈Q∗

φ |A=ϕA,pn|B=πB

[
∑

∫
πBϕB−S4d [φi, pµ

i ]
]
,

where pn|B denotes the normal component of the momenta along B. Repeat the above con-

struction for each4∈T (X); partitioning the boundaries ∂4= A(4)∪B(4) and the bound-

ary of the full region ∂X = A(X)∪B(X) (where A(X) = ∪∆∈T (X)(A(∆)∩ ∂X) and B(X) =

∪∆∈T (X)(B(∆)∩∂X)). Define the discrete action sum

Sd[{ϕA(4),πB(4)}4∈T (X)] = ∑

∫
B(X)

πB(X)ϕB(X)− ∑
4∈T (X)

[
∑

∫
B(4)

πB(4)ϕB(4)−H∂4
d (ϕA,πB)

]
.

The Type II variational principle δSd = 0 (subject to variations of ϕ vanishing along A(X) and

variations of π vanishing along B(X)) gives a set of (generally coupled) maps (ϕA(4),πB(4)) 7!

(ϕB(4),πA(4)) in analogy with the generating functional relation, equation (1.8). In the case of

finite element spaces which are not parametrized by the nodal values, we evaluate the discrete

boundary Hamiltonian on the discrete space of boundary data induced by the choice of mesh and

discrete configuration bundle, and extremize the expressions above over the finite elements that

satisfy the prescribed boundary conditions. This is the most general form of our multisymplectic

Hamiltonian variational integrator.

Spacetime Tensor Product Rectangular Mesh. Now, consider the particular case of a

rectangular domain X and an associated rectangular mesh T (X). For simplicity and clarity in the

notation, we will focus on the case of 1+1 spacetime dimensions, although higher dimensions

can be treated similarly (we treat the case of higher dimensions in Appendix 2.6.1).

Consider a rectangle [t, t+∆t]× [x,x+∆x] =2∈T (X). Introduce nodes on the intervals

{t1 = t, t2, . . . , ts−1, ts = t +∆t} and {x1 = x,x2, . . . ,xσ−1,xσ = x+∆x} (as we will introduce in

the next section for Galerkin Hamiltonian variational integrators, these nodes correspond to
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quadrature points along the time and space intervals). The discrete base space is Xd = {(ti,x j) |

i = 1, . . . ,s, j = 1, . . . ,σ}, the discrete configuration bundle is Xd ×Q, where a section is

map from each node (ti,x j) to (ti,x j,φi j), where φi j ∈ Q. Analogously, the discrete restricted

dual jet bundle is Xd ×Q× (Q∗)2, where a section is specified by φi j ∈ Q, pµ

i j ∈ Q∗. Let

S2d [φi j, pµ

i j] be some discrete approximation to S2[φ , p] (we will explicitly construct such a

discrete approximation in the next section using Galerkin techniques and quadrature). Partitioning

the boundary ∂2= A(2)∪B(2), the discrete boundary Hamiltonian is given by

H∂2
d (ϕA(2),πB(2)) = ext

φi j∈Q,pµ

i j∈Q∗

φ |A(2)=ϕA(2),pn|B(2)=πB(2)

[
∑

∫
B(2)

πB(2)ϕB(2)−S2d [φi j, pµ

i j]
]
, (2.1)

where ϕA(2) denotes the boundary values on A(2), i.e., at nodes (ti,x j) ∈ A (and similarly for

π). The discrete action sum is

Sd
[
{ϕA(2),πB(2)}2∈T (X)

]
= ∑

∫
B(X)

πB(X)ϕB(X)− ∑
2∈T (X)

[
∑

∫
B(2)

πB(2)ϕB(2)−H∂2
d (ϕA(2),πB(2))

]
.

Recall the Type II variational principle δSd = 0 gives a set of maps (ϕA(2),πB(2)) 7!

(ϕB(2),πA(2)). To give a more explicit characterization of these maps, let us introduce a quadra-

ture approximation of the boundary integral over B. First, consider the simple case of one

quadrature point along each edge of 2ab = [t0 +a∆t, t0 +(a+1)∆t]× [x0 +b∆x,x0 +(b+1)∆x],

where T (X) = {2ab}a,b. Let ϕ[a]b denote the field boundary value at the quadrature point

along the bottom edge (ta, ta +∆t)×{xb} (where we orient our axes such that time is horizontal

and space is vertical) and ϕa[b] denote its value at the quadrature point along the left edge

{ta}× (xb,xb+∆x) (and similarly ϕ[a]b+1 for the top edge, ϕa+1[b] for the right edge). We take A

to be the bottom and left edges, and B to the top and right edges. The normal momenta through

the top edge is the momenta associated to the x direction (at the quadrature point), which we

denote π1
[a]b+1, and the normal momenta through the right edge is the momenta associated to the

t direction, which we denote π0
a+1[b]. Since we only have one quadrature point along each edge,
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the quadrature weight for the temporal edge is ∆t and similarly for the spatial edge is ∆x. See

Figure 2.1.

Figure 2.1. Schematic for one quadrature point along each edge of 2ab ∈T (X).

Then, the boundary integral can be approximated

∫
B

pµ
φdnxµ =

∫ ta+1

ta
(p1

φ)|x=xb+1dt +
∫ xb+1

xb

(p0
φ)t=ta+1dx

≈ π
1
[a]b+1ϕ[a]b+1∆t +π

0
a+1[b]ϕa+1[b]∆x≡∑

∫
B

πBϕB.

The associated discrete boundary Hamiltonian is

H+
d (ϕ[a]b,ϕa[b],π

1
[a]b+1,π

0
a+1[b]) = ext

(
π

1
[a]b+1ϕ[a]b+1∆t +π

0
a+1[b]ϕa+1[b]∆x−S2ab

d [φ , p]
)
,

where the + specifies that we chose B to be in the forward direction (in the direction of increasing

temporal and spatial values), analogous to the notion of discrete right Hamiltonian in discrete

mechanics. Again, we extremize over φ , p satisfying the boundary conditions (note we have not

given an explicit construction for such a S2ab
d yet; see Section 2.2.2).

Proposition 2.2.1. The Type II variational principle δSd = 0, subject to variations of ϕ vanishing
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along A(X) and variations of π vanishing along B(X), yields the following,

π
1
[a]b =

1
∆t

D1H+
d (ϕ[a]b,ϕa[b],π

1
[a]b+1,π

0
a+1[b]), (2.2a)

π
0
a[b] =

1
∆x

D2H+
d (ϕ[a]b,ϕa[b],π

1
[a]b+1,π

0
a+1[b]), (2.2b)

ϕ[a]b+1 =
1
∆t

D3H+
d (ϕ[a]b,ϕa[b],π

1
[a]b+1,π

0
a+1[b]), (2.2c)

ϕa+1[b] =
1

∆x
D4H+

d (ϕ[a]b,ϕa[b],π
1
[a]b+1,π

0
a+1[b]), (2.2d)

where Di denotes differentiation with respect to the ith argument. We refer to these equa-

tions as the discrete forward Hamilton’s equations (in the case of one quadrature point).

Note that these equations define a map (ϕA,πB) = (ϕ[a]b,ϕa[b],π
1
[a]b+1,π

0
a+1[b]) 7! (ϕB,πA) =

(ϕ[a]b+1,ϕa+1[b],π
1
[a]b,π

0
a[b]).

Proof. Recall the full mesh T (X) = {2ab}a,b; say a = 0, . . . ,N−1, and b = 0, . . . ,M−1 (so

that X = [t0, t0 +N∆t]× [x0,x0 +M∆x]). B(X) consists of the forward edges of X , i.e.,

B(X) =
(
[t0, t0 +N∆t]×{x0 +M∆x}

)
∪
(
{t0 +N∆t}× [x0,x0 +M∆x]

)
.
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Consider the discrete action sum

Sd[{ϕA(2),πB(2)}]

= ∑

∫
B(X)

πB(X)ϕB(X)− ∑
2∈T (X)

[
∑

∫
B(2)

πB(2)ϕB(2)−H+
d (ϕA(2),πB(2))

]

=
N−1

∑
a=0

π
1
[a]Mϕ[a]M∆t +

M−1

∑
b=0

π
0
N[b]ϕN[b]∆x

−
N−1,M−1

∑
a,b=0

[
π

1
[a]b+1ϕ[a]b+1∆t +π

0
a+1[b]ϕa+1[b]∆x−H+

d (ϕ[a]b,ϕa[b],π
1
[a]b+1,π

0
a+1[b])

]
=−

N−1,M−2

∑
a,b=0

π
1
[a]b+1ϕ[a]b+1∆t︸ ︷︷ ︸
≡(a)

−
N−2,M−1

∑
a,b=0

π
0
a+1[b]ϕa+1[b]∆x︸ ︷︷ ︸
≡(b)

+
N−1,M−1

∑
a,b=0

H+
d (ϕ[a]b,ϕa[b],π

1
[a]b+1,π

0
a+1[b])︸ ︷︷ ︸

≡(c)

.

The Type II variational principle states 0 = δSd = δ (a)+δ (b)+δ (c), subject to variations of

ϕ vanishing along A(X) (i.e., δϕ[a]0 = 0 = δϕ0[b]) and variations of π vanishing along B(X)

(i.e., δπ0
N[b] = 0 = δπ1

[a]M). Compute the variations of (a),(b),(c) keeping only the independent

variations δϕ[a]b, δϕa[b], δπ0
a[b], δπ1

[a]b not required to vanish by the boundary conditions (note

such vanishing variations will only appear in (c)).

δ (a) =−∆t
N−1

∑
a=0

M−2

∑
b=0

(
ϕ[a]b+1δπ

1
[a]b+1 +π

1
[a]b+1δϕ[a]b+1

)
=−∆t

N−1

∑
a=0

M−2

∑
b=0

ϕ[a]b+1δπ
1
[a]b+1−∆t

N−1

∑
a=0

M−1

∑
b=1

π
1
[a]bδϕ[a]b,

δ (b) =−∆x
N−2

∑
a=0

M−1

∑
b=0

(
ϕa+1[b]δπ

0
a+1[b]+π

0
a+1[b]δϕa+1[b]

)
=−∆x

N−2

∑
a=0

M−1

∑
b=0

ϕa+1[b]δπ
0
a+1[b]−∆x

N−1

∑
a=1

M−1

∑
b=0

π
0
a[b]δϕa[b].
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For brevity, denote H+
d [a,b]≡ H+

d (ϕ[a]b,ϕa[b],π
1
[a]b+1,π

0
a+1[b]). Compute

δ (c) =
N−1,M−1

∑
a,b=0

(
D1H+

d [a,b]δϕ[a]b +D2H+
d [a,b]δϕa[b]

+D3H+
d [a,b]δπ

1
[a]b+1 +D4H+

d [a,b]δπ
0
a+1[b]

)
=

N−1

∑
a=0

M−1

∑
b=0

D1H+
d [a,b]δϕ[a]b +

N−1

∑
a=0

M−1

∑
b=0

D2H+
d [a,b]δϕa[b]

+
N−1

∑
a=0

M−1

∑
b=0

D3H+
d [a,b]δπ

1
[a]b+1 +

N−1

∑
a=0

M−1

∑
b=0

D4H+
d [a,b]δπ

0
a+1[b].

Note in the first double sum above, δϕ[a]0 = 0 so we remove the b = 0 terms. In the second

double sum, δϕ0[b] = 0 so we remove the a = 0 terms. In the third double sum above, δπ1
[a]M = 0

so we remove the b = M−1 terms. In the fourth double sum above, δπ0
N[b] = 0 so we remove

the a = N−1 terms. This gives,

δ (c) =
N−1

∑
a=0

M−1

∑
b=1

D1H+
d [a,b]δϕ[a]b +

N−1

∑
a=1

M−1

∑
b=0

D2H+
d [a,b]δϕa[b]

+
N−1

∑
a=0

M−2

∑
b=0

D3H+
d [a,b]δπ

1
[a]b+1 +

N−2

∑
a=0

M−1

∑
b=0

D4H+
d [a,b]δπ

0
a+1[b].

Putting everything together, we have

0 = δSd = δ (a)+δ (b)+δ (c)

=
N−1

∑
a=0

M−1

∑
b=1

(−∆t π
1
[a]b +D1H+

d [a,b])δϕ[a]b +
N−1

∑
a=1

M−1

∑
b=0

(−∆x π
0
a[b]+D2H+

d [a,b])δϕa[b]

+
N−1

∑
a=0

M−2

∑
b=0

(−∆t ϕ[a]b+1 +D3H+
d [a,b])δπ

1
[a]b+1

+
N−2

∑
a=0

M−1

∑
b=0

(−∆x ϕa+1[b]+D4H+
d [a,b])δπ

0
a+1[b].

The variations in the above expression are all independent, so this gives (2.2a)-(2.2d).

Discrete Multisymplecticity. Analogous to the continuum case, we define a discrete first
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variation as a vector field such that the above equations (2.2a)-(2.2d) still hold when evaluated at

the level of the exterior derivative, e.g. for equation (2.2a),

dπ
1
[a]b =

1
∆t

d
(

D1H+
d (ϕ[a]b,ϕa[b],π

1
[a]b+1,π

0
a+1[b])

)
.

and similarly for the others. As we saw in the continuum theory, the map generated by the

boundary Hamiltonian implies the multisymplectic form formula, since the multisymplectic form

formula can be expressed over the boundary ∂U . Since we constructed a discrete approximation

to the boundary Hamiltonian before enforcing the variational principle, we would naturally

expect a discrete notion of multisymplecticity to arise as well. Furthermore, in the continuum

theory, multisymplecticity follows from d2 = 0 applied to the boundary Hamiltonian, evaluated

on first variations. As we will see, our discrete multisymplectic form formula follows from

computing d2 = 0 applied to the discrete boundary Hamiltonian, in analogy with the continuum

theory.

Proposition 2.2.2. The discrete forward Hamilton’s equations (2.2a)-(2.2d) are multisymplectic,

in the sense that for a solution of the discrete forward Hamilton’s equations,

∆t dϕ[a]b+1∧dπ
1
[a]b+1−∆t dϕ[a]b∧dπ

1
[a]b +∆x dϕa+1[b]∧dπ

0
a+1[b]−∆x dϕa[b]∧dπ

0
a[b] = 0,

evaluated on discrete first variations.

Proof. In what follows, H+
d will be evaluated at (ϕ[a]b,ϕa[b],π

1
[a]b+1,π

0
a+1[b]). Compute

0 = d2H+
d = d

(
D1H+

d dϕ[a]b +D2H+
d dϕa[b]+D3H+

d dπ
1
[a]b+1 +D4H+

d dπ
0
a+1[b]

)
= d(D1H+

d )∧dϕ[a]b +d(D2H+
d )∧dϕa[b]+d(D3H+

d )∧dπ
1
[a]b+1 +d(D4H+

d )∧dπ
0
a+1[b].
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Then, by our definition of discrete first variations, we have

d(D1H+
d ) = ∆t dπ

1
[a]b,

d(D2H+
d ) = ∆x dπ

0
a[b],

d(D3H+
d ) = ∆t dϕ[a]b+1,

d(D4H+
d ) = ∆x dϕa+1[b].

Substituting these expressions into the equation for d2H+
d yields

0 = d(D1H+
d )∧dϕ[a]b +d(D2H+

d )∧dϕa[b]+d(D3H+
d )∧dπ

1
[a]b+1 +d(D4H+

d )∧dπ
0
a+1[b]

= ∆t dπ
1
[a]b∧dϕ[a]b +∆x dπ

0
a[b]∧dϕa[b]+∆t dϕ[a]b+1∧dπ

1
[a]b+1 +∆x dϕa+1[b]∧dπ

0
a+1[b]

=−∆t dϕ[a]b∧dπ
1
[a]b−∆x dϕa[b]∧dπ

0
a[b]+∆t dϕ[a]b+1∧dπ

1
[a]b+1 +∆x dϕa+1[b]∧dπ

0
a+1[b]

= ∆t dϕ[a]b+1∧dπ
1
[a]b+1−∆t dϕ[a]b∧dπ

1
[a]b +∆x dϕa+1[b]∧dπ

0
a+1[b]−∆x dϕa[b]∧dπ

0
a[b].

Remark 2.2.1. Recall that ωµ = dϕ ∧ dπµ . Observe that if we divide the above discrete

multisymplectic form formula by ∆t∆x, it is just a first-order finite difference approximation of

∂µωµ = 0.

Furthermore, it is clear that the above equation is precisely quadrature applied to the

multisymplectic form formula
∫

∂2ωµ |(ϕ,π)(·, ·)dnxµ = 0.

Finally, we note that a discrete notion of multisymplecticity holds in the more general

setting described at the beginning of Section 2.2.1. In the more general setting, discrete multi-

symplecticity is interpreted as d2H∂∆

d = 0 (when evaluated on first variations), which reduces to

the “usual” notion of multisymplecticity in the spacetime tensor product case.

General Quadrature Approximation. From here, the generalization to multiple quadra-

ture points is straight-forward. For simplicity, we take the bottom-left vertex of 2 ∈T (X) to
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be (0,0). Then, 2 = [0,∆t]× [0,∆x]. In the temporal direction, introduce quadrature points

ci ∈ [0,1], i = 1, . . . ,s, and associated quadrature weights bi; we normalize these such that

∑i bi = 1 (for both ci and bi, we’ll have to explicitly include a factor of ∆t later) and without loss

of generality, we assume each bi 6= 0. Similarly, for the spatial direction, introduce quadrature

points c̃α , α = 1, . . . ,σ and the associated non-zero weights b̃α (normalized as before). Let

ϕ[i]0 = ϕ(ci∆t,0), ϕ0[α] = (0, c̃α∆x), ϕ[i]1 = ϕ(ci∆t,∆x), ϕ1[α] = (∆t, c̃α∆x). Similarly define

π0
0[α], π1

[i]0, π0
1[α], π1

[i]1. As before, we take B to be the part of the boundary in the forward

direction. See Figure 2.2.

Figure 2.2. Schematic for multiple quadrature points along each edge of 2 ∈T (X).

Then, use quadrature to approximate the boundary integral:

∫
B

pµ
φdnxµ =

∫
∆t

0
(p1

φ)|x=∆xdt +
∫

∆x

0
(p0

φ)t=∆tdx

≈
s

∑
i=1

∆t biπ
1
[i]1ϕ[i]1 +

σ

∑
α=1

∆xb̃α p0
1[α]ϕ1[α] ≡∑

∫
B

πBϕB.

The associated discrete boundary Hamiltonian is

H+
d ({ϕ[i]0,ϕ0[α],π

1
[i]1,π

0
1[α]}i,α) = ext

( s

∑
i=1

∆t biπ
1
[i]1ϕ[i]1 +

σ

∑
α=1

∆xb̃απ
0
1[α]ϕ1[α]−S2ab

d [φ , p]
)
.

Proposition 2.2.3. The discrete forward Hamilton’s equations arising from the Type II variational
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principle are

π
1
[i]0 =

1
bi∆t

D1,iH+
d ({ϕ[ j]0,ϕ0[β ],π

1
[ j]1,π

0
1[β ]} j,β ), i = 1, . . . ,s, (2.3a)

π
0
0[α] =

1
b̃α∆x

D2,αH+
d ({ϕ[ j]0,ϕ0[β ],π

1
[ j]1,π

0
1[β ]} j,β ), α = 1, . . . ,σ , (2.3b)

ϕ[i]1 =
1

bi∆t
D3,iH+

d ({ϕ[ j]0,ϕ0[β ],π
1
[ j]1,π

0
1[β ]} j,β ), i = 1, . . . ,s, (2.3c)

ϕ1[α] =
1

b̃α∆x
D4,αH+

d ({ϕ[ j]0,ϕ0[β ],π
1
[ j]1,π

0
1[β ]} j,β ), α = 1, . . . ,σ , (2.3d)

where D1,i ≡ ∂/∂ϕ[i]0, D2,α ≡ ∂/∂ϕ0[α], D3,i ≡ ∂/∂π1
[i]1, D4,α ≡ ∂/∂π0

1[α]. Furthermore, a

solution of the discrete forward Hamilton’s equations (2.3a)-(2.3d) satisfies the discrete multi-

symplectic conservation law,

s

∑
i=1

∆t bi

(
dϕ[i]1∧dπ

1
[i]1−dϕ[i]0∧dπ

1
[i]0

)
+

σ

∑
α=1

∆x b̃α

(
dϕ1[α]∧dπ

0
1[α]−dϕ0[α]∧dπ

0
0[α]

)
= 0,

(2.4)

evaluated on discrete first variations.

Proof. The proof follows similarly to the case of one quadrature point, Proposition 2.2.1. Namely,

the discrete forward Hamilton’s equations follow from the Type II variational principle δSd = 0

subject to variations of ϕ vanishing along A(X) and variations of π vanishing along B(X). The

discrete multisymplectic conservation law follows from

d2H+
d ({ϕ[ j]0,ϕ0[β ],π

1
[ j]1,π

0
1[β ]} j,β ) = 0.

As in the case of one quadrature point, the discrete multisymplectic conservation law is

the given quadrature rule applied to
∫

∂2ωµ |(ϕ,π)(·, ·)dnxµ = 0.

Remark 2.2.2. The above discrete forward Hamilton’s equations were defined on 2= [0,∆t]×

[0,∆x]. For 2ab = [ta, ta +∆t]× [xb,xb +∆x], shift the indices 0,1 appropriately to a,a+1 and
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b,b+1, i.e., ϕ[i]0! ϕ[i]b, ϕ[i]1! ϕ[i]b+1, ϕ0[α]! ϕa[α], ϕ1[α]! ϕa+1[α] and similarly for the

momenta.

Boundary Conditions and Solution Method. Recall that the discrete forward Hamil-

ton’s equations produce a map (ϕA(2),πB(2)) 7! (ϕB(2,πA(2)) for each 2 ∈ T (X). How-

ever, depending on the boundary conditions that we supply on ∂X , the actual realization

of these maps may be different (in that the boundary conditions determine the variables in

(ϕA(2),πB(2)) 7! (ϕB(2,πA(2)) that we implicitly solve for). The key point is that we must

specify the field value or the normal momenta along four edges (and the edges may repeat, such

as supplying field values and normal momenta on the same edge; see the discussion of evolution-

ary systems below). This will depend on whether the Hamiltonian PDE we are considering is

stationary or evolutionary.

Consider a stationary system (e.g., an elliptic system). Then, along ∂X , we can specify

either Dirichlet boundary conditions, given by the field value ϕ , or Neumann boundary conditions,

given by the normal momenta value π . If we supply such boundary conditions, then each

2 ∈ T (X) either has two edges with supplied boundary conditions (those on the corners of

X), has one edge with supplied boundary conditions (those on the edges of X), or no supplied

boundary conditions (those on the interior). However, the field values and normal momenta

values have to be the same along interior edges, which makes up the other required degrees of

freedom (recall, we need to specify the field value or normal momenta along four edges). This

couples all of the implicit maps (ϕA(2),πB(2)) 7! (ϕB(2,πA(2)) together, so that the solution

must be solved simultaneously for every 2 ∈T (X). See Figure 2.3.

For an evolutionary system (e.g., a hyperbolic system), we specify the initial conditions at

t = 0, which consist of both the field and normal momenta value (π0). On the spatial boundaries,

we can either supply Dirichlet or Neumann conditions as above. The continuity of field and

normal momenta on the interior edges couples the maps (ϕA(2),πB(2)) 7! (ϕB(2,πA(2)) together

for each 2 in the same time slice and produces the remaining required degrees of freedom.
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Figure 2.3. Coupling of all of the discrete forward Hamilton’s equations for stationary Hamiltonian PDEs;
dashed lines along interior edges denote field and normal momenta continuity.

Hence, one solves these coupled equations on the first time slice which supplies new initial

conditions for the subsequent timeslice; one then continues this process recursively for each

time step, thereby allowing the discrete solution to be computed in a time marching fashion. See

Figure 2.4.

Figure 2.4. Coupling of the discrete forward Hamilton’s equations in the same time slice for evolutionary
Hamiltonian PDEs; dashed lines along interior edges denote field and normal momenta continuity.

Remark 2.2.3. Solvability. It should be noted that the map (ϕA,πB) 7! (ϕB,πA) defined by the

discrete forward Hamilton’s equations are always well-defined, as can be seen explicitly from the

equations (2.3a)-(2.3d). This is a property of the (discrete) generating functional and is agnostic
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to the specific Hamiltonian in question. However, as discussed above, with regard to constructing

a numerical method, the implementation of the method in general involves implicitly inverting the

relation (ϕA,πB) 7! (ϕB,πA) for the desired variables. For example, if one specifies Neumann

boundary conditions on all of ∂X for a stationary system, then the numerical method is given by

solving for the map (πA,πB) 7! (ϕA,ϕB) implicitly from the map (ϕA,πB) 7! (ϕB,πA). As another

example, for an evolutionary problem, if one specifies Neumann spatial boundary conditions

and specifies initial conditions (with both ϕ and π0), then the numerical method is given by

solving for the map (ϕA,πA) 7! (ϕB,πB) implicitly from the map (ϕA,πB) 7! (ϕB,πA). As these

two examples indicate, in general, the form of the map necessary to implement the method is

highly dependent on the type of Hamiltonian, as well as the supplied boundary conditions. As

such, a discussion of the well-definedness of the implemented map is beyond the scope of this

paper, since such a discussion would be highly dependent on the type of problem and boundary

conditions, and the functional analytic tools needed in each case would differ drastically.

We will outline the general argument, although the specifics are left to future work. Note

that equations (2.3a)-(2.3d) can be written formally as

πA = D̂ϕAH+
d (ϕA,πB), (2.5a)

ϕB = D̂πBH+
d (ϕA,πB), (2.5b)

where D̂ denotes the differentiation operators in (2.3a)-(2.3d) (and appropriately scaled by the

quadrature weights). Showing that one can invert the relations (2.5a)-(2.5b) for the implemented

map would then rest on an implicit function theorem type argument, for a sufficiently small

2⊂ X. The derivatives of the equations (2.5a)-(2.5b) would then involve second derivatives of

H+
d , so hyperregularity would prove crucial in such a proof. For degenerate Hamiltonians, some

form of constraint or gauge-fixing would be necessary to complete the proof. We aim to explore

issues dealing with solvability in future work, as well as related issues such as error analysis,

which is again highly dependent on the specific class of Hamiltonians and boundary conditions
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considered.

Discrete Noether’s Theorem. In the continuum theory, we saw that for a vertical group

action on the restricted dual jet bundle which leaves the action invariant, there is an associated

Noether conservation law (1.10) for solutions of Hamilton’s equations.

In the discrete setting, suppose there is a differentiable and vertical G action on the

discrete restricted dual jet bundle {ti,x j}×Q× (Q∗)2 (relative to 2 ∈ T (X)) which leaves

invariant the generalized discrete Lagrangian

R2
d (ϕA(2),ϕB(2),πB(2)) = ∑

∫
B(2)

πB(2)ϕB(2)−H+
d (ϕA(2),πB(2))

=
s

∑
i=1

∆t biπ
1
[i]1ϕ[i]1 +

σ

∑
α=1

∆xb̃α p0
1[α]ϕ1[α]−H+

d ({ϕ[i]0,ϕ0[α],π
1
[i]1,π

0
1[α]}i,α).

Proposition 2.2.4. If the generalized discrete Lagrangian is invariant under a differentiable

and vertical G action on the discrete restricted dual jet bundle, then a solution of the discrete

forward Hamilton’s equations (2.3a)-(2.3d) admits a discrete analog of Noether’s theorem:

∑
i

∆t biπ
1
[i]1i

ξ̃
dϕ[i]1 +∑

α

∆x b̃απ
0
1[α]iξ̃ dϕ1[α] (2.6)

−∑
i

∆t biπ
1
[i]0i

ξ̃
dϕ[i]0−∑

α

∆x b̃απ
0
0[α]iξ̃ dϕ0[α] = 0,

where ξ̃ is the infinitesimal generator associated with ξ ∈ g.

Proof. For brevity, we will omit the arguments of R2
d and H+

d (refer to the definition of R2
d

above). Since the generalized discrete Lagrangian is invariant under the G action, that means
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that the directional derivative in the direction of the infinitesimal generator vanishes,

0 = dR2
d · ξ̃

= ∑
i

∆t biiξ̃ d(π1
[i]1ϕ[i]1)+∑

α

∆x b̃α i
ξ̃

d(π0
1[α]ϕ1[α])

−∑
i

(
D1,iH+

d i
ξ̃

dϕ[i]0 +D3,iH+
d i

ξ̃
dπ

1
[i]1

)
−∑

α

(
D2,αH+

d i
ξ̃

dϕ0[α]+D4,αH+
d i

ξ̃
dπ

0
1[α]

)
= ∑

i
∆t bi(���

���
�:(1)

i
ξ̃

dπ
1
[i]1ϕ[i]1 +π

1
[i]1i

ξ̃
dϕ[i]1)+∑

α

∆x b̃α(���
��

��:
(2)

i
ξ̃

dπ
0
1[α]ϕ1[α]+π

0
1[α]iξ̃ dϕ1[α])

−∑
i

∆t bi

(
π

1
[i]0i

ξ̃
dϕ[i]0 +���

���
�:(1)

ϕ[i]1i
ξ̃

dπ
1
[i]1

)
−∑

α

∆x b̃α

(
π

0
0[α]iξ̃ dϕ0[α]+���

���
�:(2)

ϕ1[α]iξ̃ dπ
0
1[α]

)
.

Remark 2.2.4. Note that the above looks like quadrature applied to the continuous Noether’s

theorem, ∫
∂2

pµ(i
ξ̃

dφ)dnxµ = 0

(with the caveat that, in the continuum case, G acts on the restricted dual jet bundle, whereas

in the discrete case, G acts on the discrete restricted dual jet bundle). One can obtain such a

G-invariant Rd via G-equivariant interpolation (see Leok and Zhang [76] and Leok [74]), in

which case, the discrete Noether theorem is precisely quadrature applied to Noether’s theorem.

Also, note that a discrete Noether’s theorem holds in the more general setting described

at the beginning of Section 2.2.1. In the more general setting, the discrete Noether’s theorem is

interpreted as dR∆
d · ξ̃ = 0 (for a G-invariant generalized discrete Lagrangian), which reduces to

the “usual” coordinate notion of the discrete Noether’s theorem, equation (2.6), in the spacetime

tensor product case.

Remark 2.2.5. Another way to interpret this discrete Noether’s theorem is to view the map

determined by the discrete forward Hamilton’s equations, (ϕA(2),πB(2)) 7! (ϕB(2),πA(2)), as

implicitly defining a forward map FH+
d

: (ϕA(2),πA(2)) 7! (ϕB(2),πB(2)). For some subset S
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of ∂2, define the discrete (Hamiltonian) Cartan form (at a solution of the discrete forward

Hamilton’s equations)

Θ
S
d = ∑

(tk,xl)∈S
βklπ

n
kldϕkl, (2.7)

where πn denotes the normal component of the momenta and β kl denotes the quadrature weight

at (tk,xl) ∈ S (which equals ∆t bi for the ith node of S along fixed x and equals ∆x b̃α for

the α th node of S along fixed t). Such a discrete Cartan form involving summing over nodes

corresponding to boundary variations was introduced by Marsden et al. [85] in the Lagrangian

framework; in the discrete Hamiltonian setting which we constructed, (2.7) is the appropriate

definition since Θ∂2
d precisely encodes such discrete boundary variations.

Then, the discrete Noether theorem (2.6) can be expressed as

F∗H+
d
(Θ

B(2)
d ) · ξ̃ = Θ

A(2)
d · ξ̃ .

Note also that the discrete multisymplectic form formula (2.4) can be expressed as

dΘ
∂2
d (·, ·) = 0,

when evaluated on discrete first variations.

2.2.2 Galerkin Hamiltonian Variational Integrators

The missing ingredient in our construction of a variational integrator is the discrete

approximation of the action over 2 ∈ T (X), S2d [φ , p]. We will extend the construction of

Galerkin Hamiltonian variational integrators, introduced in Leok and Zhang [76] for Hamiltonian

ODEs, to the case of Hamiltonian PDEs.

Remark 2.2.6. To be definitive, we will assume that the space(time) X has the Euclidean metric.

The discussion below is equally valid for the Minkowski metric, except one has to include the

appropriate minus signs throughout.
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Consider for simplicity [0,∆t]× [0,∆x] =2∈T (X). Fix quadrature rules in the temporal

direction (weights bi and nodes ci, i = 1, . . . ,s) and spatial direction (weights b̃α and nodes c̃α ,

α = 1, . . . ,σ ) as before. Note the action S[φ , p] =
∫
(pµ∂µφ −H(φ , p0, p1))d2x involves the

fields φ , their derivatives ∂µφ , and the multimomenta pµ (µ = 0,1). For the field and their

derivatives, we could either approximate the field using a finite-dimensional subspace and

subsequently take derivatives; or conversely, approximate the derivatives and subsequently

integrate to obtain the values of the field. We will take the latter approach (we will extremize

over the internal stages at the end, so the two approaches are equivalent). Introduce basis

functions {χi(τ)}s
i=1, τ ∈ [0,1], for an s-dimensional function space and similarly {χ̃α(τ)}σ

α=1

for a σ -dimensional function space. We will use the tensor product basis {χi(τ∆t)χ̃α(ρ∆x)}i,α

to discretize the derivatives of the field. Approximate the derivatives as

∂tφd(τ∆t,ρ∆x) = ∑
i,α

V iα
χi(τ)χ̃α(ρ), (2.8a)

∂xφd(τ∆t,ρ∆x) = ∑
i,α

W iα
χi(τ)χ̃α(ρ). (2.8b)

We can integrate in time or space to determine the field values. In particular, the internal stages

are given by the field values at the nodes (ci∆t, c̃α∆x):

Φiα ≡ φ(ci∆t, c̃α∆x) = φ(0, c̃α∆x)+∆t ∑
j,β

V jβ
∫ ci

0
χ j(s)ds χ̃β (c̃α) = ϕ0[α]+∆t ∑

j,β
Aiα, jβV jβ ,

Φiα ≡ φ(ci∆t, c̃α∆x) = φ(ci∆t,0)+∆x∑
j,β

W jβ
χ j(ci)

∫ cα

0
χ̃β (s)ds = ϕ[i]0 +∆x∑

j,β
Ãiα, jβW jβ ,

where Aiα, jβ =
∫ ci

0 χ j(s)ds χ̃β (c̃α) and Ãiα, jβ = χ j(ci)
∫ cα

0 χ̃β (s)ds. Note that Φiα must of

course be single-valued, so we have a relation between the two above equations:

φ0[α]+∆tAiα, jβV jβ = Φiα = φ[i]0 +∆xÃiα, jβW jβ . (2.9)
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We expect such a relation since extremizing over Φiα is equivalent to extremizing over Viα or

Wiα (but not both; however, we will relax this assumption in the subsequent discussion).

Integrating to 1 gives the unknown field boundary values,

ϕ1[α] ≡ φ(∆t, c̃α∆x) = φ(0, c̃α∆x)+∆t ∑
j,β

V jβ
∫ 1

0
χ j(s)ds χ̃β (c̃α) = ϕ0[α]+∆t ∑

j,β
Bα, jβV jβ ,

ϕ[i]1 ≡ φ(ci∆t,∆x) = φ(ci∆t,0)+∆x∑
j,β

W jβ
χ j(ci)

∫ 1

0
χ̃β (s)ds = ϕ[i]0 +∆x∑

j,β
B̃i, jβW jβ ,

where Bα, jβ =
∫ 1

0 χ j(s)ds χ̃β (c̃α) and B̃i, jβ = χ j(ci)
∫ 1

0 χ̃β (s)ds.

We define the internal stages for the momenta P0
iα = p0(ci∆t, c̃α∆x),P1

iα = p1(ci∆t, c̃α∆x).

Unlike the field internal stage expansions, one does not need to introduce an approximating

function space for the momenta internal stages, since the action only involves derivatives of

the field and not the momenta. At this point, we could work directly with these internal stages;

however, we will expand the momenta similarly to the fields,

P0
iα = π

0
1[α]−∆t ∑

j,β
A′iα, jβ X jβ ,

P1
iα = π

1
[i]1−∆x∑

j,β
Ã′iα, jβY jβ ,

where A′iα, jβ and Ã′iα, jβ are arbitrary expansion coefficients and X jβ ,Y jβ are internal variables

representing ∂0 p0 and ∂1 p1 respectively. The unknown momenta boundary values are similarly

defined as

π
0
0[α] = π

0
1[α]−∆t ∑

j,β
B′

α, jβ X jβ ,

π
1
[i]0 = π

1
[i]1−∆x∑

j,β
B̃′i, jβY jβ ,

where B′
α, jβ and B̃′i, jβ are again arbitrary expansion coefficients. We will see later that the
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expansion coefficients will have to satisfy symplecticity conditions in order for the method to be

well-defined.

We then approximate the action integral S[φ , p] =
∫
(pµ∂µφ −H(φ , p0, p1))d2x using

quadrature and the above internal stages

S2d [Φiα ,Piα ] = ∆t∆x∑
i,α

bib̃α

(
P0

iα∂tφd(ci∆t, c̃α∆x)+P1
iα∂xφd(ci∆t, c̃α∆x)−H(Φiα ,P0

iα ,P
1
iα)
)
.

The discrete boundary Hamiltonian is obtained by extremizing over the internal stages Φ,P0,P1,

which are defined in terms of V,X ,Y . Since we have already enforced the boundary conditions

in the above field and momenta expansions, we can construct the discrete boundary Hamiltonian

by extremizing over V iα , X iα , Y iα (for every i = 1, . . . ,s and α = 1, . . . ,σ ),

H+
d ({ϕ[i]0,ϕ0[α],π

1
[i]1,π

0
1[α]}i,α)

= ext
V iα ,X iα ,Y iα

( s

∑
i=1

∆t biπ
1
[i]1ϕ[i]1 +

σ

∑
α=1

∆x b̃απ
0
1[α]ϕ1[α]−S2d [Φiα ,Piα ]︸ ︷︷ ︸

≡K({ϕA,πB,V iα ,X iα ,Y iα})

)
.

H+
d is then given by extremizing K({ϕA,πB,V iα ,X iα ,Y iα}) with respect to V iα ,X iα , and Y iα

(where again we denote ϕA = {ϕ[i]0,ϕ0[α]} and πB = {π1
[i]1,π

0
1[α]}). Expanding K, we have

K({ϕA,πB,V iα ,X iα ,Y iα})

= ∆t ∑
i

biπ
1
[i]1(ϕ[i]0 +∆x∑

j,β
B̃i, jβW jβ )+∆x∑

α

b̃απ
0
1[α](ϕ0[α]+∆t ∑

j,β
Bα, jβV jβ )

−∆t∆x∑
i,α

bib̃α

(
π

0
1[α]−∆t ∑

k,γ
A′iα,kγXkγ

)
∑
j,β

V jβ
χ j(ci)χ̃α(c̃α)

−∆t∆x∑
i,α

bib̃α

(
π

1
[i]1−∆x∑

k,γ
Ã′iα,kγY kγ

)
∑
j,β

W jβ
χ j(ci)χ̃α(c̃α)

+∆t∆x∑
i,α

bib̃αH(Φiα ,P0
iα ,P

1
iα).
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The stationarity conditions ∂K/∂V iα = 0, ∂K/∂X iα = 0, ∂K/∂Y iα = 0, combined with the

discrete forward Hamilton’s equations (2.3a)-(2.3d) define our multisymplectic variational

integrator.

Supposing that one solves the stationarity conditions for V iα , X iα , Y iα in terms of ϕA and

πB, this gives H+
d ({ϕA,πB}) = K({ϕA,πB,V iα(ϕA,πB),X iα(ϕA,πB),Y iα(ϕA,πB)}). The right

hand side of the discrete forward Hamilton’s equations, (2.3a)-(2.3d), can then be computed in

terms of K via

∂

∂ϕ[i]0
H+

d ({ϕA,πB}) =
∂

∂ϕ[i]0
K({ϕA,πB,V iα(ϕA,πB),X iα(ϕA,πB),Y iα(ϕA,πB)})

=
∂

∂ϕ[i]0
K +∑

j,α

(
�
�
��∂K

∂V jα
∂V jα

∂ϕ[i]0
+
�
�
��∂K

∂X jα
∂X jα

∂ϕ[i]0
+
�
�
��∂K

∂Y jα
∂Y jα

∂ϕ[i]0

)
=

∂

∂ϕ[i]0
K,

and similarly for the other specified boundary values. Hence, the derivatives of H+
d with respect

to ϕA, πB can be computed using only the explicit dependence of K on ϕA,πB.

2.2.3 Multisymplectic Partitioned Runge–Kutta Method

Let us suppose that instead of the basis {χi},{χ̃α}, we choose basis functions {ψi},

{ψ̃α} that have the interpolating property ψi(c j) = δi j, ψ̃α(c̃β ) = δαβ . Note that one can always

transform the previous set of basis functions to a set of basis functions with this property,

assuming that the original choice of basis functions χi, χ̃α have the property that the matrices

with entries Mi j = χi(c j), M̃αβ = χ̃α(c̃β ) are invertible. If they are not, then the expansion of

the derivatives, equations (2.8a)-(2.8b), does not depend independently on all of the V iα , W iα

and hence one needs to reduce the number of independent variables; to avoid this, ensure that

the matrices with entries χi(c j) and χ̃α(c̃β ) are invertible. Letting χ(·) = (χ1(·), . . . ,χs(·))T

and χ̃(·) = (χ̃1(·), . . . , χ̃σ (·))T (and similarly define ψ , ψ̃), a set of basis functions with the

interpolating property can be constructed by ψ = M−1χ , ψ̃ = M̃−1χ̃ . In particular, the {ψi},
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{ψ̃α} span the same function spaces as the {χi}, {χ̃α} respectively, so there is no loss of

generality.

With this assumption, we approximate the derivatives of the fields as

∂tφd(ci∆t, c̃α∆x) = ∑
j,β

V jβ
ψ j(ci)ψ̃β (c̃α) =V iα ,

∂xφd(ci∆t, c̃α∆x) = ∑
j,β

W jβ
ψ j(ci)ψ̃β (c̃α) =W iα .

Integrating gives the internal stages and the unknown boundary values,

Φiα = ϕ0[α]+∆t ∑
j

ai jV jα ,

Φiα = ϕ[i]0 +∆x∑
β

ãαβW iβ

ϕ1[α] = ϕ0[α]+∆t ∑
j

b jV jα ,

ϕ[i]1 = ϕ[i]0 +∆x∑
β

b̃βW iβ ,

where ai j =
∫ ci

0 ψ j(s)ds, ãαβ =
∫ c̃α

0 ψ̃β (s)ds and the quadrature weights bi =
∫ 1

0 ψi(s)ds, b̃α =∫ 1
0 ψ̃α(s)ds are chosen so that quadrature is exact on the span of the basis functions. As before,
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expand the momenta using a different set of coefficients.

X iα = ∂t p0
d(ci∆t, c̃α∆x),

Y iα = ∂x p1
d(ci∆t, c̃α∆x),

P0
iα = π

0
1[α]−∆t ∑

j
a′i jX

jα ,

P1
iα = π

1
[i]1−∆x∑

β

ã′
αβ

Y iβ ,

π
0
0[α] = π

0
1[α]−∆t ∑

j
b′jX

jα ,

π
1
[i]0 = π

1
[i]1−∆x∑

β

b̃′
β
Y iβ .

We impose that b′j > 0, b̃′
β
> 0 and that ∑ j b′j = 1, ∑β b̃′

β
= 1 for the approximation to be

consistent. We will later derive a condition on the coefficients a′i j, ã′
αβ

, b′i, b̃′α in order for the

method to be well-defined. For now, we proceed formally.

With these, K can be expressed as

K({ϕA,πB,V iα ,X iα ,Y iα})

= ∆x∑
α

b̃απ
0
1[α](ϕ0[α]+∆t ∑

j
b jV jα)+∆t ∑

i
biπ

1
[i]1(ϕ[i]0 +∆x∑

β

b̃βW iβ )

−∆t∆x∑
i,α

bib̃α

(
π

0
1[α]−∆t ∑

j
a′i jX

jα
)

V iα

−∆t∆x∑
i,α

bib̃α

(
π

1
[i]1−∆x∑

β

ã′
αβ

Y iβ
)

W iα

+∆t∆x∑
i,α

bib̃αH(Φiα ,P0
iα ,P

1
iα).

Now, we compute the stationarity conditions. First, note that V and W are not independent, since
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they are related by

ϕ0[α]+∆t ∑
j

ai jV jα = Φiα = ϕ[i]0 +∆x∑
β

ãαβW iβ ;

then, taking the derivative with respect to V jβ ,

∆tai jδαβ = ∆x∑
γ

ãαγ

∂W iγ

∂V jβ
.

Let us assume that the Runge–Kutta matrices (ai j) and (ãαγ) are invertible (however, in the sub-

sequent section, we will show how to derive the stationarity conditions without this assumption

using independent internal stages). Then, the above relation can be inverted to give

∂W iσ

∂V jβ
=

∆t
∆x

ai j(ã−1)σβ .

Extremizing K with respect to X jα ,

0 =
∂K

∂X jα = ∆t2
∆x∑

i
bib̃αa′i jV

iα −∆t2
∆x∑

i
bib̃αa′i j

∂H
∂ p0 (Φiα ,P0

iα ,P
1
iα).

Dividing by ∆t2∆xb̃α gives

∑
i

bia′i j

(
V iα − ∂H

∂ p0 (Φiα ,P0
iα ,P

1
iα)
)
= 0.

Similarly, extremizing K with respect to Y jα gives

∑
β

b̃β ã′
βα

(
W jβ − ∂H

∂ p1 (Φ jβ ,P
0
jβ ,P

1
jβ )
)
= 0.

These are respectively the internal stage approximations to the De Donder–Weyl equations

∂tφ = ∂H/∂ p0 and ∂xφ = ∂H/∂ p1.
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Extremizing K with respect to V jβ ,

0 =
∂K

∂V jβ
= ∆t∆xb jb̃β π

0
1[β ]+∆t∆x∑

i,σ
bib̃σ π

1
[i]1

∆t
∆x

ai j(ã−1)σβ −∆t∆xb jb̃β P0
jβ

−∆t∆x∑
i,σ

bib̃σ P1
iσ

∆t
∆x

ai j(ã−1)σβ +∆t∆x∑
i

bib̃β ∆tai j
∂H
∂φ

(Φiβ ,P
0
iβ ,P

1
iβ ).

Dividing by ∆t2∆x and grouping gives

b jb̃β

π0
1[β ]−P0

jβ

∆t
+∑

i,σ
bib̃σ ai j(ã−1)σβ

π1
[i]1−P1

iσ

∆x
=−∑

i
bib̃β ai j

∂H
∂φ

(Φiβ ,P
0
iβ ,P

1
iβ ).

Substitute
π0

1[β ]−P0
jβ

∆t = ∑k a′jkXkβ and
π1
[i]1−P1

iσ
∆x = ∑γ ã′σγY iγ ,

∑
k

b jb̃β a′jkXkβ + ∑
i,σ ,γ

bib̃σ ai j(ã−1)σβ ã′σγY iγ =−∑
i

bib̃β ai j
∂H
∂φ

(Φiβ ,P
0
iβ ,P

1
iβ ).

To symmetrize the above equations, multiply by ãβδ and sum over β , which yields

∑
k,β

b jb̃β a′jkãβδ Xkβ +∑
i,γ

bib̃δ ai jã′δγ
Y iγ =−∑

i,β
bib̃β ai jãβδ

∂H
∂φ

(Φiβ ,P
0
iβ ,P

1
iβ ).

This is the internal stage approximation to the remaining De Donder–Weyl equation ∂t p0 +

∂x p1 =−∂H/∂φ . Note that the above form of the stationarity condition does not involve a−1 or

ã−1, so it is plausible that one can derive these equations without assuming the invertibility of the

Runge–Kutta matrices; later, we will show that this is the case using independent internal stages.
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Now, we compute the discrete forward Hamilton’s equations. We have

ϕ1[α] =
1

b̃α∆x
∂H+

d

∂π0
1[α]

=
1

b̃α∆x
∂K

∂π0
1[α]

= ϕ0[α]+∆t ∑
j

b jV jα −∆t ∑
j

b jV jα +∆t ∑
j

b j
∂H
∂ p0 (Φ jα ,P0

jα ,P
1
jα)

= ϕ0[α]+∆t ∑
j

b j
∂H
∂ p0 (Φ jα ,P0

jα ,P
1
jα).

Similarly,

ϕ[i]1 = ϕ[i]0 +∆x∑
β

b̃β

∂H
∂ p1 (Φiβ ,P

0
iβ ,P

1
iβ ).

Computing the discrete forward Hamilton’s equations for the momenta gives

π
0
0[α] = π

0
1[α]+

∆t
b̃α

∑
i,β

bib̃β

∂H
∂φ

(Φiβ ,P
0
iβ ,P

1
iβ )

∂Φiβ

∂ϕ0[α]
,

π
1
[i]0 = π

1
[i]1 +

∆x
bi

∑
j,α

b jb̃α

∂H
∂φ

(Φ jα ,P0
jα ,P

1
jα)

∂Φ jα

∂ϕ[i]0
.

We will postpone the discussion of the discrete forward Hamilton’s equations until after dis-

cussing independent internal stages, which will give a more explicit characterization of these

equations.
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To summarize, our method is given by

Φiα = ϕ0[α]+∆t ∑
j

ai jV jα , (2.10a)

P0
iα = π

0
1[α]−∆t ∑

j
a′i jX

jα , (2.10b)

ϕ1[α] = ϕ0[α]+∆t ∑
j

b jV jα , (2.10c)

π
0
0[α] = π

0
1[α]−∆t ∑

j
b′jX

jα , (2.10d)

Φiα = ϕ[i]0 +∆x∑
β

ãαβW iβ (2.10e)

P1
iα = π

1
[i]1−∆x∑

β

ã′
αβ

Y iβ , (2.10f)

ϕ[i]1 = ϕ[i]0 +∆x∑
β

b̃βW iβ , (2.10g)

π
1
[i]0 = π

1
[i]1−∆x∑

β

b̃′
β
Y iβ . (2.10h)

∑
i

bia′i j

(
V iα − ∂H

∂ p0 (Φiα ,P0
iα ,P

1
iα)
)
= 0, (2.10i)

∑
β

b̃β ã′
βα

(
W jβ − ∂H

∂ p1 (Φ jβ ,P
0
jβ ,P

1
jβ )
)
= 0, (2.10j)

∑
k,β

b jb̃β a′jkãβδ Xkβ +∑
i,γ

bib̃δ ai jã′δγ
Y iγ =−∑

i,β
bib̃β ai jãβδ

∂H
∂φ

(Φiβ ,P
0
iβ ,P

1
iβ ). (2.10k)

Independent Internal Stages. We now reformulate the above construction using in-

dependent internal stages and derive explicit conditions on the coefficients for the momenta

expansion for the method to be well-defined. Recall that in the above construction, we enforced

the condition that the internal stages Φiα produced by both V iα and W iα had to be the same; we

now relax this assumption and let the internal stages be independent, but subsequently enforce
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that they are the same by using Lagrange multipliers. Compared to the previous formulation, the

use of independent internal stages has the advantage that the discrete forward Hamilton’s equa-

tions can be written explicitly. Furthermore, the generalization to higher spacetime dimensions

is straight-forward as opposed to the previous formulation, which would involve inverting the

condition that the internal stages obtained from the various spacetime derivative approximations,

∂µφd , are consistent.

Hence, we define independent internal stages corresponding to integration in each space-

time direction,

Φiα ≡ φ(ci∆t, c̃α∆x) = φ(0, c̃α∆x)+∆t ∑
j,β

V jβ
∫ ci

0
ψ j(s)ds ψ̃β (c̃α) = ϕ0[α]+∆t ∑

j
ai jV jα ,

Φ̃iα ≡ φ(ci∆t, c̃α∆x) = φ(ci∆t,0)+∆x∑
j,β

W jβ
ψ j(ci)

∫ cα

0
ψ̃β (s)ds = ϕ[i]0 +∆x∑

β

ãαβW iβ .

The expansion of the other quantities are the same as the previous discussion.

We will evaluate the Hamiltonian at the weighted combination Φθ
iα ≡ θΦiα +(1−θ)Φ̃iα

for some arbitrary parameter θ ∈ R and subsequently enforce that the two sets of internal stages

are the same through a Lagrange multiplier term ∑i,α λiα(Φiα − Φ̃iα). Thus, after enforcing the

stationarity conditions, Φθ
iα = Φiα = Φ̃iα . In this formulation, K is

K({ϕA,πB,V iα ,W iα ,X iα ,Y iα ,λiα}) = ∆x∑
α

b̃απ
0
1[α](ϕ0[α]+∆t ∑

j
b jV jα)

+∆t ∑
i

biπ
1
[i]1(ϕ[i]0 +∆x∑

β

b̃βW iβ )

−∆t∆x∑
i,α

bib̃α

(
π

0
1[α]−∆t ∑

j
a′i jX

jα
)

V iα

−∆t∆x∑
i,α

bib̃α

(
π

1
[i]1−∆x∑

β

ã′
αβ

Y iβ
)

W iα

+∆t∆x∑
i,α

bib̃αH(Φθ
iα ,P

0
iα ,P

1
iα)+∑

i,α
λiα(Φiα − Φ̃iα);
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where now both {V iα} and {W iα} are independent. The discrete boundary Hamiltonian H+
d is

given by extremizing K with respect to all of the internal variables, {V iα ,W iα ,X iα ,Y iα ,λiα}.

Extremizing K with respect to X jα and Y jα gives the same stationarity conditions as the

previous case of equal internal stages, since the momenta expansions were unchanged, except

with H evaluated at Φθ
iα . Namely,

∑
i

bia′i j

(
V iα − ∂H

∂ p0 (Φ
θ
iα ,P

0
iα ,P

1
iα)
)
= 0, (2.11a)

∑
β

b̃β ã′
βα

(
W jβ − ∂H

∂ p1 (Φ
θ

jβ ,P
0
jβ ,P

1
jβ )
)
= 0. (2.11b)

Extremizing K with respect to V jβ ,

0 =
∂K

∂V jβ

= ∆t∆xb jb̃β π
0
1[β ]−∆t∆xb jb̃β P0

jβ +∆t2
∆x∑

i
bib̃β ai jθ

∂H
∂φ

(Φθ

iβ ,P
0
iβ ,P

1
iβ )+∆t ∑

i
λiβ ai j

= ∆t2
∆xb jb̃β ∑

k
a′jkXkβ +∆t2

∆x∑
i

bib̃β ai jθ
∂H
∂φ

(Φθ

iβ ,P
0
iβ ,P

1
iβ )+∆t ∑

i
λiβ ai j.

Dividing by ∆t2∆x,

∑
k

b jb̃β a′jkXkβ +∑
i

bib̃β ai jθ
∂H
∂φ

(Φθ

iβ ,P
0
iβ ,P

1
iβ )+

1
∆t∆x ∑

i
λiβ ai j = 0. (2.12)

Similarly, extremizing K with respect to W jβ (and dividing by ∆t∆x2) gives

∑
α

b jb̃β ã′
βα

Y jα +∑
α

b jb̃α ãαβ (1−θ)
∂H
∂φ

(Φθ
jα ,P

0
jα ,P

1
jα)−

1
∆t∆x ∑

α

λ jα ãαβ = 0. (2.13)

Let us combine these two stationarity conditions to eliminate θ and the Lagrange multiplier

terms. Multiply equation (2.12) by ãβδ and sum over β ; multiply equation (2.13) by a ji and sum
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over j. Subsequently, add the two resulting equations. This gives

∑
k,β

b jb̃β a′jkãβδ Xkβ +∑
i,γ

bib̃δ ai jã′δγ
Y iγ =−∑

i,β
bib̃β ai jãβδ

∂H
∂φ

(Φθ

iβ ,P
0
iβ ,P

1
iβ ). (2.14)

Finally, extremizing K with respect to λiα enforces that the independent internal stages are

the same, 0 = ∂K/∂λiα = Φiα − Φ̃iα , and hence Φθ
iα = Φiα = Φ̃iα . We have rederived the

stationarity conditions that we saw in the case of equal internal stages, without the assumption of

invertibility of the Runge–Kutta matrices, (ai j), (ãαβ ).

Now, we aim to provide a more explicit characterization of the discrete forward Hamil-

ton’s equations. We will assume again that the Runge–Kutta matrices (ai j), (ãαβ ) are invertible.

Computing the discrete forward Hamilton’s equations for the field boundary values,

ϕ1[α] =
1

b̃α∆x
∂H+

d

∂π0
1[α]

=
1

b̃α∆x
∂K

∂π0
1[α]

= ϕ0[α]+∆t ∑
j

b j
∂H
∂ p0 (Φ

θ
jα ,P

0
jα ,P

0
jα),

ϕ[i]1 =
1

bi∆t
∂H+

d

∂π1
[i]1

=
1

bi∆t
∂K

∂π1
[i]1

= ϕ[i]0 +∆x∑
β

b̃β

∂H
∂ p1 (Φ

θ

iβ ,P
0
iβ ,P

1
iβ ).

Recall that we also have the expansion for the field boundary values

ϕ1[α] = ϕ0[α]+∆t ∑
j

b jV jα ,

ϕ[i]1 = ϕ[i]0 +∆x∑
β

b̃βW iβ .

We will see shortly that, with a particular condition on the coefficients of the momenta expansion,

the discrete forward Hamilton’s equations for the field values are consistent with the field

expansions, i.e., that V jα = ∂H
∂ p0 (Φ

θ
jα ,P

0
jα ,P

0
jα) and similarly W iβ = ∂H

∂ p1 (Φ
θ

iβ ,P
0
iβ ,P

1
iβ ).

First, we compute the discrete forward Hamilton’s equations for the momenta boundary
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values,

π
0
0[α] =

1
b̃α∆x

∂H+
d

∂ϕ0[α]
=

1
b̃α∆x

∂K
∂ϕ0[α]

= π
0
1[α]+∆t ∑

i
biθ

∂H
∂φ

(Φθ
iα ,P

0
iα ,P

1
iα)+

1
b̃α∆x ∑

i
λiα ,

π
1
[i]0 =

1
bi∆t

∂H+
d

∂ϕ[i]0
=

1
bi∆t

∂K
∂ϕ[i]0

= π
1
[i]1 +∆x∑

α

b̃α(1−θ)
∂H
∂θ

(Φθ
iα ,P

0
iα ,P

1
iα)−

1
bi∆t ∑

α

λiα .

For our method to be well-defined, these are required to be consistent with the momenta

expansions,

π
0
0[α] = π

0
1[α]−∆t ∑

j
b′jX

jα ,

π
1
[i]0 = π

1
[i]1−∆x∑

β

b̃′
β
Y iβ .

To do this, we solve the stationarity conditions (2.12) and (2.13) for the Lagrange multipliers.

Multiply equation (2.12) by (a−1) jl and sum over j; multiply equation (2.13) by (ã−1)βγ and

sum over β . This gives

λlβ =−∆t∆xbl b̃β θ
∂H
∂φ

(Φθ

lβ ,P
0
lβ ,P

1
lβ )−∆t∆x∑

j,k
b jb̃β a′jk(a

−1) jlXkβ ,

λ jγ = ∆t∆xb jb̃γ(1−θ)
∂H
∂φ

(Φθ
jγ ,P

0
jγ ,P

1
jγ)+∆t∆x ∑

α,β

b jb̃β ã′
βα

(ã−1)βγY jα .

Plugging these into the respective discrete forward Hamilton’s equations for the momenta

boundary values, we have

π
0
0[α] = π

0
1[α]−∆t ∑

j,k,l
b ja′jk(a

−1) jlXkβ !
= π

0
1[α]−∆t ∑

k
b′kXkα ,

π
1
[i]0 = π

1
[i]1−∆x ∑

α,β ,γ

b̃β ã′
βα

(ã−1)βγY iα !
= π

1
[i]1−∆x∑

α

b̃′αY iα .

Proposition 2.2.5. The method arising from approximating the internal stages with the parti-

tioned Runge–Kutta expansion is well-defined if and only if the partitioned Runge–Kutta method
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is symplectic in both space and time, i.e.

∑
j,l

b ja′jk(a
−1) jl = b′k,

∑
β ,γ

b̃β ã′
βα

(ã−1)βγ = b̃′α .

A sufficient condition is the usual choice of symplectic partitioned Runge–Kutta coefficients,

a′jk =
b′kak j

b j
,

ã′
βα

=
b̃′α ãαβ

b̃β

.

(We will see after expressing the momenta internal stages in terms of πA instead of πB that these

are the usual choice of symplectic partitioned Runge–Kutta coefficients).

Proof. By comparing the momenta expansions to the discrete forward Hamilton’s equations for

the momenta, we must have

∑
j,k,l

b ja′jk(a
−1) jlXkβ = ∑

k
b′kXkα , (2.15a)

∑
α,β ,γ

b̃β ã′
βα

(ã−1)βγY iα = ∑
α

b̃′αY iα . (2.15b)

Since the internal variables {X iα ,Y iα} are generally arbitrary (depending on the choice of

Hamiltonian and the supplied boundary data), the above must hold for arbitrary choices of {X iα}

and {Y iα}; hence, we have the necessary and sufficient conditions

∑
j,l

b ja′jk(a
−1) jl = b′k,

∑
β ,γ

b̃β ã′
βα

(ã−1)βγ = b̃′α .
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Plugging in the choice (2.15a) and (2.15b) to the left hand sides of the above conditions,

∑
j,l

b ja′jk(a
−1) jl = ∑

j,l
b′kak j(a−1) jl = ∑

l
b′kδkl = b′k,

∑
β ,γ

b̃β ã′
βα

(ã−1)βγ = ∑
β ,γ

b̃′α ãαβ (ã
−1)βγ = ∑

γ

b̃′αδαγ = b̃′α ;

so this choice is sufficient for the method to be well-defined.

Now, consider the stationarity conditions (2.11a) and (2.11b). Plugging in the choice of

coefficients (2.15a) and (2.15b), we have

∑
i

b′ja ji

(
V iα − ∂H

∂ p0 (Φ
θ
iα ,P

0
iα ,P

1
iα)
)
= 0,

∑
β

b̃′α ãαβ

(
W jβ − ∂H

∂ p1 (Φ
θ

jβ ,P
0
jβ ,P

1
jβ )
)
= 0.

Since (a ji) and (ãαβ ) are invertible, we have

V jα =
∂H
∂ p0 (Φ

θ
jα ,P

0
jα ,P

0
jα) and W iβ =

∂H
∂ p1 (Φ

θ

iβ ,P
0
iβ ,P

1
iβ ),

so that the discrete forward Hamilton’s equations for the field boundary values are also consistent

with their expansions. Similarly, plugging this choice of coefficients into the stationarity condition

(2.14) gives

∑
k,β

b′kb̃β ak jãβδ Xkβ +∑
i,γ

bib̃′γai jãγδY iγ =−∑
i,β

bib̃β ai jãβδ

∂H
∂φ

(Φθ

iβ ,P
0
iβ ,P

1
iβ ).

To invert this relation, we impose b′k = bk, b̃′γ = b̃γ . Note that the matrix with jk entry bkak j is

invertible since (a jk) is (its transpose is obtained by multiplying the ith row of (ai j) by bi 6= 0, so

the rows are still linearly independent) and similarly for the matrix with δγ entry b̃γ ãγδ . Hence,
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this stationarity condition can be inverted to give

X iα +Y iα =−∂H
∂φ

(Φθ

iβ ,P
0
iβ ,P

1
iβ ).

Finally, to write our method in the traditional form of a partitioned Runge–Kutta method,

we express the internal stages P0
iα and P1

iα in terms of πA instead of πB, by plugging equations

(2.10d) and (2.10h) into equations (2.10b) and (2.10f) respectively,

P0
iα = π

0
0[α]+∆t ∑

j
(b j−a′i j)X

jα = π
0
0[α]+∆t ∑

j

b jbi−b ja ji

bi︸ ︷︷ ︸
≡a(2)i j

X jα ,

P1
iα = π

1
[i]0 +∆x∑

β

(b̃β − ã′
αβ

)Y iβ = π
1
[i]0 +∆x∑

β

b̃β b̃α − b̃β ãβα

b̃α︸ ︷︷ ︸
≡ã(2)

αβ

Y iβ .
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To summarize, our method is

Φiα = ϕ0[α]+∆t ∑
j

ai jV jα , (2.16a)

P0
iα = π

0
0[α]+∆t ∑

j
a(2)i j X jα , (2.16b)

ϕ1[α] = ϕ0[α]+∆t ∑
j

b jV jα , (2.16c)

π
0
1[α] = π

0
0[α]+∆t ∑

j
b jX jα , (2.16d)

Φiα = Φ̃iα = ϕ[i]0 +∆x∑
β

ãαβW iβ (2.16e)

P1
iα = π

1
[i]0 +∆x∑

β

ã(2)
αβ

Y iβ , (2.16f)

ϕ[i]1 = ϕ[i]0 +∆x∑
β

b̃βW iβ , (2.16g)

π
1
[i]1 = π

1
[i]0 +∆x∑

β

b̃βY iβ . (2.16h)

V iα =
∂H
∂ p0 (Φiα ,P0

iα ,P
1
iα), (2.16i)

W iα =
∂H
∂ p1 (Φiα ,P0

iα ,P
1
iα), (2.16j)

X iα +Y iα =−∂H
∂φ

(Φiα ,P0
iα ,P

1
iα), (2.16k)

where a(2)i j =
b jbi−b ja ji

bi
and ã(2)

αβ
=

b̃β b̃α−b̃β ãβα

b̃α

. This is the usual form of a multisymplectic

partitioned Runge–Kutta method. Note that our choice of a(2)i j and ã(2)
αβ

(or equivalently our

choice of a′i j, ã
′
αβ

) is the usual choice for the coefficients in the momenta expansion for a

partitioned Runge–Kutta method to be multisymplectic (see, for example, Hong et al. [55], Reich

[98], Ryland et al. [104]). Interestingly, however, from our perspective, our method based on

the discrete boundary Hamiltonian is guaranteed to be multisymplectic so we had to impose no

126



such conditions on the coefficients to ensure multisymplecticity; rather, the conditions for the

coefficients arose from the necessity of the method to be well-defined, i.e., that the expansions of

the field and momenta boundary values agreed with the discrete forward Hamilton’s equations.

Remark 2.2.7. In the above construction, we saw that the Runge–Kutta matrices (ai j) and (ãαβ )

were required to be invertible. We can see this directly from the internal stage expansions

Φiα = ϕ0[α]+∆t ∑
j

ai jV jα ,

Φ̃iα = ϕ[i]0 +∆x∑
β

ãαβW iβ ,

since only when (ai j) and (ãαβ ) are invertible is extremizing K over V iα and W iα equivalent

to extremizing K over Φiα and Φ̃iα , respectively. In the case of non-invertible Runge–Kutta

matrices, the internal stages Φiα and Φ̃iα do not depend independently on all of the V iα , W iα . For

collocation Runge–Kutta methods, non-invertibility arises from the choice of the first quadrature

point c1 = 0. In our construction, if we choose c1 = 0, then we are specifying an internal stage

at a quadrature point where the field boundary value ϕA is already specified; thus, the internal

stage at this point is not free to extremize over. Hence, in the non-invertible case, one has to use

the specified boundary values to eliminate the degeneracy in the internal variables V iα and W iα ,

reducing the number of internal variables to an independent subcollection of internal variables.

Subsequently, one extremizes only over this independent subcollection of internal variables.

Remark 2.2.8. It should also be remarked that while certain types of Galerkin multisymplectic

Hamiltonian variational integrators recover multisymplectic partitioned Runge–Kutta methods, it

remains to see whether there is a more general correspondence between Galerkin multisymplectic

Hamiltonian variational integrators with a class of modified multisymplectic partitioned Runge–

Kutta methods for the case of spacetime tensor product (hyper)rectangular meshes. This would

generalize the connection between Galerkin variational integrators and modified symplectic

Runge–Kutta methods in the ODE setting that was observed in [94].
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Momenta Internal Stages. In the above construction, we saw that we had to enforce

consistency conditions on the momenta expansion coefficients in order for the method (2.16a)-

(2.16k) to be well-defined. The issue is that we over-constrained the form of the momenta

internal stages via our particular choice of expansion, since ultimately our goal was to derive the

class of multisymplectic partitioned Runge–Kutta methods within our variational framework.

One can avoid this problem altogether by working directly with the momenta internal stages P0
iα

and P1
iα instead of the internal variables X iα and Y iα , although the method will not ultimately

be in the form of a multisymplectic partitioned Runge–Kutta method. This is possible for the

momenta internal stages since the action does not depend on the derivatives of the momenta,

unlike the field variable. We outline this procedure.

Assume the same expansions of Φiα ,Φ̃iα ,ϕ1[α],ϕ[i]1 in terms of {V iα} and {W iα}. For

the momenta, we work directly with the internal stages P0
iα , P1

iα instead of using an expansion. In

this case, K is

K({ϕA,πB,V iα ,W iα ,P0
iα ,P

1
iα ,λiα}) = ∆x∑

α

b̃απ
0
1[α](ϕ0[α]+∆t ∑

j
b jV jα)

+∆t ∑
i

biπ
1
[i]1(ϕ[i]0 +∆x∑

β

b̃βW iβ )

−∆t∆x∑
i,α

bib̃αP0
iαV iα −∆t∆x∑

i,α
bib̃αP1

iαW iα

+∆t∆x∑
i,α

bib̃αH(Φθ
iα ,P

0
iα ,P

1
iα)+∑

i,α
λiα(Φiα − Φ̃iα).

H+
d is obtained by extremizing K over the internal variables, {V iα ,W iα ,P0

iα ,P
1
iα ,λiα}.

The stationarity condition ∂K/∂P0
iα = 0 (divided by ∆t∆xbib̃α) gives

V iα =
∂H
∂ p0 (Φ

θ
iα ,P

0
iα ,P

1
iα).
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Similarly, the stationarity condition ∂K/∂P1
iα = 0 (divided by ∆t∆xbib̃α ) gives

W iα =
∂H
∂ p1 (Φ

θ
iα ,P

0
iα ,P

1
iα).

The stationarity condition ∂K/∂λiα = 0 gives Φiα = Φ̃iα . The stationarity conditions

∂K/∂V jβ = 0 and ∂K/∂W jβ = 0 give respectively

∆t∆xb jb̃β (π
0
1[β ]−P0

jβ )+∆t2
∆x∑

i
bib̃β ai jθ

∂H
∂φ

(Φθ

iβ ,P
0
iβ ,P

1
iβ )+∆t ∑

i
λiβ ai j = 0,

∆t∆xb jb̃β (π
1
[ j]1−P1

jβ )+∆x2
∆t ∑

α

b jb̃α ãαβ (1−θ)
∂H
∂φ

(Φ̃ jα ,P0
jα ,P

1
jα)−∆x∑

α

λ jα ãαβ = 0.

Performing the same procedure we used to combine equations (2.12) and (2.13) to eliminate θ

and the Lagrange multipliers, these two stationarity conditions can be combined to give

∑
β

b jb̃β ãβδ

(π0
1[β ]−P0

jβ )

∆x
+∑

i
bib̃δ ai j

(π1
[i]1−P1

iδ )

∆t
=−∑

i,β
bib̃β ai jãβδ

∂H
∂φ

(Φθ

iβ ,P
0
iβ ,P

1
iβ ).

This combined condition, together with the other stationarity conditions

V iα = ∂H/∂ p0(Φθ
iα ,P

0
iα ,P

1
iα), W iα = ∂H/∂ p1(Φθ

iα ,P
0
iα ,P

1
iα), Φiα = Φ̃iα ,

(ranging over all free indices) can be used to solve for the collection of internal variables

{V iα ,W iα ,P0
iα ,P

1
iα}i,α in terms of the supplied boundary data.

To conclude, we compute the discrete forward Hamilton’s equations. For the field

boundary values,

ϕ1[α] =
1

b̃α∆x
∂K

∂π0
1[α]

= ϕ0[α]+∆t ∑
j

b jV jα ,

ϕ[i]1 =
1

bi∆t
∂K

∂π1
[i]1

= ϕ[i]0 +∆x∑
β

bβW iβ .
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Note that these equations already agree with the field expansion. For the momenta boundary

values,

π
0
0[α] =

1
b̃α∆x

∂K
∂ϕ0[α]

= π
0
1[α]+∆t ∑

i
biθ

∂H
∂φ

(Φθ
iα ,P

0
iα ,P

1
iα)+

1
b̃α∆x ∑

i
λiα ,

π
1
[i]0 =

1
bi∆t

∂K
∂ϕ[i]0

= π
1
[i]1 +∆x∑

α

b̃α(1−θ)
∂H
∂φ

(Φθ
iα ,P

0
iα ,P

1
iα)−

1
bi∆t ∑

α

λiα .

As we did before for the partitioned Runge–Kutta method, we can act on the stationarity

conditions ∂K/∂V jβ = 0 = ∂K/∂W jβ by the inverses of the Runge–Kutta matrices to solve

for the Lagrange multipliers and substitute them into the discrete forward Hamilton’s equations

for the momenta, ultimately eliminating θ and the Lagrange multipliers. The discrete forward

Hamilton’s equations for the momenta are then

π
0
0[α] = π

0
1[α]−∆t ∑

j,l
b j(a−1) jl

π0
1[α]−P0

jα

∆x
,

π
1
[i]0 = π

1
[i]1−∆x ∑

α,β

b̃α(ã−1)αβ

π1
[i]1−P1

iα

∆t
.

Hence, by working with the internal stages for the momenta directly, as opposed to utilizing an

expansion, we see that the method we derived is already well-defined (and also automatically

multisymplectic), although it is not directly in the form of a multisymplectic partitioned Runge–

Kutta method.

These various approaches demonstrate the versatility of our variational framework; once

one chooses an approximation for the fields, its derivatives, and the momenta (as well as some

approximation for the various integrals involved), one can construct the discrete boundary

Hamiltonian and subsequently the variational framework produces a multisymplectic integrator.

If one over-constrains the form of the momenta expansion, as opposed to using the internal

stages directly, one must also check whether the method is well-defined. Another approach that

is possible within this framework is to discretize at the level of the field using some (possibly
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non-tensor product) function space and subsequently take derivatives of the basis functions to

obtain an approximation of the derivatives of the fields. For example, we expect that utilizing

spectral element bases to discretize at the level of the field within our framework will produce

multisymplectic spectral discretizations like those obtained in Bridges and Reich [21], Islas and

Schober [60, 61]. Another interesting application of our construction would be to construct

multisymplectic discretizations of the total exterior algebra bundle (see Bridges and Reich [22])

using Galerkin discretizations arising from the Finite Element Exterior Calculus framework

(Arnold et al. [7, 8], Hiptmair [54]), allowing one to discretize Hamiltonian PDEs with more

general configuration bundles.

2.2.4 Multisymplecticity Revisited

Now, we discuss in what sense the discrete multisymplectic form formula (2.4) cor-

responds to our discretization of the field equations. Consider the integral form of the De

Donder–Weyl equations over 2= [0,∆t]× [0,∆x],

∫
2

(
∂µ pµ +

∂H
∂φ

(φ , p0, p1)
)

d2x = 0, (2.17a)∫
2

(
∂0φ − ∂H

∂ p0 (φ , p0, p1)
)

d2x = 0., (2.17b)∫
2

(
∂1φ − ∂H

∂ p1 (φ , p0, p1)
)

d2x = 0. (2.17c)

Applying our quadrature approximation to equation (2.17a),

0 =
∫

∆t

0

∫
∆x

0

(
∂0 p0 +∂1 p1 +

∂H
∂φ

(φ , p0, p1)
)

dxdt

=
∫

∆x

0
(p0|t=∆t− p0|t=0)dx+

∫
∆t

0
(p1|x=∆x− p0|x=0)dt +

∫
∆t

0

∫
∆x

0

∂H
∂φ

(φ , p0, p1)dxdt

≈ ∆x∑
α

b̃α(p0|(∆t,c̃α ∆x)− p0|(0,c̃α ∆x))+∆t ∑
i

bi(p1|(ci∆t,∆x)− p1|(ci∆t,0))

+∆t∆x∑
i,α

∂H
∂φ

(φ , p0, p1)|(ci∆t,c̃α ∆x).
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Consider the multisymplectic partitioned Runge–Kutta method (2.16a)-(2.16k); if we multiply

equation (2.16d) by b̃α and sum over α , multiply equation (2.16h) by bi and sum over i, and add

the resulting equations together, we have

0 = ∆x∑
α

b̃α(π
0
1[α]−π

1
0[α])+∆t ∑

i
bi(π

1
[i]1−π

1
[i]0)+∆t∆x∑

i,α
bib̃α

∂H
∂φ

(Φiα ,P0
iα ,P

1
iα), (2.18)

where we used X iα +Y iα = ∂H/∂φ(Φiα ,P0
iα ,P

1
iα). Comparing these two, we see that the discrete

method satisfies an approximation of the integral form of the De Donder–Weyl equation (2.17a)

and that the error in the approximation of the field equations is directly related to the quadrature

error and the field and momenta expansions. Similar statements can be made about the other De

Donder–Weyl equations, (2.17b) and (2.17c).

Now, let’s write our approximation (2.18) of the integral De Donder–Weyl equations

as a difference equation. For a quantity f defined on the nodes of the edges {0}× [0,∆x] and

{∆t}× [0,∆x] (and similarly a quantity g defined on the nodes of the edges [0,∆t]×{0} and

[0,∆t]×{∆x}), define

δ
0
[α] f = f1[α]− f0[α],

δ
1
[i]g = g[i]1−g[i]0.

Define the discrete difference operators

∂
2
0 =

1
∆t ∑

α

b̃αδ
0
[α],

∂
2
1 =

1
∆x ∑

i
biδ

1
[i].

Dividing equation (2.18) by ∆t∆x, we see that it satisfies

∂
2
0 π

0 +∂
2
1 π

1 =−∑
iα

bib̃α

∂H
∂φ

(Φiα ,P0
iα ,P

1
iα)≡−

〈
∂H
∂φ

〉
2
,
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where 〈∂H
∂φ
〉2 denotes our quadrature approximation of the average value of ∂H/∂φ on 2.

Similarly, the other discrete equations satisfy

∂
2
0 ϕ =

〈
∂H
∂ p0

〉
2
,

∂
2
1 ϕ =

〈
∂H
∂ p1

〉
2
.

These difference equations correspond to our discretization of (the integral form) of the DDW

equations ∂0 p0 +∂1 p1 =−∂H/∂φ , ∂µφ = ∂H/pµ . As mentioned in Section 2.1.3, a method is

called multisymplectic if the difference operators used in the discretization of the field equations

are the same difference operators which appear in the discrete multisymplectic form formula that

the method admits. In our case, if we divide the discrete multisymplectic form formula (2.4) by

∆t∆x, we see that it satisfies

∂
2
0 ω

0 +∂
2
1 ω

1 = 0

(when evaluated on discrete first variations), where ω0 = dϕ ∧ dπ0,ω1 = dϕ ∧ dπ1. Hence,

our method is multisymplectic in the sense that the difference operators which appear in the

difference equation that the discrete solution satisfies over 2 ∈T (X) are the same difference

operators which appear in the discrete multisymplectic form formula.

2.3 Numerical Example

For our numerical example, we will study the (1+1)−dimensional sine–Gordon equation,

∂
2
0 φ(t,x)−∂

2
1 φ(t,x) =−sinφ(t,x). (3.1)

The Hamiltonian for this equation is given by

H(φ , p0, p1) =
1
2
(p0)2− 1

2
(p1)2− cosφ . (3.2)
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The De Donder–Weyl equations corresponding to this Hamiltonian are

∂0φ = ∂H/∂ p0 = p0, (3.3a)

∂1φ = ∂H/∂ p1 =−p1, (3.3b)

∂0 p0 +∂1 p1 =−∂H/∂φ =−sinφ . (3.3c)

Note that substituting (3.3a) and (3.3b) into (3.3c) recovers (3.1).

With this example, we aim to qualitatively show the preservation of multisymplecticity

by considering the family of soliton solutions,

φv(t,x) = 4arctan
(

exp
(

x− vt√
1− v2

))
, (3.4)

where the family of solutions is indexed by a parameter v ∈ (0,1). Consider the following curve

on the space of sections of the restricted dual jet bundle

v 7! (φv, p0
v , p1

v)≡ (φv,∂0φv,−∂1φv)

and note that it is differentiable for v ∈ (0,1). Thus, the associated vector field, given by

differentiating the above map with respect to v, defines a vector field on the space of sections

of the restricted dual jet bundle. The associated vector field is a first variation on the space of

soliton solutions, since its flow maps soliton solutions to other soliton solutions.

To visualize multisymplecticity for this example, we observe the following. Each soliton

solution (3.4) propagates to the right at speed v in time, without changing form. Thus, the shape

of a soliton solution in the (φ , p0) plane does not change with respect to time. Hence, for a

family of soliton solutions, the associated area in the (φ , p0) plane will not expand or contract as

the system evolves in time. In other words, restricting to the above first variations, this means
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that

∂0ω
0 = 0.

By the multisymplectic form formula ∂0ω0 +∂1ω1 = 0, we also have that

∂1ω
1 = 0,

and hence the family of soliton solutions, occupying an area in the (φ , p1) plane, will not

expand or contract as the system evolves in space. This example then provides an intuitive

way to visualize multisymplecticity as symplecticity in each spacetime direction, since the

multisymplectic conservation law splits into two symplectic conservation laws, for this given

family of solutions. This is a multisymplectic analogue of the visualization of symplecticity

in the literature for symplectic integrators, where one evolves a family of initial conditions

occupying an area in phase space; for symplectic integrators, this area is preserved under the

flow of the integrator, unlike a generic method (see, for example, Hairer et al. [51]).

Explicit Methods for Separable Hamiltonians. Recall that in the above derivation of

the multisymplectic partitioned Runge–Kutta method, we used that the Runge–Kutta matrices

a, ã were invertible and hence the variational construction in Section 2.2.3 does not directly

apply to explicit Runge–Kutta matrices a and ã (since explicit Runge–Kutta methods have

strictly lower triangular Runge–Kutta matrices and hence are non-invertible). Since equation

(3.1) is nonlinear, using an implicit method would be computationally expensive and hence

an explicit method would be preferable. However, for separable Hamiltonians of the form

H(φ , pµ) = K(pµ)+V (φ) (as is the case for the sine–Gordon Hamiltonian (3.2)), we can derive

an explicit method as follows. Let a be an explicit Runge–Kutta matrix such that its symplectic

pair a(2) is invertible, where again the symplectic pair is given by

a(2)i j =
b jbi−b ja ji

bi
.
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Then, it follows that the symplectic pair of the symplectic pair of a equals a, i.e., (a(2))(2) = a,

since

(a(2))(2)i j =
b jbi−b ja

(2)
ji

bi
=

b jbi−b j
bib j−biai j

b j

bi
= ai j.

Thus, we can choose a to instead be a(2), so that the symplectic pair of a becomes an explicit

Runge–Kutta matrix. The variational construction now applies with this choice of a, since it

is invertible. For a separable Hamiltonian, the integration scheme splits and the system can be

evolved explicitly in time.

Numerical Scheme. We take a one-stage Runge–Kutta matrix in the temporal direction

a = 1 (with b = 1, c = 1) so that a(2) = 0, and similarly in the spatial direction ã = 1 (with

b̃ = 1, c̃ = 1) so that ã(2) = 0. Let Φa,b,P0
a,b,P

1
a,b,Va,b,Wa,b,Xa,b,Ya,b denote the internal stages

associated to 2ab = {ta, ta +∆t}×{xb,xb +∆x}. Letting ϕa,b denote the value of ϕ at {ta,xb}

(and similarly for the momenta), the multisymplectic partitioned Runge–Kutta method (2.16a)-

(2.16k) gives, with the choice of the sine–Gordon Hamiltonian (3.2),

P0
a,b = π

0
a,b+1, (3.5a)

ϕa+1,b+1 = ϕa,b+1 +∆tVa,b = Φa,b, (3.5b)

π
0
a+1,b+1 = π

0
a,b+1 +∆tXa,b, (3.5c)

P1
a,b = π

1
a+1,b, (3.5d)

ϕa+1,b+1 = ϕa+1,b +∆xWa,b, (3.5e)

π
1
a+1,b+1 = π

1
a+1,b +∆xYa,b, (3.5f)

Va,b =
∂H
∂ p0 (Φa,b,P0

a,b,P
1
a,b) = P0

a,b, (3.5g)

Wa,b =
∂H
∂ p1 (Φa,b,P0

a,b,P
1
a,b) =−P1

a,b, (3.5h)

Xa,b +Ya,b =
∂H
∂φ

(Φa,b,P0
a,b,P

1
a,b) =−sin(Φa,b). (3.5i)
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Eliminating the internal stage variables, equations (3.5g) and (3.5i) can be expressed as an

integration scheme in time

ϕa+1,b−ϕa,b

∆t
= π

0
a,b,

π0
a+1,b−π0

a,b

∆t
+

π1
a+1,b−π1

a+1,b−1

∆x
=−sin(ϕa+1,b)

(where we shifted b 7! b−1). Further eliminating the π1 variables using (3.5d), (3.5e), (3.5h),

the second equation above can be expressed as

π0
a+1,b−π0

a,b

∆t
−

ϕa+1,b+1−2ϕa+1,b +ϕa+1,b−1

∆x2 =−sin(ϕa+1,b).

Thus, the corresponding numerical scheme is

ϕa+1,b = ϕa,b +∆t π
0
a,b, (3.6a)

π
0
a+1,b = π

0
a,b +∆t

ϕa+1,b+1−2ϕa+1,b +ϕa+1,b−1

∆x2 −∆t sin(ϕa+1,b). (3.6b)

The scheme corresponds to discretizing the first-order formulation of the sine–Gordon equation,

∂0 p0 = ∂
2
1 φ − sinφ ,

∂0φ = p0,

in space using the standard discrete Laplacian and in time using the (adjoint) symplectic Euler

method. We refer to the method (3.6a)-(3.6b) as MSE (multisymplectic Euler).

As discussed in Section 2.2.1, this scheme can be computed in a time marching fashion,

given supplied initial conditions for ϕ and π0, as well as spatial boundary conditions. This

scheme is explicit, since the values of the field can first be updated using (3.6a), followed by

updating the temporal momenta using (3.6b). For the numerical experiment, we will compare
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this scheme to the scheme which uses the standard discrete Laplacian in space and the forward

Euler method in time,

ϕa+1,b = ϕa,b +∆t π
0
a,b, (3.7a)

π
0
a+1,b = π

0
a,b +∆t

ϕa,b+1−2ϕa,b +ϕa,b−1

∆x2 −∆t sin(ϕa,b). (3.7b)

We refer to the method (3.7a)-(3.7b) as FE (forward Euler).

For our numerical experiment, we consider a family of initial conditions given by interpo-

lating the soliton solutions (ϕv(x),π0
v (x)) = (φv(0,x),∂0v(0,x)) onto the spatial grid, for several

values of v (v = 0.50,0.47,0.45), on a spatial domain [−L,L]. We choose Neumann boundary

conditions π1(−L) = 0 = π1(L) and choose L sufficiently large so that the Neumann conditions

are satisfied initially, up to a desired level of error (since π1(x) = −∂1φv(0,x) decays mono-

tonically to 0 as |x| increases), say L = 20 (so that π1(L) = π1(−L)∼ 10−10). To demonstrate

the robustness of MSE, we take a large spatial step ∆x = 0.1 and a time step ∆t = ∆x/2; the

experiment is run until a final time T = 20.

The initial (p0,φ) phase space distribution is shown in Figure 2.5. The (p0,φ) phase

space distribution at t = 20 is shown in Figures 2.6 and 2.7 for MSE and FE, respectively.

Comparison of Figures 2.5 and 2.6 shows the preservation of symplecticity in the temporal

direction for the method MSE, whereas it is clearly not preserved for FE.

Similarly, Figures 2.8 and 2.9 shown the preservation of symplecticity in the x direction

for MSE.
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Figure 2.5. The (p0,φ) phase space distribution of the initial conditions (running over all spatial nodes in
[−L,L]). The solid curves indicate the exact distribution.

Figure 2.6. The (p0,φ) phase space distribution at t = 20 using MSE (running over all spatial nodes in
[−L,L]). The solid curves indicate the exact distribution.

2.4 Conclusion and Future Directions

In this paper, we extended the construction of Hamiltonian variational integrators to

the setting of multisymplectic Hamiltonian PDEs. Our construction is based on a discrete

approximation of the boundary Hamiltonian, introduced in Vankerschaver et al. [116]. Through

the Type II variational principle, this discrete boundary Hamiltonian is a generating function

for the discrete Hamilton’s equations that define our multisymplectic integrator. The discrete

variational principle automatically yields integrators which are multisymplectic and satisfy
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Figure 2.7. The (p0,φ) phase space distribution at t = 20 using FE (running over all spatial nodes in
[−L,L]).

Figure 2.8. The (p1,φ) phase space distribution at x = 5 using MSE (running over all timesteps in [0,T ]).
The solid curves indicate the exact distribution.

a discrete Noether’s theorem for group-invariant discretizations. As an application of this

variational framework, we derived the class of multisymplectic partitioned Runge–Kutta methods;

however, our construction is more general and is not limited to this class of multisymplectic

integrators. Finally, we showed that the discrete multisymplecticity which arose from the discrete

variational principle agrees with the notion of discrete multisymplecticity introduced in Bridges

and Reich [20].

Perhaps the most natural research direction is to establish a variational error analysis result

which demonstrates that a computable discrete Hamiltonian that approximates the boundary
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Figure 2.9. The (p1,φ) phase space distribution at x = 6 using MSE (running over all timesteps in [0,T ]).
The solid curves indicate the exact distribution.

Hamiltonian to a given order of accuracy will result in a numerical method for the Hamiltonian

partial differential equation with the same order of accuracy. It should be observed that this poses

two main challenges as compared to the case for ordinary differential equations. The first is that

the boundary of the spacetime domain is in general curved, and the space of boundary data (and

boundary momentum) is infinite-dimensional. As such, one would first have to approximate

the spacetime domain with a spacetime mesh, and choose a finite-dimensional subspace for

sections of the dual jet bundle that is subordinate to this spacetime mesh. Then, the error between

the computable discrete Hamiltonian and the boundary Hamiltonian can be decomposed into

three terms, the first of which can be bounded by assuming that the boundary-value problem

is well-posed and therefore has continuous dependence on the boundary data, the second is

associated with the variational crime of replacing the spacetime domain with a spacetime mesh,

and the third is a term that is analogous to what arises in the usual variational error analysis for

ordinary differential equations.

The second natural direction would be to establish a quasi-optimality result which

demonstrates that the variational error in the construction of a Galerkin boundary Hamiltonian

is bounded from above by a multiple of the best approximation error of the finite-dimensional

function space used to approximate sections of the configuration bundle.
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Finally, it was established in McLachlan and Stern [90] that many hybridizable dis-

continuous Galerkin methods are multisymplectic when applied to semilinear elliptic PDEs in

mixed form, and it would be interesting to see the kind of multisymplectic Hamiltonian varia-

tional integrators that would arise for Hamiltonian time-evolution PDEs when using spacetime

discontinuous Galerkin finite element spaces to discretize the dual jet bundle.
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2.6 Chapter Appendix

2.6.1 Higher Spacetime Dimensions

In this appendix, we treat the case of a spacetime tensor product (hyper)rectangular mesh

in (n+ 1)-spacetime dimensions, where the coordinates on spacetime are given by {xµ}n
µ=0.

Let T (X) be a regular (hyper)rectangular mesh, with ∆xµ the spacing in the xµ direction. We

index the nodes of this mesh by xµ
a = a∆xµ (where a is an integer) and consider 2a0...an ∈T (X)

given by 2a0...an = ∏
n
µ=0[x

µ

aµ ,x
µ

aµ +∆xµ ], where ∏ denotes the (ordered) Cartesian product. Fix

a spacetime direction xµ . For this direction, there are two (n−1)-dimensional faces of 2a0...an ,
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located along the hyperplanes xµ = xµ

aµ and xµ = xµ

aµ+1, to which the unit vector in the xµ

direction is normal. To each pair of such faces, we associate a quadrature rule (for simplic-

ity, we consider the case of one quadrature point). The field values at this pair of quadrature

points are denoted ϕ[a0]...[aµ−1]aµ [aµ+1]...[an] and ϕ[a0]...[aµ−1]aµ+1[aµ+1]...[an], where the unbracketed

indices aµ and aµ +1 indices denote the faces with smaller and larger xµ , respectively. Simi-

larly, the corresponding normal momenta to these faces are denoted π
µ

[a0]...[aµ−1]aµ [aµ+1]...[an]
and

π
µ

[a0]...[aµ−1]aµ+1[aµ+1]...[an]
. Note that, in the (1+1)-dimensional case, this notation agrees with

the notation that we used in Section 2.2.1 (where a0 = a,a1 = b).

We take B(2a0...an) to consist of the “forward” faces; that is, B(2a0...an) is the union,

over all µ , of the face in the xµ direction with larger xµ coordinate, xµ = xµ

aµ+1 (and similarly

A(2a0...an) is the union, over all µ of the face in the xµ direction with smaller xµ coordinate,

xµ = xµ

aµ ). For brevity in the following equations, let

π
µ

]aµ [
≡ π

µ

[a0]...[aµ−1]aµ [aµ+1]...[an]
,

ϕ]aµ [ ≡ ϕ[a0]...[aµ−1]aµ [aµ+1]...[an],

π
µ

]aµ+1[ ≡ π
µ

[a0]...[aµ−1]aµ+1[aµ+1]...[an]
,

ϕ]aµ+1[ ≡ ϕ[a0]...[aµ−1]aµ+1[aµ+1]...[an],

where we implicitly understand that (a0, . . . ,an) are fixed. Then the quadrature approximation of

the integral over B is given by

∑

∫
B(2a0...an)

πBϕB =
n

∑
µ=0

[
π

µ

]aµ+1[ϕ]aµ+1[∆
nxµ

]
,

where ∆nxµ ≡ ∏ν 6=µ ∆xν . Letting ϕA denote the collection of values of ϕ on the quadrature
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points on A(2a0...an) (and similarly for πB), the associated discrete boundary Hamiltonian is

H+
d (ϕA,πB) = ext

(
n

∑
µ=0

[
π

µ

]aµ+1[ϕ]aµ+1[∆
nxµ

]
−S

2a0...an
d [φ , p]

)
,

where S
2a0...an
d is some discrete approximation of the action and the extremization is over all

(φ , p) in the discrete approximating space satisfying the prescribed (ϕA,πB) boundary conditions.

The Type II variational principle yields the discrete forward Hamilton’s equations: for each µ ,

π
µ

]aµ [
=

1
∆nxµ

Dϕ,A,µH+
d (ϕA,πB),

ϕ]aµ+1[ =
1

∆nxµ

Dπ,B,µH+
d (ϕA,πB),

where Dφ ,A,µ denotes differentiation with respect to the value of ϕ on the node on A in the µ

direction, i.e., ∂/∂ϕ]aµ [ (and similarly Dπ,B,µ = ∂/∂π
µ

]aµ+1[).

Analogous results to the main body of the paper can be derived for the case of higher

spacetime dimensions. For example, the multisymplectic conservation law d2H+
d = 0 (when

evaluated on first variations) gives

∑
µ

(
dϕ]aµ+1[∧dπ

µ

]aµ+1[−dϕ]aµ [∧dπ
µ

]aµ [

)
∆

nxµ = 0

(which formally is the quadrature approximation to
∫
2a0...an

ωµ(·, ·)dnxµ = 0).

Similarly, the generalization to multiple quadrature points is straight-forward; for each

pair of forward and backward (n− 1)-dimensional faces in the µ direction, we can choose

multiple quadrature points and weights on the faces (the quadrature rules on the forward and

backward faces in the same direction must be the same, but the quadrature rules can differ

among the spacetime directions, as was the case in (1+1)-spacetime dimensions). Associated

to these quadrature points are the field and normal momenta values. Then, the discrete forward

Hamilton’s equations just states that the value of ϕ on a quadrature node in B is given by

144



differentiating H+
d with respect to the normal momenta π on that node, divided by the product of

∆nxµ and the quadrature weight at that node (and similarly, the value of the normal momenta π

on a quadrature node in A is given by differentiating H+
d with respect to the field value on that

node, divided by the product of ∆nxµ and the quadrature weight at that node). As one can verify,

in the (1+1)-dimensional case, this precisely reproduces (2.3a)-(2.3d).

One can then proceed as we did in the main body of the paper, in using the Galerkin

construction as a discrete approximation for the action. Utilizing analogous expansions to those

in the main body of the paper (with an expansion in each spacetime direction), the resulting

variational integrator would then give a multisymplectic partitioned Runge–Kutta method, where

the integrator would formally be a symplectic partitioned Runge–Kutta method in each spacetime

direction with the internal stages satisfying the De Donder–Weyl equations.

Finally, it is worth noting that, at the start of Section 2.2.1, we laid a general formulation

for unstructured meshes, arbitrary finite element spaces, and arbitrary spacetime dimensions.

However, in general, the form of the discrete Hamilton’s equations arising from the Type II

variational principle can not be written explicitly, which is why we specialized to the case

of spacetime tensor product (hyper)rectangular meshes. It would be interesting to determine

the form of the discrete forward Hamilton’s equations in other settings for particular choices

of meshes, finite element spaces, and spacetime dimensions. For example, although a fully

unstructured spacetime mesh would be challenging, one could consider a spacetime tensor

product mesh which is the tensor product of an unstructured spatial mesh and a regular temporal

mesh. Even in the case of a (hyper)rectangular mesh, it would be interesting to consider finite

element spaces of differential forms (such as the Q−r Λk spaces arising in finite element exterior

calculus [7]), which could be interesting in physical applications such as lattice field theory.

2.6.2 Relation to Galerkin Lagrangian Variational Integrators

In this appendix, we discuss the relation between Galerkin Hamiltonian and Lagrangian

variational integrators. From the Lagrangian perspective, the appropriate generating functional is
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the boundary Lagrangian (see Vankerschaver et al. [116]),

L∂U(ϕ) =
∫

U
L(φ ,∂µφ)dn+1x,

where the expression on the right hand side is extremized over all φ such that φ |∂U = ϕ . In

general, methods derived from discretizing the boundary Hamiltonian and boundary Lagrangian

are not expected to be equivalent, even in the hyperregular case, as was shown in Schmitt and

Leok [107] for the case of mechanics (where the boundary Hamiltonian and boundary Lagrangian

are referred to as the exact discrete Hamiltonian and the exact discrete Lagrangian, respectively).

However, for the case of Galerkin Lagrangian variational integrators on a 2-dimensional

rectangular mesh, they are equivalent (in the hyperregular case), for a suitable choice of discrete

boundary Lagrangian and using the same (Galerkin based) expansions that we utilized in

our construction of Galerkin Hamiltonian variational integrators. We assume the same field

expansions that we used in Section 2.2.3 (when discussing independent internal stages). Unlike

the boundary Hamiltonian where ϕ is specified on A and π is specified on B, the Lagrangian

perspective specifies ϕ on both A and B. One can define a discrete boundary Lagrangian as

L∂2
d (ϕA,ϕB) = ext φ

φ |A=ϕA,φ |B=ϕB

∆t∆x∑
iα

L
(
φ(ci∆t, c̃α∆x),∂0φ(ci∆t, c̃α∆x),∂1φ(ci∆t, c̃α∆x)

)
= extV iα ,W iα ,λα ,λi,λiα

∆t∆x

[
∑
i,α

bib̃αL(Φθ
iα ,V

iα ,W iα)

+∑
α

λα

(
ϕ1[α]−ϕ0[α]−∆t ∑

j
b jV jα

)

+∑
i

λi

(
ϕ[i]1−ϕ[i]0−∆x∑

β

b̃βW iβ

)

+∑
i,α

λiα(Φiα + Φ̃iα)

]
,

where in the first line, the right hand side is extremized over the finite-dimensional function

space chosen in the Galerkin construction (to obtain a discrete boundary Lagrangian instead of
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the exact discrete boundary Lagrangian which extremizes over an infinite-dimensional space).

The second equality follows from substituting the chosen expansion and explicitly enforcing

that the boundary condition φ |B = ϕB are satisfied by the Lagrange multipliers λα and λi. The

normal momenta are then obtained by enforcing the variational principle, which gives the normal

momenta πA,πB in terms of the derivatives of L∂2
d with respect to ϕA,ϕB. This defines a Galerkin

Lagrangian variational integrator.

Proposition 2.6.1. If the continuous Hamiltonian H is hyperregular and the associated La-

grangian L is constructed by the Legendre transform, then the Galerkin Hamiltonian variational

integrator and the Galerkin Lagrangian variational integrator are equivalent, for the same

choice of expansion (i.e., specified by the basis functions ψi, ψ̃β and quadrature rules).

Proof. The proof follows from using the Legendre transform to express

∂µφ =
∂H(φ , p0, p1)

∂ pµ
,

which is invertible by assumption of hyperregularity (i.e., one can express the momenta in terms

of the field and their derivatives). The computation then follows analogously to the 1-dimensional

(mechanics) case, as shown in Leok and Zhang [76], noting that the Legendre transform holds at

the internal stages.

It is expected that this equivalence holds in the case of higher-dimensional spacetime

tensor product (hyper)rectangular meshes, although it is still unclear to what degree this holds

for general unstructured spacetime meshes and general finite element spaces. We aim to explore

this in future work.
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Chapter 3

Geometric Methods for Adjoint Systems

3.1 Introduction

3.1.1 Applications of the Adjoint Equations

The solution of many nonlinear problems involves successive linearization, and as such

variational equations and their adjoints play a critical role in a variety of applications. Adjoint

equations are of particular interest when the parameter space is significantly higher dimension

than that of the output or objective. In particular, the simulation of adjoint equations arise in

sensitivity analysis [25; 26], adaptive mesh refinement [80], uncertainty quantification [118],

automatic differentiation [47], superconvergent functional recovery [96], optimal control [102],

optimal design [41], optimal estimation [93], and deep learning viewed as an optimal control

problem [12].

The study of geometric aspects of adjoint systems arose from the observation that the

combination of any system of differential equations and its adjoint equations are described by a

formal Lagrangian [57; 58]. This naturally leads to the question of when the formation of adjoints

and discretization commutes [110], and prior work on this include the Ross–Fahroo lemma [103],

and the observation by Sanz-Serna [106] that the adjoints and discretization commute if and only

if the discretization is symplectic.
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3.1.2 Symplectic and Presymplectic Geometry

Throughout the paper, we will assume that all manifolds and maps are smooth, unless

otherwise stated. Let (P,Ω) be a (finite-dimensional) symplectic manifold, i.e., Ω is a closed

nondegenerate two-form on P. Given a Hamiltonian H : P! R, the Hamiltonian system is

defined by

iXH Ω = dH,

where the vector field XH is a section of the tangent bundle to P. By nondegeneracy, the vector

field XH exists and is uniquely determined. For an open interval I ⊂ R, we say that a curve

z : I! P is a solution of Hamilton’s equations if z is an integral curve of XH , i.e., ż(t) = XH(z(t))

for all t ∈ I.

A particularly important example for our purposes is when the symplectic manifold is

the cotangent bundle of a manifold, P = T ∗M, equipped with the canonical symplectic form

Ω = dq∧d p in natural coordinates (q, p) on T ∗M. A Hamiltonian system has the coordinate

expression

q̇ =
∂H(q, p)

∂ p
,

ṗ =−∂H(q, p)
∂q

.

By Darboux’s theorem, any symplectic manifold is locally symplectomorphic to a cotangent

bundle equipped with its canonical symplectic form. As such, any Hamiltonian system can be

locally expressed in the above form (even when P is not a cotangent bundle), using Darboux

coordinates.

We now consider the generalization of Hamiltonian systems where we relax the condition

that Ω is nondegenerate, i.e., presymplectic geometry. Let (P,Ω) be a presymplectic manifold,

i.e., Ω is a closed two-form on P with constant rank. As before, given a Hamiltonian H : P! R,
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we define the associated Hamiltonian system as

iXH Ω = dH.

Note that since Ω is now degenerate, XH is not guaranteed to exist and if it does, it need not be

unique and in general is only partially defined on a submanifold of P. Again, we say a curve on P

is a solution to Hamilton’s equations if it is an integral curve of XH . Using Darboux coordinates

(q, p,r) adapted to (P,Ω), where Ω = dq∧d p and ker(Ω) = span{∂/∂ r}, the local expression

for Hamilton’s equations is given by

q̇ =
∂H(q, p,r)

∂ p
,

ṗ =−∂H(q, p,r)
∂q

,

0 =
∂H(q, p,r)

∂ r
.

The third equation above is interpreted as a constraint equation which any solution curve must

satisfy. We will assume that the constraint defines a submanifold of P. It is clear that in order for

a solution vector field XH to exist, it must be restricted to lie on this submanifold. However, in

order for its flow to remain on the submanifold, it must be tangent to this submanifold, which

further restricts where X can be defined. Alternating restriction in order to satisfy these two

constraints yields the presymplectic constraint algorithm of Gotay et al. [43]. The presymplectic

constraint algorithm begins with the observation that for any X satisfying the above system, so

does X +Z, where Z ∈ ker(Ω). In order to obtain such a vector field X , one considers the subset

P1 of P such that Zp(H) = 0 for any Z ∈ ker(Ω), p ∈ P1. We will assume that the set P1 is a

submanifold of P. We refer to P1 as the primary constraint manifold. In order for the flow of the

resulting Hamiltonian vector field X to remain on P1, one further requires that X is tangent to P1.

The set of points satisfying this property defines a subsequent secondary constraint submanifold

150



P2. Iterating this process, one obtains a sequence of submanifolds

· · ·! Pk! · · ·! P1! P0 ≡ P,

defined by

Pk+1 = {p ∈ Pk : Zp(Hk) = 0 for all Z ∈ ker(Ωk)}, (1.1)

where

Ωk+1 = Ωk|Pk+1,

Hk+1 = Hk|Pk+1.

If there exists a nontrivial fixed point in this sequence, i.e., a submanifold Pk of P such that

Pk = Pk+1, we refer to Pk as the final constraint manifold. If such a fixed point exists, we denote

by νP the minimum integer such that PνP = PνP+1, i.e., νP is the number of steps necessary

for the presymplectic constraint algorithm to terminate. If such a final constraint manifold PνP

exists, there always exists a solution vector field X defined on and tangent to PνP such that

iX ΩνP = dHνP and X is unique up to the kernel of ΩνP . Furthermore, such a final constraint

manifold is maximal in the sense that if there exists a submanifold N of P which admits a vector

field X defined on and tangent to N such that iX Ω|N = dH|N , then N ⊂ PνP (Gotay and Nester

[42]).

3.1.3 Main Contributions

In this paper, we explore the geometric properties of adjoint systems associated with

ordinary differential equations (ODEs) and differential-algebraic equations (DAEs). For a

discussion of adjoint systems associated with ODEs and DAEs, see Sanz-Serna [106] and Cao

et al. [26], respectively. In particular, we utilize the machinery of symplectic and presymplectic

geometry as a basis for understanding such systems.
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In Section 3.2.1, we review the notion of adjoint equations associated with ODEs over

vector spaces. We show that the quadratic conservation law, which is the key to adjoint sensitivity

analysis, arises from the symplecticity of the flow of the adjoint system. In Section 3.2.2, we

investigate the symplectic geometry of adjoint systems associated with ODEs on manifolds. We

additionally discuss augmented adjoint systems, which are useful in the adjoint sensitivity of

running cost functions. In Section 3.2.3, we investigate the presymplectic geometry of adjoint

systems associated with DAEs on manifolds. We investigate the relation between the index of

the base DAE and the index of the associated adjoint system, using the notions of DAE reduction

and the presymplectic constraint algorithm. We additionally consider augmented systems for

such adjoint DAE systems. For the various adjoint systems that we consider, we derive various

quadratic conservation laws which are useful in adjoint sensitivity analysis of terminal and

running cost functions. We additionally discuss symmetry properties and present variational

characterizations of such systems that provide a useful perspective for constructing geometric

numerical methods for these systems.

In Section 3.3, we discuss applications of the various adjoint systems to adjoint sensitivity

and optimal control. In Section 3.3.1, we show how the quadratic conservation laws developed

in Section 3.2 can be used for adjoint sensitivity analysis of running and terminal cost functions,

subject to ODE or DAE constraints. In Section 3.3.2, we construct structure-preserving dis-

cretizations of adjoint systems using the Galerkin Hamiltonian variational integrator construction

of Leok and Zhang [76]. For adjoint DAE systems, we introduce a presymplectic analogue of

the Galerkin Hamiltonian variational integrator construction. We show that such discretizations

admit discrete analogues of the aforementioned quadratic conservation laws and hence are

suitable for the numerical computation of adjoint sensitivities. Furthermore, we show that such

discretizations are natural when applied to DAE systems, in the sense that reduction, forming

the adjoint system, and discretization all commute (for particular choices of these processes).

As an application of this naturality, we derive a variational error analysis result for the resulting

presymplectic variational integrator for adjoint DAE systems. Finally, in Section 3.3.3, we
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discuss adjoint systems in the context of optimal control problems, where we prove a similar

naturality result, in that suitable choices of reduction, extremization, and discretization commute.

By developing a geometric theory for adjoint systems, the application areas that utilize

such adjoint systems can benefit from the existing work on geometric and structure-preserving

methods.

3.1.4 Main Results

In this paper, we prove that, starting with an index 1 DAE, appopriate choices of reduc-

tion, discretization, and forming the adjoint system commute. That is, the following diagram

commutes.

Index 1 DAE ODE

Discrete DAE Discrete ODE

Presymplectic Adjoint
DAE System

Symplectic Adjoint
ODE System

Presymplectic Galerkin
Hamiltonian Variational

Integrator

Symplectic Galerkin
Hamiltonian Variational

Integrator

Reduce

Reduce

Adjoint Adjoint

Reduce

Reduce

Adjoint Adjoint

Discretize
Discretize

Discretize Discretize

In order to prove this result, we develop along the way the definitions of the various

vertices and arrows in the above diagram. Roughly speaking, the four “Adjoint” arrows are

defined by forming the appropriate continuous or discrete action and enforcing the variational

principle; the four “Reduce” arrows are defined by solving the algebraic variables in terms of the

kinematic variables through the continuous or discrete constraint equations; the two “Discretize”
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arrows on the top face are given by a Runge–Kutta method, while the two “Discretize” arrows

on the bottom face are given by the associated symplectic partitioned Runge–Kutta method. The

above commutative diagram can be understood as an extension of the result of Sanz-Serna [106]

(that discretization and forming the adjoint of an ODE commute when the discretization is a

symplectic Runge–Kutta method) by adding the reduction operation. In order to appropriately

define this reduction operation, we will show that the presymplectic adjoint DAE system has

index 1 if the base DAE has index 1, so that the reduction of the presymplectic adjoint DAE

system results in a symplectic adjoint ODE system; the tool for this will be the presymplectic

constraint algorithm.

In the process of defining the ingredients in the above diagram, we will additionally

prove various properties of adjoint systems associated with ODEs and DAEs. The key properties

that we will prove for such adjoint systems are the adjoint variational quadratic conservation

laws, Propositions 3.2.3, 3.2.6, 3.2.9, 3.2.10. As we will show, these conservation laws can be

used to compute adjoint sensitivities of running and terminal cost functions under the flow of an

ODE or DAE. In order to prove these conservation laws, we will need to define the variational

equations associated with an adjoint system. We will define them as the linearization of the base

ODE or DAE; for the DAE case, we will show that the variational equations have the same index

as the base DAE so that they have the same (local) solvability.

3.2 Adjoint Systems

3.2.1 Adjoint Equations on Vector Spaces

In this section, we review the notion of adjoint equations on vector spaces and their

properties, as preparation for adjoint systems on manifolds.

Let Q be a finite-dimensional vector space and consider the ordinary differential equation

on Q given by

q̇ = f (q), (2.1)
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where f : Q! Q is a differentiable vector field on Q. Let D f (q) denote the linearization of f

at q ∈ Q, D f (q) ∈ L(Q,Q). Denoting its adjoint by [D f (q)]∗ ∈ L(Q∗,Q∗), the adjoint equation

associated with (2.1) is given by

ṗ =−[D f (q)]∗p, (2.2)

where p is a curve on Q∗.

Let qA be coordinates for Q and let pA be the associated dual coordinates for Q∗, so that

the duality pairing is given by 〈p,q〉= pAqA. The linearization of f at q is given in coordinates

by

(D f (q))A
B =

∂ f A(q)
∂qB ,

where its action on v ∈ Q in coordinates is

(D f (q)v)A =
∂ f A(q)

∂qB vB.

Its adjoint then acts on p ∈ Q∗ by

([D f (q)]∗p)A =
∂ f B(q)

∂qA pB.

Thus, the ODE and its adjoint can be expressed in coordinates as

q̇A = f A(q),

ṗA =−∂ f B(q)
∂qA pB.

Next, we recall that the combined system (2.1)-(2.2), which we refer to as the adjoint

system, arises from a variational principle. Letting 〈·, ·〉 denote the duality pairing between Q∗
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and Q, we define the Hamiltonian

H : Q×Q∗! R,

(q, p) 7! H(q, p)≡ 〈p, f (q)〉.

The associated action, defined on the space of curves on Q×Q∗ covering some interval (t0, t1),

is given by

S[q, p] =
∫ t1

t0
(〈p, q̇〉−H(q, p))dt =

∫ t1

t0
(〈p, q̇〉−〈p, f (q)〉)dt.

Proposition 3.2.1. The variational principle δS = 0, subject to variations (δq,δ p) which fix

the initial position δq(t0) = 0 and the final momenta δ p(t1) = 0, yields the adjoint system

(2.1)-(2.2).

Remark 3.2.1. We defer the proof of the above proposition until Proposition 3.2.11, where we

prove the more general case for manifolds.

The conditions δq(t0) = 0 and δ p(t1) = 0 correspond to boundary conditions q(t0) = q0

and p(t1) = p1, which are the boundary conditions used in adjoint sensitivity analysis.

The variational principle utilized above is formulated so that the stationarity condition

δS = 0 is equivalent to Hamilton’s equations, where we view Q×Q∗ ∼= T ∗Q with the canonical

symplectic form on the cotangent bundle Ω = dq∧d p and with the corresponding Hamiltonian

H : T ∗Q! R given as above. It then follows that the flow of the adjoint system is symplectic.

The symplecticity of the adjoint system is a key feature of the system. In fact, the

symplecticity of the adjoint system implies that a certain quadratic invariant is preserved along

the flow of the system. This quadratic invariant is the key ingredient to the use of adjoint

equations for sensitivity analysis. To state the quadratic invariant, consider the variational

equation associated with equation (2.1),

d
dt

δq = D f (q)δq, (2.3)
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which corresponds to the linearization of (2.1) at q ∈ Q. For solution curves p and δq to (2.2)

and (2.3), respectively, over the same curve q, one has that the quantity 〈p,δq〉 is preserved

along the flow of the system, since

d
dt
〈p,δq〉= 〈ṗ,δq〉+ 〈p, d

dt
δq〉= 〈−[D f (q)]∗p,δq〉+ 〈p,D f (q)δq〉

=−〈p,D f (q)δq〉+ 〈p,D f (q)δq〉= 0.

To see that symplecticity implies the preservation of this quantity, recall that symplecticity is the

statement that, along a solution curve of the adjoint system (2.1)-(2.2), one has

d
dt

Ω(V,W ) = 0,

where V and W are first variations to the adjoint system (i.e., that the flow of V and W on

solutions are again solutions). Infinitesimally, first variations V and W correspond to solutions of

the linearization of the adjoint system (2.1)-(2.2). At a solution (q, p) to the adjoint system, the

linearization of the system is given by

d
dt

δq = D f (q)δq,

d
dt

δ p =−[D f (q)]∗δ p.

Note that the first equation is just the variational equation (2.3) while the second equation is the

adjoint equation (2.2), with p replaced by δ p, since the adjoint equation is linear in p. The first

variation vector field V corresponding to a solution (δq,δ p) of this linearized system is

V = δq
∂

∂q
+δ p

∂

∂ p
.

Now, we make two choices for the first variations V and W . For W , we take the solution δq = 0,
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δ p = p of the linearized system, which gives W = p∂/∂ p. For V , we take the solution δq = δq,

δ p = 0 of the linearized system, which gives V = δq∂/∂q. Inserting these into Ω gives

Ω(V,W ) = p
∂

∂ p
y

(
δq

∂

∂q
y(dq∧d p)

)
= 〈p,δq〉.

Thus, symplecticity d
dt Ω(V,W ) = 0 with this particular choice of first variations V,W gives the

preservation of the quadratic invariant 〈p,δq〉.

3.2.2 Adjoint Systems on Manifolds

We now extend the notion of the adjoint system to the case where the configuration space

of the base ODE is a manifold. We will provide a symplectic characterization of these adjoint

systems, prove the associated adjoint variational quadratic conservation laws, and additionally

discuss symmetries and variational principles associated with these systems.

Let M be a manifold and consider the ODE on M given by

q̇ = f (q), (2.4)

where f is a vector field on M. Letting π : T M!M denote the tangent bundle projection, we

recall that a vector field f is a map f : M! T M which satisfies π ◦ f = 1M, i.e., f is a section of

the tangent bundle.

Analogous to the adjoint system on vector spaces, we will define the adjoint system

on a manifold as an ODE on the cotangent bundle T ∗M which covers (2.4), such that the time

evolution of the momenta in the fibers of T ∗M are given by an adjoint linearization of f .

To do this, in analogy with the vector space case, consider the Hamiltonian H : T ∗M!R

given by H(q, p) = 〈p, f (q)〉q where 〈·, ·〉q is the duality pairing of T ∗q M with TqM. When there

is no possibility for confusion of the base point, we simply denote this duality pairing as 〈·, ·〉.

Recall that the cotangent bundle T ∗M possesses a canonical symplectic form Ω =−dΘ where Θ
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is the tautological one-form on T ∗M. With coordinates (q, p) = (qA, pA) on T ∗M, this symplectic

form has the coordinate expression Ω = dq∧d p≡ dqA∧d pA.

We define the adjoint system as the ODE on T ∗M given by Hamilton’s equations, with

the above choice of Hamiltonian H and the canonical symplectic form. Thus, the adjoint system

is given by the equation

iXH Ω = dH,

whose solution curves on T ∗M are the integral curves of the Hamiltonian vector field XH . As

is well-known, for the particular choice of Hamiltonian H(q, p) = 〈p, f (q)〉, the Hamiltonian

vector field XH is given by the cotangent lift f̂ of f , which is a vector field on T ∗M that covers

f (see, for example, Bullo and Lewis [23]). With coordinates z = (q, p) on T ∗M, the adjoint

system is the ODE on T ∗M given by

ż = f̂ (z). (2.5)

To be more explicit, recall that the cotangent lift of f is constructed as follows. Let Φε : M!M

denote the one-parameter family of diffeomorphisms generated by f . Then, we consider the

cotangent lifted diffeomorphisms given by (Φ−ε)
∗ : T ∗M! T ∗M. This covers Φε in the sense

that πT ∗M ◦ (Φ−ε)
∗ = Φε ◦ πT ∗M where πT ∗M : T ∗M ! M is the cotangent projection. The

cotangent lift f̂ is then defined to be the infinitesimal generator of the cotangent lifted flow,

f̂ (z) =
d

dε

∣∣∣
ε=0

(Φ−ε)
∗(z).

We can directly verify that f̂ is the Hamiltonian vector field for H, which follows from

i f̂ Ω =−i f̂ dΘ =−L f̂ Θ+d(i f̂ Θ) = d(i f̂ Θ) = dH,

where L f̂ Θ = 0 follows from the fact that cotangent lifted flows preserve the tautological one-

form and H = i f̂ Θ follows from a direct computation (where i f̂ Θ is interpreted as a function on
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the cotangent bundle which maps (q, p) to 〈Θ(q, p), f̂ (q, p)〉)

The adjoint system (2.5) covers (2.4) in the following sense.

Proposition 3.2.2. Integral curves to the adjoint system (2.5) lift integral curves to the system

(2.4).

Proof. Let z = (q, p) be coordinates on T ∗M. Let (q̇, ṗ) ∈ T(q,p)T ∗M. Then, T πT ∗M(q̇, ṗ) = q̇

where T πT ∗M is the pushforward of the cotangent projection. Furthermore,

T πT ∗M f̂ (q, p) = T πT ∗M
d

dε

∣∣∣
ε=0

(Φ−ε)
∗(q, p) =

d
dε

∣∣∣
ε=0

(πT ∗M ◦ (Φ−ε)
∗)(q, p)

=
d

dε

∣∣∣
ε=0

(Φε ◦πT ∗M)(q, p) =
d

dε

∣∣∣
ε=0

Φε(q) = f (q).

Thus, the pushforward of the cotangent projection applied to (2.5) gives (2.4). It then follows

that integral curves of (2.5) lift integral curves of (2.4).

Remark 3.2.2. This can also be seen explicitly in coordinates. Recalling that i f̂ Ω = dH, one

has

dH = d(pA f A(q)) = f A(q)d pA + pB
∂ f B(q)

∂qA dqA,

and, on the other hand, denoting f̂ (q, p) = XA(q, p)∂/∂qA +YA(q, p)∂/∂ pA,

i f̂ Ω = (XA(q, p)∂qA +YA(q, p)∂pA)y(dqB∧d pB) = XA(q, p)d pA−YA(q, p)dqA.

Equating these two gives the coordinate expression for the cotangent lift f̂ ,

f̂ (q, p) = f A(q)
∂

∂qA − pB
∂ f B(q)

∂qA
∂

∂ pA
.
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Thus, the system ż = f̂ (z) can be expressed in coordinates as

q̇A = f A(q), (2.6a)

ṗA =−pB
∂ f B(q)

∂qA , (2.6b)

which clearly covers the original ODE q̇A = f A(q). Also, note that this coordinate expression

for the adjoint system recovers the coordinate expression for the adjoint system in the vector

space case.

Analogous to the vector space case, the adjoint system possesses a quadratic invariant

associated with the variational equations of (2.4). The variational equation is given by considering

the tangent lifted vector field on T M, f̃ : T M! T T M, which is defined in terms of the flow Φε

generated by f by

f̃ (q,δq) =
d

dε

∣∣∣
ε=0

T Φε(q,δq),

where (q,δq) are coordinates on T M. That is, f̃ is the infinitesimal generator of the tangent

lifted flow. The variational equation associated with (2.4) is the ODE associated with the tangent

lifted vector field. In coordinates,

d
dt
(q,δq) = f̃ (q,δq). (2.7)

Proposition 3.2.3. For integral curves (q, p) of (2.5) and (q,δq) of (2.7), which cover the same

curve q,
d
dt

〈
(q(t), p(t)),(q(t),δq(t))

〉
q(t)

= 0. (2.8)

Proof. Note that (q(t), p(t)) ∈ T ∗q(t)M and (q(t),δq(t)) ∈ Tq(t)M so the duality pairing is well-
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defined. Then,

〈
(q(t), p(t)),(q(t),δq(t))

〉
q(t)

=
〈
(Φ−t)

∗(q(0), p(0)),T Φt(q(0),δq(0))
〉

q(t)

=
〈
(q(0), p(0)),T Φ−t ◦T Φt(q(0),δq(0))

〉
q(0)

=
〈
(q(0), p(0)),T (Φ−t ◦Φt)(q(0),δq(0))

〉
q(0)

=
〈
(q(0), p(0)),(q(0),δq(0))

〉
q(0)

,

so the pairing is constant.

Remark 3.2.3. In the vector space case, we saw that the preservation of the quadratic invariant

is implied by symplecticity. The above result is analogously implied by symplecticity, noting that

the flow of the adjoint system is symplectic since f̂ is a Hamiltonian vector field.

Another conserved quantity for the adjoint system (2.5) is the Hamiltonian, since the

adjoint system corresponds to a time-independent Hamiltonian flow, d
dt H = Ω(XH ,XH) = 0.

Additionally, conserved quantities for adjoint systems are generated, via cotangent lift,

by symmetries of the original ODE (2.4), where we say that a vector field g is a symmetry of the

ODE ẋ = h(x) if [g,h] = 0.

Proposition 3.2.4. Let g be a symmetry of (2.4), i.e., [g, f ] = 0. Then, its cotangent lift ĝ is a

symmetry of (2.5) and additionally, the function

〈Θ, ĝ〉

on T ∗M is preserved along the flow of f̂ , i.e., under the flow of the adjoint system (2.5).

Proof. We first show that ĝ is a symmetry of (2.5), i.e., that [ĝ, f̂ ] = 0. To see this, we recall that

the cotangent lift of the Lie bracket of two vector fields equals the Lie bracket of their cotangent
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lifts,

[̂g, f ] = [ĝ, f̂ ].

Then, since [g, f ] = 0 by assumption, [ĝ, f̂ ] = [̂g, f ] = 0̂ = 0.

To see that 〈Θ, ĝ〉 is preserved along the flow of f̂ , we have

L f̂ 〈Θ, ĝ〉= 〈L f̂ Θ, ĝ〉+ 〈Θ,L f̂ ĝ〉= 〈0, ĝ〉+ 〈Θ, [ f̂ , ĝ]〉= 0,

where we used that L f̂ Θ = 0 since f̂ is a cotangent lifted vector field.

Remark 3.2.4. The above proposition states when [ f ,g] = 0, the Hamiltonian for the adjoint

system associated with g, 〈Θ, ĝ〉, is preserved along the Hamiltonian flow corresponding to the

Hamiltonian for the adjoint system associated with f , 〈Θ, f̂ 〉, and vice versa. Note, 〈Θ, ĝ〉 can be

interpreted as the momentum map corresponding to the action on T ∗M given by the flow of ĝ.

The above proposition shows that (at least some) symmetries of the adjoint system (2.5)

can be found by cotangent lifting symmetries of the original ODE (2.4). Additionally, the above

proposition states that such cotangent lifted symmetries give rise to conserved quantities.

In light of the above proposition, it is natural to ask the following question. Given a

symmetry G of the adjoint system (2.5) (i.e., [G, f̂ ] = 0), does it arise from a cotangent lifted

symmetry in the sense of Proposition 3.2.4? In general, the answer is no. However, for a

projectable vector field G which is a symmetry of the adjoint system, its projection by T πT ∗M to

a vector field on M does satisfy the assumptions of Proposition 3.2.4. This gives the following

partial converse to the above proposition.

Proposition 3.2.5. Let G be a projectable vector field on the bundle πT ∗M : T ∗M!M which

is a symmetry of (2.5), i.e., [G, f̂ ] = 0. Then, the pushforward vector field g = T πT ∗M(G) on M

satisfies the assumptions of Proposition 3.2.4 and T πT ∗Mĝ = T πT ∗MG.

Proof. Since G is a projectable vector field on the cotangent bundle, g = T πT ∗MG defines a
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well-defined vector field on M. Thus,

[g, f ] = [T πT ∗MG,T πT ∗M f̂ ] = T πT ∗M[G, f̂ ] = T πT ∗M0 = 0,

so g is a symmetry of (2.4). Furthermore, we also have

T πT ∗Mĝ = T πT ∗M ̂(T πT ∗MG) = T πT ∗MG.

The preceding proposition shows that, for the class of projectable symmetries of the

adjoint system (2.5), it is always possible to find an associated symmetry of the original ODE

(2.4) which, by Proposition 3.2.4, corresponds to a Hamiltonian symmetry. Note that this implies

that we can associate a conserved quantity 〈Θ, ĝ〉 to G, where g = T πT ∗MG. Furthermore, since

T πT ∗Mĝ = T πT ∗MG and the canonical form Θ is a horizontal one-form, this implies that 〈Θ,G〉

equals 〈Θ, ĝ〉 and hence, is conserved.

These two propositions show that symmetries of an ODE can be identified with equiva-

lence classes of projectable symmetries of the associated adjoint system, where two projectable

symmetries are equivalent if their difference lies in the kernel of T πT ∗M.

Adjoint Systems with Augmented Hamiltonians

In this section, we consider a class of modified adjoint systems, where some function

on the base manifold M is added to the Hamiltonian of the adjoint system. More precisely, let

H : T ∗M! R,H(q, p) = 〈p, f (q)〉 be the Hamiltonian of the previous section, corresponding to

the ODE q̇ = f (q). Let L : M! R be a function on M. We identify L with its pullback through
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πT ∗M : T ∗M!M. Then, we define the augmented Hamiltonian

HL ≡ H +L : T ∗M! R

(q, p) 7! H(q, p)+L(q) = 〈p, f (q)〉+L(q).

We define the augmented adjoint system as the Hamiltonian system associated with HL relative

to the canonical symplectic form Ω on T ∗M,

iXHL
Ω = dHL. (2.9)

Remark 3.2.5. The motivation for such systems arises from adjoint sensitivity analysis and

optimal control. For adjoint sensitivity analysis of a running cost function, one is concerned with

the sensitivity of some functional ∫ t

0
L(q)dt

along the flow of the ODE q̇ = f (q). In the setting of optimal control, the goal is to minimize

such a functional, constrained to curves satisfying the ODE (see, for example, Aguiar et al. [3]).

We will discuss such applications in more detail in Section 3.3.

In coordinates, the augmented adjoint system (2.9) takes the form

q̇A =
∂H
∂ pA

= f A(q), (2.10a)

ṗA =− ∂H
∂qA =−pB

∂ f B(q)
∂qA − ∂L(q)

∂qA . (2.10b)

We now prove various properties of the augmented adjoint system, analogous to the

previous section. To start, first note that we can decompose the Hamiltonian vector field XHL as

follows. Let f̂ be the cotangent lift of f . Let XL ≡ XHL− f̂ . Then, observe that

iXLΩ = iXHL
Ω− i f̂ Ω = dHL−dH = dL.
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Thus, we have the decomposition XHL = f̂ +XL, where f̂ and XL are the Hamiltonian vector

fields for H and L, respectively. In coordinates,

XL =− ∂L
∂qA

∂

∂ pA
.

From the coordinate expression, we see that XL is a vertical vector field over the bundle T ∗M!M.

We can also see this intrinsically, since dL is a horizontal one-form on T ∗M, XL satisfies

iXLΩ = dL, and Ω restricts to an isomorphism from vertical vector fields on T ∗M to horizontal

one-forms on T ∗M. Thus, it is immediate to see intrinsically that an analogous statement to

Proposition 3.2.2 holds, since the flow of f̂ lifts the flow of f , while the flow of XL is purely

vertical. That is, since T πT ∗MXL = 0,

T πT ∗MXHL = T πT ∗M f̂ = f .

We can of course also see that the augmented adjoint system lifts the original ODE from the

coordinate expression for the augmented adjoint system, (2.10a)-(2.10b).

We now prove analogous statements to Propositions 3.2.3 and 3.2.4, modified appropri-

ately for the presence of L in the augmented Hamiltonian.

Proposition 3.2.6. Let (q, p) be an integral curve of the augmented adjoint system (2.9) and let

(q,δq) be an integral curve of the variational equation (2.7), covering the same curve q. Then,

d
dt
〈p,δq〉=−〈dL,δq〉.

Remark 3.2.6. Note that the variational equation associated with the above system is the same

as in the nonaugmented case, equation (2.7), since augmenting L to the Hamiltonian system only

shifts the Hamiltonian vector field in the vertical direction.
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Proof. We will prove this in coordinates. We have the equations

ṗA =−pB
∂ f B

∂qA −
∂L
∂qA ,

d
dt

δqB =
∂ f B

∂qA δqA.

Then,

d
dt
〈p,δq〉= d

dt
pAδqA = ṗAδqA + pB

d
dt

δqB

=−pB
∂ f B

∂qA δqA− ∂L
∂qA δqA + pB

∂ f B

∂qA δqA

=− ∂L
∂qA δqA =−〈dL,δq〉.

Remark 3.2.7. Interestingly, the above proposition states that in the augmented case, 〈p,δq〉

is no longer preserved but rather, its change measures the change of L with respect to the

variation δq. This may at first seem contradictory since both the augmented and nonaugmented

Hamiltonian vector fields, XHL and XH , preserve Ω, and as we noted previously in Remark 3.2.3,

the preservation of the quadratic invariant is implied by symplecticity. However, upon closer

inspection, there is no contradiction because the two cases have different first variations, where

recall a first variation is a symmetry vector field of the Hamiltonian system and symplecticity

can be stated as
d
dt

Ω(V,W ) = 0,

for first variation vector fields V and W. In the nonaugmented case, the equations satisfied by the

first variation of the momenta p can be identified with p itself, since the adjoint equation for p is

linear in p. On the other hand, in the augmented case, the adjoint equation for p, (2.10b), is no

longer linear in p, rather, it is affine in p. Furthermore, the failure of this equation to be linear

in p is given precisely by −dL. Thus, in the augmented case, first variations in p can no longer
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be identified with p, and this leads to the additional term −〈dL,δq〉 in the above proposition.

To prove an analogous statement to Proposition 3.2.4, we need the additional assumption

that the symmetry vector field g leaves L invariant, LgL = 0.

Proposition 3.2.7. Let g be a symmetry of the ODE q̇ = f (q), i.e., [g, f ] = 0. Additionally,

assume that g is a symmetry of L, i.e., LgL = 0. Then, its cotangent lift ĝ is a symmetry of the

augmented adjoint system, [ĝ,XHL ] = 0 and additionally, the function

〈Θ, ĝ〉

on T ∗M is preserved along the flow of XHL .

Proof. To see that [ĝ,XHL ] = 0, note that with the decomposition XHL = f̂ +XL, we have

[ĝ,XHL ] = [ĝ, f̂ ]+ [ĝ,XL] = [ĝ,XL],

where we used that [ĝ, f̂ ] = [̂g, f ] = 0. To see that [ĝ,XL] = 0, we note that [ĝ,XL] can be expressed

[ĝ,XL] = LĝXL = Lĝ(Ω
−1(dL)),

where we interpret Ω : T (T ∗M)! T ∗(T ∗M). Then, note that ĝ preserves Ω since ĝ is a cotangent

lift and it also preserves L (where, since we identify L with its pullback through πT ∗M, this is

equivalent to g preserving L). More precisely, since we are identifying L with its pullback

(πT ∗M)∗L, we have

Lĝ((πT ∗M)∗L) = 〈(πT ∗M)∗dL, ĝ〉= 〈dL,T πT ∗Mĝ〉= 〈dL,g〉= LgL = 0.

Hence, Lĝ(Ω
−1(dL)) = 0. One can also verify this in coordinates, and a direct computation
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yields

[ĝ,XL] =
∂

∂qA

(
gB(q)

∂L
∂qB

)
∂

∂ pA
,

which vanishes since LgL = 0.

Now, to show that 〈Θ, ĝ〉 is preserved along the flow of XHL , compute

LXHL
〈Θ, ĝ〉= L f̂ 〈Θ, ĝ〉+LXL〈Θ, ĝ〉= LXL〈Θ, ĝ〉,

where we used that L f̂ 〈Θ, ĝ〉= 0 by Proposition 3.2.4. Now, we have

LXHL
〈Θ, ĝ〉= LXL〈Θ, ĝ〉= 〈LXLΘ, ĝ〉+ 〈Θ,LXL ĝ〉= 〈LXLΘ, ĝ〉+ 〈Θ, [XL, ĝ]︸ ︷︷ ︸

=0

〉

= 〈iXLdΘ+d(iXLΘ), ĝ〉= 〈−iXLΩ, ĝ〉+ 〈d(iXLΘ), ĝ〉

=−〈dL, ĝ〉+ 〈d(iXLΘ), ĝ〉.

The first term above vanishes since LgL = 0. Furthermore, 〈d(iXLΘ), ĝ〉= 0 since XL is a vertical

vector field while Θ is a horizontal one-form. Hence, LXHL
〈Θ, ĝ〉= 0.

3.2.3 Adjoint Systems for DAEs via Presymplectic Mechanics

In this section, we generalize the notion of adjoint system to the case where the base

equation is a (semi-explicit) DAE. We will prove analogous results to the ODE case. However,

more care is needed than the ODE case, since the DAE constraint introduces issues with

solvability. As we will see, the adjoint system associated with a DAE is a presymplectic

system, so we will approach the solvability of such systems through the presymplectic constraint

algorithm.

We consider the following setup for a differential-algebraic equation. Let Md and Ma be

two manifolds, where we regard Md as the configuration space of the “dynamical” or “differential”

variables and Ma as the configuration space of the “algebraic” variables. Let πΦ : Φ!Md×Ma

be a vector bundle over Md×Ma. Furthermore, let πd : Md×Ma!Md be the projection onto
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the first factor and let πT Md
: T Md ! Md ×Ma be the pullback bundle of the tangent bundle

πT Md : T Md !Md by πd , i.e., T Md = π∗d (T Md). Then, a (semi-explicit) DAE is specified by a

section f ∈ Γ(T Md) and a section φ ∈ Γ(Φ), via the system

q̇ = f (q,u), (2.11a)

0 = φ(q,u), (2.11b)

where (q,u) are coordinates on Md×Ma. We refer to T Md as the differential tangent bundle,

with coordinates (q,u,v) and to Φ as the constraint bundle.

Remark 3.2.8. For the local solvability of (2.11a)-(2.11b), regard φ locally as a map Rdim(Md)×

Rdim(Ma) ! Rrank(Φ). If ∂φ/∂u is an isomorphism at a point (q0,u0) where Φ(q0,u0) = 0,

then by the implicit function theorem, one can locally solve u = u(q) about (q0,u0) such that

φ(q,u(q)) = 0, and subsequently solve the unconstrained differential equation q̇ = f (q,u(q))

locally. This is the case for semi-explicit index 1 DAEs.

In order for the rank(Φ)×dim(Ma) matrix ∂φ/∂u(q0,u0) to be an isomorphism, it is

necessary that rank(Φ) = dim(Ma). However, we will make no such assumption, so as to treat

the theory in full generality, allowing for, e.g., nonunique solutions.

Now, let T ∗Md be the pullback bundle of the cotangent bundle T ∗Md by πd , with

coordinates (q,u, p), which we refer to as the differential cotangent bundle. Furthermore, let Φ∗

be the dual vector bundle to Φ, with coordinates (q,u,λ ). Let T ∗Md⊕Φ∗ be the Whitney sum

of these two vector bundles over Md×Ma with coordinates (q,u, p,λ ), which we refer to as the

generalized phase space bundle. We define a Hamiltonian on the generalized phase space,

H : T ∗Md⊕Φ
∗! R,

H(q,u, p,λ ) = 〈p, f (q,u)〉+ 〈λ ,φ(q,u)〉.

Let Ωd denote the canonical symplectic form on T ∗Md , with coordinate expression Ωd = dq∧d p.
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We define a presymplectic form Ω0 on T ∗Md⊕Φ∗ as follows: the pullback bundle admits the

map π̃d : T ∗Md ! T ∗Md which covers πd and acts as the identity on fibers and furthermore, the

generalized phase space bundle admits the projection Π : T M∗d⊕Φ∗! T M∗d , since the Whitney

sum has the structure of a double vector bundle. Hence, we can pullback Ωd along the sequence

of maps

T ∗Md⊕Φ
∗ Π
−! T ∗Md

π̃d−! T ∗Md,

which allows us to define a two-form Ω0 ≡Π∗ ◦ π̃∗d (Ωd) on the generalized phase space bundle.

Clearly, Ω0 is closed as the pullback of a closed form. In general, Ω0 will be degenerate except

in the trivial case where Ma is empty and the fibers of Φ are the zero vector space. Hence, Ω0

is a presymplectic form. Note that since Π acts by projection and π̃d acts as the identity on

fibers, the coordinate expression for Ω0 on T ∗Md⊕Φ∗ with coordinates (q,u, p,λ ) is the same

as the coordinate expression for Ωd , Ω0 = dq∧d p. The various spaces and their coordinates are

summarized in the diagram below, Figure 3.1.

Figure 3.1. Projection maps and coordinates on the generalized phase space bundle

We now define the adjoint system associated with the DAE (2.11a)-(2.11b) as the Hamil-

tonian system

iX Ω0 = dH. (2.12)

Given a (generally, partially defined) vector field X on the generalized phase space satisfying
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(2.12), we say a curve (q(t),u(t), p(t),λ (t)) is a solution curve of (2.12) if it is an integral curve

of X .

Let us find a coordinate expression for the above system. Expressing our coordinates

with indices (qi,ua, p j,λA), the left hand side of (2.12) along a solution curve has the expression

iX Ω0 =

(
q̇i ∂

∂qi + u̇a ∂

∂ua + ṗ j
∂

∂ p j
+ λ̇A

∂

∂λA

)
ydqk∧d pk

= q̇id pi− ṗ jdq j.

On the other hand, the right hand side of (2.12) has the expression

dH = d
(

pi f i(q,u)+λAφ
A(q,u)

)
= f i(q,u)d pi +

(
pi

∂ f i

∂q j +λA
∂φ A

∂q j

)
dq j +φ

A(q,u)dλA +

(
pi

∂ f i

∂ua +λA
∂φ A

∂ua

)
dua.

Equating these expressions gives the coordinate expression for the adjoint DAE system,

q̇i = f i(q,u), (2.13a)

ṗ j =−pi
∂ f i

∂q j −λA
∂φ A

∂q j , (2.13b)

0 = φ
A(q,u), (2.13c)

0 = pi
∂ f i

∂ua +λA
∂φ A

∂ua . (2.13d)

Remark 3.2.9. As mentioned in Remark 3.2.8, in the index 1 case, one can locally solve the

original DAE (2.13a) and (2.13c). Viewing such a solution (q,u) as fixed, one can subsequently

locally solve for λ in equation (2.13d) as a function of p, since ∂φ/∂u is locally invertible.

Substituting this into (2.13b) gives an ODE solely in the variable p, which can be solved locally.

Stated another way, if the original DAE (2.11a)-(2.11b) is an index 1 system, then the

adjoint DAE system (2.13a)-(2.13d) is an index 1 system with dynamical variables (q, p) and
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algebraic variables (u,λ ). To see this, if one denotes the constraints for the adjoint system

(2.13c) and (2.13d) as

0 = φ̃(q,u, p,λ )≡

 φ A(q,u)

pi
∂ f i

∂ua +λA
∂φ A

∂ua

 ,

then the matrix derivative of φ̃ with respect to the algebraic variables (u,λ ) can be locally

expressed in block form as ∂φ/∂u A

0 ∂φ/∂u

 ,

where the block A has components given by the derivative of the right hand side of (2.13d) with

respect to u. It is clear from the block triangular form of this matrix that it is pointwise invertible

if ∂φ/∂u is.

Remark 3.2.10. It is clear from the coordinate expression (2.13a)-(2.13d) that a solution curve

of the adjoint DAE system, if it exists, covers a solution curve of the original DAE system.

We now prove several results regarding the structure of the adjoint DAE system.

First, we show that the constraint equations (2.13c)-(2.13d) can be interpreted as the

statement that the Hamiltonian H has the same time dependence as the “dynamical” Hamiltonian,

Hd : T ∗Md⊕Φ
∗! R,

Hd(q,u, p,λ ) = 〈p, f (q,u)〉,

when evaluated along a solution curve.

Proposition 3.2.8. For a solution curve (q,u, p,λ ) of (2.12),

d
dt

H(q(t),u(t), p(t),λ (t)) =
d
dt

Hd(q(t),u(t), p(t),λ (t)).

Proof. For brevity, all functions below are appropriately evaluated along the solution curve. We
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have

d
dt

H =
∂H
∂qi q̇i +

∂H
∂ p j

ṗ j +
∂H
∂ua u̇a +

∂H
∂λA

λ̇A

=
∂H
∂qi q̇i +

∂H
∂ p j

ṗ j +

(
pi

∂ f i

∂ua +λA
∂φ A

∂ua

)
u̇a +φ

A
λ̇A

=
∂H
∂qi q̇i +

∂H
∂ p j

ṗ j

=
∂Hd

∂qi q̇i +
∂Hd

∂ p j
ṗ j =

d
dt

Hd,

where in the third equality, we used (2.13c) and (2.13d).

Remark 3.2.11. A more geometric way to view the above proposition is as follows: note that if

a partially-defined vector field X exists such that iX Ω0 = dH, then the change of H in a given

direction Y , at any point where X is defined, can be computed as dH(Y ) = Ω0(X ,Y ). Observe

that the kernel of Ω0 is locally spanned by ∂/∂u, ∂/∂λ , i.e., it is spanned by the coordinate

vectors in the algebraic coordinates. Hence, the change of H in the algebraic coordinate

directions is zero. This justifies referring to (u,λ ) as “algebraic” variables.

We now prove a result regarding the conservation of a quadratic invariant, analogous to

the case of cotangent lifted adjoint systems in the ODE case. To do this, we define the variational

equations as the linearization of the DAE (2.11a)-(2.11b). The coordinate expressions for the

variational equations are obtained by taking the variation of equations (2.11a)-(2.11b) with

respect to variations (δq,δu),

q̇i = f i(q,u), (2.14a)

0 = φ
A(q,u), (2.14b)

d
dt

δqi =
∂ f i(q,u)

∂q j δq j +
∂ f i(q,u)

∂ua δua, (2.14c)

0 =
∂φ A(q,u)

∂q j δq j +
∂φ A(q,u)

∂ua δua. (2.14d)
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Proposition 3.2.9. For a solution (q,u, p,λ ) of the adjoint DAE system (2.13a)-(2.13d) and

a solution (q,u,δq,δu) of the variational equations (2.14a)-(2.14d), covering the same curve

(q,u), one has
d
dt
〈p(t),δq(t)〉= 0.

Proof. This follows from a direct computation,

d
dt
〈p,δq〉= d

dt

(
piδqi)= ṗ jδq j + pi

d
dt

δqi

=−pi
∂ f i

∂q j δq j−λA
∂φ A

∂q j δq j + pi
∂ f i

∂q j δq j + pi
∂ f i

∂ua δua

=−λA
∂φ A

∂q j δq j + pi
∂ f i

∂ua δua

=

(
λA

∂φ A

∂ua + pi
∂ f i

∂ua

)
δua = 0,

where we used (2.13b), (2.14c), (2.14d), and (2.13d).

Remark 3.2.12. Although we proved the previous proposition in coordinates, it can be under-

stood intrinsically through the presymplecticity of the adjoint DAE flow. To see this, assume a

partially-defined vector field X exists such that iX Ω0 = dH. Then, the flow of X preserves Ω0,

which follows from

LX Ω0 = iX dΩ0 +d(iX Ω0) = d(iX Ω0) = d2H = 0.

The coordinate expression for the preservation of the presymplectic form Ω0 = dqi∧d pi, with the

appropriate choice of first variations, gives the previous proposition, analogous to the argument

that we made in the symplectic (unconstrained) case.

Additionally, as we will see in Section 3.3.1, Proposition 3.2.9 will provide a method for

computing adjoint sensitivities.

These two observations are interesting when constructing numerical methods to compute

adjoint sensitivities, since if we can construct integrators that preserve the presymplectic form,
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then it will preserve the quadratic invariant and hence, be suitable for computing adjoint

sensitivities efficiently.

Remark 3.2.13. For an index 1 DAE (2.11a)-(2.11b), since ∂φ/∂u is (pointwise) invertible

for a fixed curve (q,u), one can solve for δu as a function of δq in the variational equation

(2.14d) and substitute this into (2.14c) to obtain an explicit ODE for δq. Hence, in the index 1

case, given a solution (q,u) of the DAE (2.11a)-(2.11b) and an initial condition δq(0) in the

tangent fiber over q(0), there is a corresponding (at least local) unique solution of the variational

equations.

DAE Index and the Presymplectic Constraint Algorithm

In this section, we relate the index of the DAE (2.11a)-(2.11b) to the number of steps for

convergence in the presymplectic constraint algorithm associated with the adjoint DAE system

(2.12). In particular, we show that for an index 1 DAE, the presymplectic constraint algorithm

for the associated adjoint DAE system converges after νP = 1 step. Subsequently, we discuss

how one can formally handle the more general index ν DAE case.

We consider again the presymplectic system given by the adjoint DAE system, P =

T ∗Md⊕Φ∗ equipped with the presymplectic form Ω0 = dq∧d p and Hamiltonian H(q,u, p,λ ) =

〈p, f (q,u)〉+ 〈λ ,φ(q,u)〉, as discussed in the previous section. Our goal is to bound the number

of steps in the presymplectic constraint algorithm νP for this presymplectic system in terms of

the index ν of the underlying DAE (2.11a)-(2.11b).

Recall the presymplectic constraint algorithm discussed in Section 3.1.2. We first deter-

mine the primary constraint manifold P1. Observe that since Ω0 = dq∧d p, we have the local

expression ker(Ω0)|(q,u,p,λ ) = span{∂/∂u,∂/∂λ}. Thus, we require that

∂H
∂u

= 0,

∂H
∂λ

= 0,
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i.e., P1 consists of the points (q,u, p,λ ) such that

0 =
∂H(q,u, p,λ )

∂ua = pi
∂ f i(q,u)

∂ua +λA
∂φ A(q,u)

∂ua ,

0 =
∂H(q,u, p,λ )

∂λ A = φ
A(q,u).

These are of course the constraint equations (2.13c)-(2.13d) of the adjoint DAE system.

We now consider first the case when the DAE system (2.11a)-(2.11b) has index ν = 1

and subsequently, consider the general case ν ≥ 1.

The Presymplectic Constraint Algorithm for ν = 1. For the case ν = 1, we will show

that the presymplectic constraint algorithm terminates after 1 step, i.e., νP = ν = 1.

Now, assume that the DAE system (2.11a)-(2.11b) has index ν = 1, i.e., for each (q,u) ∈

Md×Ma such that φ(q,u) = 0, the matrix with Ath row and ath column entry

∂φ A(q,u)
∂ua

is invertible. Observe that the definition of the presymplectic constraint algorithm, equation

(1.1), is local and hence, we seek a local coordinate expression for Ω1 ≡Ω0|P1 and its kernel.

Let (q,u, p,λ ) ∈ P1. In particular, φ(q,u) = 0. Since ∂φ(q,u)/∂u is invertible, by the

implicit function theorem, one can locally solve for u as a function of q, which we denote

u = u(q), such that φ(q,u(q)) = 0. Then, one can furthermore locally solve for λ as a function

of q and p from the second constraint equation,

λA(q, p) =−

[(
∂φ(q,u(q))

∂u

)−1
]a

A

pi
∂ f i(q,u(q))

∂ua .

Thus, we can coordinatize P1 via coordinates (q′, p′), where the inclusion i1 : P1 ↪! P is given by
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the coordinate expression

i1 : (q′, p′) 7! (q′,u(q′), p′,λ (q′, p′)).

Then, one obtains the local expression for Ω1,

Ω1 = i∗1Ω0 = i∗1(dq)∧ i∗1(d p) = dq′∧d p′.

This is clearly nondegenerate, i.e., Zp = 0 for any Z ∈ ker(Ω1), p ∈ P1, so the presymplectic

constraint algorithm terminates, P2 = P1. We conclude that νP = 1.

To conclude the discussion of the index 1 case, we obtain coordinate expressions for the

resulting nondegenerate Hamiltonian system. The Hamiltonian on P1 can be expressed as

H1(q′, p′) = H(i1(q′, p′)) = 〈p′, f (q′,u(q′))〉+ 〈λ (q′, p′),φ(q′,u(q′))〉= 〈p′, f (q′,u(q′))〉.

Thus, with the coordinate expression X = q̇′i∂/∂q′i+ ṗ′i∂/∂ p′i, Hamilton’s equations iX Ω1 = dH1

can be expressed as

q̇′i =
∂H1

∂ p′i
= f i(q′,u(q′)),

ṗ′i =−
∂H1

∂q′i
=−p′j

∂ f j(q′,u(q′))
∂qi − p′j

∂ f j(q′,u(q′))
∂ua

∂ua(q′)
∂q′i

.

We will now show explicitly that this Hamiltonian system solves (2.13a)-(2.13d) along the

submanifold P1. Clearly, the latter two equations (2.13c)-(2.13d) are satisfied, by definition of P1.

So, we want to show that the first two equations (2.13a)-(2.13b) are satisfied. Using the second

constraint equation (2.13d), we have

−p′j
∂ f j(q′,u(q′))

∂ua = λA(q′, p′)
∂φ A(q′,u(q′))

∂ua .
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Substituting this into the equation for ṗ′i above gives

ṗ′i =−p′j
∂ f j(q′,u(q′))

∂qi +λA(q′, p′)
∂φ A(q′,u(q′))

∂ua
∂ua(q′)

∂q′i
.

By the implicit function theorem, one has

∂φ A(q′,u(q′))
∂ua

∂ua(q′)
∂q′i

=−∂φ A(q′,u(q′))
∂qi .

Hence, the Hamiltonian system on P1 can be equivalently expressed as

q̇′i = f i(q′,u(q′)),

ṗ′i =−p′j
∂ f j(q′,u(q′))

∂qi −λA(q′, p′)
∂φ A(q′,u(q′))

∂qi .

Thus, we have explicitly verified that (2.13a)-(2.13d) are satisfied along P1. Note that since the

presymplectic constraint algorithm terminates at νP = 1, X is guaranteed to be tangent to P1.

One can also verify this explicitly by computing the pushforward Ti1(X) and verifying that it

annihilates the constraint functions whose zero level set defines P1,

(q,u, p,λ ) 7! φ
A(q,u),

(q,u, p,λ ) 7! pi
∂ f i(q,u)

∂ua +λA
∂φ A(q,u)

∂ua .

Remark 3.2.14. It is interesting to note that the Hamiltonian system iX Ω1 = dH1, which we

obtained by forming the adjoint system of the underlying index 1 DAE and subsequently, reducing

the index of the adjoint DAE system through the presymplectic constraint algorithm, can be

equivalently obtained (at least locally) by first reducing the index of the underlying DAE and

then forming the adjoint system.

More precisely, if one locally solves φ(q,u) = 0 for u = u(q), then the index 1 DAE can
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be reduced to an ODE,

q̇ = f (q,u(q)).

Subsequently, we can form the adjoint system to this ODE, as discussed in Section 3.2.2. The

corresponding Hamiltonian is H(q, p) = 〈p, f (q,u(q))〉, which is the same as H1.

Thus, for the index 1 case, the process of forming the adjoint system and reducing the

index commute.

Remark 3.2.15. In the language of the presymplectic constraint algorithm, Proposition 3.2.8

can be restated as the statement that the Hamiltonian H and its first derivatives, restricted to the

primary constraint manifold, agrees with the dynamical Hamiltonian H1 and its first derivatives.

Remark 3.2.16. An alternative view of the solution theory of the presymplectic adjoint DAE

system (2.13a)-(2.13d) is through singular perturbation theory (see, for example, Berglund [13]

and Chen and Trenn [32]). We proceed by writing (2.13a)-(2.13d) as

q̇ =
∂H
∂ p

= f (q,u),

ṗ =−∂H
∂q

=−[Dq f (q,u)]∗p− [Dqφ(q,u)]∗λ ,

0 =
∂H
∂λ

= φ(q,u),

0 =−∂H
∂u

=−[Du f (q,u)]∗p− [Duφ(q,u)]∗λ .

Applying a singular perturbation to the constraint equations yields the system

q̇ =
∂H
∂ p

,

ṗ =−∂H
∂q

,

ε u̇ =
∂H
∂λ

,

ελ̇ =−∂H
∂u

,
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where ε > 0. Observe that this is a nondegenerate Hamiltonian system with H(q,u, p,λ ) as

previously defined but with the modified symplectic form Ωε = dq∧ d p+ ε du∧ dλ . Then,

the above system can be expressed iXH Ωε = dH. In the language of perturbation theory, the

primary constraint manifold for the presymplectic system is precisely the slow manifold of the

singularly perturbed system. One can utilize techniques from singular perturbation theory to

develop a solution theory for this system, using Tihonov’s theorem, whose assumptions for this

particular system depend on the eigenvalues of the algebraic Hessian D2
u,λ H (see, Berglund

[13]). Although we will not elaborate on this here, this could be an interesting approach for the

existence, stability, and approximation theory of such systems. In particular, the slow manifold

integrators introduced in Burby and Klotz [24] may be relevant to their discretization. It is also

interesting to note that for a solution (qε , pε ,uε ,λε) of the singularly perturbed system and a

solution (δqε ,δuε) of the variational equations,

d
dt

δqε = Dq f (qε ,uε)δqε +Du f (qε ,uε)δuε ,

ε
d
dt

δuε = Dqφ(qε ,uε)δqε +Duφ(qε ,uε)δuε ,

one has the perturbed adjoint variational quadratic conservation law

d
dt

(
〈pε ,δqε〉+ ε〈λε ,δuε〉

)
= 0,

which follows immediately from the preservation of Ωε under the symplectic flow.

The Presymplectic Constraint Algorithm for General ν ≥ 1. Note that for the general

case, we assume that the index of the DAE is finite, 1≤ ν < ∞.

In this case, there are two possible approaches to reduce the adjoint system: either

form the adjoint system associated with the index ν DAE and then successively apply the

presymplectic constraint algorithm or, alternatively, reduce the index of the DAE, form the

adjoint system, and then apply the presymplectic constraint algorithm as necessary.
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Since we have already worked out the presymplectic constraint algorithm for the index 1

case, we will take the latter approach. Namely, we reduce an index ν DAE to an index 1 DAE,

and subsequently, apply the presymplectic constraint algorithm to the reduced index 1 DAE.

Given an index ν DAE, it is generally possible to reduce the DAE to an index 1 DAE using the

algorithm introduced in Mattsson and Söderlind [89]. The process of index reduction is given

by differentiating the equations of the DAE to reveal hidden constraints. Geometrically, the

process of index reduction can be understood as the successive jet prolongation of the DAE and

subsequent projection back onto the first jet (see, Reid et al. [100]).

Thus, given an index ν DAE ẋ = f̃ (x,y), φ̃(x,y) = 0, we can, after ν − 1 reduction

steps, transform it into an index 1 DAE of the form q̇ = f (q,u), φ(q,u) = 0. Subsequently,

we can form the adjoint DAE system and apply one iteration of the presymplectic constraint

algorithm to obtain the underlying nondegenerate dynamical system. If we let the νR,P denote

the minimum number of DAE index reduction steps plus presymplectic constraint algorithm

iterations necessary to take an index ν DAE and obtain the underlying nondegenerate Hamiltonian

system associated with the adjoint, we have νR,P ≤ ν .

Remark 3.2.17. Note that we could have reduced the index ν DAE to an explicit ODE after

ν reduction steps, and subsequently, formed the adjoint. While this is formally equivalent to

the above procedure by Remark 3.2.14, we prefer to keep the DAE in index 1 form. This is

especially preferable from the viewpoint of numerics: if one reduces an index 1 DAE to an ODE

and attempts to apply a numerical integrator, it is generically the case that the discrete flow drifts

off the constraint manifold. For this reason, it is preferable to develop numerical integrators for

the index 1 adjoint DAE system directly to prevent constraint violation.

Example 3.2.1 (Hessenberg Index 2 DAE). Consider a Hessenberg index 2 DAE, i.e., a DAE of
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the form

q̇ = f (q,u),

0 = g(q),

where (q,u) ∈ Rn×Rm, f : Rn×Rm! Rn, g : Rn! Rm, and ∂g
∂q

∂ f
∂u is pointwise invertible. We

reduce this to an index 1 DAE (2.11a)-(2.11b) as follows. Let Md = g−1({0}) be the dynamical

configuration space which we will assume is a submanifold of Rn. For example, this is true if

g is a constant rank map. Furthermore, let Ma = Rm be the algebraic configuration space. To

reduce the index, we differentiate the constraint g(q) = 0 with respect to time. This is equivalent

to enforcing that the dynamics are tangent to Md . This gives

0 =
∂gA(q)

∂qi q̇i =
∂gA(q)

∂qi f i(q,u)≡ φ
A(q,u).

Hence, we can form the semi-explicit index 1 system on Md×Ma given by

q̇ = f (q,u),

0 = φ(q,u).

The above system is an index 1 DAE since ∂φ

∂u = ∂g
∂q

∂ f
∂u is pointwise invertible.

We now form the adjoint DAE system associated with this index 1 DAE, (2.13a)-(2.13d).
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Expressing the constraint in terms of g and f , instead of φ , gives

q̇i = f i(q,u),

ṗ j =−pi
∂ f i(q,u)

∂q j −λA

(
∂ 2gA(q)
∂q j∂qi f i(q,u)+

∂gA(q)
∂qi

∂ f i(q,u)
∂q j

)
,

0 =
∂gA(q)

∂qi f i(q,u),

0 = pi
∂ f i(q,u)

∂ua +λA

(
∂gA(q)

∂qi
∂ f i(q,u)

∂ua

)
.

We can then apply one iteration of the presymplectic constraint algorithm, as discussed above in

the index ν = 1 case, to obtain the underlying nondegenerate Hamiltonian dynamics. Restricting

to the primary constraint manifold, using the first constraint equation to solve for u = u(q) by

the implicit function theorem and subsequently, using the second constraint equation to solve for

λ = λ (q, p) by inverting
(

∂g
∂q

∂ f
∂u

)T
, gives the Hamiltonian system

q̇′i = f i(q′,u(q′)),

ṗ′j =−p′i
∂ f i(q′,u(q′))

∂q j −λA(q′, p′)
(

∂ 2gA(q′)
∂q j∂qi f i(q′,u(q′))+

∂gA(q′)
∂qi

∂ f i(q′,u(q′))
∂q j

)
.

Adjoint Systems for DAEs with Augmented Hamiltonians

In Section 3.2.2, we augmented the adjoint ODE Hamiltonian by some function L. In

this section, we do analogously for the adjoint DAE system.

To begin, let H(q,u, p,λ ) = 〈p, f (q,u)〉+ 〈λ ,φ(q,u)〉 be the Hamiltonian on the gen-

eralized phase space bundle corresponding to the DAE q̇ = f (q,u), 0 = φ(q,u), and let L :

Md×Ma! R be the function that we would like to augment. We identify L with its pullback
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through T ∗Md⊕Φ∗!Md×Ma. Then, we define the augmented Hamiltonian

HL ≡ H +L : T ∗Md⊕Φ
∗! R

(q,u, p,λ ) 7! H(q,u, p,λ )+L(q,u).

We define the augmented adjoint DAE system as the presymplectic system

iXHL
Ω0 = dHL. (2.15)

A direct calculation yields the coordinate expression, along an integral curve of such a (generally,

partially-defined) vector field XHL ,

q̇i = f i(q,u), (2.16a)

ṗ j =−pi
∂ f i

∂q j −λA
∂φ A

∂q j −
∂L
∂q j , (2.16b)

0 = φ
A(q,u), (2.16c)

0 = pi
∂ f i

∂ua +λA
∂φ A

∂ua +
∂L
∂ua . (2.16d)

Remark 3.2.18. Observe that if the base DAE (2.11a)-(2.11b) has index 1, then the above system

has index 1 by the exact same argument given in the nonaugmented case. After reduction by

applying the presymplectic constraint algorithm and solving for u as a function of q and λ as

a function of (q, p), the underlying nondegenerate Hamiltonian system on the primary (final)

constraint manifold corresponds to the Hamiltonian

(HL)1(q′, p′) = 〈p′, f (q′,u(q′))〉+L(q′,u(q′)),

which is the adjoint Hamiltonian for the ODE q̇′ = f (q′,u(q′)), augmented by L(q′,u(q′)).

However, as we will discuss in Section 3.3.3, it is not uncommon in optimal control
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problems for ∂φ/∂u to be singular, but the presence of
∫

Ldt in the minimization objective may

uniquely specify the singular degrees of freedom.

We now prove an analogous proposition to Proposition 3.2.9, modified by the presence

of L in the Hamiltonian. We again consider the variational equations (2.14a)-(2.14d) associated

with the base DAE (2.11a)-(2.11b), which for simplicity we express in matrix derivative notation

as

q̇ = f (q,u), (2.17a)

0 = φ(q,u), (2.17b)

d
dt

δq = Dq f (q,u)δq+Du f (q,u)δu, (2.17c)

0 = Dqφ(q,u)δq+Duφ(q,u)δu. (2.17d)

Proposition 3.2.10. For a solution (q,u, p,λ ) of the augmented adjoint DAE system (2.16a)-

(2.16d) and a solution (q,u,δq,δu) of the variational equations (2.17a)-(2.17d), covering the

same solution (q,u) of the base DAE (2.11a)-(2.11b),

d
dt
〈p,δq〉=−〈∇qL,δq〉−〈∇uL,δu〉. (2.18)

Proof. This follows from a direct computation:

d
dt
〈p,δq〉= 〈ṗ,δq〉+ 〈p, d

dt
δq〉

=−〈[Dq f ]∗p,δq〉−〈[Dqφ ]∗λ ,δq〉−〈∇qL,δq〉+ 〈p,Dq f δq〉+ 〈p,Du f δu〉

=−〈λ ,Dqφδq〉−〈∇qL,δq〉+ 〈p,Du f δu〉

= 〈λ ,Duφδu〉−〈∇qL,δq〉+ 〈p,Du f δu〉

=−〈∇qL,δq〉+ 〈[Duφ ]∗λ +[Du f ]∗p,δu〉

=−〈∇qL,δq〉−〈∇uL,δu〉,
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where in the fourth equality above we used (2.17d) and in the sixth equality above we used

(2.16d).

Remark 3.2.19. Analogous to the ODE case discussed in Remark 3.2.7, we remark that for the

nonaugmented adjoint DAE system (2.13a)-(2.13d), we have preservation of 〈p,δq〉 by virtue of

presymplecticity. On the other hand, for the augmented adjoint DAE system, despite preserving

the same presymplectic form, the change of 〈p,δq〉 now measures the change in L with respect to

variations in q and u. This can be understood from the fact that the adjoint equations for (p,λ )

in the nonaugmented case, (2.13b) and (2.13d), are linear in (p,λ ), so that one can identify first

variations in (p,λ ) with (p,λ ); whereas, in the augmented case, equations (2.16b) and (2.16d)

are affine in (p,λ ), so such an identification cannot be made. Furthermore, the failure of (2.16b)

and (2.16d) to be linear in (p,λ ) are given precisely by ∇qL and ∇uL, respectively. Thus, in the

augmented case, this leads to the additional terms −〈∇uL,δq〉−〈∇qL,δu〉 in equation (2.18).

3.2.4 An Intrinsic Type II Variational Principle for Adjoint Systems

We now show that the adjoint system (2.9) arises from an intrinsic Type II variational

principle. In coordinates, the type II variational principle corresponds to fixed initial position

q(t0) = q0 and fixed final momenta p(t1) = p1, which are the boundary conditions used in adjoint

sensitivity analysis, as we will discuss in Section 3.3.1.

Consider the augmented adjoint system

q̇ = ∂HL/∂ p = f (q),

ṗ =−∂HL/∂q =−[D f (q)]∗p−dL(q),

where HL is the augmented Hamiltonian. Recall that HL is intrinsically defined by HL =

i f̂ Θ+π∗T ∗ML, where Θ is the tautological one-form on T ∗M, πT ∗M : T ∗M!M is the cotangent

bundle projection, and L : M! R.
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We would like to show that the above system arises from a variational principle. We

consider the action

S[ψ] =
∫ t1

t0
ψ
∗ (Θ−HL dt) ,

where ψ : (t0, t1)! T ∗M is a curve on T ∗M.

In order to derive the augmented adjoint system from a variational principle, we have to

place boundary conditions on the curve ψ . Note that Type I boundary conditions, given by fixing

the position endpoints, πT ∗M(ψ(t0)) = q0 and πT ∗M(ψ(t1)) = q1, are in general incompatible

with the adjoint system. To see this, recall that the augmented adjoint system lifts an ODE on

M, given by q̇ = f (q). For the base ODE on M, once one specifies q(t0) = q0, this determines

q(t1) as q(t1) = Φt1−t0(q(t0)), where Φt denotes the time-t flow of f , assuming that the flow Φt

is defined for time t = t1− t0. Thus, one cannot in general impose boundary conditions for q at

two different times for the base ODE on M. Since the adjoint system lifts this ODE to an ODE

on T ∗M, it follows that one cannot in general place Type I boundary conditions for the adjoint

system.

On the other hand, Type II boundary conditions, q(t0) = q0 and p(t1) = p1, do not

have the aforementioned inconsistency. However, Type II boundary conditions for Hamiltonian

systems, in general, suffer the drawback that they do not make intrinsic sense on a manifold, since

one cannot specify a covector p(t1) = p1 without specifying the basepoint q(t1). Fortunately,

for Hamiltonian systems which are adjoint systems, Type II boundary conditions do make

intrinsic sense, due to the fact they cover an ODE on the base manifold M. To see this, if we

fix the boundary condition q(t0) = q0, the time t1− t0 flow of f , assuming it exists for this

time, fixes the basepoint q(t1) = Φt1−t0(q(t0)). In terms of the curve ψ , this means that once

we fix πT ∗M(ψ(t0)) = q0, we have ψ(t1) ∈ T ∗q(t1)M, where q(t1) = Φt1−t0(q(t0)). Thus, it then

makes sense to specify a boundary condition on ψ(t1) ∈ T ∗q(t1)M of the form ψ(t1) = p1, for

any p1 ∈ T ∗q(t1)M. Figure 3.2 illustrates Type II boundary conditions for an adjoint system; the

flow of f on the base manifold evolves the initial condition q0 forward to q1 and subsequently,
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the vertical component of the lifted vector field XHL evolves the final momenta p1, based at q1,

backwards to the initial momenta p0. As we will see in Section 3.3.1, p1 can be chosen by taking

p1 = dC|q1 to compute the sensivity of a terminal cost function C : M!R with a non-augmented

Hamiltonian HL = H or by taking p1 = 0 to compute the sensivity of a running cost function L

with an augmented Hamiltonian HL = H +L.

Figure 3.2. Type II boundary conditions for adjoint systems

Remark 3.2.20. It is interesting to note that the reason for which Type I boundary conditions for

adjoint systems are generally inconsistent (namely, that they cover an ODE on the base manifold)

is precisely the reason that one can make intrinsic sense of Type II boundary conditions for

adjoint systems. That is, Type II boundary conditions are consistent while Type I boundary

conditions are generally inconsistent precisely because an adjoint system is a Hamiltonian

system which covers an ODE on the base manifold. Conversely, every Hamiltonian system on

T ∗M which covers an ODE on the base manifold M is locally an adjoint system. To see this, if

a Hamiltonian system covers an ODE on the base manifold, then Hamilton’s equation in the

position variable q̇ = ∂H/∂ p must equal f (q) for some vector field f on M. Thus, we have
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∂H/∂ p = f (q). Integrating this equation yields a coordinate expression for the Hamiltonian

H(q, p) = 〈p, f (q)〉+L(q),

where the “constant of integration” (constant with respect to the p variable) L(q) is some

arbitrary function of q. This is precisely the form of the Hamiltonian for an augmented adjoint

system.

To state an intrinsic Type II variational principle for adjoint systems, we regard the

integrand of the above action (before pulling back by ψ) as a contact form on the extended phase

space I×T ∗M. Namely, given an interval I = (t0, t1)⊂R, t0 6= t1, let πI×T ∗M : I×T ∗M! T ∗M

denote the projection onto the second factor. Then, define the contact form

ΘH = π
∗
I×T ∗MΘ−Hdt,

where we have identified H : T ∗M ! R with its pullback through πI×T ∗M. In coordinates,

ΘH(q, p) = pdq−Hdt. Additionally, we define the presymplectic form ΩH =−dΘH . Further-

more, we identify curves on T ∗M, of the form ψ : I! T ∗M, with curves on I×T ∗M which

cover the identity on I; in coordinates, this identification reads ψ(t) = (t,q(t), p(t)). The above

action can then be expressed

S[ψ] =
∫

I
ψ
∗
ΘH .

To enforce Type II boundary conditions πT ∗Q(ψ(t0)) = q0 ∈M and ψ(t1) = p1 ∈ T ∗q1
M where

q1 = Φt1−t0(q0), we define the space of admissible variations with respect to these boundary

conditions as the space of vector fields X on T ∗M (identified with vertical vector fields on

I×T ∗M! T ∗M) such that (T πT ∗MX)(q0) = 0 and X(ψ1) = 0, where ψ1 = (q1, p1) ∈ T ∗q1
M.

Intuitively, the first condition states that an admissible variation does not vary the initial position

q(t0) = q0, whereas the second condition states that an admissible variation does not vary the

final momenta ψ1.
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Proposition 3.2.11. Fix an interval I = (t0, t1) ⊂ R, t0 6= t1. Consider the above augmented

Hamiltonian, where we assume that the time t1− t0 flow of the vector field f exists. Let q0 ∈M

and let p1 ∈ T ∗q1
M where q1 = Φt1−t0(q0). Then, the augmented adjoint system with Type II

boundary conditions

q̇ = f (q),

ṗ =−[D f (q)]∗p−dL(q),

q(t0) = q0,

p(t1) = p1,

is intrinsically given by the variation principle: enforce the stationarity of the action

S[ψ] =
∫

I
ψ
∗
ΘH

with respect to admissible variations.

Proof. Let ϕε denote the time-ε flow of an admissible variation X . Then, the variation principle

for the action with respect to admissible variations is given by

0 = dS[ψ] ·X =
d

dε

∣∣∣
ε=0

S[ϕε ◦ψ] =
∫

I
ψ
∗ d

dε

∣∣∣
0
ϕ
∗
ε ΘH =

∫
I
ψ
∗LX ΘH

=−
∫

I
ψ
∗(iX ΩH)+

∫
I
ψ
∗d(iX ΘH) =−

∫
I
ψ
∗(iX ΩH)+

∫
I
d(ψ∗iX ΘH).

Observe that the boundary term
∫

I d(ψ∗iX ΘH) = (ψ∗iX ΘH)(t1)− (ψ∗iX ΘH)(t0) vanishes by the

fact that X is an admissible variation since (ψ∗iX ΘH)(t) = 〈p(t),(T πT ∗MX)(q(t))〉. Hence, the

stationarity condition is given by ∫
I
ψ
∗(iX ΩH) = 0.

By the fundamental lemma of the calculus of variations, we have ψ∗(iX ΩH) = 0, whose coordi-
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nate expression is precisely the adjoint system.

Remark 3.2.21. In our definition of the space of admissible variations, we set the conditions

that the variation at q0 is purely vertical, (T πT ∗MX)(q0) = 0, whereas at q1, we enforced that

the variation is zero, X(q1, p1) = 0. In coordinates where

X = δq
∂

∂q
+δ p

∂

∂ p
,

the first condition reads δq0 = 0 and the second condition reads δq1 = 0, δ p1 = 0. It would

thus seem that we are enforcing an overdetermined set of three boundary conditions q(t0) = q0,

q(t1) = q1, p(t1) = p1. However, the resolution is that the variations δq0 and δq1 are not

independent; fixing one to zero sets the other one to zero, by virtue of the fact that the adjoint

system covers an ODE on M. Thus, with the chosen variational principle, we are only setting

two independent boundary conditions, q(t0) = q0, p(t1) = p1.

Furthermore, in the above proof, by looking at the coordinate expression of the boundary

term,

ψ
∗iX ΘH

∣∣∣t1
t0
= 〈p(t1),δq(t1)〉−〈p(t0),δq(t0)〉,

we see that we only used δq0 = 0, δq1 = 0. We did not need that δ p1 = 0 for the boundary terms

to vanish. However, without setting δ p1 = 0, we only have the system

q̇ = f (q),

ṗ =−[D f (q)]∗p−dL(q),

q(t0) = q0.

Hence, this system is underdetermined; any curve p(t) in the fibers of T ∗M satisfying

ṗ =−[D f (q)]∗p−dL(q)
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would suffice. Thus, to uniquely fix the system, we must also supply a boundary condition of

the form p(t1) = p1. Thus, even though the condition δ p1 = 0 is not strictly necessary in the

variational principle to derive the equations of motion, it is necessary to fix the curve p(t) in the

fibers that define the adjoint system with Type II boundary conditions.

Analogously the adjoint DAE system (2.16a)-(2.16d), for index 1 DAEs, can be derived

by an intrinsic Type II variational principle, by considering variations V of the action

S[ψ] =
∫ t1

t0
pdq− (H(q,u, p,λ )+L(q,u))dt

such that T ΠqV |t0 = 0 and T Π(q,p)V |t1 = 0 where Πq : (q,u, p,λ ) 7! q and Π(q,p) : (q,u, p,λ ) 7!

(q, p) are the canonical bundle projections on T ∗Md⊕Φ∗.

Remark 3.2.22. We will use the Type II variational structures associated with the adjoint ODE

and adjoint DAE systems to construct numerical integrators in Section 3.3.2.

3.3 Applications

3.3.1 Adjoint Sensitivity Analysis for Semi-explicit Index 1 DAEs

In this section, we discuss how one can utilize adjoint systems to compute sensitivities.

We will split this into four cases; namely, we want to compute sensitivities for ODEs or DAEs

(we will focus on index 1 DAEs), and whether we are computing the sensitivity of a terminal

cost or the sensitivity of a running cost.

The relevant adjoint system used to compute sensitivities in all four cases is summarized

in Table 3.1.

Note that in our calculations below, the top row (the ODE case) can be formally obtained

from the bottom row (the DAE case) simply by ignoring the algebraic variables (u,λ ) and

letting the constraint function φ be identically zero. Thus, we will focus on the bottom row, i.e.,

computing sensitivities of a terminal cost function and of a running cost function, subject to a
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Table 3.1. Adjoint systems for sensitivity analysis of terminal and running cost functions subject to the
dynamics of an ODE or DAE.

Terminal Cost Running Cost

ODE Adjoint ODE System (2.6a)-(2.6b) Augmented Adjoint ODE System (2.10a)-(2.10b)

DAE Adjoint DAE System (2.13a)-(2.13d) Augmented Adjoint DAE System (2.16a)-(2.16d)

DAE constraint. In both cases, we will first show how the adjoint sensitivity can be derived using

a traditional variational argument. Subsequently, we will show how the adjoint sensitivity can be

derived more simply by using Propositions 3.2.9 and 3.2.10.

Adjoint Sensitivity of a Terminal Cost. Consider the DAE q̇ = f (q,u), 0 = φ(q,u)

as in Section 3.2.3. We will assume that Md is a vector space and additionally, that the DAE

has index 1. We would like to extract the gradient of a terminal cost function C(q(t f )) with

respect to the initial condition q(0) = α , i.e., we want to extract the sensitivity of C(q(t f )) with

respect to an infinitesimal perturbation in the initial condition, given by ∇αC(q(t f )). Consider

the functional J defined by

J =C(q(t f ))−〈p0,q(0)−α〉−
∫ t f

0
[〈p, q̇− f (q,u)〉−〈λ ,φ(q,u)〉]dt.

Observe that for (q,u) satisfying the given DAE with initial condition q(0) = α , J coincides

with C(q(t f )). We think of p0 as a free parameter. For simplicity, we will use matrix derivative

notation instead of indices. Computing the variation of J yields

δJ = 〈∇qC(q(t f )),δq(t f )〉−〈p0,δq(0)−δα〉

−
∫ t f

0

[
〈p, d

dt
δq−Dq f (q,u)δq〉

−〈p,Du f (q,u)δu〉−〈λ ,Dqφ(q,u)δq+Duφ(q,u)δu〉
]
dt.

Integrating by parts in the term containing d
dt δq and restricting to a solution (q,u, p,λ ) of the
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adjoint DAE system (2.13a)-(2.13d) yields

δJ = 〈∇qC(q(t f ))− p(t f ),δq(t f )〉−〈p0,δα〉+ 〈p(0)− p0,δq(0)〉.

We enforce the endpoint condition p(t f ) = ∇qC(q(t f )) and choose p0 = p(0), which yields

δJ = 〈p(0),δα〉.

Hence, the sensitivity of C(q(t f )) is given by

p(0) = ∇αJ = ∇αC(q(t f )),

with initial condition q(0) = α and terminal condition p(t f ) = ∇qC(q(t f )). Thus, the adjoint

sensitivity can be computed by setting the terminal condition on p(t f ) above and subsequently,

solving for the momenta p at time 0. In order for this to be well-defined, we have to verify that

the given initial and terminal conditions lie on the primary constraint manifold P1. However, as

discussed in Section 3.2.3, since the DAE has index 1, we can always solve for the algebraic

variables u = u(q) and λ = λ (q, p) and thus, we are free to choose the initial and terminal values

of q and p, respectively. For higher index DAEs, one has to ensure that these conditions are

compatible with the final constraint manifold. For example, this is done in [26] in the case of

Hessenberg index 2 DAEs. Alternatively, at least theoretically, for higher index DAEs, one

can reduce the DAE to an index 1 DAE and then the above discussion applies, however, this

reduction may fail in practice due to numerical cancellation.

Note that the above adjoint sensitivity result is also a consequence of the preservation of

the quadratic invariant 〈p,v〉 as in Proposition 3.2.9. From this proposition, one has that

〈p(t f ),δq(t f )〉= 〈p(0),δq(0)〉,
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where δq satisfies the variational equations. Setting p(t f ) = ∇qC(q(t f )) and δq(0) = δα gives

the same result. As mentioned in Remark 3.2.12, this quadratic invariant arises from the

presymplecticity of the adjoint DAE system. Thus, a numerical integrator which preserves the

presymplectic structure is desirable for computing adjoint sensitivities, as it exactly preserves the

quadratic invariant that allows the adjoint sensitivities to be accurately and efficiently computed.

We will discuss this in more detail in Section 3.3.2.

Adjoint Sensitivity of a Running Cost. Again, consider an index 1 DAE q̇ = f (q,u),

0 = φ(q,u). We would like to extract the sensitivity of a running cost function

∫ t f

0
L(q,u)dt,

where L : Md ×Ma! R, with respect to an infinitesimal perturbation in the initial condition

q(0) = α . Consider the functional J defined by

J =−〈p0,q(0)−α〉+
∫ t f

0
[L(q,u)+ 〈p, f (q,u)− q̇〉+ 〈λ ,φ(q,u)〉]dt.

Observe that when the DAE is satisfied with initial condition q(0) = α , J =
∫ t f

0 Ldt. Now, we

would to compute the implicit change in
∫ t f

0 Ldt with respect to a perturbation δα in the initial

condition. Taking the variation in J yields

δJ =−〈p0,δq(0)−δα〉

+
∫ t f

0

[
〈∇qL,δq〉+ 〈∇uL,δu〉+ 〈p,Dq f δq− d

dt
δq〉

+ 〈p,Du f δu〉+ 〈λ ,Dqφδq+Duφδu〉
]
dt

=−〈p0,δq(0)−δα〉−〈p(t f ),δq(t f )〉+ 〈p(0),δq(0)〉

+
∫ t f

0

[
〈∇qL+[Dq f ]∗p+[Dqφ ]∗λ + ṗ,δq〉+ 〈∇uL+[Du f ]∗p+[Duφ ]∗λ ,δu〉

]
dt.

Restricting to a solution (q,u, p,λ ) of the augmented adjoint DAE system (2.16a)-(2.16d), setting
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the terminal condition p(t f ) = 0, and choosing p0 = p(0) gives δJ = 〈p(0),δα〉. Hence, the

implicit sensitivity of
∫ t f

0 Ldt with respect to a change δα in the initial condition is given by

p(0) = δαJ = δα

∫ t f

0
L(q,u)dt.

Thus, the adjoint sensitivity of a running cost functional with respect to a perturbation in the

initial condition can be computed by using the augmented adjoint DAE system (2.16a)-(2.16d)

with terminal condition p(t f ) = 0 to solve for the momenta p at time 0.

Note that the above adjoint sensitivity result can be obtained from Proposition 3.2.10 as

follows. We write equation (2.18) as

d
dt
〈p,δq〉=−〈dL,(δq,δu)〉,

to highlight that the right hand side measures the total induced variation of L. Now, we integrate

this equation from 0 to t f , which gives

〈p(t f ),δq(t f )〉−〈p(0),δq(0)〉=−
∫ t f

0
〈dL,(δq,δu)〉dt.

Since we want to determine the change in the running cost functional with respect to a perturba-

tion in the initial condition, we set p(t f ) = 0 which yields

〈p(0),δq(0)〉=
∫ t f

0
〈dL,(δq,δu)〉dt.

The right hand side is the total change induced on the running cost functional, whereas the

left hand side tells us how this change is implicitly induced from a perturbation δq(0) in the

initial condition. Note that a perturbation in the initial condition δq(0) will generally induce

perturbations in both q and u, according to the variational equations. Such a curve (δq,δu)

satisfying the variational equations exists in the index 1 case as noted in Remark 3.2.13. Thus, we
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arrive at the same conclusion as the variational argument: p(0) is the desired adjoint sensitivity.

To summarize, adjoint sensitivities for terminal and running costs can be computed using

the properties of adjoint systems, such as the various aforementioned propositions regarding

d
dt 〈p,δq〉, which is zero in the nonaugmented case and measures the variation of L in the

augmented case. In the case of a terminal cost, one sets an inhomogeneous terminal condition

p(t f ) = ∇qC(q(t f )) and backpropagates the momenta through the nonaugmented adjoint DAE

system (2.13a)-(2.13d) to obtain the sensitivity p(0). On the other hand, in the case of a running

cost, one sets a homogeneous terminal condition p(t f ) = 0 and backpropagates the momenta

through the augmented adjoint DAE system (2.16a)-(2.16d) to obtain the sensitivity p(0).

The various propositions used to derive the above adjoint sensitivity results are summa-

rized in Table 3.2. We also include the ODE case, since it follows similarly.

Table 3.2. Quadratic adjoint variational conservation laws corresponding to adjoint sensitivity analysis of
terminal and running cost functions subject to the dynamics of an ODE or DAE.

Terminal Cost Running Cost

ODE Proposition 3.2.3, d
dt 〈p,δq〉= 0 Proposition 3.2.6, d

dt 〈p,δq〉=−〈dL,δq〉

DAE Proposition 3.2.9, d
dt 〈p,δq〉= 0 Proposition 3.2.10, d

dt 〈p,δq〉=−〈dL,(δq,δu)〉

In Section 3.3.2, we will construct integrators that admit discrete analogues of the above

propositions, and hence, are suitable for computing discrete adjoint sensitivities.

3.3.2 Structure-Preserving Discretizations of Adjoint Systems

In this section, we utilize the Galerkin Hamiltonian variational integrators of Leok and

Zhang [76] to construct structure-preserving integrators which admit discrete analogues of

Propositions 3.2.3, 3.2.6, 3.2.9, and 3.2.10, and are therefore suitable for numerical adjoint

sensitivity analysis. For brevity, the proofs of these discrete analogues can be found in Appendix

3.6.1.
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We start by recalling the construction of Galerkin Hamiltonian variational integrators

as introduced in Leok and Zhang [76]. We assume that the base manifold Q is a vector space

and thus, we have the identification T ∗Q∼= Q×Q∗. To construct a variational integrator for a

Hamiltonian system on T ∗Q, one starts with the exact Type II generating function

H+
d,exact(q0, p1) = ext

[
〈p1,q1〉−

∫
∆t

0
[〈p, q̇〉−H(q, p)]dt

]
,

where one extremizes over C2 curves on the cotangent bundle satisfying q(0) = q0, p(∆t) = p1.

This is a Type II generating function in the sense that it defines a symplectic map (q0, p1) 7!

(q1, p0) by q1 = D2H+
d,exact(q0, p1), p0 = D1H+

d,exact(q0, p1).

To approximate this generating function, one approximates the integral above using

a quadrature rule and extremizes the resulting expression over a finite-dimensional subspace

satisfying the prescribed boundary conditions. This yields the Galerkin discrete Hamiltonian

H+
d (q0, p1) = ext

[
〈p1,q1〉−∆t ∑

i
bi

(
〈Pi,V i〉−H(Qi,Pi)

)]
,

where ∆t > 0 is the timestep, q0,q1, p0 and p1 are numerical approximations to q(0),q(∆t), p(0)

and p(∆t), respectively, bi > 0 are quadrature weights corresponding to quadrature nodes

ci ∈ [0,1], Qi and Pi are internal stages representing q(ci∆t), p(ci∆t), respectively, and V is

related to Q by Qi = q0+∆t ∑ j ai jV j, where the coefficients ai j arise from the choice of function

space. The expression above is extremized over the internal stages Qi,Pi and subsequently, one

applies the discrete right Hamilton’s equations

q1 = D2H+
d (q0, p1),

p0 = D1H+
d (q0, p1),

to obtain a Galerkin Hamiltonian variational integrator. The extremization conditions and the
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discrete right Hamilton’s equations can be expressed as

q1 = q0 +∆t ∑
i

biDpH(Qi,Pi), (3.1a)

Qi = q0 +∆t ∑
j

ai jDpH(Q j,P j), (3.1b)

p1 = p0−∆t ∑
i

biDqH(Qi,Pi), (3.1c)

Pi = p0−∆t ∑
j

ãi jDqH(Qi,Pi), (3.1d)

where we interpret ai j as Runge–Kutta coefficients and ãi j = (bib j−b ja ji)/bi as the symplectic

adjoint of the ai j coefficients. Thus, (3.1a)-(3.1d) can be viewed as a symplectic partitioned

Runge–Kutta method.

We will consider such methods in four cases: adjoint systems corresponding to a base

ODE or DAE, and whether or not the corresponding system is augmented. Note that in the

DAE case, we will have to modify the above construction because the system is presymplectic.

Furthermore, we will assume that all of the relevant configuration spaces are vector spaces.

Nonaugmented Adjoint ODE System. The simplest case to consider is the nonaug-

mented adjoint ODE system (2.6a)-(2.6b). Since the quadratic conservation law in Proposition

3.2.3,
d
dt
〈p,δq〉= 0,

arises from symplecticity, a structure-preserving discretization can be obtained by applying a

symplectic integrator. This case is already discussed in Sanz-Serna [106], so we will only outline

it briefly.

Applying the Galerkin Hamiltonian variational integrator (3.1a)-(3.1d) to the Hamiltonian
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for the adjoint ODE system, H(q, p) = 〈p, f (q)〉, yields

q1 = q0 +∆t ∑
i

bi f (Qi), (3.2a)

Qi = q0 +∆t ∑
j

ai j f (Q j), (3.2b)

p1 = p0−∆t ∑
i

bi[D f (Qi)]∗Pi, (3.2c)

Pi = p0−∆t ∑
j

ãi j[D f (Q j)]∗P j. (3.2d)

In the setting of adjoint sensitivity analysis of a terminal cost function, the appropriate boundary

condition to prescribe on the momenta is p1 = ∇qC(q(t f )), as discussed in Section 3.3.1.

Since the above integrator is symplectic, we have the symplectic conservation law,

dq1∧d p1 = dq0∧d p0,

when evaluated on discrete first variations of (3.2a)-(3.2d). In this setting, a discrete first variation

can be identified with solutions of the linearization of (3.2a)-(3.2d). For the linearization of the

equations in the position variables, (3.2a)-(3.2b), we have

δq1 = δq0 +∆t ∑
i

biD f (Qi)δQi, (3.3a)

δQi = δq0 +∆t ∑
j

ai jD f (Q j)δQ j. (3.3b)

As observed in Sanz-Serna [106], while we obtained this by linearizing the discrete equations,

one could also obtain this by first linearizing (2.1) and subsequently, applying the Runge–Kutta

scheme to the linearization. For the linearization of the equations for the adjoint variables,

(3.2c)-(3.2d), observe that they are already linear in the adjoint variables, so we can identify

the linearization with itself. Thus, we can choose for first variations vector fields V as the first

variation corresponding to the solution of the linearized position equation and W as the first
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variation corresponding to the solution of the adjoint equation itself. With these choices, the

above symplectic conservation law yields

0 = dq1∧d p1(V,W )|(q1,p1)−dq0∧d p0(V,W )|(q0,p0) = 〈p1,δq1〉−〈p0,δq0〉.

This is of course a discrete analogue of Proposition 3.2.3. Note that one can derive the conserva-

tion law 〈p1,δq1〉= 〈p0,δq0〉 directly by starting with the expression 〈p1,δq1〉 and substituting

the discrete equations where appropriate. We will do this in the more general augmented case

below.

Augmented Adjoint ODE System. We now consider the case of the augmented adjoint

ODE system (2.10a)-(2.10b). In the continuous setting, we have from Proposition 3.2.6,

d
dt
〈p,δq〉=−〈dL,δq〉.

We would like to construct an integrator which admits a discrete analogue of this equation. To

do this, we apply the Galerkin Hamiltonian variational integrator, equations (3.1a)-(3.1d), to the

augmented Hamiltonian HL(q, p) = 〈p, f (q)〉+L(q). This gives

q1 = q0 +∆t ∑
i

bi f (Qi), (3.4a)

Qi = q0 +∆t ∑
j

ai j f (Q j), (3.4b)

p1 = p0−∆t ∑
i

bi([D f (Qi)]∗Pi +dL(Qi)), (3.4c)

Pi = p0−∆t ∑
j

ãi j([D f (Q j)]∗P j +dL(Q j)). (3.4d)

We now prove a discrete analogue of Proposition 3.2.6. To do this, we again consider the

discrete variational equations for the position variables, (3.3a)-(3.3b).
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Proposition 3.3.1. With the above notation, the above integrator satisfies

〈p1,δq1〉= 〈p0,δq0〉−∆t ∑
i

bi〈dL(Qi),δQi〉. (3.5)

Proof. See Appendix 3.6.1.

Remark 3.3.1. To see that this is a discrete analogue of d
dt 〈p,δq〉=−〈dL,δq〉, we write it in

integral form as

〈p1,δq1〉= 〈p0,δq0〉−
∫

∆t

0
〈dL(q),δq〉dt.

Then, applying the quadrature rule on [0,∆t] given by quadrature weights bi∆t and quadrature

nodes ci∆t, the above integral is approximated by

∫
∆t

0
〈dL(q),δq〉dt ≈ ∆t ∑

i
bi〈dL(q(ci∆t)),δq(ci∆t)〉= ∆t ∑

i
bi〈dL(Qi),δQi〉,

which yields equation (3.5). The discrete analogue is natural in the sense that the quadrature

rule for which the discrete equation (3.5) approximates the continuous equation is the same as

the quadrature rule used to approximate the exact discrete generating function. This occurs more

generally for such Hamiltonian variational integrators, as noted in Tran and Leok [112] for the

more general setting of multisymplectic Hamiltonian variational integrators.

For adjoint sensitivity analysis of a running cost
∫

Ldt, the appropriate boundary condi-

tion to prescribe on the momenta is p1 = 0, as discussed in Section 3.3.1. With such a boundary

condition, equation (3.5) reduces to

〈p0,δq0〉= ∆t ∑
i

bi〈dL(Qi),δQi〉.

Thus, p0 gives the discrete sensitivity, i.e., the change in the quadrature approximation of
∫

Ldt

induced by a change in the initial condition along a discrete solution trajectory. One can compute

this quantity directly via the direct method, where one needs to integrate the discrete variational
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equations for every desired search direction δq0. On the other hand, by the above proposition,

one can compute this quantity using the adjoint method: one integrates the adjoint equation with

p1 = 0 once to compute p0 and subsequently, pair p0 with any search direction δq0 to obtain the

sensitivity in that direction. By the above proposition, both methods give the same sensitivities.

However, assuming the search space has dimension n > 1, the adjoint method is more efficient

since it only requires O(1) integrations and O(n) vector-vector products, whereas the direct

method requires O(n) integrations and O(ns) vector-vector products where s≥ 1 is the number

of Runge–Kutta stages, since, in the direct method, one has to compute 〈dL(Qi),δQi〉 for each i

and for each choice of δq0.

Nonaugmented Adjoint DAE System. We will now construct discrete Hamiltonian

variational integrators for the adjoint DAE system (2.13a)-(2.13d), where we assume that the

base DAE has index 1. To construct such a method, we have to modify the Galerkin Hamiltonian

variational integrator (3.1a)-(3.1d), so that it is applicable to the presymplectic adjoint DAE

system.

First, consider a general presymplectic system iX Ω′ = dH. Note that, locally, any

presymplectic system can be transformed to the canonical form (see, Cariñena et al. [27]),

q̇ = DpH(q, p,r),

ṗ =−DqH(q, p,r),

0 = DrH(q, p,r),

where, in these coordinates, Ω′ = dq∧d p, so that ker(Ω′) = span{∂/∂ r}. The action for this

system is given by
∫

∆t
0 (〈p, q̇〉 −H(q, p,r))dt. We approximate this integral by quadrature,

introduce internal stages for q, p as before, and additionally introduce internal stages Ri = r(cih).
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This gives the discrete generating function

H+
d (q0, p1) = ext

[
〈p1,q1〉−∆t ∑

i
bi
(
〈Pi,V i〉−H(Qi,Pi,Ri)

)]
,

where again V is related to the internal stages of Q by Qi = q0 +∆t ∑ j ai jV j and the above ex-

pression is extremized over the internal stages Qi,Pi,Ri. The discrete right Hamilton’s equations

are again given by

q1 = H+
d (q0, p1), p0 = H+

d (q0, p1),

which we interpret as the evolution equations of the system. There are no evolution equations for

r due to the presymplectic structure and the absence of derivatives of r in the action. This gives

the integrator

q1 = q0 +∆t ∑
i

biDpH(Qi,Pi,Ri), (3.6a)

Qi = q0 +∆t ∑
j

ai jDpH(Qi,Pi,Ri), (3.6b)

p1 = p0−∆t ∑
i

biDqH(Qi,Pi,Ri), (3.6c)

Pi = p0−∆t ∑
j

ãi jDqH(Qi,Pi,Ri), (3.6d)

0 = DrH(Qi,Pi,Ri), (3.6e)

where (3.6b), (3.6d), (3.6e) arise from extremizing with respect to Pi,Qi,Ri, respectively, while

(3.6a) and (3.6c) arise from the discrete right Hamilton’s equations. This integrator is presym-

plectic, in the sense that

dq1∧d p1 = dq0∧d p0,

when evaluated on discrete first variations. The proof is formally identical to the symplectic case.

For this reason, we refer to (3.6a)-(3.6e) as a presymplectic Galerkin Hamiltonian variational
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integrator.

Remark 3.3.2. In general, the system (3.6a)-(3.6e) evolves on the primary constraint manifold

given implicitly by the zero level set of DrH, however, it may not evolve on the final constraint

manifold. This is not an issue for us since we are dealing with adjoint DAE systems for index

1 DAEs, for which we know the primary constraint manifold and the final constraint manifold

coincide. For the general case, one may need to additionally differentiate the constraint equation

DrH = 0 to obtain hidden constraints.

Thus, the method (3.6a)-(3.6e) is generally only applicable to index 1 presymplectic

systems, unless we add in further hidden constraints. In order for the continuous presymplectic

system to have index 1, it is sufficient that the Hessian of H with respect to the algebraic variables,

D2
r H, is (pointwise) invertible on the primary constraint manifold. This is the case for the adjoint

DAE system corresponding to an index 1 DAE.

We now specialize to the adjoint DAE system (2.13a)-(2.13d), corresponding to an

index 1 DAE, which is already in the above canonical form with r = (u,λ ) and H(q,u, p,λ ) =

〈p, f (q,u)〉+ 〈λ ,φ(q,u)〉. Note that we reordered the argument of H, (q, p,r) = (q, p,u,λ )!

(q,u, p,λ ), in order to be consistent with the previous notation used throughout. We label the

internal stages for the algebraic variables as Ri = (U i,Λi). Applying the presymplectic Galerkin
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Hamiltonian variational integrator to this particular system yields

q1 = q0 +∆t ∑
i

bi f (Qi,U i), (3.7a)

Qi = q0 +∆t ∑
j

ai j f (Q j,U j), (3.7b)

p1 = p0−∆t ∑
i

bi
(
[Dq f (Qi,U i)]∗Pi +[Dqφ(Qi,U i)]∗Λi) , (3.7c)

Pi = p0−∆t ∑
j

ãi j
(
[Dq f (Q j,U j)]∗P j +[Dqφ(Q j,U j)]∗Λ j) , (3.7d)

0 = φ(Qi,U i), (3.7e)

0 = [Du f (Qi,U i)]∗Pi +[Duφ(Qi,U i)]∗Λi, (3.7f)

where (3.7b), (3.7d), (3.7e), (3.7f) arise from extremizing over Pi,Qi,Λi,U i, respectively, while

(3.7a), (3.7c) arise from the discrete right Hamilton’s equations.

Remark 3.3.3. In order for q1 to appropriately satisfy the constraint, we should take the final

quadrature point to be cs = 1 (for an s-stage method), so that φ(q1,U s) = φ(Qs,U s) = 0. In this

case, equation (3.7a) and equation (3.7b) with i = s are redundant. Note that with the choice

cs = 1, they are still consistent (i.e., are the same equation), since in the Galerkin construction,

the coefficients ai j and bi are defined as

ai j =
∫ ci

0
φ j(τ)dτ, bi =

∫ 1

0
φ j(τ)dτ,

where φ j are functions on [0,1] which interpolate the nodes c j (see, Leok and Zhang [76]).

Hence, as j = b j, so that the two equations are consistent. However, we will write the system as

above for conceptual clarity. Furthermore, even in the case where one does not take cs = 1, the

proposition that we prove below still holds, despite the possibility of constraint violations.

A similar remark holds for the adjoint variable p and the associated constraint (3.7f),

except we think of p0 as the unknown, instead of p1.
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Note that (3.7a), (3.7b), (3.7e) is a standard Runge–Kutta discretization of an index 1

DAE q̇ = f (q,u), 0 = φ(q,u), where again, usually cs = 1. Associated with these equations are

the variational equations given by their linearization,

δq1 = δq0 +∆t ∑
i

bi(Dq f (Qi,U i)δQi +Du f (Qi,U i)δU i), (3.8a)

δQi = δq0 +∆t ∑
j

ai j(Dq f (Q j,U j)δQ j +Du f (Q j,U j)δU j), (3.8b)

0 = Dqφ(Qi,U i)δQi +Duφ(Qi,U i)δU i, (3.8c)

which is the Runge–Kutta discretization of the continuous variational equations (2.14c) - (2.14d).

Proposition 3.3.2. With the above notation, the above integrator satisfies

〈p1,δq1〉= 〈p0,δq0〉.

Proof. See Appendix 3.6.1.

Thus, the above integrator admits a discrete analogue of Proposition 3.2.9 for the nonaug-

mented adjoint DAE system. By setting p1 = ∇qC(q(t f )), one can use this integrator to compute

the sensitivity p0 of a terminal cost function with respect to a perturbation in the initial condition.

As discussed before, this only requires O(1) integrations instead of O(n) integrations via the

direct method (for a dimension n search space). Furthermore, the adjoint method requires only

O(1) numerical solves of the constraints, while the direct method requires O(n) numerical

solves.

Remark 3.3.4. Since we are assuming the DAE has index 1, it is always possible to prescribe

an arbitrary initial condition q0 (and δq0) and terminal condition p1, since the corresponding

algebraic variables can always formally be solved for using the corresponding constraints. In

practice, one generally has to solve the constraints to some tolerance, e.g., through an iterative
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scheme. If the constraints are only satisfied to a tolerance O(ε), then the above proposition

holds to O(sε), where s is the number of Runge–Kutta stages.

Remark 3.3.5. The above method (3.7a)-(3.7f) is presymplectic, since it is a special case of the

more general presymplectic Galerkin Hamiltonian variational integrator (3.6a)-(3.6e). Although

we proved it directly, the above proposition could also have been proven from presymplecticity,

with the appropriate choices of first variations.

Augmented Adjoint DAE System. Finally, we construct a discrete Hamiltonian vari-

ational integrator for the augmented adjoint DAE system (2.16a)-(2.16d) associated with an

index 1 DAE. To do this, we apply the presymplectic Galerkin Hamiltonian variational inte-

grator (3.6a)-(3.6e) with r = (u,λ ) and with Hamiltonian given by the augmented adjoint DAE

Hamiltonian,

HL(q,u, p,λ ) = 〈p, f (q,u)〉+ 〈λ ,φ(q,u)〉+L(q,u).

The presymplectic integrator is then

q1 = q0 +∆t ∑
i

bi f (Qi,U i), (3.9a)

Qi = q0 +∆t ∑
j

ai j f (Q j,U j), (3.9b)

p1 = p0−∆t ∑
i

bi
(
[Dq f (Qi,U i)]∗Pi +[Dqφ(Qi,U i)]∗Λi +DqL(Qi,U i)

)
, (3.9c)

Pi = p0−∆t ∑
j

ãi j
(
[Dq f (Q j,U j)]∗P j +[Dqφ(Q j,U j)]∗Λ j +DqL(Qi,U i)

)
, (3.9d)

0 = φ(Qi,U i), (3.9e)

0 = [Du f (Qi,U i)]∗Pi +[Duφ(Qi,U i)]∗Λi +DuL(Qi,U i). (3.9f)

The associated variational equations are again (3.8a)-(3.8c). Remarks analogous to the nonaug-

mented case regarding setting the quadrature node cs = 1 and solvability of these systems under

the index 1 assumption can be made.
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Proposition 3.3.3. With the above notation, the above integrator satisfies

〈p1,δq1〉= 〈p0,δq0〉−∆t ∑
i

bi〈dL(Qi,U i),(δQi,δU i)〉.

Proof. See Appendix 3.6.1.

Remark 3.3.6. Analogous to the remark in the augmented adjoint ODE case, the above proposi-

tion is a discrete analogue of Proposition 3.2.10, in integral form,

〈p1,δq1〉−〈p0,δq0〉=−
∫

∆t

0
〈dL(q,u),(δq,δu)〉dt.

The discrete analogue is natural in the sense that it is just quadrature applied to the right hand

side of this equation, with the same quadrature rule used to discretize the generating function.

Remark 3.3.7. As with the augmented adjoint ODE case, the above proposition allows one to

compute numerical sensitivities of a running cost function by solving for p0 with p1 = 0, which

is more efficient than the direct method.

To summarize, we have utilized Galerkin Hamiltonian variational integrators to construct

methods which admit natural discrete analogues of the various propositions used for sensitivity

analysis. We summarize the results below.

Terminal Cost Running Cost

ODE 〈p1,δq1〉= 〈p0,δq0〉 〈p1,δq1〉= 〈p0,δq0〉−∆t ∑i bi〈dL(Qi),δQi〉

DAE 〈p1,δq1〉= 〈p0,δq0〉 〈p1,δq1〉= 〈p0,δq0〉−∆t ∑i bi〈dL(Qi,U i),(δQi,δU i)〉

Naturality of the Adjoint DAE System Discretization

To conclude our discussion of discretizing adjoint systems, we prove a discrete extension

of the fact that, for an index 1 DAE, the process of index reduction and forming the adjoint system
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commute, as discussed in Section 3.2.3. Namely, we will show that, starting from an index 1

DAE (2.11a)-(2.11b), the processes of reduction, forming the adjoint system, and discretization

all commute, for particular choices of these processes which we will define and choose below.

This can be summarized in the following commutative diagram.

Index 1 DAE ODE

Discrete DAE Discrete ODE

Presymplectic Adjoint
DAE System

Symplectic Adjoint
ODE System

Presymplectic Galerkin
Hamiltonian Variational

Integrator

Symplectic Galerkin
Hamiltonian Variational

Integrator

Reduce

Reduce

Adjoint Adjoint

Reduce

Reduce

Adjoint Adjoint

Discretize
Discretize

Discretize Discretize

In the above diagram, we will use the convention that the “Discretize” arrows point for-

ward, the “Adjoint” arrows point downward, and the “Reduce” arrows point to the right. For the

“Discretize” arrows on the top face, we take the discretization to be a Runge–Kutta discretization

(of a DAE on the left and of an ODE on the right, with the same Runge–Kutta coefficients in

both cases). For the “Discretize” arrows on the bottom face, we take the discretization to be

the symplectic partitioned Runge–Kutta discretization induced by the discretization of the base

DAE or ODE, i.e., the momenta expansion coefficients ãi j are the symplectic adjoint of the

coefficients ai j used on the top face. We have already defined the “Adjoint” arrows on the back

face, as discussed in Section 3.2. For the “Adjoint” arrows on the front face, we define them as

forming the discrete adjoint system corresponding to a discrete (and generally nonlinear) system

of equations and we will review this notion where needed in the proof. We have already defined
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the “Reduce” arrows on the back face, as discussed in Section 3.2.3. For the “Reduce” arrows

on the front face, we define this as solving for the discrete algebraic variables in terms of the

discrete kinematic variables through the discrete constraint equations. With these choices, the

above diagram commutes, as we will show. To prove this, it suffices to prove that the diagrams

on each of the six faces commutes. To keep the exposition concise, we provide the proof in

Appendix 3.6.2 and move on to discuss the implications of this result.

The previous discussion shows that the presymplectic Galerkin Hamiltonian variational

integrator construction is natural for discretizing adjoint (index 1) DAE systems, in the sense

that the integrator is equivalent to the integrator produced from applying a symplectic Galerkin

Hamiltonian variational integrator to the underlying nondegenerate Hamiltonian system. Of

course, in practice, one cannot generally determine the function u = u(q) needed to reduce the

DAE to an ODE. Therefore, one generally works with the presymplectic Galerkin Hamiltonian

variational integrator instead, where one iteratively solves the constraint equations. However,

although reduction then symplectic integration is often impractical, one can utilize this naturality

to derive properties of the presymplectic integrator. For example, we will use this naturality to

prove a variational error analysis result.

The basic idea for the variational error analysis result goes as follows: one utilizes the

naturality to relate the presymplectic variational integrator to a symplectic variational integrator of

the underlying nondegenerate Hamiltonian system and subsequently, applies the variational error

analysis result in the symplectic case (Schmitt and Leok [107]). Recall the discrete generating

function for the previously constructed presymplectic variational integrator,

H+
d (q0, p1;∆t) = ext

[
〈p1,q1〉−∆t ∑

i
bi
(
〈Pi,V i〉−H(Qi,U i,Pi,Λi)

)]
,

where we have now explicitly included the timestep dependence in H+
d and H is the Hamiltonian

for the adjoint DAE system (augmented or nonaugmented), corresponding to an index 1 DAE.

Proposition 3.3.4. Suppose the discrete generating function H+
d (q0, p1;∆t) for the presymplectic
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variational integrator approximates the exact discrete generating function H+,E
d (q0, p1;∆t) to

order r, i.e.,

H+
d (q0, p1;∆t) = H+,E

d (q0, p1;∆t)+O(∆tr+1),

and the Hamiltonian H is continuously differentiable, then the Type II map (q0, p1) 7! (q1, p0)

and the evolution map (q0, p0) 7! (q1, p1) are order-r accurate.

Proof. The proof follows from two simple steps. First, observe that the discrete generating

function H+
d (q0, p1;∆t) for the presymplectic integrator is also the discrete generating function

for the symplectic integrator for the underlying nondegenerate Hamiltonian system. This

follows since in the definition of H+
d , one extremizes over the algebraic variables U i,Λi which

enforces the constraints and hence, determines U i,Λi as functions of the kinematic variables

Qi,Pi. Thus, the discrete (or continuous) Type II map determined by H+
d (or H+,E

d , respectively),

(q0, p1) 7! (q1, p0), is the same as the Type II map for the underlying nondegenerate Hamiltonian

system, which is just another consequence of the aforementioned naturality. One then applies

the variational error analysis result in Schmitt and Leok [107].

Remark 3.3.8. Another way to view this result is that the order of an implicit (partitioned)

Runge–Kutta scheme for index 1 DAEs is the same as the order of an implicit (partitioned)

Runge–Kutta scheme for ODEs (Roche [101]), since the aforementioned discretization generates

a partitioned Runge–Kutta scheme. To be complete, we should determine the order for the full

presymplectic flow, i.e., including also the algebraic variables. As discussed in Roche [101],

as long as asi = bi for each i, which, as we have discussed, is a natural choice and holds as

long as cs = 1, there is no order reduction arising from the algebraic variables. Thus, with this

assumption, the presymplectic variational integrator in the previous proposition approximates

the presymplectic flow, in both the kinematic and algebraic variables, to order r.

Remark 3.3.9. In the above proposition, we considered both the Type II map (q0, p1) 7! (q1, p0)

and the evolution map (q0, p0) 7! (q1, p1). The latter is of course the traditional way to view the
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map corresponding to a numerical method, but the former is the form of the map used in adjoint

sensitivity analysis.

Furthermore, in light of this naturality, we can view Propositions 3.3.2 and 3.3.3 as

following from the analogous propositions for symplectic Galerkin Hamiltonian variational

integrators, applied to the underlying nondegenerate Hamiltonian system.

3.3.3 Optimal Control of DAE Systems

In this section, we derive the optimality conditions for an optimal control problem (OCP)

subject to a semi-explicit DAE constraint. It is known that the optimality conditions can be

described as a presymplectic system on the generalized phase space bundle (Delgado-Téllez

and Ibort [35], Echeverrı́a-Enrı́quez et al. [38]). We will subsequently consider a variational

discretization of such OCPs and discuss the naturality of such discretizations.

Consider the following optimal control problem in Bolza form, subject to a DAE con-

straint, which we refer to as (OCP-DAE),

min C(q(t f ))+
∫ t f

0
L(q,u)dt

subject to

q̇ = f (q,u),

0 = φ(q,u),

q0 = q(0),

0 = φ f (q(t f )),

where the DAE system q̇ = f (q,u), 0 = φ(q,u) is over Md×Ma as described in Section 3.2.3,

C : Md ! R is the terminal cost, L : Md ×Ma ! R is the running cost, the initial condition

q(0) = q0 is prescribed, and for generality, a terminal constraint φ f (q(t f )) = 0 is also imposed,

where φ f is a map from Md into some vector space V .
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We assume a local optimum to (OCP-DAE). We then adjoin the constraints to J using

adjoint variables, which gives the adjoined functional

J =C(q(t f ))+ 〈λ f ,φ f (q(t f ))〉+
∫ t f

0
[L(q,u)+ 〈p, f (q,u)− q̇〉+ 〈λ ,φ(q,u)〉]dt.

The optimality conditions are given by the condition that J is stationary about the local optimum,

δJ = 0 (Biegler [15]). For simplicity in the notation, we will use matrix derivative instead of

indices. Note also that we will implicitly leave out the variation of the adjoint variables, since

those terms pair with the DAE constraints, which vanish at the local optimum. The optimality

condition δJ = 0 is then

0 = δJ = 〈∇qC(q(t f )),δq(t f )〉+ 〈λ f ,Dqφ f (q(t f ))δq(t f )〉

+
∫ t f

0

[
〈∇qL(q,u),δq〉+ 〈∇uL(q,u),δu〉+ 〈p,Dq f (q,u)δq〉+ 〈p,Du f (q,u)δu〉

−〈p, d
dt

δq〉+ 〈λ ,Dqφ(q,u)δq〉+ 〈λ ,Duφ(q,u)δu〉
]
dt

= 〈∇qC(q(t f ))+ [Dqφ f (q(t f ))]
∗
λ f − p(t f ),δq(t f )〉

+
∫ t f

0

[
〈∇qL(q,u)+ [Dq f (q,u)]∗p+ ṗ+[Dqφ(q,u)]∗λ ,δq〉

+ 〈∇uL(q,u)+ [Du f (q,u)]∗p+[Duφ(q,u)]∗λ ,δu〉
]
dt,

where we integrated by parts on the term 〈p, d
dt δq〉 and used δq(0) = 0 since the initial condition
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is fixed. Enforcing stationarity for all such variations gives the optimality conditions,

q̇ = f (q,u), (3.10a)

ṗ =−[Dq f (q,u)]∗p− [Dqφ(q,u)]∗λ −∇qL(q,u), (3.10b)

0 = φ(q,u), (3.10c)

0 = ∇uL(q,u)+ [Du f (q,u)]∗p+[Duφ(q,u)]∗λ , (3.10d)

0 = φ f (q(t f )), (3.10e)

p(t f ) = ∇qC(q(t f ))+ [Dqφ f (q(t f ))]
∗
λ f . (3.10f)

The first four optimality conditions (3.10a)-(3.10d) are precisely the augmented adjoint DAE

equations, (2.16a)-(2.16d). The last two optimality conditions (3.10e), (3.10f) are the terminal

constraint and the associated transversality condition, respectively. Note that these conditions

are only sufficient for a trajectory (q,u, p,λ ) to be an extremum of the optimal control problem;

whether or not the trajectory is optimal depends on the properties of the DAE constraint and cost

function, e.g., convexity of L.

Regular Index 1 Optimal Control. In the literature, the problem (OCP-DAE) is usually

formulated by making a distinction between algebraic variables and control variables, (q,y,u),

instead of (q,u) (see, for example, Biegler [15] and Aguiar et al. [3]). This does not change

any of the previous discussion of the optimality conditions, except that (3.10d) splits into two

equations for y and u. That is, the distinction is not formally important for the previous discussion.

It is of course important when actually solving such an optimal control problem. For example,

the constraint function φ(q,y,u) may have a singular matrix derivative with respect to (y,u) but

may have a nonsingular matrix derivative with respect to y. In such a case, one interprets y as the

algebraic variable, in that it can locally be solved in terms of (q,u) via the constraint, and the

control variable u as “free” to optimize over. We now briefly elaborate on this case.

We take the configuration manifold for the algebraic variables to be Ma =Ya×U 3 (y,u),
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where y is interpreted as the algebraic constraint variable and u is interpreted as the control

variable. We will assume that the control space U is compact. The constraint has the form

φ(q,y,u) = 0, and we assume that ∂φ/∂y is pointwise invertible. We consider the following

optimal control problem,

min
∫ t f

0
L(q,y,u)dt

subject to

q̇ = f (q,y,u),

0 = φ(q,y,u),

q0 = q(0).

We perform an analogous argument to before, except that, in this case, since U may have a

boundary, the optimality for the control variable u will either require u to lie on ∂U or will

require the stationarity of the adjoined functional with respect to variations in u. In any case, the

necessary conditions for optimality can be expressed as

q̇ = f (q,y,u), (3.11a)

ṗ =−[Dq f (q,y,u)]∗p− [Dqφ(q,y,u)]∗λ −∇qL(q,y,u), (3.11b)

0 = φ(q,y,u), (3.11c)

0 = ∇yL(q,y,u)+ [Dy f (q,y,u)]∗p+[Dyφ(q,y,u)]∗λ , (3.11d)

u = argmin
u′∈U

HL(q,y,u′), (3.11e)

0 = p(t f ), (3.11f)

where HL is the augmented Hamiltonian HL(q,y,u) = L(q,y,u)+ 〈p, f (q,y,u)〉+ 〈λ ,φ(q,y,u)〉.
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Assuming that u lies in the interior of U , (3.11e) can be expressed as

0 = ∇uL(q,y,u)+ [Du f (q,y,u)]∗p+[Duφ(q,y,u)]∗λ ,

or DuHL(q,y,u) = 0. We say that an optimal control problem with a DAE constraint forms

a regular index 1 system if both ∂φ/∂y and the Hessian D2
uHL are pointwise invertible. In

this case, whenever u lies on the interior of U , (y,u,λ ) can be locally solved as functions of

(q, p). Thus, in principle, the resulting Hamiltonian ODE for (q, p) can be integrated to yield

extremal trajectories for the optimal control problem. As mentioned before, without additional

assumptions on the DAE and cost function, such a trajectory will only generally be an extremum

but not necessarily optimal.

Of course, in practice, one cannot generally analytically integrate the resulting ODE nor

determine the functions which give (y,u,λ ) in terms of (q, p). Thus, the only practical option is

to discretize the presymplectic system above to compute approximate extremal trajectories. To

integrate such a presymplectic system, one can again use the presymplectic Galerkin Hamiltonian

variational integrator construction discussed in Section 3.3.2. Such an integrator would be natural

in the following sense. First, as discussed in Section 3.3.2, a presymplectic Galerkin Hamiltonian

variational integrator applied to the augmented adjoint DAE system is equivalent to applying

a symplectic Galerkin Hamiltonian variational integrator to the underlying Hamiltonian ODE,

with the same Runge–Kutta expansions for q1,Qi in both methods. Furthermore, as shown in

Sanz-Serna [106], utilizing a symplectic integrator to discretize the extremality conditions is

equivalent to first discretizing the ODE constraint by a Runge–Kutta method and then enforcing

the associated discrete extremality conditions. This also holds in the DAE case.

More precisely, beginning with a regular index 1 optimal control problem, the processes

of reduction, extremization, and discretization commute, for suitable choices of these processes,

analogous to those used in the naturality result discussed in Section 3.3.2. The proof is similar to

the naturality result discussed in Section 3.3.2, where the arrow given by forming the adjoint is
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replaced by extremization. In essence, these are the same, since the extremization condition is

given by the adjoint system, so we will just elaborate briefly. We already know how to extremize

the continuous optimal control problem, with either a DAE constraint or an ODE constraint

after reduction, which results in an adjoint system. We also already know how to discretize

the resulting adjoint system after discretization, using a (pre)symplectic partitioned Runge–

Kutta method. Furthermore, at any step, reduction is just defined to be solving the continuous

or discrete constraints for y in terms of (q,u). Thus, the only major difference compared to

the previous naturality result is defining the discretization of the optimal control problem and

subsequently, how to extremize the discrete optimal control problem. For the regular index 1

optimal control problem,

min
∫ t f

0
L(q,y,u)dt

subject to

q̇ = f (q,y,u),

0 = φ(q,y,u),

q0 = q(0),

its discretization is obtained by replacing the constraints with a Runge–Kutta discretization and

replacing the cost function with its quadrature approximation, using the same quadrature weights

as those in the Runge–Kutta discretization. This can be written as

min ∆t ∑
i

biL(Qi,Y i,U i)

subject to

V i = f (Qi,Y i,U i),

0 = φ(Qi,Y i,U i),
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where Qi = q0 +∆t ∑ j ai jV j, which implicitly encodes q(0) = q0. One can then extremize this

discrete system, which is given by the discrete Euler–Lagrange equations for the discrete action

S= ∆t ∑
i

bi

(
〈Pi,V i− f (Qi,Y i,U i)〉−〈Λi,φ(Qi,Y i,U i)〉−L(Qi,Y i,U i)

)
.

That is, we enforce the discrete constraints by adding to the discrete Lagrangian the appropriate

Lagrange multiplier terms paired with the constraints, where we weighted the Lagrange multi-

pliers Pi,Λi by ∆tbi just as convention, in order to interpret them as the appropriate variables,

as discussed in Appendix 3.6.2. Enforcing extremality of this action recovers a partitioned

Runge–Kutta method applied to the adjoint system corresponding to extremizing the continuous

optimal control problem, as discussed in Appendix 3.6.2, where the Runge–Kutta coefficients for

the momenta are the symplectic adjoint of the original Runge–Kutta coefficients. Alternatively,

starting from the original continuous optimal control problem, one could first reduce the DAE

constraint to an ODE constraint using the invertibility of Dyφ to give

min
∫ t f

0
L(q,y(q,u),u)dt

subject to

q̇ = f (q,y(q,u),u),

q0 = q(0).

One can then discretize this using the same Runge–Kutta method as before, where the cost

function is replaced with a quadrature approximation, and then extremize using Lagrange

multipliers. Alternatively, one can extremize the continuous problem to yield an adjoint system

and then apply a partitioned Runge–Kutta method to that system, where the momenta Runge–

Kutta coefficients are again the symplectic adjoint of the original Runge–Kutta coefficients.

Having defined all of these processes, a direct computation yields that all of the processes

commute, analogous to the computation in Appendix 3.6.2.
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3.3.4 Numerical Example

For our numerical example, we consider the planar pendulum. Although one can for-

mulate this system as an ODE in the angular variable θ , we instead work with this system in

Cartesian coordinates xy where this system is formulated as a DAE, as an academic example of

the theory presented in this paper. We will derive the adjoint DAE system associated to the planar

pendulum DAE, and subsequently, perform a numerical test demonstrating the presymplecticity

of a presymplectic Galerkin Hamiltonian variational integrator applied to this system.

Consider a pendulum of mass m > 0 and length L > 0 confined to the xy plane, where

gravity acts in the vertical y direction, with acceleration −g < 0. This is described by the system

mẍ = ρx,

mÿ = ρy−mg,

x2 + y2 = L2.

This system can be derived from the Lagrangian

L =
1
2

m(ẋ2 + ẏ2)−mg(y−L)+
1
2

ρ(x2 + y2−L2),

where the first term is the kinetic energy, the second term is (minus) the potential energy, and the

third term enforces the constraint x2 + y2 = L2 where ρ is interpreted as a Lagrange multiplier.

If we restrict to the region y < 0, the above system can be expressed as a semi-explicit
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index 1 DAE of the form

ẋ = vx, (3.12a)

v̇x = ρx/m, (3.12b)

0 = x2 + y2−L2, (3.12c)

0 = vxx+ vyy, (3.12d)

0 = m(v2
x + v2

y)−mgy+L2
ρ. (3.12e)

In terms of the notation of Section 3.2.3, we have (x,vx) ∈ Md = (−1,1)×R and

(y,vy,ρ) ∈ Ma = R−×R×R. Letting q = (x,vx) denote the coordinates for the dynamical

variables and u = (y,vy,ρ) denote the coordinates for the algebraic variables, this system can be

expressed in the form (2.11a)-(2.11b), where

f (q,u) =


vx

ρx/m

 ,

φ(q,u) =



x2 + y2−L2

vxx+ vyy

m(v2
x + v2

y)−mgy+L2ρ


.

We regard φ as a section of the constraint bundle Φ given by the trivial vector bundle (Md×

Ma)×R3! Md ×Ma. Coordinatize T ∗Md by (q,u, p) where p = (px, pvx) are the momenta

dual to q = (x,vx) and coordinatize Φ∗ by (q,u,λ ) where λ = (λ1,λ2,λ3) are the coordinates

of the fibers dual to the constraint bundle fibers. The Hamiltonian H : T ∗Md⊕Φ∗! R is then
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given by

H(q,u, p,λ ) = 〈p, f (q,u)〉+ 〈λ ,φ(q,u)〉

= (px pvx)


vx

ρx

+(λ1 λ2 λ3)



x2 + y2−L2

vxx+ vyy

m(v2
x + v2

y)−mgy+L2ρ


.

The presymplectic form Ω0 on T ∗Md⊕Φ∗ is given by

Ω0 = dq∧d p = dx∧d px +dvx∧d pvx .

To obtain an expression for the adjoint DAE system (2.13a)-(2.13d), we compute the derivative
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matrices of f and φ .

Dq f (q,u) =


0 1

ρ/m 0

 ,

Du f (q,u) =


0 0 0

0 0 x/m

 ,

Dqφ(q,u) =



2x 0

vx x

0 2mvx


,

Duφ(q,u) =



2y 0 0

vy y 0

−mg 2mvy L2


.

Note that det(Duφ(q,u)) = 2L2y2 6= 0 for (q,u) ∈Md×Ma and hence, the system is an index 1

DAE as previously claimed.
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The adjoint DAE system (2.13a)-(2.13d) for the planar pendulum is then given by

d
dt


x

vx

=


vx

ρx/m

 , (3.13a)

d
dt


px

pvx

=−


0 1

ρ/m 0


T 

px

pvx

−



2x 0

vx x

0 2mvx



T 

λ1

λ2

λ3


, (3.13b)

0 =



x2 + y2−L2

vxx+ vyy

m(v2
x + v2

y)−mgy+L2ρ


, (3.13c)

0 =


0 0 0

0 0 x/m


T 

px

pvx

+



2y 0 0

vy y 0

−mg 2mvy L2



T 

λ1

λ2

λ3


. (3.13d)

We will apply a presymplectic Galerkin Hamiltonian variational integrator (3.7a)-(3.7f) to

the above system. We choose a first-order Runge–Kutta method, with Runge–Kutta coefficients

a = 1,b = 1,c = 1 and hence, ã = 0. Thus, the internal stages for the position and momenta

are given by Q = q1 and P = p0. With these choices, the presymplectic Galerkin Hamiltonian
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variational integrator can be expressed as

q1 = q0 +∆t f (q1,U),

p1 = p0−∆t
(
[Dq f (q1,U)]∗p0 +[Dqφ(q1,U)]∗Λ

)
,

0 = φ(q1,U),

0 = [Du f (q1,U)]∗p0 +[Duφ(q1,U)]∗Λ.

For our example, we set m = g = L = 1. Letting U = (Y,Vy,P) and Λ = (Λ1,Λ2,Λ3) denote

the internal stages corresponding to u = (y,vy,ρ) and λ = (λ1,λ2,λ3), respectively, the above

integrator applied to the adjoint DAE system for the planar pendulum (3.13a)-(3.13d), with

m = g = L = 1, can be expressed as
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x1

(vx)1

=


x0

(vx)0

+∆t


(vx)1

Px1

 ,


(px)1

(pvx)1

=


(px)0

(pvx)0

−∆t




0 1

P 0


T 

(px)0

(pvx)0

+



2x1 0

(vx)1 x1

0 2(vx)1



T 

Λ1

Λ2

Λ3




,

0 =



x2
1 +Y 2−1

(vx)1x1 +VyY

(vx)
2
1 +V 2

y −Y +P


,

0 =


0 0 0

0 0 x1


T 

(px)0

(pvx)0

+



2Y 0 0

Vy Y 0

−1 2Vy 1



T 

Λ1

Λ2

Λ3


.

We refer to this method as PGHVI–1. We will compare this to the first-order method where the

Runge–Kutta coefficients are the same for both q and p, i.e., a = 1 = ã. This method is given by
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applying the backward Euler method in both the q and p variables, i.e.,


x1

(vx)1

=


x0

(vx)0

+∆t


(vx)1

Px1

 ,


(px)1

(pvx)1

=


(px)0

(pvx)0

−∆t




0 1

P 0


T 

(px)1

(pvx)1

+



2x1 0

(vx)1 x1

0 2(vx)1



T 

Λ1

Λ2

Λ3




,

0 =



x2
1 +Y 2−1

(vx)1x1 +VyY

(vx)
2
1 +V 2

y −Y +P


,

0 =


0 0 0

0 0 x1


T 

(px)1

(pvx)1

+



2Y 0 0

Vy Y 0

−1 2Vy 1



T 

Λ1

Λ2

Λ3


,

which we refer to as BE–1.

For our numerical test, we will qualitatively compare the preservation of the presymplectic

form Ω0 = dx∧d px +dvx∧d pvx between the two methods. Since Type II boundary conditions

arise in adjoint sensitivity analysis, we place Type II boundary conditions, i.e., by specifying

q0 = (x0,(vx)0) and p1 = ((px)1,(pvx)1), and subsequently, numerically solve the resulting
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system for q1, p0,U,Λ. We use various nearby values for the initial position q0 = (x0,(vx)0) and

various nearby values for the final momenta p1 = ((px)1,(pvx)1). For a presymplectic integrator

applied to a presymplectic system with presymplectic form dx∧d px+dvx∧d pvx , we expect that

the area occupied by the distribution of points (x0,(px)0) is the same as the area occupied by the

distribution of points (x1,(px)1); similarly, we expect that the area occupied by the distribution of

points ((vx)0,(pvx)0) is the same as the area occupied by the distribution of points ((vx)1,(pvx)1).

Since we choose to only solve the system for one timestep, we take a large timestep to highlight

the difference between the two methods, ∆t = 2, which corresponds to roughly one-third of the

period of the pendulum.

Note that, with Type II boundary conditions, both methods give a map (q0, p1) 7! (q1, p0)

which implicitly determines an evolution map (q0, p0) 7! (q1, p1); below, we plot the phase

space cross-sections of these implicit evolution maps. The evolution of the (x, px) and (vx, pvx)

distributions by PGHVI–1 is shown in Figure 3.3 and Figure 3.4, respectively. The evolution of

the (x, px) and (vx, pvx) distributions by BE–1 is shown in Figure 3.5 and Figure 3.6, respectively.

As can be qualitatively seen from Figures 3.3, 3.4, 3.5, 3.6, the PGHVI–1 method preserves the

phase space area in both the (x, px) and (vx, pvx) cross-sections, whereas the BE–1 method does

not.
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Figure 3.3. (x, px) phase space cross-section of PGHVI–1 applied to a distribution of initial conditions q0
and final momenta p1

Figure 3.4. (vx, pvx) phase space cross-section of PGHVI–1 applied to a distribution of initial conditions
q0 and final momenta p1
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Figure 3.5. (x, px) phase space cross-section of BE–1 applied to a distribution of initial conditions q0 and
final momenta p1
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Figure 3.6. (vx, pvx) phase space cross-section of BE–1 applied to a distribution of initial conditions q0
and final momenta p1

3.4 Conclusion and Future Research Directions

In this paper, we utilized symplectic and presymplectic geometry to study the properties

of adjoint systems associated with ODEs and DAEs, respectively. The (pre)symplectic structure

of these adjoint systems led us to a geometric characterization of the adjoint variational quadratic

conservation law used in adjoint sensitivity analysis. As an application of this geometric char-

acterization, we constructed structure-preserving discretizations of adjoint systems by utilizing

(pre)symplectic integrators, which led to natural discrete analogues of the quadratic conservation

laws.

A natural research direction is to extend the current framework to adjoint systems
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for differential equations with nonholonomic constraints, in order to more generally allow for

constraints between configuration variables and their derivatives. In this setting, it is reasonable to

expect that the geometry of the associated adjoint systems can be described using Dirac structures

(see, for example, Yoshimura and Marsden [119, 120]), which generalize the symplectic and

presymplectic structures of adjoint ODE and DAE systems, respectively. Structure-preserving

discretizations of such systems could then be studied through the lens of discrete Dirac structures

(Leok and Ohsawa [75]). These discrete Dirac structures make use of the notion of a retraction

(Absil et al. [2]). The tangent and cotangent lifts of a retraction also provide a useful framework

for constructing geometric integrators (Barbero-Liñán and Martı́n de Diego [9]). It would

be interesting to synthesize the notion of tangent and cotangent lifts of retraction maps with

discrete Dirac structures in order to construct discrete Dirac integrators for adjoint systems

with nonholonomic constraints which generalize the presymplectic integrators constructed in

Barbero-Liñán and Martı́n de Diego [10].

Another natural research direction is to extend the current framework to evolutionary

partial differential equations (PDEs). There are two possible approaches in this direction.

The first is to consider evolutionary PDEs as ODEs evolving on infinite-dimensional spaces,

such as Banach or Hilbert manifolds. One can then investigate the geometry of the infinite-

dimensional symplectic structure associated with the corresponding adjoint system. In practice,

adjoint systems for evolutionary PDEs are often formed after semi-discretization, leading to an

ODE on a finite-dimensional space. Understanding the reduction of the infinite-dimensional

symplectic structure of the adjoint system to a finite-dimensional symplectic structure under semi-

discretization could provide useful insights into structure-preservation. The second approach

would be to explore the multisymplectic structure of the adjoint system associated with a

PDE. This approach would be insightful for several reasons. First, an adjoint variational

quadratic conservation law arising from multisymplecticity would be adapted to spacetime

instead of just time. With appropriate spacetime splitting and boundary conditions, such a

quadratic conservation law would induce either a temporal or spatial conservation law. As
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such, one could use the multisymplectic conservation law to determine adjoint sensitivities for

a PDE with respect to spatial or temporal directions, which could be useful in practice [79].

Furthermore, the multisymplectic framework would apply equally as well to nonevolutionary

(elliptic) PDEs, where there is no interpretation of a PDE as an infinite-dimensional evolutionary

ODE. Additionally, adjoint systems for PDEs with constraints could be investigated with multi-

Dirac structures (Vankerschaver et al. [115]). In future work, we aim to explore both approaches,

relate them once a spacetime splitting has been chosen, and investigate structure-preserving

discretizations of such systems by utilizing the multisymplectic variational integrators constructed

in Tran and Leok [112].

3.5 Acknowledgements

Chapter 3, in full, has been submitted for publication of the material as it may appear

in ”Geometric Methods for Adjoint Systems” (2023). Tran, Brian; Leok, Melvin, Journal of

Nonlinear Science. The dissertation author was the primary investigator and first author of this

paper.

BT was supported by the NSF Graduate Research Fellowship DGE-2038238, and by

NSF under grants DMS-1813635. ML was supported by NSF under grants DMS-1345013,

DMS-1813635, and by AFOSR under grant FA9550-18-1-0288.

3.6 Chapter Appendix

3.6.1 Proofs of Discrete Adjoint Variational Quadratic Conservation
Laws

Proof of Proposition 3.3.1.
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Proof. We begin by substituting (3.4c) and (3.3a) into the left hand side of (3.5),

〈p1,δq1〉= 〈p0,δq0〉+∆t ∑
i

bi〈p0,D f (Qi)δQi〉

−∆t ∑
i

bi〈[D f (Qi)]∗Pi,δq0〉−∆t ∑
i

bi〈dL(Qi),δq0〉

−∆t2
∑
i j

bib j〈[D f (Qi)]∗Pi,D f (Q j)δQ j〉−∆t2
∑
i j

bib j〈dL(Qi),D f (Q j)δQ j〉

= 〈p0,δq0〉+∆t ∑
i

bi

〈
Pi +∆t ∑

j
ãi j([D f (Q j)]∗P j +dL(Q j)),D f (Qi)δQi

〉

−∆t ∑
i

bi

〈
[D f (Qi)]∗Pi,δQi−∆t ∑

j
ai jD f (Q j)δQ j

〉
−∆t ∑

i
bi〈dL(Qi),δq0〉

−∆t2
∑
i j

bib j〈[D f (Qi)]∗Pi,D f (Q j)δQ j〉−∆t2
∑
i j

bib j〈dL(Qi),D f (Q j)δQ j〉,

where, in the last equality, we substituted (3.4d) and (3.3b). We now group and simplify the

above expression,
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〈p1,δq1〉= 〈p0,δq0〉+∆t ∑
i

bi

〈
Pi +∆t ∑

j
ãi j[D f (Q j)]∗P j,D f (Qi)δQi

〉

−∆t ∑
i

bi

〈
[D f (Qi)]∗Pi,δQi−∆t ∑

j
ai jD f (Q j)δQ j

〉

−∆t2
∑
i j

bib j〈[D f (Qi)]∗Pi,D f (Q j)δQ j〉

+∆t ∑
i

bi

〈
∆t ∑

j
ãi jdL(Q j),D f (Qi)δQi

〉
−∆t ∑

i
bi〈dL(Qi),δq0〉

−∆t2
∑
i j

bib j〈dL(Qi),D f (Q j)δQ j〉

= 〈p0,δq0〉+∆t2
∑
i j
(b jã ji +biai j−bib j)︸ ︷︷ ︸

=0

〈[D f (Qi)]∗Pi,D f (Q j)δQ j〉

+∆t ∑
i

bi

〈
∆t ∑

j
ãi jdL(Q j),D f (Qi)δQi

〉
−∆t ∑

i
bi〈dL(Qi),δq0〉

−∆t2
∑
i j

bib j〈dL(Qi),D f (Q j)δQ j〉

= 〈p0,δq0〉−∆t ∑
i

bi〈dL(Qi),δq0〉

−∆t2
∑
i j
(bib j−b jã ji)︸ ︷︷ ︸

=biai j

〈dL(Qi),D f (Q j)δQ j〉

= 〈p0,δq0〉−∆t2
∑

i
bi

〈
dL(Qi),

δq0

∆t
+∑

j
ai jD f (Q j)δQ j

〉

= 〈p0,δq0〉−∆t ∑
i

bi〈dL(Qi),δQi〉,

where, in the last equality, we used (3.3b).

Proof of Proposition 3.3.2.
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Proof. For brevity, we denote

Dq fi ≡ Dq f (Qi,U i),

Du fi ≡ Du f (Qi,U i),

Dqφi ≡ Dqφ(Qi,U i),

Duφi ≡ Duφ(Qi,U i).
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Starting from 〈p1,δq1〉, we substitute the evolution equations (3.7c), (3.7d), (3.8a), (3.8b),

〈p1,δq1〉= 〈p0,δq0〉

−∆t ∑
i

bi〈[Dq fi]
∗Pi +[Dqφi]

∗
Λ

i,δq0〉+∆t ∑
i

bi〈p0,Dq fiδQi +Du fiδU i〉

−∆t2
∑
i j

bib j〈[Dq fi]
∗Pi +[Dqφi]

∗
Λ

i,Dq f jδQ j +Du f jδU j)〉

= 〈p0,δq0〉

−∆t ∑
i

bi

〈
[Dq fi]

∗Pi +[Dqφi]
∗
Λ

i,δQi−∆t ∑
j

ai j(Dq f jδQ j +Du f jδU j)

〉

+∆t ∑
i

bi

〈
Pi +∆t ∑

j
ãi j([Dq f j]

∗P j +[Dqφ j]
∗
Λ

j),Dq fiδQi +Du fiδU i

〉

−∆t2
∑
i j

bib j〈[Dq fi]
∗Pi +[Dqφi]

∗
Λ

i,Dq f jδQ j +Du f jδU j〉

= 〈p0,δq0〉−∆t ∑
i

bi〈[Dq fi]
∗Pi +[Dqφi]

∗
Λ

i,δQi〉

+∆t ∑
i

bi〈Pi,Dq fiδQi +Du fiδU i〉

+∆t2
∑
i j
(b jã ji +biai j−bib j)︸ ︷︷ ︸

=0

〈[Dq fi]
∗Pi +[Dqφi]

∗
Λ

i,Dq f jδQ j +Du f jδU j〉

= 〈p0,δq0〉+∆t ∑
i

bi

(
〈[Du fi]

∗Pi,δU i〉−〈[Dqφi]
∗
Λ

i,δQi〉
)

= 〈p0,δq0〉+∆t ∑
i

bi

(
−〈[Duφi]

∗
Λ

i,δU i〉−〈[Dqφi]
∗
Λ

i,δQi〉
)

= 〈p0,δq0〉−∆t ∑
i

bi〈Λi,DuφiδU i +DqφiδQi〉

= 〈p0,δq0〉,

where in the third to last equality, we used the constraint equation (3.7f) and in the last equality,

we used the constraint equation (3.8c).

Proof of Proposition 3.3.3.
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Proof. The proof uses computations analogous to those used in the proofs of Propositions 3.3.1

and 3.3.2. In particular, starting from the simplest case of the nonaugmented adjoint ODE system,

Proposition 3.3.1 considers the case of augmenting the Hamiltonian, whereas Proposition 3.3.2

considers the case of replacing the ODE with a DAE. The case at hand combines both and the

proof involves a combination of both computations.

3.6.2 Proof of Naturality of Adjoint System Discretization

In this appendix, we prove the statement in Section 3.3.2 that (for suitable choices of)

discretization, reduction, and forming the adjoint all commute when applied to an index 1 DAE.

The definitions and choices of these processes were made in Section 3.3.2. To prove that the

diagram commutes, we prove that each face of the diagram commutes. We again include the

relevant diagram which we wish to show commutes below.

Index 1 DAE ODE

Discrete DAE Discrete ODE

Presymplectic Adjoint
DAE System

Symplectic Adjoint
ODE System

Presymplectic Galerkin
Hamiltonian Variational

Integrator

Symplectic Galerkin
Hamiltonian Variational

Integrator

Reduce

Reduce

Adjoint Adjoint

Reduce

Reduce

Adjoint Adjoint

Discretize
Discretize

Discretize Discretize

Back Face. We have already proved that the back face commutes (i.e., that reduction and

forming the adjoint commute when starting with an index 1 DAE), as discussed in Section 3.2.3.
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One can then interpret the above diagram as an extension of this result with an extra dimension

corresponding to discretization.

Right Face. This was proven in Sanz-Serna [106]. One can then interpret the above

diagram as an extension of the result in Sanz-Serna [106] by adding the reduction operation.

Bottom Face. Consider the augmented adjoint DAE system corresponding to the DAE

(2.11a)-(2.11b), which we take to have index 1, i.e., ∂φ/∂u is pointwise invertible. We consider

the augmented case because the nonaugmented case can be obtained by taking L≡ 0. We show

that reducing the system first and then applying a symplectic Galerkin Hamiltonian variational

integrator is equivalent to applying a presymplectic Galerkin Hamiltonian variational integrator,

with the same partitioned Runge–Kutta coefficients, and then reducing.

We start with the former approach. The symplectic adjoint ODE system given by reduc-

tion, as discussed in Section 3.2.3, is the Hamiltonian system corresponding to the Hamiltonian

H(q′, p′) = 〈p′, f ′(q′))〉+L′(q′),

where we have solved u= u(q′) and defined f ′(q′)≡ f (q′,u(q′)),L′(q′)≡ L(q′,u(q′)). Applying

the symplectic Galerkin Hamiltonian variational integrator construction yields the integrator

q1 = q0 +∆t ∑
i

bi f ′(Qi) (3.6.1a)

= q0 +∆t ∑
i

bi f (Qi,u(Qi)),

Qi = q0 +∆t ∑
j

ai j f ′(Q j) (3.6.1b)

= q0 +∆t ∑
j

ai j f (Q j,u(Q j)),

p1 = p0−∆t ∑
i

bi([D f ′(Qi)]∗Pi +dL′(Qi)), (3.6.1c)

Pi = p0−∆t ∑
j

ãi j([D f ′(Q j)]∗P j +dL′(Q j)). (3.6.1d)
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Note that the derivative D f ′ can be equivalently expressed as

D f ′(Qi) = D1 f (Qi,u(Qi))+D2 f (Qi,u(Qi))Du(Qi),

where Di denotes differentiation with respect to the ith argument. We switch to indexing the

derivative operator here, so we do not have to make the distinction between total derivatives Dq

and partial derivatives ∂q. Similarly, we can express dL′ as follows. First, note that we have

been implicitly identifying the row vector dL′ with the column vector given by its transpose ∇L′.

Thus, dL′ in equations (3.6.1c)-(3.6.1d) should really be written as ∇L′. Thus,

dL′(Qi)∼= ∇L′(Qi) = ∇1L(Qi,u(Qi))+ [Du(Qi)]∗∇2L(Qi,u(Qi)).

Now, we show that the second approach is equivalent to the above system. The starting point

is the presymplectic Galerkin Hamiltonian variational integrator, equations (3.9a)-(3.9f). From

(3.9e), we can solve for U i in terms of Qi as U i = u(Qi). Plugging this into (3.9a)-(3.9b) gives

precisely (3.6.1a)-(3.6.1b). Thus, we just need to see that, after solving the constraint (3.9f) for

Λi, the two momenta equations (3.9c)-(3.9d) are equivalent to (3.6.1c)-(3.6.1d). Solving (3.9f)

for Λi gives

Λ
i =−([D2φ(Qi,u(Qi))]∗)−1[D2 f (Qi,u(Qi))]∗Pi− ([D2φ(Qi,u(Qi))]∗)−1

∇2L(Qi,u(Qi)).

Multiplying both sides by [D1φ(Qi,u(Qi))]∗ yields

[D1φ(Qi,u(Qi))]∗Λi =−[D1φ(Qi,u(Qi))]∗([Duφ(Qi,u(Qi))]∗)−1[D2 f (Qi,u(Qi))]∗Pi

− [D1φ(Qi,u(Qi))]∗([∇uφ(Qi,u(Qi))]∗)−1
∇2L(Qi,u(Qi))

= [Du(Qi)]∗[D2 f (Qi,u(Qi))]∗Pi +[Du(Qi)]∗∇2L(Qi,u(Qi))

= [D2 f (Qi,u(Qi))Du(Qi)]∗Pi +[Du(Qi)]∗∇2L(Qi,u(Qi)),
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where in the second equality, we used D1φ(Qi,u(Qi)) = −D2φ(Qi,u(Qi))Du(Qi) from the

implicit function theorem. Plugging this expression and U i = u(Qi) into (3.9c)-(3.9d) yields

(3.6.1c)-(3.6.1d), noting the above expressions for D f ′,dL′.

Remark 3.6.1. Note that, in the above, we used the implicit function theorem to obtain the local

function u = u(q). This is sufficient to prove that the two processes are the same for a single

integration step, assuming that the timestep ∆t is sufficiently small and the vector field f and

constraint φ are sufficiently regular, so that q0, q1, and all of the internal stages Qi are in the

neighborhood where the local function is defined. For each subsequent time step, one generally

needs a different local function. This does not matter in practice since one works directly with

the presymplectic integrator and solves the constraints iteratively.

Top Face. We want to prove that, starting from an index 1 DAE, the processes of

discretization and reduction commute, where the discretization of the ODE and DAE have the

same Runge–Kutta coefficients.

We start first with reduction then discretization. Starting from the index 1 DAE q̇ =

f (q,u), φ(q,u) = 0, we apply the reduction operation, which gives the ODE q̇ = f (q,u(q)).

Applying a Runge–Kutta discretization gives

q1 = q0 +∆t ∑
i

bi f (Qi,u(Qi)),

Qi = q0 +∆t ∑
j

ai j f (Q j,u(Q j)).

On the other hand, we can discretize the DAE and then reduce. We discretize the DAE

q̇ = f (q,u), φ(q,u) = 0 by applying a Runge–Kutta discretization with the same coefficients as
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before,

q1 = q0 +∆t ∑
i

bi f (Qi,U i),

Qi = q0 +∆t ∑
j

ai j f (Q j,U j),

0 = φ(Qi,U i).

To reduce this system, we solve the constraint equations U i = u(Qi) and substitute these into the

two evolution equations, which yields the same system obtained from first reducing and then

discretizing.

Front Face. The starting point for this loop is a discrete DAE system, which arises as a

Runge–Kutta discretization of an index 1 DAE, i.e., it is given by the discrete system

q1 = q0 +∆t ∑
i

bi f (Qi,U i), (3.6.2a)

Qi = q0 +∆t ∑
j

ai j f (Q j,U j), (3.6.2b)

0 = φ(Qi,U i). (3.6.2c)

From here, we wish to show that reducing and forming the discrete adjoint system commute.

First, we recall the notion of a discrete adjoint system. Suppose we are given a generally

nonlinear system of equations, F(x1) = x0, where x1 ∈ V is unknown, x0 ∈W is given, and

F : V !W (where V and W are vector spaces). To define the adjoint system, we first consider

the variational equations associated with this nonlinear system given by its linearization,

DF(x1)δx1 = δx0,

where DF(x1) is a linear map V !W and δx0 ∈W is given. Suppose that we are interested in

computing the quantity 〈s1,δx1〉 for a given vector s1 ∈V ∗. In the setting of adjoint sensitivity
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analysis, the quantity 〈s1,δx1〉 is the sensitivity of the terminal cost function. We define the

associated adjoint equation as

[DF(x1)]
∗s0 = s1.

For a solution s0 ∈W ∗ of this system, one has

〈s1,δx1〉= 〈[DF(x1)]
∗s0,δx1〉= 〈s0,DF(x1)δx1〉= 〈s0,δx0〉.

Thus, to compute 〈s1,δx1〉, one could solve the variational equation for δx1 and pair it with s1

which is given, or, alternatively, solve the adjoint equation for s0 and pair it with δx0 which

is given, since these linear systems are solvable by assumption. We define the adjoint system

associated with the equation F(x1) = x0 as this equation combined with the associated adjoint

equation, i.e., as the combined system

F(x1) = x0,

[D f (x1)]
∗s0 = s1.

Following Ibragimov [57], we will utilize an alternative characterization of the adjoint system.

We define the discrete adjoint action

S(x1,s0)≡ 〈s0,F(x1)〉.

Then, observe that S is a generating function for the adjoint system (x1,s0) 7! (x0,s1), in the

sense that

x0 =
δ

δ s0
S(x1,s0) = F(x1),

s1 =
δ

δx1
S(x1,s0) = [D f (x1)]

∗s0.
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This characterization serves two purposes. First, it will simplify the calculation of the adjoint

system for the case at hand. Furthermore, it resembles the process of forming the adjoint at the

continuous level: starting from the (discrete or continuous) differential(-algebraic) equation at

hand, one forms the (discrete or continuous) adjoint action and applies the variational principle to

obtain the adjoint system. To obtain the augmented adjoint system, we add a discrete Lagrangian

L : V ! R to the action (as a convention, we subtract the discrete Lagrangian). We define the

augmented discrete adjoint action to be

SL(x1,s0)≡ 〈s0,F(x1)〉−L(x1).

The map that this generates defines the augmented discrete adjoint system,

x0 =
δ

δ s0
SL(x1,s0) = F(x1),

s1 =
δ

δx1
SL(x1,s0) = [D f (x1)]

∗s0−dL(x1).

Observe that this definition of an augmented discrete adjoint system is natural in the sense that,

〈s1,δx1〉= 〈[D f (x1)]
∗s0 +dL(x1),δx1〉= 〈s0,x0〉−〈dL(x1),δx1〉,

which resembles the continuous analogue of the adjoint sensitivity result for a running cost

function.

Now, we use this notion of a discrete adjoint system for the problem at hand. We begin

first with reduction and then forming the adjoint system. Applying the reduction operation to the

245



discrete DAE system (3.6.2a)-(3.6.2c), given by solving φ(Qi,U i) = 0 for U i = u(Qi),

q1 = q0 +∆t ∑
i

bi f (Qi,u(Qi)), (3.6.3a)

Qi = q0 +∆t ∑
j

ai j f (Q j,u(Q j)), (3.6.3b)

Let us define Qi = q0 +∆t ∑ j ai jV j. We think of the internal stages Q as functions of the internal

stages V , which are the internal stage proxies for q̇. Our discrete system (3.6.3a)-(3.6.3b) can

then be defined by x1 = {V i}s
i=1, x0 = {0}s

i=1, where s is the number of internal stages, and

x0 = F(x1)≡



V 1− f (Qi(V ),u(Qi(V )))

...

V s− f (Qs(V ),u(Qs(V )))


.

Observe that F = 0 only gives the internal stage equations (3.6.3b). We do this for simplicity,

since we will assume cs = 1 as is typical for a Runge–Kutta discretization of a DAE as previously

discussed and hence, equation (3.6.3a) is redundant, since as j = b j.

We define F and x1 in terms of V instead of Q because when we form the adjoint action,

we pair the components of F with the dual variable s0. In order to interpret s0 as representing

the momenta internal stages Pi, it should be paired with the proxy for the tangent vector V ,

instead of Q. We now form the discrete adjoint action. We define the dual variable for the

adjoint system to be s0 = {∆tbiPi}s
i=1. The normalization factor ∆tbi is used so that the discrete

action is the quadrature approximation of the continuous action. This is just a convention,

but we would have to reinterpret the components of s0 if we did not choose this convention.

Finally, we define the discrete Lagrangian to be the quadrature approximation of the continuous

Lagrangian L′(q)≡ L(q,u(q)), i.e., L(x1) = ∆t ∑i biL′(Qi(V )). This is the natural choice because
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the discrete sensitivity of a running cost function is ∆t ∑i bi〈dL′(Qi(V )),δQi(V )〉, which equals

〈dL(x1),δx1〉 with the above choice of L. The augmented discrete adjoint action is then

SL({V i},{biPi}) = SL(x1,s0) = 〈s0,F(x1)〉−L(x1)

= ∆t ∑
i

bi

(
〈Pi,V i− f (Qi(V ),u(Qi(V )))〉−L′(Qi(V ))

)
.

To define the discrete adjoint system, we have to give s1, which we take to be s1 = {∆tbi p1}s
i=1,

where p1 is given. Thus, the augmented discrete adjoint system is given by

0 =
δ

δPkSL =V k− f (Qk(V ),u(Qk(V ))),

∆tbk p1 =
δ

δV kSL

= ∆tbkPk−∆t2
∑

i
biaik

(
[D1 f (Qi(V ),u(Qi(V )))]∗Pi

+[D2 f (Qi(V ),u(Qi(V )))Du(Qi(V ))]∗Pi +dL′(Qi(V ))
)
.

The first set of equations above, combined with the definition of Q in terms of V , gives (3.6.3b).

For the second set of equations, we first divide through by ∆tbk and rearrange to obtain

Pk = p1 +∆t ∑
i

biaik

bk

(
[D1 f (Qi(V ),u(Qi(V )))]∗Pi

+[D2 f (Qi(V ),u(Qi(V )))Du(Qi(V ))]∗Pi +dL′(Qi(V ))
)
.

= p1 +∑
i
(bi− ãki)

(
[D1 f (Qi(V ),u(Qi(V )))]∗Pi

+[D2 f (Qi(V ),u(Qi(V )))Du(Qi(V ))]∗Pi +dL′(Qi(V ))
)
.

Note that this is the usual symplectic partitioned Runge–Kutta expansion for the internal stages

Pi, expressed in terms of p1 instead of p0. Thus, the full adjoint system, combined with the

redundant k = s stages, yields a symplectic partitioned Runge–Kutta method.
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Now, in the other direction, we first form the adjoint system corresponding to the discrete

DAE system and subsequently reduce. We begin by forming the adjoint system. We form the

discrete action analogously to before, but now the discrete system (3.6.2a)-(3.6.2c) also has

constraints which we must incorporate into F , since we have not yet reduced the system. We

take x1 = {{V i},{U i}}s
i=1 and s0 = {{∆tbiPi},{∆tbiΛ

i}}s
i=1. We define F as

x0 = F(x1)≡



V 1− f (Qi(V ),U i)

...

V s− f (Qs(V ),U i))

−φ(Q1(V ),U1)

...

−φ(Qs(V ),U s)



.

Note again that Q is a function of V as Qi = q0 +∆t ∑ j ai jV j. It is not a priori a function of U

because the condition V i = f (Qi(V ),U i) has not yet been enforced. Rather, it is a consequence of

the variational principle, which formally matters when one computes the variation of the discrete

action. Define the discrete Lagrangian L(x1) = ∑i biL(Qi(V ),U i). We form the augmented

discrete adjoint action

SL({V i},{biPi}) = SL(x1,s0) = 〈s0,F(x1)〉−L(x1)

= ∆t ∑
i

bi

(
〈Pi,V i− f (Qi(V ),U i)〉−〈Λi,φ(Qi,U i)〉−L(Qi(V ),U i)

)
.

We use this as a generating function to compute the adjoint system as before. The computation is
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analogous so we will just state the result,

V k = f (Qk(V ),Uk),

Pk = p1 +∆t ∑
i
(bi− ãki)

(
[D1 f (Qi(V ),U i)]∗Pi +[D1φ(Qi(V ),U i)]∗Λi +DqL(Qi(V ),U i)

)
,

0 = φ(Qi(V ),U i),

0 = [D2 f (Qi(V ),U i)]∗Pi +[D2φ(Qi(V ),U i)]∗Λi +D2L(Qi(V ),U i).

Finally, we reduce by solving the last two equations for U i, Λi as functions of Qi(V i), Pi. Finally,

an implicit function theorem computation analogous to the proof of the bottom face shows that

this is the same as the system obtained by first reducing and then forming the discrete adjoint.

Left Face. The proof for the left face is formally similar to the right face, but since we

have already computed both directions, we will include it for completeness. Starting from an

index 1 DAE, forming the adjoint and then discretizing just give the presymplectic Galerkin

Hamiltonian variational integrator (3.9a)-(3.9f). In the other direction, we first discretize the

DAE and then take the adjoint which we did in the proof of the front face. Expressed in terms of

Q, instead of V , this is

Qk = q0 +∆t ∑
j

ai j f (Q j,U j),

Pk = p1 +∆t ∑
i
(bi− ãki)

(
[D1 f (Qi,U i)]∗Pi +[D1φ(Qi,U i)]∗Λi +DqL(Qi,U i)

)
,

0 = φ(Qi,U i),

0 = [D2 f (Qi,U i)]∗Pi +[D2φ(Qi,U i)]∗Λi +D2L(Qi,U i).

Returning to the system given by first forming the adjoint and then discretizing, (3.9a)-(3.9f),

one substitutes (3.9c) into (3.9d) to write the internal stages for Pi in terms of p1, and this gives

the above system.
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Chapter 4

Type II Hamiltonian Lie Group Varia-
tional Integrators with Applications to
Geometric Adjoint Sensitivity Analysis

4.1 Introduction

In this paper, we aim to develop Lie group variational integrators from a Type II vari-

ational principle with the motivating application of performing intrinsic geometric adjoint

sensitivity analysis on Lie groups. Lie Group variational integrators are a class of geometric

structure-preserving integrators for integrating Lagrangian or Hamiltonian systems evolving

over tangent and cotangent bundles of Lie groups (see [16; 62; 68–70; 81; 86]). Such meth-

ods generally have good conservation properties, such as respecting the symplecticity and

momentum-preservation of these systems. Adjoint systems provide an efficient method for

performing dynamically-constrained optimization and sensitivity analysis. The geometry of

these systems has gained interest as it can be described by a Hamiltonian structure. Particularly,

the Hamiltonian structure of adjoint systems encode a quadratic conservation law which is the

key to adjoint sensitivity analysis [106]. We aim to synthesize these two areas of research, by

developing Lie group variational integrators which are applicable to the maximally degenerate

Hamiltonian structures found in adjoint systems and hence, develop geometric integrators which

respect the quadratic conservation law enjoyed by adjoint systems, making them particularly

250



useful for adjoint sensitivity analysis on Lie groups. We begin with a brief introduction and

review of these topics.

4.1.1 Lagrangian and Hamiltonian Variational Integrators

Geometric numerical integration aims to preserve geometric conservation laws under

discretization, and this field is surveyed in the monograph by Hairer et al. [51]. Discrete varia-

tional mechanics [75; 84] provides a systematic method of constructing symplectic integrators.

It is typically approached from a Lagrangian perspective by introducing the discrete Lagrangian,

Ld : Q×Q! R, which is a Type I generating function of a symplectic map and approximates

the exact discrete Lagrangian, which is constructed from the Lagrangian L : T Q! R as

LE
d (q0,q1;h) = ext q∈C2([0,h],Q)

q(0)=q0,q(h)=q1

∫ h

0
L(q(t), q̇(t))dt, (4.1.1)

which is equivalent to Jacobi’s solution of the Hamilton–Jacobi equation. The exact discrete

Lagrangian generates the exact discrete-time flow map of a Lagrangian system, but, in general, it

cannot be computed explicitly. Instead, this can be approximated by replacing the integral with

a quadrature formula, and replacing the space of C2 curves with a finite-dimensional function

space.

Given a finite-dimensional function space Mn([0,h]) ⊂C2([0,h],Q) and a quadrature

formula G : C2([0,h],Q)! R, G ( f ) = h∑
m
j=1 b j f (c jh) ≈

∫ h
0 f (t)dt, the Galerkin discrete La-

grangian is

Ld(q0,q1) = ext q∈Mn([0,h])
q(0)=q0,q(h)=q1

G (L(q, q̇)) = ext q∈Mn([0,h])
q(0)=q0,q(h)=q1

h∑
m
j=1 b jL(q(c jh), q̇(c jh)).

Given a discrete Lagrangian Ld , the discrete Hamilton–Pontryagin principle imposes

the discrete second-order condition q1
k = q0

k+1 using Lagrange multipliers pk+1, which yields a
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variational principle on (Q×Q)×Q T ∗Q,

δ

[
∑

n−1
k=0 Ld(q0

k ,q
1
k)+∑

n−2
k=0 pk+1(q0

k+1−q1
k)
]
= 0.

This in turn yields the implicit discrete Euler–Lagrange equations,

q1
k = q0

k+1, pk+1 = D2Ld(q0
k ,q

1
k), pk =−D1Ld(q0

k ,q
1
k), (4.1.2)

where Di denotes the partial derivative with respect to the i-th argument. Making the identification

qk = q0
k = q1

k−1, we obtain the discrete Lagrangian map and discrete Hamiltonian map which

are FLd : (qk−1,qk) 7! (qk,qk+1) and F̃Ld : (qk, pk) 7! (qk+1, pk+1), respectively. The last two

equations of (4.1.2) define the discrete fiber derivatives, FL±d : Q×Q! T ∗Q,

FL+
d (qk,qk+1) = (qk+1,D2Ld(qk,qk+1)),

FL−d (qk,qk+1) = (qk,−D1Ld(qk,qk+1)).

These two discrete fiber derivatives induce a single unique discrete symplectic form ΩLd =

(FL±d )
∗Ω, where Ω is the canonical symplectic form on T ∗Q, and the discrete Lagrangian and

Hamiltonian maps preserve ΩLd and Ω, respectively. The discrete Lagrangian and Hamiltonian

maps can be expressed as FLd = (FL−d )
−1 ◦FL+

d and F̃Ld = FL+
d ◦ (FL−d )

−1, respectively. This

characterization allows one to relate the approximation error of the discrete flow maps to the

approximation error of the discrete Lagrangian.

The variational integrator approach simplifies the numerical analysis of symplectic

integrators. The task of establishing the geometric conservation properties and order of accuracy

of the discrete Lagrangian map FLd and discrete Hamiltonian map F̃Ld reduces to the simpler task

of verifying certain properties of the discrete Lagrangian Ld instead.

Theorem 4.1.1 (Discrete Noether’s theorem (Theorem 1.3.3 of [84])). If a discrete Lagrangian Ld
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is invariant under the diagonal action of G on Q×Q, then the single unique discrete momentum

map, JLd = (FL±d )
∗J, is invariant under the discrete Lagrangian map FLd , i.e., F∗Ld

JLd = JLd .

Theorem 4.1.2 (Variational error analysis (Theorem 2.3.1 of [84])). If a discrete Lagrangian Ld

approximates the exact discrete Lagrangian LE
d to order p, i.e., Ld(q0,q1;h) = LE

d (q0,q1;h)+

O(hp+1), then the discrete Hamiltonian map F̃Ld is an order p accurate one-step method.

The bounded energy error of variational integrators can be understood by performing

backward error analysis, which then shows that the discrete flow map is approximated with

exponential accuracy by the exact flow map of the Hamiltonian vector field of a modified

Hamiltonian [11; 111].

Given a degenerate Hamiltonian, where the Legendre transform FH : T ∗Q ! T Q,

(q, p) 7! (q, ∂H
∂ p ), is noninvertible, there is no equivalent Lagrangian formulation. Thus, a

characterization of variational integrators directly in terms of the continuous Hamiltonian is

desirable. This is achieved by considering the Type II analogue of Jacobi’s solution, given by

H+,E
d (qk, pk+1) = ext(q,p)∈C2([tk,tk+1],T ∗Q)

q(tk)=qk,p(tk+1)=pk+1

[
p(tk+1)q(tk+1)−

∫ tk+1

tk
[pq̇−H(q, p)]dt

]
.

A computable Galerkin discrete Hamiltonian H+
d is obtained by choosing a finite-dimensional

function space and a quadrature formula,

H+
d (q0, p1) = ext q∈Mn([0,h])

q(0)=q0
(q(c jh),p(c jh))∈T ∗Q

[
p1q(t1)−h∑

m
j=1 b j[p(c jh)q̇(c jh)−H(q(c jh), p(c jh))]

]
.

Interestingly, the Galerkin discrete Hamiltonian does not require a choice of a finite-dimensional

function space for the curves in the momentum, as the quadrature approximation of the action

integral only depend on the momentum values p(c jh) at the quadrature points, which are

determined by the extremization principle. In essence, this is because the action integral does not

depend on the time derivative of the momentum ṗ. As such, both the Galerkin discrete Lagrangian
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and the Galerkin discrete Hamiltonian depend only on the choice of a finite-dimensional function

space for curves in the position, and a quadrature rule. It was shown in Proposition 4.1 of

[76] that when the Hamiltonian is hyperregular, and for the same choice of function space and

quadrature rule, they induce equivalent numerical methods.

The Type II discrete Hamilton’s phase space variational principle states that

δ

{
pNqN−

N−1

∑
k=0

[
pk+1qk+1−H+

d (qk, pk+1)
]}

= 0,

for discrete curves in T ∗Q with fixed (q0, pN) boundary conditions. This yields the discrete

Hamilton’s equations, which are given by

qk+1 = D2H+
d (qk, pk+1), pk = D1H+

d (qk, pk+1). (4.1.3)

Given a discrete Hamiltonian H+
d , we introduce the discrete fiber derivatives (or discrete

Legendre transforms), F+H+
d ,

F+H+
d : (q0, p1) 7! (D2H+

d (q0, p1), p1),

F−H+
d : (q0, p1) 7! (q0,D1H+

d (q0, p1)).

The discrete Hamiltonian map can be expressed in terms of the discrete fiber derivatives,

F̃H+
d
(q0, p0) = F+H+

d ◦ (F
−H+

d )−1(q0, p0) = (q1, p1),

Similar to the Lagrangian case, we have a discrete Noether’s theorem and variational

error analysis result for Hamiltonian variational integrators.

Theorem 4.1.3 (Discrete Noether’s theorem (Theorem 5.3 of [76])). Given the action Φ on the

configuration manifold Q, let ΦT ∗Q be the cotangent lifted action on T ∗Q. If the generalized

discrete Lagrangian Rd(q0,q1, p1) = p1q1−H+
d (q0, p1) is invariant under the cotangent lifted
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action ΦT ∗Q, then the discrete Hamiltonian map F̃H+
d

preserves the momentum map, i.e., F̃∗H+
d

J =

J.

Theorem 4.1.4 (Variational error analysis (Theorem 2.2 of [107])). If a discrete Hamilto-

nian H+
d approximates the exact discrete Hamiltonian H+,E

d to order p, i.e., H+
d (q0, p1;h) =

H+,E
d (q0, p1;h) +O(hp+1), then the discrete Hamiltonian map F̃H+

d
is an order p accurate

one-step method.

It should be noted that there is an analogous theory of discrete Hamiltonian variational

integrators based on Type III generating functions H−d (p0,q1).

Remark 4.1.1. It should be noted that the current construction of Hamiltonian variational

integrators is only valid on vector spaces and local coordinate charts as it involves Type II/Type III

generating functions H+
d (qk.pk+1), H−d (pk,qk+1), which depend on the position at one boundary

point, and the momentum at the other boundary point. However, this does not make intrinsic sense

on a manifold, since one needs the base point in order to specify the corresponding cotangent

space. One possible approach to constructing an intrinsic formulation of Hamiltonian variational

integrators on general cotangent bundles is to start with discrete Dirac mechanics [75], and

consider a generating function E+
d (qk,qk+1, pk+1), E−d (qk, pk,qk+1), that depends on the position

at both boundary points and the momentum at one of the boundary points. This approach can be

viewed as a discretization of the generalized energy E(q,v, p) = 〈p,v〉−L(q,v), in contrast to

the Hamiltonian H(q, p) = extv〈p,v〉−L(q,v) = 〈p,v〉−L(q,v)|p= ∂L
∂v

.

As mentioned in the previous remark, an issue with Type II Hamiltonian variational

integrators is that they are only valid on vector spaces or on local charts, due to the Type II

boundary conditions q(tk) = qk, p(tk+1) = pk+1, which requires a local trivialization of T ∗Q.

Furthermore, these methods cannot in general be extended to arbitrary parallelizable manifolds

M, i.e., T ∗M ∼= M×V for some vector space V , since the isomorphism T ∗M ∼= M×V may be

neither explicit nor computable. However, for a Lie group G, the trivialization T ∗G∼= G×g∗ is
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given simply by left or right translation. Using this trivialization, we will extend the construction

of Type II Hamiltonian variational integrators to the setting of Hamiltonian systems on the

cotangent bundle of a Lie group.

4.1.2 Lie Group Variational Integrators

Lie group variational integrators preserve the Lie group structure of the configuration

space without the use of local charts, reprojection, or constraints. Instead, the discrete solution

is updated using the exponential of a Lie algebra element that satisfies a discrete variational

principle. These yield highly efficient geometric integration schemes for rigid body dynamics

that automatically remain on the rotation group. We avoid coordinate singularities associated

with local charts, such as Euler angles, by representing the attitude globally as a rotation matrix,

which is important for accurately simulating chaotic orbital motion.

These ideas were introduced in [68], and applied to a system of extended rigid bodies

interacting under their mutual gravitational potential in [69; 70], wherein symmetry reduction to

a relative frame is also addressed. The superior computational efficiency of Lie group variational

integrators for the full body simulation of systems of extended rigid bodies in the context of

astrodynamics was demonstrated in [39].

Lie group variational integrators can be seen as the synthesis of Lie group methods (see,

for example, [59]) and variational integrators that serves as the basis for constructing efficient

geometric structure-preserving integrators for the dynamics of mechanical systems which evolve

on Lie groups.

The basic idea of a Lie group method is to express the solution in terms of an element of

the Lie algebra,

g(t) = g0 exp(ξ (t)) ,

as opposed to a group element, and to use the exponential map and group composition to ensure

that the solution remains on the group. The problem reduces to finding an appropriate Lie algebra
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element ξ ∈ g, which is desirable, as the Lie algebra is always linear, even when the Lie group is

nonlinear, and interpolants can be easily obtained. We construct an interpolant on the Lie group

by using polynomial interpolation at the level of the Lie algebra.

The exponential (or an approximation thereof, such as the Cayley transform, or more

generally, the diagonal Padé approximants, for quadratic matrix Lie groups [28]) allows one to

approximate a curve on G by a discrete time curve on the Lie algebra. One can combine this with

an approximation space for the fibers of T G∼= G×g to obtain a discrete Lagrangian. Enforcing

a discrete variational principle then results in a Lie group variational integrator. For more details,

see [16; 62; 68–70; 81; 86].

4.1.3 Adjoint Systems and their Geometry

The solution of many nonlinear problems involves successive linearization, and as such

variational equations and their adjoints play a critical role in a variety of applications. Adjoint

equations are of particular interest when the parameter space has significantly higher dimension

than that of the output or objective. In particular, the simulation of adjoint equations arise in

sensitivity analysis [25; 26], adaptive mesh refinement [80], uncertainty quantification [118],

automatic differentiation [47], superconvergent functional recovery [96], optimal control [102],

optimal design [41], optimal estimation [93], and deep learning viewed as an optimal control

problem [12].

The study of geometric aspects of adjoint systems arose from the observation that the

combination of any system of differential equations and its adjoint equations are described by a

formal Lagrangian [57; 58]. This naturally leads to the question of when the formation of adjoints

and discretization commutes [110], and prior work on this include the Ross–Fahroo lemma [103],

and the observation by Sanz-Serna [106] that the adjoints and discretization commute if and only

if the discretization is symplectic.

We will briefly review the geometry of adjoint and variational systems. Let M be

a manifold; throughout this paper, we will assume that all manifolds are smooth and finite-
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dimensional and all maps between them are smooth, unless otherwise stated. Let q̇ = F(q) be an

ODE on M, specified by a vector field F on M. Then, the adjoint system associated to F is the

ODE on T ∗M with the coordinate expression

q̇ = F(q),

ṗ =−[DF(q)]∗p,

where DF is the linearization of F . The adjoint system can be viewed as the ODE on T ∗M

corresponding to the vector field given by the cotangent lift of F . Intrinsically, the adjoint system

can be understood as a Hamiltonian system on T ∗M relative to the canonical symplectic form on

T ∗M, with Hamiltonian given by

H(q, p) = 〈p,F(q)〉.

Furthermore, we associate to F the variational system, which is the ODE on T M with

coordinate expression

q̇ = F(q),

v̇ = DF(q)v.

The variational system can be viewed as the ODE on T M corresponding to the vector field given

by the tangent lift of F .

The importance of the adjoint and variational systems is that they satisfy an adjoint-

variational quadratic conservation law: for any solution curves (q, p) of the adjoint system and

(q,v) of the variational system, covering the same base curve q, one has

d
dt
〈p,v〉= 0.
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This quadratic conservation law is the key to adjoint sensitivity analysis [106]. The interest

in studying the geometry of these adjoint and variational systems arises from the fact that this

quadratic conservation law can also be interpreted as symplecticity of the Hamiltonian flow of

the adjoint system [113].

In [113], we developed Type II variational integrators for adjoint systems for ODEs and

DAEs on vector spaces by utilizing their respective symplectic and presymplectic structures. One

of the goals of this paper is to extend this construction to the nonlinear setting and in particular,

adjoint systems over Lie groups.

4.1.4 Main Contributions

In this paper, we develop a continuous and discrete theory for Type II variational prin-

ciples on cotangent bundles of Lie groups, which gives an intrinsic meaning to Hamiltonian

systems with fixed initial position g0 and fixed terminal momenta p1 boundary conditions, in

contrast to traditional variational principles for Lie group variational integrators which assume

fixed initial and final positions. The motivation for developing Type II variational principles is

that the corresponding Type II boundary conditions arise in adjoint sensitivity analysis, which

is the motivating application of this paper. Traditionally, such Type II variational principles

are only globally defined on vector spaces, or locally defined on charts on a general manifold;

however, for Lie groups, left-trivialization allows us to define such a Type II variational principle

globally on the cotangent bundle of a Lie group. Specifically, in Section 4.2, we develop a

novel Type II variational principle for Hamiltonian systems on cotangent bundles of Lie groups

by introducing a d’Alembert variational principle. This is a novel variational principle since

typically, variational principles are given by a stationarity condition for the action corresponding

to fixed initial and terminal positions, g0 and g1; however, in our setting, since the final position

g1 is not fixed, virtual work can be deposited into the system by varying g1. This is accounted for

in our variational principle by demanding that the action is stationary only modulo this virtual

work term arising from g1 boundary variations. Subsequently, we discretize the variational prin-
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ciple to develop structure-preserving numerical methods for such systems. We prove that such

methods are symplectic and also momentum-preserving. We also develop a discrete reduction

theory for left-invariant systems, and show that the discrete reduction theory can be interpreted

as momentum preservation associated to left-invariance.

In Section 4.3, we apply the continuous and discrete theory developed in Section 4.2

to the particular case of adjoint Hamiltonian systems on Lie groups. In the continuous setting,

we introduce the adjoint and variational equations associated to an ODE on a Lie group, and

prove global existence and uniqueness results for these equations. In the discrete setting, we

show how our variational integrators can be used to perform intrinsic structure-preserving adjoint

sensitivity analysis on Lie groups. In particular, we show how initial condition sensitivities and

parameter sensitivities of cost functions can be computed exactly within this framework. Finally,

we conclude with two numerical examples, which utilizes this geometric adjoint sensitivity

analysis to solve an initial condition optimization problem and an optimal control problem on

SO(3).

4.2 Hamiltonian Variational Integrators on Cotangent
Bundles of Lie Groups

In this paper, we aim to construct and analyze geometric integration methods for Hamil-

tonian dynamics on the cotangent bundle T ∗G of a Lie group G, subject to Type II boundary

conditions g(0) = g0, p(T ) = p1. Throughout, our our motivating class of examples is adjoint

systems.

Example 4.2.1 (Adjoint Systems on Lie Groups). Consider an ODE on a Lie group G given

by ġ = f (g), specified by a vector field F on G. We associate to F the adjoint Hamiltonian

H : T ∗G! R, given by

H(g, p) = 〈p,F(q)〉.

We refer to the Hamiltonian system iXH Ω = dH, relative to the canonical symplectic form Ω on
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T ∗G, as the adjoint system associated to the ODE ġ = F(g). The motivation for considering

Type II boundary conditions arises from the fact that, viewing the ODE on G as flowing forward

in time, the momenta p can be interpreted as flowing backward in time, which backpropagates

sensitivity information back to the initial time. We will describe this in more detail in Section 4.3.

We also provide as another motivating example the class of mechanical systems on T ∗G.

Although we will not be particularly concerned with this class of examples in this paper, it is

worthwhile pointing out the distinctions between these two classes of examples (see Remark

4.2.1).

Example 4.2.2 (Mechanical Systems on T G). We consider a mechanical system on a Lie group

G described by a Lagrangian L : T G! R. By left-trivialization of the tangent bundle,

T G 3 (g, ġ) 7! (g,ξ ) = (g,g−1ġ) ∈ G×g,

the Euler–Lagrange equations for l(g,ξ )≡ L(g,gξ ) can be expressed as

d
dt

δ l
δξ

= ad∗
ξ

δ l
δξ

+dgl,

d
dt

g = gξ .

Assuming that the Lagrangian is hyperregular, i.e., FL : T G! T ∗G is a diffeomorphism, the

system can be equivalently described as a Hamiltonian system on T ∗G; or by left-trivialization,

it can be equivalently described as a Hamiltonian system on G×g∗ 3 (g,µ) given by

d
dt

µ = ad∗
ξ

µ +g
δ l
δg

,

d
dt

g = ξ ,

µ =
δ l
δξ

.
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For more details on this class of examples, see [16; 17; 62].

Remark 4.2.1. It is interesting to note that these two classes of examples, Example 4.2.1 and

Example 4.2.2, are at the opposing ends of the spectrum of regularity and degeneracy for

Hamiltonian systems.

Recall that a Hamiltonian is said to be regular if the Hessian of the Hamiltonian

D2
pH(q, p) is invertible for all (q, p) ∈ T ∗G and degenerate otherwise. If the Hamiltonian

is regular, then the (inverse) Legendre transform FH : T ∗G! T G is a local diffeomorphism.

On the one hand, systems of the form described in Example 4.2.2 are regular and

furthermore, they are maximally regular (or hyperregular) in the sense that FH : T ∗G! T G is

a global diffeomorphism.

On the other hand, adjoint systems of the form described in Example 4.2.1 are maximally

degenerate, in the sense that the Hessian D2
pH(q, p) is the zero matrix. While this appears to be

a deficiency of such systems, we will see that this is a key property of these systems, arising from

the fact that these systems are lifts of differential equations on the base space G.

Because adjoint systems are degenerate, they do not admit an equivalent Lagrangian

description. As such, we aim to construct integrators for Hamiltonian systems on T ∗G without

assuming that they arise from a Lagrangian system.

4.2.1 A Type II Variational Principle for Hamiltonian Systems on
Cotangent Bundles of Lie Groups

A common approach to constructing geometric integrators for Lagrangian and Hamil-

tonian systems is to restrict the variational principle, from which these systems arise, to some

appropriate finite-dimensional space of possible trajectories, and solve the approximate prob-

lem on this restricted space. We thus aim to construct integrators for Hamiltonian systems on

T ∗G by first formulating a variational principle for these systems in the continuous setting and

subsequently restricting to a discrete variational principle.
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To develop a variational principle for Hamiltonian systems on T ∗G, we first consider the

boundary conditions that we wish to place on the system. Note that fixed endpoint conditions

on the basespace g(0) = g0,g(T ) = g1 are generally incompatible with systems of the form

Example 4.2.1, since adjoint systems on T ∗G cover first-order ODEs on G and thus, one cannot

freely specify both g(0) and g(T ). As such, we instead consider Type II boundary conditions

of the form g(0) = g0, p(T ) = p1. For general Hamiltonian systems on the cotangent bundle of

a manifold, the issue with these boundary conditions is that one cannot intrinsically specify a

covector p(T ) = p1 without specifying the basepoint q(T ) = q1. This is not an issue for adjoint

systems in particular, since the time-T flow of the underlying ODE on G determines the basepoint

where p1 is specified. However, since we would like our theory to apply to general Hamiltonian

systems on T ∗G, we do not want to restrict to adjoint systems in particular. Fortunately, we can

make sense of Type II boundary conditions, since T ∗G is trivializable by left-translation.

Let g= TeG denote the Lie algebra of G and g∗ = T ∗e G be its dual. We will denote the

duality pairing between v ∈ TgG and p ∈ T ∗g G as 〈p,v〉, where the base point is understood in

context. Let Lg : G! G denote left-translation by g, Lg(x) = gx. Left-translation induces maps

on the tangent bundle and cotangent bundle of G by pushforward and pullback, respectively,

which we denote as

TxLg : TxG! TgxG,

T ∗x Lg : T ∗gxG! T ∗x G.

For vg ∈ TgG, pg ∈ T ∗g G, we will denote their left-translations to their respective fibers over the

identity as simply

g−1vg ≡ TgLg−1(vg) ∈ g,

g∗pg ≡ T ∗e Lg(pg) ∈ g∗.
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This notation is suggestive, since in the case that G is a matrix Lie group, the left-translation of a

tangent vector to the fiber over the identity acts by matrix multiplication by the inverse of g and

the left-translation of a covector to the fiber over the identity acts by matrix multiplication by the

adjoint of g.

A useful fact is that the pairing 〈pg,vg〉 is preserved under left-translation,

〈g∗ · pg,g−1 · vg〉= 〈T ∗e Lg(pg),TgLg−1(vg)〉

= 〈pg,TeLg ◦TgLg−1(vg)〉

= 〈pg,Tg(Lg ◦Lg−1)(vg)〉

= 〈pg,vg〉.

By left-translation on the cotangent bundle, we get the left-trivialization T ∗G∼= G×g∗. With this

trivialization, we can make sense of Type II boundary conditions g(0) = g0 ∈G,µ(T ) = µ1 ∈ g∗,

with coordinates (g,µ) on G×g∗.

What remains is to construct a variational principle. Recall that the action for a Hamilto-

nian system on T ∗G is given by

S[g, p] =
∫ T

0

(
〈p, ġ〉−H(g, p)

)
dt,

where H : T ∗G! R. By left-translation, with µ = g∗ · p, we define the left-trivialized Hamilto-

nian h : G×g∗! R as

h(g,µ)≡ H(g,g∗−1 ·µ) = H(g, p).
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The action can then be expressed as

S[g, p] =
∫ T

0

(
〈p, ġ〉−H(g, p)

)
dt

=
∫ T

0

(
〈g∗ · p,g−1 · ġ〉−H(g, p)

)
dt

=
∫ T

0

(
〈µ,g−1 · ġ〉−h(g,µ)

)
dt =: s[g,µ];

we refer to s[g,µ] as the left-trivialized action.

Now, we prescribe boundary conditions g(0) = g0 ∈ G, µ(T ) = µ1 ∈ g∗. Given a

curve (g(t), p(t)) on T ∗G, by left-translation, the terminal momenta condition µ(T ) = µ1 on

g∗ corresponds to p(T ) = g(T )∗−1 · µ1 ∈ T ∗g(T )G. To state a variational principle, we observe

that by left-translation, we can prescribe a boundary condition on p(T ) (equivalently, on µ(T ))

but we cannot fix the terminal point g(T ). As such, a variation δg can always introduce virtual

work on the system by varying the terminal point g(T ); the virtual work done by varying

the terminal point is given by 〈p(T ),δg(T )〉, or equivalently, 〈µ(T ),η(T )〉 where we defined

the left-trivialization of the variation η = g−1 · δg. Thus, we cannot demand the the action S

(equivalently, s) is stationary since one can always introduce virtual work as described above;

however, we can demand that it is stationary modulo the virtual work that is introduced into the

system by varying the terminal point g(T ). Thus, we impose the variational principle

δS[g, p] = 〈p(T ),δg(T )〉,

or equivalently, by left translation

δ s[g,µ] = 〈µ(T ),η(T )〉,

where the variations fix g(0) and p(T ) (equivalently, µ(T )). We refer to this variational principle

as the Type II d’Alembert variational principle, due to its similarity to the d’Alembert variational
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principle which utilizes virtual work to derive forced Lagrangian or Hamiltonian systems [84].

Theorem 4.2.1 (Type II d’Alembert Variational Principle). The following are equivalent

(i) The Type II d’Alembert variational principle

δS[g, p] = 〈p(T ),δg(T )〉,

on T ∗G is satisfied, where the variations of the action δg,δ p satisfy δg(0) = 0,δ p(T ) = 0,

corresponding to boundary conditions g(0) = g0, p(T ) = g(T )∗−1 ·µ1.

(ii) Hamilton’s equations hold in canonical coordinates on T ∗G, with the above Type II

boundary conditions,

ġ = DpH(g, p), (4.2.1a)

ṗ =−DgH(g, p), (4.2.1b)

g(0) = g0, (4.2.1c)

p(T ) = g(T )∗−1 ·µ1. (4.2.1d)

(iii) The Type II d’Alembert variational principle

δ s[g,µ] = 〈µ(T ),η(T )〉

on G×g∗ is satisfied, where the variation δg is left-trivialized as η = g−1 · δg and the

variation δ p is left-trivialized as δ µ = g∗ ·δ p, with δη(0) = 0,δ µ(T ) = 0, corresponding

to boundary conditions g(0) = g0,µ(T ) = µ1.
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(iv) The Lie–Poisson equations hold on G×g∗, with the above Type II boundary conditions,

ġ = g ·Dµh(g,µ), (4.2.2a)

µ̇ =−g∗ ·Dgh(g,µ)+ ad∗Dµ h(g,µ)µ, (4.2.2b)

g(0) = g0, (4.2.2c)

µ(T ) = µ1. (4.2.2d)

Remark 4.2.2. Above, we denote by DgH,DpH,Dgh,Dµh the functional derivatives satisfying

dH(g, p) · (δg,δ p) = 〈DgH(g, p),δg〉+ 〈δ p,DpH(g, p)〉,

dh(g,µ) · (δg,δ µ) = 〈Dgh(g,µ),δg〉+ 〈δ µ,Dµh(g,µ)〉.

Proof. To see that (i) and (ii) are equivalent, compute the variation of S,

δS[g, p] =
∫ T

0

(
〈δ p, ġ〉+

〈
p,

d
dt

δg
〉
−〈DgH,δg〉−〈δ p,DpH〉

)
dt

=
∫ T

0

(
〈δ p, ġ−DpH〉+ 〈−ṗ−DgH,δg〉

)
dt + 〈p,δg〉

∣∣∣T
0
.

If (ii) holds, the integrand above vanishes by the equations of motion; furthermore, δg(0) = 0.

Thus, the above expression reduces to

δS[g, p] = 〈p(T ),δg(T )〉,

i.e., (i) holds. Conversely, if (i) holds, we have

0 = δS[g, p]−〈p(T ),δg(T )〉=
∫ T

0

(
〈δ p, ġ−DpH〉+ 〈−ṗ−DgH,δg〉

)
dt.

Then, by the fundamental lemma of the calculus of variations, (ii) holds.
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To see that (iii) is equivalent to (iv), compute the variation of s. For simplicity, we denote

the left-translation of ġ by ξ = g−1 · ġ and similarly η = g−1 ·δg.

δ s[g,µ] =
∫ T

0

(
〈δ µ,g−1 · ġ〉+

〈
µ,g−1 d

dt
δg−g−1 ·δgg−1 · ġ

〉
−〈δ µ,Dµh〉−〈Dgh,δg〉

)
dt

=
∫ T

0

(
〈δ µ,g−1 · ġ−Dµh〉+ 〈µ, η̇ + adξ η〉−〈g∗ ·Dgh,η〉

)
dt

=
∫ T

0

(
〈δ µ,g−1 · ġ−Dµh〉+ 〈−µ̇ + ad∗

ξ
µ−g∗ ·Dgh,η〉

)
dt + 〈µ,η〉

∣∣∣T
0
.

If (iv) holds, the integrand above vanishes by the equations of motion, noting that ξ = g−1 · ġ =

Dµh; furthermore, η(0) = 0. Thus, the above expression reduces to

δ s[g,µ] = 〈µ(T ),η(T )〉,

i.e., (iii) holds. Conversely, if (iii) holds, we have

0 = δ s[g,µ]−〈µ(T ),η(T )〉=
∫ T

0

(
〈δ µ,g−1 · ġ−Dµh〉+ 〈−µ̇ + ad∗

ξ
µ−g∗ ·Dgh,η〉

)
dt.

Then, by the fundamental lemma of the calculus of variations, (iv) holds. Finally, (i) and (iii) are

equivalent by left-translation, since 〈p(T ),δg(T )〉= 〈µ(T ),η(T )〉 and S[g, p] = s[g,µ].

Remark 4.2.3. Note that one can also modify the above variational principle to include external

forces by adding the virtual work done by the external force. Given a left-trivialized external

force f : [0,T ]! g∗, one can modify the above variational principle to

δ s[g,µ] = 〈µ(T ),η(T )〉+
∫ T

0
〈 f ,η〉dt,

or equivalently,

δS[g, p] = 〈p(T ),δg(T )〉+
∫ T

0
〈g∗−1 · f ,δg〉dt.
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This modifies the momenta equations (4.2.2b) on G×g to include the external force,

µ̇ =−g∗ ·Dgh(g,µ)+ ad∗Dµ h(g,µ)µ + f ,

or equivalently, modifies the momenta equation (4.2.1b) on T ∗G to be

ṗ =−DgH(g, p)+g∗−1 · f .

4.2.2 Discrete Hamiltonian Variational Integrators on Cotangent
Bundles of Lie Groups

In this section, we develop a discrete counterpart to the continuous Type II variational

principle on cotangent bundles of Lie groups developed in the previous section.

Consider the action

s[g,µ] =
∫ T

0

(
〈µ,g−1 · ġ〉−h(g,µ)

)
dt.

We will construct discrete Hamiltonian variational integrators for the Lie–Poisson system (4.2.2a)-

(4.2.2d) by discretizing the Type II d’Alembert variational principle (Theorem 4.2.1).

Partition [0,T ] into ∪N−1
k=0 [tk, tk+1] where

0 = t0 < t1 < · · ·< tN−1 < tN = T,

with uniformly spaced intervals tk+1− tk = ∆t = T/N. To discretize the variational principle, we

need a sequence of points {gk ∈G}N−1
k=0 which interpolates a curve g(t) ∈G. A simple way to do

this is to utilize a retraction to relate a curve on G to a curve on g. Let τ be a retraction τ : g!G,

which is a C2-diffeomorphism about the origin such that τ(0) = e. Let dτξ : g! g denote the

right-trivialized tangent map of τ and dτ
−1
ξ

its inverse (for a definition, see [17]). Using the
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retraction, we can approximate the velocity g−1 · ġ ∈ g by

ξk+1 = τ
−1(g−1

k gk+1)/∆t. (4.2.3)

This defines the desired interpolated curve {gk} on G through elements {ξk} on g via gk+1 =

gkτ(∆tξk+1). We approximate the action as

sd[{gk},{mk}] =
N−1

∑
k=0

∆t
(
〈mk+1,ξk+1〉−h(gk,mk+1)

)
,

where again {ξk} and {gk} are related by (4.2.3). Note that, by (4.2.3), the variations in ξ are

related to the variations of g; this is explicitly given by ([62])

δξk+1 = δτ
−1(g−1

k gk+1)/∆t = dτ
−1
∆tξk+1

(−g−1
k δgk +Adτ(∆tξk+1)g

−1
k+1δgk+1)/∆t. (4.2.4)

We now derive a variational integrator from a discrete approximation of the Type II d’Alembert

variational principle.

Theorem 4.2.2 (Discrete Type II d’Alembert Variational Principle). The following are equivalent

(i) The discrete Type II d’Alembert variational principle holds

δ sd[{gk},{mk}] = 〈(dτ
−1
−∆tξN

)∗mN ,g−1
N δgN〉,

subject to variations δgk,δmk satisfying δg0 = 0,δmN = 0, corresponding to Type II

boundary conditions which prescribe g0 = g(0),mN = m(T ).
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(ii) The discrete Lie–Poisson equations hold

(dτ
−1
∆tξk+1

)∗mk+1−Ad∗
τ(∆tξk)

(dτ
−1
∆tξk

)∗mk =−∆tg∗k ·Dgh(gk,mk+1), (4.2.5a)

ξk+1 = Dµh(gk,mk+1), (4.2.5b)

gk+1 = gkτ(∆tξk+1), (4.2.5c)

with the above boundary conditions.

Proof. Compute the variation of sd ,

δ sd =
N−1

∑
k=0

∆t
[
〈δmk+1,ξk+1〉−〈δmk+1,Dµh(gk,mk+1)〉

]
︸ ︷︷ ︸

≡(a)

+
N−1

∑
k=0

∆t
[
〈mk+1,δξk+1〉−〈Dgh(gk,mk+1),δgk〉

]
︸ ︷︷ ︸

≡(b)

.

We will simplify the expressions (a) and (b) individually.

For (a), note that the k = N−1 term vanishes since δmN = 0. Thus, the sum runs 0 to

N−2. We re-index k! k−1 so that (a) becomes

(a) =
N−1

∑
k=1

∆t
[
〈δmk,ξk−Dµh(gk−1,mk)〉

]
.

For (b), we rewrite the variation in ξ in terms of the variation of g,

(b) =
N−1

∑
k=0

∆t
[
〈mk+1,dτ

−1
∆tξk+1

(−g−1
k δgk +Adτ(∆tξk+1)g

−1
k+1δgk+1)/∆t〉−〈Dgh(gk,mk+1),δgk〉

]
=

N−1

∑
k=0

∆t
[
〈−(g−1

k )∗(dτ
−1
∆tξk+1

)∗mk+1/∆t−Dgh(gk,mk+1),δgk〉
]

+
N−1

∑
k=0

∆t〈(g−1
k+1)

∗Ad∗
τ(∆tξk+1)

(dτ
−1
∆tξk+1

)∗mk+1/∆t,δgk+1〉.
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In the first sum above, note that the k = 0 vanishes since δg0 = 0. In the second sum above, we

explicitly write the k = N−1 term and re-index the resulting sum k! k−1. This gives

(b) =
N−1

∑
k=1

∆t
[
〈−(g−1

k )∗(dτ
−1
∆tξk+1

)∗mk+1/∆t−Dgh(gk,mk+1),δgk〉
]

+
N−1

∑
k=1

∆t〈(g−1
k )∗Ad∗

τ(∆tξk)
(dτ
−1
∆tξk

)∗mk/∆t,δgk〉

+∆t〈(g−1
N )∗Ad∗

τ(∆tξN)
(dτ
−1
∆tξN

)∗mN/∆t,δgN〉.

Note that, since Ad∗
τ(∆tξN)

(dτ
−1
∆tξN

)∗ = (dτ
−1
−∆tξN

)∗ [17], the last term equals

〈(dτ
−1
−∆tξN

)∗mN ,g−1
N δgN〉,

which is precisely the virtual work term in the discrete Type II d’Alembert variational principle.

Putting everything together, we have

δ sd[{gk},{mk}]−〈(dτ
−1
−∆tξN

)∗mN ,g−1
N δgN〉

=
N−1

∑
k=1

∆t
[
〈δmk,ξk−Dµh(gk−1,mk)〉

+ 〈−(g−1
k )∗(dτ

−1
∆tξk+1

)∗mk+1/∆t−Dgh(gk,mk+1)

+(g−1
k )∗Ad∗

τ(∆tξk)
(dτ
−1
∆tξk

)∗mk/∆t,δgk〉
]
.

Clearly, if the discrete Lie–Poisson equations hold, then the above vanishes, i.e., the discrete

Type II d’Alembert variational principle holds, δ sd[{gk},{mk}] = 〈(dτ
−1
−∆tξN

)∗mN ,g−1
N δgN〉.

Conversely, if the discrete Type II d’Alembert variational principle holds, the above vanishes,
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which gives

0 =
N−1

∑
k=1

∆t
[
〈δmk,ξk−Dµh(gk−1,mk)〉

+ 〈−(g−1
k )∗(dτ

−1
∆tξk+1

)∗mk+1/∆t−Dgh(gk,mk+1)

+(g−1
k )∗Ad∗

τ(∆tξk)
(dτ
−1
∆tξk

)∗mk/∆t,δgk〉
]
.

Since the variations δmk and δgk are arbitrary and independent for k = 1, . . . ,N−1, this gives

the discrete Lie–Poisson equations (4.2.5a)-(4.2.5c).

Note that this integrator is similar to (and in some cases, the same as) various variational

Lie group integrators in the literature, but there are some important distinctions.

For example, in [17], variational integrators for dynamics on T G are derived through

a discrete Hamilton–Pontryagin principle. This can be related to our integrator, given that

the Hamiltonian arises from a regular Lagrangian. In particular, if one is given a regular left-

trivialized Lagrangian l(g,ξ ), from which h(g,µ) arises via the Legendre transform, then we

can invert (4.2.5b) to obtain mk+1 = Dξ l(gk,ξk+1) and we have the relation ∂ l/∂g =−∂h/∂g.

Substituting these into the equations (4.2.5a)-(4.2.5c) produces equation (4.19) of [17]. Of

course, this equivalence does not hold when the Hamiltonian is not regular. In particular,

note that the Legendre transform with respect to the Hamiltonian, equation (4.2.5b), appears

in the discrete Lie–Poisson equations derived from the Hamiltonian side, as opposed to the

Legendre transform with respect to the Lagrangian. Thus, our method is applicable to degenerate

Hamiltonian systems, such as adjoint systems, which we will discuss further in Section 4.3.

As previously noted, an important distinction with the above integrator is that it is defined

and derived from a variational principle entirely on the Hamiltonian side; this is particularly

important when the Hamiltonian is not regular, as in the case of adjoint systems. Furthermore,

the variational integrators in the literature make use of fixed endpoint boundary conditions,

δg0 = 0 = δgN , in the variational principle ([17; 62; 81; 86]). As previously discussed, these
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boundary conditions are incompatible with adjoint systems. By utilizing a discrete Type II

d’Alembert variational principle, we were able to derive an integrator on the Hamiltonian side

which does not assume that the Hamiltonian is regular, nor assume fixed endpoint boundary

conditions. Thus, as we will see in Section 4.3, we will be able to apply our integrator to

adjoint systems to develop a structure-preserving integrator which preserves the quadratic adjoint

sensitivity conservation law.

It is also interesting to note the virtual work term arising at the terminal point in the

discrete variational principle,

〈(dτ
−1
−∆tξN

)∗mN ,g−1
N δgN〉

is different than what one might expect from the continuous variational principle, 〈µN ,g−1
N δgN〉.

This is due to the fact that the retraction relates the dynamics on G to dynamics on g, and so

the pairing 〈µ,g−1ġ〉 compared to the pairing 〈mk,ξk〉 should not be identified, but rather, are

related by a coordinate change. In fact, the coordinate change is given by the cotangent lift

of τ−1, which is precisely (dτ
−1
−∆tξN

)∗. As we will see below, this also induces a coordinate

change in the expression for the symplectic form, which is the exterior derivative of the one-form

corresponding to the above boundary term; the expression for the one-form and its exterior

derivative is also derived in [17] through a discrete Hamilton–Pontryagin principle.

Reduction for Left-invariant Hamiltonians

A particularly important class of Hamiltonians are the left-invariant Hamiltonians, which

are functions H : T ∗G! R that are invariant under the cotangent lift of left-multiplication by

any x ∈ G, i.e.,

H ◦T ∗Lx = H for all x ∈ G.

In terms of our notation, that is

H(xg,x∗−1 p) = H(g, p) for all x ∈ G, (g, p) ∈ T ∗G.
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For such left-invariant Hamiltonians, the dynamics on T ∗G reduce to dynamics on g∗ [82].

Given a left-invariant Hamiltonian H, we define the reduced Hamiltonian H̃ : g∗! R by

H̃(µ) = H(e,µ).

Then, equation (4.2.2b) for µ̇ reduces to

µ̇ = ad∗Dµ H̃(µ)µ, (4.2.6)

where we used that

H̃(µ) = H(e,µ) = H(g,g∗−1
µ) = h(g,µ)

and hence also, Dgh(g,µ) = 0. Thus, as can be seen from equation (4.2.6), the momentum equa-

tion decouples from the dynamics on G: (4.2.6) can be solved independently and subsequently,

(4.2.2a) can be used to reconstruct the dynamics on G. Hence, for a left-invariant system, the

full dynamics on T ∗G is completely encoded by the reduced dynamics on g∗.

Now, we develop a discrete analogue of the Type II variational principle in the left-

invariant setting. Define the reduced discrete action

s̃d[{gk},{mk}] =
N−1

∑
k=0

∆t
(
〈mk+1,ξk+1〉− H̃(mk+1)

)
.

Theorem 4.2.3 (Discrete Type II d’Alembert Reduced Variational Principle). Let H : T ∗G! R

be left-invariant and let h, H̃,sd, s̃d be defined as above. The following are equivalent

(i) The discrete Type II d’Alembert variational principle holds

δ sd[{gk},{mk}] = 〈(dτ
−1
−∆tξN

)∗mN ,g−1
N δgN〉,

subject to variations δgk,δmk satisfying δg0 = 0,δmN = 0, corresponding to Type II
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boundary conditions which prescribe g0 = g(0),mN = m(T ).

(ii) The discrete Lie–Poisson equations hold

(dτ
−1
∆tξk+1

)∗mk+1−Ad∗
τ(∆tξk)

(dτ
−1
∆tξk

)∗mk =−∆tg∗k ·Dgh(gk,mk+1),

ξk+1 = Dµh(gk,mk+1),

gk+1 = gkτ(∆tξk+1),

with the above boundary conditions.

(iii) The discrete reduced Type II d’Alembert variational principle holds

δ s̃d[{gk},{mk}] = 〈(dτ
−1
−∆tξN

)∗mN ,g−1
N δgN〉,

subject to variations δgk,δmk satisfying δg0 = 0,δmN = 0, corresponding to Type II

boundary conditions which prescribe g0 = g(0),mN = m(T ).

(iv) The discrete reduced Lie–Poisson equations hold

(dτ
−1
∆tξk+1

)∗mk+1−Ad∗
τ(∆tξk)

(dτ
−1
∆tξk

)∗mk = 0, (4.2.7a)

ξk+1 = DµH̃(mk+1), (4.2.7b)

gk+1 = gkτ(∆tξk+1), (4.2.7c)

with the above boundary conditions.

Proof. We already know that (i) is equivalent to (ii) by Theorem 4.2.2. Furthermore, (i) is clearly

equivalent to (iii), since sd = s̃d . To see this, it suffices to show that h(g,mk+1) = H̃(mk+1). By

the definition of h, we have

h(g,mk+1) = H(g,g∗−1mk+1) = H(e,mk+1) = H̃(mk+1),
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where in the second equality, we used left-invariance of H.

Finally, we show that (ii) is equivalent to (iv). Clearly (4.2.5c) is the same as (4.2.7c).

Since H̃(mk+1) = H(gk,mk+1), we have that

Dµh(gk,mk+1) = DµH̃(mk+1),

so that (4.2.5b) is equivalent to (4.2.7b). Finally, we have

Dgh(gk,mk+1) = DgH̃(mk+1) = 0,

so that (4.2.5a) is equivalent to (4.2.7a).

In practice, many Hamiltonian systems on T ∗G arise from left-invariant Hamiltonians.

The practical importance of the reduced formulation is that the dynamics on T ∗G (or, equivalently,

on G×g∗) can be reduced to dynamics on g∗. To see this, note that we can eliminate {ξk} in

equation (4.2.7a) by using equation (4.2.7b) to obtain

(dτ
−1
∆tDµ H̃(mk+1)

)∗mk+1−Ad∗
τ(∆tDµ H̃(mk))

(dτ
−1
∆tDµ H̃(mk)

)∗mk = 0,

which only involves {mk}. In the literature, this is often presented as a discrete coadjoint flow

(see, for example, [81; 86]), which we can see by making the definition µk = (dτ
−1
∆tDµ H̃(mk)

)∗mk,

so that the above becomes

µk+1 = Ad∗
τ(∆tDµ H̃(mk))

µk. (4.2.8)

In the following section, we will derive symplecticity and momentum conservation of

the discrete Lie–Poisson equations (4.2.5a)-(4.2.5c). Subsequently, we will derive the discrete

reduced Lie–Poisson equation (4.2.8) from a different perspective, by viewing it as a consequence

of momentum conservation associated to the left-invariance symmetry.
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Discrete Conservation Properties

In this section, we will show that the integrator (4.2.5a)-(4.2.5c) is both symplectic

and momentum-preserving. Such symplectic-momentum schemes also enjoy long-term energy

stability [84].

Discrete Symplecticity. We now show that the integrator (4.2.5a)-(4.2.5c) is symplectic.

In essence, symplecticity of the integrator follows from the fact that the integrator was derived

from a discrete variational principle, but we will show it explicitly. We perform the computa-

tion explicitly for two reasons. First, the proof of symplecticity for variational integrators is

traditionally derived from the boundary term in the variational principle [84] or through the use

of a generating function [76]. However, in our case, we utilize a modified d’Alembert Type II

variational principle which involves a virtual work term. Thus, we cannot appeal directly to the

previous methods. Furthermore, the setup for the proof will introduce the concept of variational

equations which will be useful for discussing adjoint systems in Section 4.3; additionally, the

computation for symplecticity will be similar to the computation for the quadratic conservation

law for discrete adjoint systems.

From the boundary term arising from the variation of the discrete action sd , we see that

the discrete canonical form has the expression

Θk = 〈(dτ
−1
−∆tξk

)∗mk,g−1
k dgk〉, (4.2.9)

whose action on a vector δk = δmk∂/∂mk +δgk∂/∂gk is given by

Θk ·δk = 〈(dτ
−1
−∆tξk

)∗mk,g−1
k δgk〉.

Then, the corresponding discrete symplectic form Ωk ≡ dΘk has the expression

Ωk = 〈(dτ
−1
−∆tξk

)∗dmk∧g−1
k dgk〉. (4.2.10)
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Its action on vectors δ i
k = δmi

k∂/∂mk +δgi
k∂/∂gk is given by

Ωk · (δ 1
k ,δ

2
k ) = 〈(dτ

−1
−∆tξk

)∗δm1
k ,g
−1
k δg2

k〉−〈(dτ
−1
−∆tξk

)∗δm2
k ,g
−1
k δg1

k〉.

Symplecticity of the integrator (4.2.5a)-(4.2.5c) is the statement that Ωk+1 = Ωk when the

discrete Lie–Poisson equations (4.2.5a)-(4.2.5c) hold, where the symplectic forms are evaluated

on first variations of the discrete Lie–Poisson equations, i.e., variations whose flow preserves

solutions of the discrete Lie–Poisson equations. Equivalently, such first variations are those

which preserve (4.2.5a)-(4.2.5c) to linear order. By linearizing these equations, we obtain

(dτ
−1
∆tξk+1

)∗dmk+1−Ad∗
τ(∆tξk)

(dτ
−1
∆tξk

)∗dmk (4.2.11a)

=−∆tg∗k ·D2
µgh(gk,mk+1)dmk+1 +variation in gk,

dξk+1 = D2
gµh(gk,mk+1)dgk +variation in mk+1, (4.2.11b)

0 = d(gk+1−gkτ(∆tξk+1)). (4.2.11c)

In equation (4.2.11a) above, we omitted the terms involving the variation of (4.2.5a) with respect

to gk. Similarly, in equation (4.2.11b), we omitted the terms involving the variation of (4.2.5b)

with respect to mk+1. This is because it is difficult to express the former explicitly but we will

write them as follows. Observe that equation (4.2.5a) and (4.2.5b) can respectively be expressed

as

δ

δηk
(∆t−1sd) = 0,

δ

δmk+1
(∆t−1sd) = 0,

where ηk = g−1
k δgk, and the variations in g and ξ are related by the identity (4.2.4). Additionally,
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the variational derivatives are defined by

δ sd = ∑
k

[〈
δmk+1,

δ

δmk+1
sd

〉
+

〈
δ

δηk
sd,ηk

〉]
.

Thus, the omitted variations in (4.2.11a), (4.2.11b) have the expressions,

δ 2(∆t−1sd)

δ 2ηk
g−1

k dgk,

δ 2(∆t−1sd)

δ 2mk+1
dmk+1,

respectively. Additionally, we will combine (4.2.11b)-(4.2.11c). Analogous to the identity

(4.2.4), (4.2.11c) can be expressed as

dξk+1 = dτ
−1
∆tξk+1

(−g−1
k dgk +Adτ(∆tξk+1)g

−1
k+1dgk+1)/∆t.

Thus, we can combine (4.2.11b)-(4.2.11c) to yield

dτ
−1
∆tξk+1

(−g−1
k dgk +Adτ(∆tξk+1)g

−1
k+1dgk+1)/∆t = D2

gµh(gk,mk+1)dgk +
δ 2(∆t−1sd)

δ 2mk+1
dmk+1.

We will additionally multiply both sides by ∆t and act on both sides by dτ∆tξk+1
. Thus, we have

the equations for the first variations of the discrete Lie–Poisson equations,

(dτ
−1
∆tξk+1

)∗dmk+1−Ad∗
τ(∆tξk)

(dτ
−1
∆tξk

)∗dmk

=−∆tg∗k ·D2
µgh(gk,mk+1)dmk+1 +

δ 2(∆t−1sd))

δ 2ηk
g−1

k dgk, (4.2.12a)

−g−1
k dgk +Adτ(∆tξk+1)g

−1
k+1dgk+1

= ∆tdτ∆tξk+1
D2

gµh(gk,mk+1)dgk +∆tdτ∆tξk+1

δ 2(∆t−1sd)

δ 2mk+1
dmk+1. (4.2.12b)

Remark 4.2.4. In the subsequent proof of symplecticity of the discrete Lie–Poisson equations,
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some notation and manipulations for the computations will be useful.

First, note that although for notational simplicity we will work at the level of differential

forms, we will always implicitly understand that the differential forms will be evaluated on

vectors. Because of this, we can manipulate expressions involving differential forms and the

duality pairing with a wedge product 〈·∧ ·〉 as we would an expression of the ordinary duality

pairing. For example, given the expression for Ωk · (δ 1
k ,δ

2
k ) above, we can manipulate the

expression as follows

Ωk = 〈(dτ
−1
−∆tξk

)∗dmk∧g−1
k dgk〉= 〈dmk∧dτ

−1
−∆tξk

g−1
k dgk〉,

i.e., we can move (dτ
−1
−∆tξk

)∗ across the duality pairing by taking the adjoint, because we can do

so in the expression Ωk · (δ 1
k ,δ

2
k ), when the differential form is evaluated on vectors.

Furthermore, for some parts of the subsequent computation, it will be useful to used

indexed coordinates. Let gA
k , A = 1, . . . ,dim(G) be coordinates for gk on G and let mkA be

coordinates for mk on g∗. Then, for example, a typical duality pairing 〈mk,g−1
k δgk〉 can be

expressed as

〈mk,g−1
k δgk〉= mkA(g−1

k δgk)
A,

where we are using the Einstein summation convention that repeated indices, one raised and one

lowered, are implicitly summed over. Similarly, an expression involving differential forms paired

with the duality pairing and wedge product, such as 〈dmk∧g−1
k dgk〉, can be expressed as

〈dmk∧g−1
k dgk〉= dmkA∧ (g−1

k δgk)
A = dmkA∧ (g−1

k )A
BδgB

k = (g−1
k )A

BdmkA∧δgB
k .

In the last equality above, we used bilinearity of the wedge product and the fact that the quantity

(g−1
k )A

B, for each index A,B, is simply a number. In particular, indexed coordinates will be useful
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for quantities involving the second variations of sd above, which can be expressed as

(
δ 2sd

δ 2ηk
g−1

k dgk

)
A
=

δ 2sd

δηAδηB (g
−1
k dgk)

B,(
δ 2sd

δ 2mk+1
dmk+1

)A

=
δ 2sd

δm(k+1)Aδm(k+1)B
dm(k+1)B.

Similarly, the derivatives of the Hamiltonian in indexed coordinates become partial derivatives,

e.g.,

(Dgh(gk,mk+1))A =
∂

∂gA
k

h(gk,mk+1).

We are now ready to prove the integrator (4.2.5a)-(4.2.5c) is symplectic.

Theorem 4.2.4. The integrator (4.2.5a)-(4.2.5c) is symplectic, i.e., the symplectic form is pre-

served,

Ωk+1 = Ωk,

subject to first variations of the discrete Lie–Poisson equations. We will prove this by computing

expressions for Ωk+1 and Ωk separately and subsequently showing that their expressions are

equivalent.

Proof. We will start with computing an expression for

Ωk+1 = 〈(dτ
−1
−∆tξk+1

)∗dmk+1∧g−1
k+1dgk+1〉.
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Using the identity Ad∗
τ(∆tξ j)

(dτ
−1
∆tξ j

)∗= (dτ
−1
−∆tξ j

)∗ and subsequently, equation (4.2.12a), we have

Ωk+1 = 〈Ad∗
τ(∆tξk+1)

(dτ
−1
∆tξk+1

)∗dmk+1∧g−1
k+1dgk+1〉

= 〈(dτ
−1
∆tξk+1

)∗dmk+1∧Adτ(∆tξk+1)g
−1
k+1dgk+1〉

= 〈Ad∗
τ(∆tξk)

(dτ
−1
∆tξk

)∗dmk∧Adτ(∆tξk+1)g
−1
k+1dgk+1〉

−∆t〈g∗kD2
µgh(gk,mk+1)dmk+1∧Adτ(∆tξk+1)g

−1
k+1dgk+1〉

+

〈
δ 2(∆t−1sd)

δη2
k

g−1
k dgk∧Adτ(∆tξk+1)g

−1
k+1dgk+1

〉
.

Using equation (4.2.12b) in the third term above, this becomes

Ωk+1 = 〈Ad∗
τ(∆tξk)

(dτ
−1
∆tξk

)∗dmk∧Adτ(∆tξk+1)g
−1
k+1dgk+1〉

−∆t〈g∗kD2
µgh(gk,mk+1)dmk+1∧Adτ(∆tξk+1)g

−1
k+1dgk+1〉

+

〈
δ 2(∆t−1sd)

δ 2ηk
g−1

k dgk∧g−1
k dgk

〉
+∆t

〈
δ 2(∆t−1sd)

δ 2ηk
g−1

k dgk∧dτ∆tξk+1
D2

gµh(gk,mk+1)dgk

〉
+∆t

〈
δ 2(∆t−1sd)

δ 2ηk
g−1

k dgk∧dτ∆tξk+1

δ 2(∆t−1sd)

δ 2mk+1
dmk+1

〉
.

The third term above vanishes by the symmetry of the second variation and the asymmetry of the

wedge product. To see this, in coordinates, the third term above can be expressed as

∆t−1
〈

δ 2sd

δ 2ηk
g−1

k dgk∧g−1
k dgk

〉
= ∆t−1 δ 2sd

δηA
k δηB

k
(g−1

k dgk)
A∧ (g−1

k dgk)
B.

The second variation of sd above is symmetric under the interchange A↔ B while the wedge

product above is antisymmetric under the interchange A↔ B; hence, this term vanishes. Thus,
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we have the expression

Ωk+1 = 〈Ad∗
τ(∆tξk)

(dτ
−1
∆tξk

)∗dmk∧Adτ(∆tξk+1)g
−1
k+1dgk+1〉︸ ︷︷ ︸

≡(a1)

−∆t〈g∗kD2
µgh(gk,mk+1)dmk+1∧Adτ(∆tξk+1)g

−1
k+1dgk+1〉︸ ︷︷ ︸

≡(a2)

+∆t
〈

δ 2(∆t−1sd)

δ 2ηk
g−1

k dgk∧dτ∆tξk+1
D2

gµh(gk,mk+1)dgk

〉
︸ ︷︷ ︸

≡(a3)

+∆t
〈

δ 2(∆t−1sd)

δ 2ηk
g−1

k dgk∧dτ∆tξk+1

δ 2(∆t−1sd)

δ 2mk+1
dmk+1

〉
.︸ ︷︷ ︸

≡(a4)

.

Now, we will determine an expression for

Ωk = 〈(dτ
−1
−∆tξk

)∗dmk∧g−1
k dgk〉.

Using equation (4.2.12b), we have

Ωk = 〈(dτ
−1
−∆tξk

)∗dmk∧g−1
k dgk〉

= 〈(dτ
−1
−∆tξk

)∗dmk∧Adτ(∆tξk+1)g
−1
k+1dgk+1〉

−∆t〈(dτ
−1
−∆tξk

)∗dmk∧dτ∆tξk+1
D2

gµh(gk,mk+1)dgk〉

−∆t
〈
(dτ
−1
−∆tξk

)∗dmk∧dτ∆tξk+1

δ 2(∆t−1sd)

δ 2mk+1
dmk+1

〉
.
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Using equation (4.2.12a) in the third term above, this becomes

Ωk = 〈(dτ
−1
−∆tξk

)∗dmk∧g−1
k dgk〉

= 〈(dτ
−1
−∆tξk

)∗dmk∧Adτ(∆tξk+1)g
−1
k+1dgk+1〉

−∆t〈(dτ
−1
−∆tξk

)∗dmk∧dτ∆tξk+1
D2

gµh(gk,mk+1)dgk〉

−∆t
〈
(dτ
−1
∆tξk+1

)∗dmk+1∧dτ∆tξk+1

δ 2(∆t−1sd)

δ 2mk+1
dmk+1

〉
−∆t2

〈
g∗kD2

µgh(gk,mk+1)dmk+1∧dτ∆tξk+1

δ 2(∆t−1sd)

δ 2mk+1
dmk+1

〉
−∆t

〈
δ 2(∆t−1sd)

δ 2ηk
g−1

k dgk∧dτ∆tξk+1

δ 2(∆t−1sd)

δ 2mk+1
dmk+1

〉
.

The third term above can be expressed as

−
〈
(dτ
−1
∆tξk+1

)∗dmk+1∧dτ∆tξk+1

δ 2sd

δ 2mk+1
dmk+1

〉
=−

〈
dmk+1∧

δ 2sd

δ 2mk+1
dmk+1

〉
.

By applying an analogous symmetry and antisymmetry argument to the term in Ωk+1, this term

vanishes. Thus, we have the expression

Ωk = 〈(dτ
−1
−∆tξk

)∗dmk∧Adτ(∆tξk+1)g
−1
k+1dgk+1〉︸ ︷︷ ︸

≡(b1)

−∆t〈(dτ
−1
−∆tξk

)∗dmk∧dτ∆tξk+1
D2

gµh(gk,mk+1)dgk〉︸ ︷︷ ︸
≡(b2)

−∆t2
〈

g∗kD2
µgh(gk,mk+1)dmk+1∧dτ∆tξk+1

δ 2(∆t−1sd)

δ 2mk+1
dmk+1

〉
︸ ︷︷ ︸

≡(b3)

−∆t
〈

δ 2(∆t−1sd)

δ 2ηk
g−1

k dgk∧dτ∆tξk+1

δ 2(∆t−1sd)

δ 2mk+1
dmk+1

〉
︸ ︷︷ ︸

≡(b4)

.

Comparing the expressions for Ωk+1 and Ωk above, we see that (a1) = (b1) (using the identity

285



Ad∗
τ(∆tξ j)

(dτ
−1
∆tξ j

)∗ = (dτ
−1
−∆tξ j

)∗); additionally, we see that (a4) = (b4). Thus, we have left

to show that (a2) + (a3) = (b2) + (b3). Equivalently, we have to show that (a2)− (b3) =

(b2)− (a3). We will compute both sides of this expression.

Starting with the left hand side, we have

(a2)− (b3) =−∆t〈g∗kD2
µgh(gk,mk+1)dmk+1∧Adτ(∆tξk+1)g

−1
k+1dgk+1〉

+∆t2
〈

g∗kD2
µgh(gk,mk+1)dmk+1∧dτ∆tξk+1

δ 2(∆t−1sd)

δ 2mk+1
dmk+1

〉
=−∆t

〈
g∗kD2

µgh(gk,mk+1)dmk+1

∧
(

Adτ(∆tξk+1)g
−1
k+1dgk+1−∆tdτ∆tξk+1

δ 2(∆t−1sd)

δ 2mk+1
dmk+1

)〉
=−∆t

〈
g∗kD2

µgh(gk,mk+1)dmk+1∧
(

g−1
k dgk +∆tdτ∆tξk+1

D2
gµh(gk,mk+1)dgk

)〉
,

where in the last equality, we used (4.2.12b). We split this expression into two terms

(a2)− (b3) =−∆t
〈

g∗kD2
µgh(gk,mk+1)dmk+1∧g−1

k dgk

〉
︸ ︷︷ ︸

≡(x1)

−∆t2
〈

g∗kD2
µgh(gk,mk+1)dmk+1∧dτ∆tξk+1

D2
gµh(gk,mk+1)dgk

〉
︸ ︷︷ ︸

≡(x2)

.

For the right hand side, we have

(b2)− (a3) =−∆t〈(dτ
−1
−∆tξk

)∗dmk∧dτ∆tξk+1
D2

gµh(gk,mk+1)dgk〉

−∆t
〈

δ 2sk

δ 2ηk
g−1

k dgk∧dτ∆tξk+1
D2

gµh(gk,mk+1)dgk

〉
=−∆t

〈(
(dτ
−1
−∆tξk

)∗dmk +
δ 2(∆t−1sd)

δ 2ηk
g−1

k dgk

)
∧dτ∆tξk+1

D2
gµh(gk,mk+1)dgk

〉
=−∆t

〈(
(dτ
−1
∆tξk+1

)∗dmk+1 +∆tg∗kD2
µgh(gk,mk+1)dmk+1

)
∧dτ∆tξk+1

D2
gµh(gk,mk+1)dgk

〉
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We split this expression into two terms

(b2)− (a3) =−∆t
〈
(dτ
−1
∆tξk+1

)∗dmk+1∧dτ∆tξk+1
D2

gµh(gk,mk+1)dgk

〉
︸ ︷︷ ︸

≡(y1)

−∆t2
〈

g∗kD2
µgh(gk,mk+1)dmk+1∧dτ∆tξk+1

D2
gµh(gk,mk+1)dgk

〉
︸ ︷︷ ︸

≡(y2)

.

Clearly, (x2) = (y2). Furthermore, we express (y1) as

(y1) =−∆t
〈
(dτ
−1
∆tξk+1

)∗dmk+1∧dτ∆tξk+1
D2

gµh(gk,mk+1)dgk

〉
=−∆t

〈
dmk+1∧D2

gµh(gk,mk+1)dgk

〉
=−∆tdm(k+1)A∧

∂ 2

∂gB∂ µA
h(gk,mk+1)dgB

k

=−∆t
∂ 2

∂gB∂ µA
h(gk,mk+1)dm(k+1)A∧dgB

k .

We express (x1) as

(x1) =−∆t
〈

g∗kD2
µgh(gk,mk+1)dmk+1∧g−1

k dgk

〉
=−∆t

〈
D2

µgh(gk,mk+1)dmk+1∧dgk

〉
=−∆t

∂ 2

∂gB∂ µA
h(gk,mk+1)dm(k+1)A∧dgB

k .

Thus, (x1) = (y1) and so we have shown (a2)− (b3) = (b2)− (a3). Thus, Ωk+1 = Ωk as

claimed.

Discrete Noether’s Theorem. We will now show that the integrator (4.2.5a)-(4.2.5c)

preserves the momentum map associated with a symmetry of the discrete action.

Let {gε
k ,m

ε
k} be a one-parameter family of discrete time curves with g0

k = gk and m0
k = mk.
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Let

δgk =
d

dε
gε

k

∣∣∣
ε=0

,

δmk =
d

dε
mε

k

∣∣∣
ε=0

,

denote the variations associated to the one-parameter family of discrete time curves. Furthermore,

let sk = 〈mk+1,ξk+1〉− h(gk,mk+1) denote the kth discrete action density. Then, we have the

following momentum preservation property of (4.2.5a)-(4.2.5c).

Theorem 4.2.5 (Discrete Noether’s Theorem). Suppose that (4.2.5a)-(4.2.5c) hold and further-

more, suppose that the kth discrete action density is invariant under the above variations,

δ sk = 0.

Then, for any time indices I < J,

ΘI ·δgI = ΘJ ·δgJ, (4.2.13)

where Θk is the discrete canonical form (4.2.9).

Proof. Define the IJ-partial discrete action sum as

sIJ
d ≡

J−1

∑
k=I

∆tsk.
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By assumption, δ sIJ
d = 0 subject to the above variations. We compute the variation explicitly

0 = δ sIJ
d =

J−1

∑
k=I

∆tδ sk

=
J−1

∑
k=I

∆t〈δmk+1,ξk+1−Dµh(gk,mk+1)〉

+
J−1

∑
k=I

[
〈mk+1,δξk+1〉−〈Dgh(gk,mk+1),δgk〉

]
.

The first sum above vanishes by (4.2.5b). Analogous to the proof of Theorem 4.2.2, we rewrite

the second sum by rewriting the variations {δξk} in terms of {δgk}. This gives

0 = δ sIJ
d

=
J−1

∑
k=I

∆t〈−(g−1
k )∗(dτ

−1
∆tξk+1

)∗mk+1/∆t−Dgh(gk,mk+1),δgk〉

+
J−1

∑
k=I

∆t〈(gk+1)
∗Ad∗

τ(∆tξk+1)
(dτ
−1
∆tξk+1

)∗mk+1/∆t,δgk+1〉.

We explicitly write the k = I term in the first sum above and the k = J−1 term in the second

sum, and subsequently, reindex the second sum from k! k−1. This gives

0 = δ sIJ
d

= ∆t〈−(g−1
I )∗(dτ

−1
∆tξI+1

)∗mI+1/∆t−Dgh(gI,mI+1),δgI〉

+∆t〈(gJ)
∗Ad∗

τ(∆tξJ)
(dτ
−1
∆tξJ

)∗mJ/∆t,δgJ〉+

+
J−1

∑
k=I+1

∆t
[
〈−(g−1

k )∗(dτ
−1
∆tξk+1

)∗mk+1/∆t−Dgh(gk,mk+1)

+(gk)
∗Ad∗

τ(∆tξk)
(dτ
−1
∆tξk

)∗mk/∆t,δgk〉
]
.

The summation above vanishes by (4.2.5a). Additionally, we rewrite the first term above using

(4.2.5a) and we rewrite the second term above using the identity Ad∗
τ(∆tξJ)

(dτ
−1
∆tξJ

)∗ = (dτ
−1
−∆tξJ

)∗.
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Hence,

0 = δ sIJ
d

=−〈(dτ
−1
−∆tξI

)∗mI,g−1
I δgI〉+ 〈(dτ

−1
−∆tξJ

)∗mJ,g−1
J δgJ〉

=−ΘI ·δgI +ΘJ ·δgJ.

As an application of Theorem 4.2.5, we will re-derive the discrete reduced Lie–Poisson

equation (4.2.8), interpreted as momentum conservation associated to left-invariance symmetry.

Let H be a left-invariant Hamiltonian, let X be a right-invariant vector field on G with X(e) =

χ ∈ g, and let ϕε denote the time-ε flow of X . We choose X to be a right-invariant vector field,

since its flow is given by left translations

ϕε(g) = eεχg.

We define a one-parameter family of discrete time curves {gε
k ,m

ε
k} as

gε
k = ϕε(gk) = eεχg,

mε
k = mk,

i.e., the one-parameter family of discrete time curves is defined by flowing gk by ϕε , whereas

mε
k remains constant with ε . To see why we defined mε

k this way, recall that the left-trivialized

momenta mk corresponds to a momenta pk = (gk)
∗−1mk or equivalently, mk = g∗k pk. For a

given x ∈ G, the point (gk, pk) transforms under the cotangent lift of left-multiplication by x as

(gk, pk) 7! (xgk,x∗−1 pk). Thus, mk transforms as

mk = g∗k pk 7! (xgk)
∗x∗−1 pk = g∗kx∗x∗−1 pk = g∗k pk = mk,

i.e., mk is invariant under this transformation; thus, we define mε
k to be constant in ε . Additionally,
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observe that the variations associated to this one-parameter family of discrete time curves can be

expressed as

δgk =
d

dε

∣∣∣
0
gε

k =
d

dε

∣∣∣
0
ϕε(gk) = X(gk),

δmk =
d

dε

∣∣∣
0
mε

k =
d

dε

∣∣∣
0
mk = 0.

Now, we will verify the assumption of Theorem 4.2.5. The kth discrete action density is

sk = 〈mk+1,ξk+1〉−h(gk,mk+1) = 〈mk+1,ξk+1〉− H̃(mk+1),

where in the second equality, we used that h(gk,mk+1) = H̃(mk+1) for a left-invariant Hamil-

tonian (see Section 4.2.2). As stated above, mε
j = m j is invariant under this transformation.

Furthermore, since ξ j = τ−1(g−1
k gk+1)/∆t, the corresponding transformation for ξ j is given by

ξ
ε
j = τ

−1((gε
k)
−1gε

k+1)/∆ = τ
−1((eεχgk)

−1eεχgk+1)/∆t

= τ
−1(g−1

k (eεχ)−1eεχgk+1)/∆ = τ
−1(g−1

k gk+1)/∆t = ξ j,

i.e., ξ j is also invariant under this transformation. Hence, sk is invariant under the above variation,

so Theorem 4.2.5 applies. We thus have Θk+1 ·δgk+1 = Θk ·δgk, i.e.,

〈(dτ
−1
−∆tξk+1

)∗mk+1,g−1
k+1δgk+1〉= 〈(dτ

−1
−∆tξk

)∗mk,g−1
k δgk〉.

Equivalently, this can be expressed as

=⇒ 〈g∗−1
k+1(dτ

−1
−∆tξk+1

)∗mk+1,δgk+1〉= 〈g∗−1
k (dτ

−1
−∆tξk

)∗mk,δgk〉,

=⇒ 〈g∗−1
k+1(dτ

−1
−∆tξk+1

)∗mk+1g∗k+1,δgk+1g−1
k+1〉= 〈g

∗−1
k (dτ

−1
−∆tξk

)∗mkg∗k ,δgkg−1
k 〉.
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Now, observe that since X is right-invariant,

δg jg−1
j = X(g j)g−1

j = X(g jg−1
j ) = X(e) = χ.

Hence, we have

〈g∗−1
k+1(dτ

−1
−∆tξk+1

)∗mk+1g∗k+1,χ〉= 〈g∗−1
k (dτ

−1
−∆tξk

)∗mkg∗k ,χ〉.

In particular, χ ∈ g was arbitrary, so we have

g∗−1
k+1(dτ

−1
−∆tξk+1

)∗mk+1g∗k+1 = g∗−1
k (dτ

−1
−∆tξk

)∗mkg∗k .

Multiplying on the left by g∗k and on the right by g∗−1
k gives

Ad∗gk
Ad∗g−1

k+1
(dτ
−1
−∆tξk+1

)∗mk+1 = (dτ
−1
−∆tξk

)∗mk.

Since for any x,y ∈ G, AdxAdy = Adxy and Adx−1 = Ad−1
x , we have

Ad∗gk
Ad∗g−1

k+1
= Ad∗g−1

k+1gk
= Ad∗

(g−1
k gk+1)−1 = Ad∗

τ(∆tξk+1)−1 = Ad∗−1
τ(∆tξk+1)

.

Using this in the equation above yields

Ad∗−1
τ(∆tξk+1)

(dτ
−1
−∆tξk+1

)∗mk+1 = (dτ
−1
−∆tξk

)∗mk.

From the identity Ad∗
τ(∆tξ j)

(dτ
−1
∆tξ j

)∗ = (dτ
−1
−∆tξ j

)∗, we can rewrite the left and right hand sides as

(dτ
−1
−∆tξk+1

)∗mk+1 = Ad∗
τ(∆tξk)

(dτ
−1
∆tξk

)∗mk,

which is precisely the discrete reduced Lie–Poisson equation (4.2.7a).
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4.3 Adjoint Systems on Lie Groups

The aim of this section is to develop the geometric theory of adjoint sensitivity analysis

on Lie groups, in both the continuous and discrete settings. We thus focus on the case where the

Hamiltonian system on T ∗G is an adjoint system, as introduced in Example 4.2.1.

Let F be a vector field on G and consider the differential equation ġ = F(g). We define

the adjoint Hamiltonian associated to F as

H : T ∗G! R,

(g, p) 7! H(g, p)≡ 〈p,F(g)〉.

In canonical coordinates (g, p) on T ∗G, the adjoint system (4.2.1a)-(4.2.1b) has the form

ġ = F(g),

ṗ =−[DF(g)]∗p.

We begin by computing the Lie–Poisson equations (4.2.2a)-(4.2.2b) for this particular

class of adjoint Hamiltonian systems. We denote by f the left-trivialization of F ,

f : G! g,

g 7! f (g)≡ g−1 ·F(g).

Then, the left-trivialized Hamiltonian h : G×g∗! R has the form

h(g,µ) = 〈µ, f (g)〉.
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Computing the functional derivatives of h yields

Dµh(g,µ) = f (g),

Dgh(g,µ) = [D f (g)]∗µ.

In particular, the Lie–Poisson system (4.2.2a)-(4.2.2b) for the adjoint Hamiltonian has the form

ġ = F(g), (4.3.1a)

µ̇ =−g∗ · [D f (g)]∗µ + ad∗f (g)µ. (4.3.1b)

We now address the question of existence and uniqueness for solutions of the Type II

system (4.2.2a)-(4.2.2d). For general Hamiltonians on T ∗G, this is a complicated question which

is dependent on the particular Hamiltonian. In particular, since the system has Type II boundary

conditions g(0) = g0,µ(T ) = µ1, even a local solution theory cannot be stated generally, as

opposed to systems with initial-value conditions g(0) = g0,µ(0) = µ0. A simple way to see

this is that we can think of a Hamiltonian system on G×g∗ with Type II boundary conditions

as a fixed-time, free-position-endpoint, fixed-fiber-endpoint shooting control problem: given

g(0) = g0 ∈ G and T > 0, find µ(0) = µ0 such that µ(T ) = µ1 subject to the Hamiltonian

dynamics. This is in general a tricky problem that is dependent on the Hamiltonian under

consideration.

However, for adjoint systems in particular, we can provide a global solution theory which

utilizes the fact that the adjoint system covers an ODE on G; assuming the ODE on G behaves

nicely, we will have unique solutions for the adjoint system on T ∗G. We make this more precise

in the following proposition.

Proposition 4.3.1 (Global Existence and Uniqueness of Solutions to Adjoint Systems on T ∗G).

Let T > 0,g0 ∈ G,µ1 ∈ g∗. Let F be a complete vector on field on G, i.e., it generates a global

flow ΦF : R×G! G.
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Then, there exists a unique curve (g,µ) : [0,T ]! G× g∗ satisfying the Lie–Poisson

system with Type II boundary conditions (4.2.2a)-(4.2.2d), where h is the left-trivialized adjoint

Hamiltonian associated to F.

Furthermore, there exists a unique curve (g, p) : [0,T ]! T ∗G satisfying Hamilton’s

equations with Type II boundary conditions (4.2.1a)-(4.2.1d), where H is the adjoint Hamiltonian

associated to F.

Proof. By the fundamental theorem on flows [67], there exists a unique curve g : R! G

satisfying ġ = F(g) and g(0) = g0, given by the flow of F on g0, g(t) = ΦF(t,g0). In particular,

g is a smooth function of t, since F is smooth. Recall that we assume all maps and manifolds are

smooth, unless otherwise stated.

Now, with this curve g(t) fixed, we substitute this into the differential equation for µ

(4.2.2b), to obtain

µ̇ =−g(t)∗ · [D f (g(t))]∗µ + ad∗f (g(t))µ.

In particular, this equation has the form of a time-dependent linear differential equation on g∗,

µ̇ = L(t)µ,

where we define the time-dependent linear operator L : R! End(g∗) by

L(t) =−g(t)∗ · [D f (g(t))]∗+ ad∗f (g(t)). (4.3.2)

Since g is a smooth function of t, L is a smooth, and in particular continuous, function of t.

Hence, by the standard solution theory for linear differential equations, there exists a unique

curve µ : [0,T ]! g∗ satisfying µ̇ = L(t)µ and µ(T ) = µ1.

For the second statement of the proposition, note that solution curves (g, p) : [0,T ]! T ∗G

of (4.2.1a)-(4.2.1d) are in one-to-one correspondence with solution curves (g,µ) : [0,T ]!G×g∗
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of (4.2.2a)-(4.2.2d) via left-translation.

By the above proposition, we know that there exists a unique solution to the adjoint

system on T ∗G with Type II boundary conditions, under the assumption that F is complete. For

Lie groups, there are two particularly important cases where this assumption is satisfied.

Corollary 4.3.1. If G is a compact Lie group, then the above proposition holds for any vector

field F on G.

If F is a left-invariant vector field on a (not necessarily compact) Lie group G, then the

above proposition holds.

Proof. The first statement follows from the fact that any vector field on a compact manifold is

complete. The second statement follows from the fact that any left-invariant vector field on a Lie

group is complete. See [67].

The Variational System. An important property of adjoint systems is that they satisfy a

quadratic conservation law, which is at the heart of the method of adjoint sensitivity analysis

[106].

To state this conservation law, we introduce the variational equation associated to an

ODE ġ = F(g) on a Lie group G, which is defined to be the linearization of the ODE,

d
dt

δg = DF(g)δg.

We refer to the combined system

d
dt

g = F(g), (4.3.3a)

d
dt

δg = DF(g)δg, (4.3.3b)

as the variational system, which is interpreted as an ODE on T G.
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As with the adjoint system, it will be useful to left-trivialize this system, which will

give an ODE on G× g. As before, let f (g) = g−1 ·F(g) be the left-trivialization of F . Let

η = g−1 ·δg and let ξ = g−1 · ġ. As is well-known (see, for example, [82]), we have the relation

η̇ = δξ − [ξ ,η ].

In particular, since ξ = g−1 · ġ = f (g), we have δξ = D f (g)δg = D f (g)g ·η , so that the above

relation becomes

η̇ = D f (g)g ·η− [ f (g),η ],

which we refer to as the left-trivialized variational equation. We refer to the combined system

ġ = F(g), (4.3.4a)

η̇ = D f (g)g ·η− ad f (g)η , (4.3.4b)

as the left-trivialized variational system on G×g. Analogous to the existence and uniqueness

result for adjoint systems, Proposition 4.3.1, we have the following result.

Proposition 4.3.2 (Global Existence and Uniqueness of Solutions to Variational Systems on

T G). Let T > 0,g0 ∈ G,η0 ∈ g. Let F be a complete vector on field on G, i.e., it generates a

global flow ΦF : R×G! G.

Then, there exists a unique curve (g,η) : [0,T ]! G× g satisfying the left-trivialized

variational system (4.3.4a)-(4.3.4b) with initial conditions g(0) = g0,η(0) = η0.

Furthermore, there exists a unique curve (g,δg) : [0,T ]! T G satisfying the variational

system (4.3.3a)-(4.3.3b) with initial conditions g(0) = g0,δg(0) = g0 ·η0.

Proof. The proof is almost identical to the proof of Proposition 4.3.1, noting that once the

solution curve g(t) of ġ = F(g),g(0) = g0 is fixed, the variational equation can be expressed as
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a time-dependent linear equation on g,

η̇ = M(t)η ,

where the time-dependent linear operator M : R! End(g) is smooth. In fact, it is easily verified

that M(t) =−L(t)∗, where L is the time-dependent linear operator (4.3.2) defined in the proof

of Proposition 4.3.1.

Furthermore, by left-translation, solutions to the left-trivialized variational system and the

variational system, with the above respective initial conditions, are in one-to-one correspondence.

We can now state the quadratic conservation law enjoyed by solutions of the adjoint and

variational systems.

Theorem 4.3.1. Let (g,µ) be a solution curve of the left-trivialized adjoint system and let (g,η)

be a solution curve of the left-trivialized variational system, both covering the same base curve

g. Let (g, p) and (g,δg) be the respective solution curves for the adjoint system and variational

system obtained by left-translation. Then,

d
dt
〈µ(t),η(t)〉= 0, (4.3.5a)

d
dt
〈p(t),δq(t)〉= 0. (4.3.5b)

Proof. Note that it suffices to prove either (4.3.5a) or (4.3.5b), since left-translation preserves

the duality pairing,

〈µ(t),η(t)〉= 〈g(t)−1 · p(t),g(t) ·δq(t)〉= 〈p(t),δg(t)〉.
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We will prove (4.3.5a). Compute

d
dt
〈µ(t),η(t)〉

= 〈µ̇(t),η(t)〉+ 〈µ(t), η̇(t)〉

= 〈−g(t)∗ · [D f (g(t))]∗µ(t)+ ad∗f (g(t))µ(t),η(t)〉

+ 〈µ(t),D f (g(t))g(t) ·η(t)− ad f (g(t))η(t)〉

=−〈µ(t),D f (g(t))g(t) ·η(t)〉+ 〈µ(t),D f (g(t))g(t) ·η(t)〉

+ 〈µ(t),ad f (g(t))η(t)〉−〈µ(t),ad f (g(t))η(t)〉

= 0.

In particular, we have the following corollary of Propositions 4.3.1 and 4.3.2 and Theorem

4.3.1.

Corollary 4.3.2. Let T > 0,g0 ∈G,µ1 ∈ g∗,η0 ∈ g. Let F be a complete vector field on G. Then,

the solution curves of the adjoint and variational systems from Propositions 4.3.1 and 4.3.2

satisfy the quadratic conservation law

〈µ(0),η0〉= 〈µ1,η(T )〉.

As we will see in Section 4.3.3, this conservation law will be the basis for adjoint

sensitivity analysis on Lie groups.

4.3.1 Reduction of Adjoint Systems for Left-invariant Vector Fields

In practice, many interesting mechanical systems arise from the flow of left-invariant

vector fields on Lie groups. As such, we will consider adjoint systems in the particular case

where the vector field is left-invariant. First, we will show that left-invariant vector fields are in

one-to-one correspondence with left-invariant adjoint Hamiltonians. Subsequently, we will state
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the adjoint equations in this particular case.

Proposition 4.3.3. Let F be a vector field on G. Then the adjoint Hamiltonian H(g, p) =

〈p,F(g)〉 associated to F is left-invariant if and only if F is left-invariant.

Proof. Assume that F is left-invariant, i.e., F(xg) = xF(g) for all x,g ∈ G. Then, for any

x,g ∈ G, p ∈ T ∗g G,

H(xg,x∗−1 p) = 〈x∗−1 p,F(xg)〉= 〈x∗−1 p,xF(g)〉= 〈x∗x∗−1 p,F(g)〉= 〈p,F(g)〉= H(g, p),

i.e., H is left-invariant.

Conversely, assume that H is left-invariant, i.e., H(g, p) = H(xg,x∗−1 p) for all x,g ∈

G, p ∈ T ∗g G. Then, for any x,g ∈ G, p ∈ T ∗g G,

〈p,F(g)〉= H(g, p) = H(xg,x∗−1 p) = 〈x∗−1 p,F(xg)〉= 〈p,x−1F(xg)〉.

Since p ∈ T ∗g G is arbitrary, we have for all x,g ∈ G,

F(g) = x−1F(xg),

i.e., xF(g) = F(xg), so F is left-invariant.

Since a left-invariant vector field corresponds to a left-invariant adjoint Hamiltonian, the

reduction theory discussed in Section 4.2.2 applies. Thus, the adjoint equation for the momenta

µ , from equation (4.2.6), is given by

µ̇ = ad∗F(e)µ,

since H̃(µ) = H(e,µ) = 〈µ,F(e)〉 and hence, DµH̃(µ) = F(e).
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4.3.2 Type II Variational Discretization of Adjoint Systems

In this section, we apply the Type II variational integrators developed in Section 4.2.2 to

the particular case of adjoint systems. We will show explicitly that these integrators preserve the

adjoint-variational quadratic conservation law which is key to adjoint sensitivity analysis, and

thus, these methods are geometric structure-preserving methods for adjoint sensitivity analysis

on Lie groups.

Consider the variational integrators that we derived in Section 4.2.2, applied to the

adjoint system (4.3.1a)-(4.3.1b). Substituting h(g,µ) = 〈µ, f (g)〉 into the discrete Lie–Poisson

equations (4.2.5a)-(4.2.5c), we have the discrete Lie–Poisson adjoint equations

(dτ
−1
∆tξk+1

)∗mk+1−Ad∗
τ(∆tξk)

(dτ
−1
∆tξk

)∗mk =−∆tg∗k [D f (gk)]
∗mk+1, (4.3.6a)

ξk+1 = f (gk) (4.3.6b)

gk+1 = gkτ(∆tξk+1) = gkτ(∆t f (gk)). (4.3.6c)

In order to derive a discrete analogue of the adjoint conservation law, we consider the

discrete variational equation, which is a discretization of the continuous variational equation

(4.3.4b). To derive the discrete variational equation, note that as mentioned in Section 4.2.2, the

variation of equation (4.3.6c) can be expressed

δξk+1 = dτ
−1
∆tξk+1

(−g−1
k δgk +Adτ(∆tξk+1)g

−1
k+1δgk+1)/∆t.

Furthermore, by taking the variation of equation (4.3.6b), we have

δξk+1 = D f (gk)δgk.
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Combining these two equations yields

D f (gk)δgk = dτ
−1
∆tξk+1

(−g−1
k δgk +Adτ(∆tξk+1)g

−1
k+1δgk+1)/∆t.

Defining the left-trivialized variation ηk = g−1
k δgk, the above can be expressed as

∆tdτ∆tξk+1
D f (gk)gkηk =−ηk +Adτ(∆tξk+1)ηk+1, (4.3.7)

which we refer to as the discrete variational equation.

Theorem 4.3.2. The discrete Lie–Poisson adjoint equations and the discrete variational equation

satisfy the following quadratic conservation law,

〈(dτ
−1
−∆tξk+1

)∗mk+1,ηk+1〉= 〈(dτ
−1
−∆tξk

)∗mk,ηk〉. (4.3.8)

Proof. Recall the identity Ad∗
τ(∆tξ j)

(dτ
−1
∆tξ j

)∗ = (dτ
−1
−∆tξ j

)∗. Starting from the left hand side of

equation (4.3.8), we compute

〈(dτ
−1
−∆tξk+1

)∗mk+1,ηk+1〉= 〈Ad∗
τ(∆tξk+1)

(dτ
−1
∆tξk+1

)∗mk+1,ηk+1〉

= 〈(dτ
−1
∆tξk+1

)∗mk+1,Adτ(∆tξk+1)ηk+1〉.

Substituting (4.3.6a) and (4.3.7) yields

〈(dτ
−1
−∆tξk+1

)∗mk+1,ηk+1〉

= 〈(dτ
−1
∆tξk+1

)∗mk+1,Adτ(∆tξk+1)ηk+1〉

= 〈(dτ
−1
−∆tξk

)∗mk−∆tg∗k [D f (gk)]
∗mk+1,ηk +∆tdτ∆tξk+1

D f (gk)gkηk〉

= 〈(dτ
−1
−∆tξk

)∗mk,ηk〉+∆t〈(dτ
−1
−∆tξk

)∗mk,dτ∆tξk+1
D f (gk)gkηk〉

−∆t〈g∗k [D f (gk)]
∗mk+1,ηk〉−∆t2〈g∗k [D f (gk)]

∗mk+1,dτ∆tξk+1
D f (gk)gkηk〉.
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Substitute (4.3.6a) into the second term above,

〈(dτ
−1
−∆tξk+1

)∗mk+1,ηk+1〉

= 〈(dτ
−1
−∆tξk

)∗mk,ηk〉+∆t〈(dτ
−1
∆tξk+1

)∗mk+1 +∆tg∗k [D f (gk)]
∗mk+1,dτ∆tξk+1

D f (gk)gkηk〉

−∆t〈g∗k [D f (gk)]
∗mk+1,ηk〉−∆t2〈g∗k [D f (gk)]

∗mk+1,dτ∆tξk+1
D f (gk)gkηk〉

= 〈(dτ
−1
−∆tξk

)∗mk,ηk〉+∆t〈(dτ
−1
∆tξk+1

)∗mk+1,dτ∆tξk+1
D f (gk)gkηk〉

+∆t2〈g∗k(((((
(((

(((([D f (gk)]
∗mk+1,dτ∆tξk+1

D f (gk)gkηk〉

−∆t〈g∗k [D f (gk)]
∗mk+1,ηk〉−∆t2〈g∗k(((((

(((
(((([D f (gk)]

∗mk+1,dτ∆tξk+1
D f (gk)gkηk〉

= 〈(dτ
−1
−∆tξk

)∗mk,ηk〉+∆t〈mk+1,(dτ
−1
∆tξk+1

)dτ∆tξk+1
D f (gk)gkηk〉

−∆t〈g∗k [D f (gk)]
∗mk+1,ηk〉

= 〈(dτ
−1
−∆tξk

)∗mk,ηk〉+∆t〈mk+1,D f (gk)gkηk〉−∆t〈g∗k [D f (gk)]
∗mk+1,ηk〉

= 〈(dτ
−1
−∆tξk

)∗mk,ηk〉.

4.3.3 Adjoint Sensitivity Analysis on Lie Groups

In this section, we utilize the discrete methods for adjoint systems on Lie groups devel-

oped in the previous sections to address the following two types of optimization problems: an

initial condition optimization problem,

min
g0∈G

C(g(T )), (4.3.9)

such that ġ(t) = F(g(t)), t ∈ (0,T ),

g(0) = g0,
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and an optimal control problem,

min
u∈U

C(g(T )), (4.3.10)

such that ġ(t) = F(g(t),u), t ∈ (0,T ),

g(0) = g0,

where in (4.3.10), we have introduced a parameter-dependent vector field F .

Initial Condition Sensitivity. We begin with problem (4.3.9). We refer to C : G! R

as the terminal cost function. Thus, the problem (4.3.9) is to find an initial condition g0 ∈ G

which minimizes the cost function at the terminal-value g(T ), subject to the dynamics of the

ODE ġ = F(g).

For gradient-based algorithms, one needs the derivative of the terminal cost function

C(g(T )) with respect to the initial condition g0; we refer to this derivative as the initial condition

sensitivity. One cannot generally compute an expression for the sensitivity analytically, since

such an expression would require knowing g(T ) explicitly as a function of g0.

However, the adjoint system pulls back derivatives with respect to g(T ) into derivatives

with respect to g(0) [106]. In other words, the derivative of C(g(T )) with respect to g0 can be

computed by setting the terminal momenta to be p(T ) = dC(g(T )) and evolving backwards in

time to find the desired derivative p(0). One cannot generally compute the curves g(t) and p(t)

exactly, so we instead use the method (4.3.6a)-(4.3.6c) to approximately solve the ODE and

its adjoint. By Theorem 4.3.2, the property that the adjoint system pulls back derivatives with

respect to g(T ) to derivatives with respect to g(0) is preserved by the method, so it exactly gives

the desired derivative.

More specifically, to obtain the initial condition sensitivity, recall the quadratic conserva-

tion law

〈(dτ
−1
−∆tξN

)∗mN ,g−1
N δgN〉= 〈(dτ

−1
−∆tξ0

)∗m0,g−1
0 δg0〉.
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We set (dτ
−1
−∆tξN

)∗mN = dLC(g(T )), where dL denotes the left-trivialized derivative, dLC(g(T ))≡

g−∗N dC(g(T )). This gives mN = (dτ−∆tξN )
∗dLC(g(T )). Subsequently, evolve the momenta

backward in time using (4.3.6a) to obtain m0. Finally, the left-trivialized derivative of C(g(T ))

with respect to g0 is given by (dτ
−1
−∆tξ0

)∗m0. This is summarized in the following algorithm.

Algorithm 1. Left-Trivialized Initial Condition Sensitivity
Input: ginit
Initialize: g0 ginit,{gk}N

k=1,{mk}N
0

Output: Left-Trivialized Derivative of C(g(T )) with respect to g0
for k=1,...,N do

gk gk−1τ(∆t f (gk−1))
end for
mN  (dτ−∆t f (gN))

∗dLC(gN)
for k=1,...,N do

mN−k Solve m : (dτ
−1
∆tξk+1

)∗mN−k+1−Ad∗
τ(∆tξk)

(dτ
−1
∆tξk

)∗m =−∆tg∗k [D f (gk)]
∗mN−k+1,

end for
Return (dτ

−1
−∆t f (g0)

)∗m0

This can be combined with a line-search algorithm to solve the optimization problem

(4.3.9). More precisely, fixing an inner product on g, such as the Frobenius inner product

(A,B)F ≡ Tr(A∗B),

we can identity g∗ with g and hence, identify the output of Algorithm 1 with the left-trivialized

gradient of C(g(T )) with respect to g0, ∇g0C(g(T )), which is an element of g. With this

identification, the initial condition can be updated as g0  g0τ(−γ∇g0C(g(T ))), for some

line-search step size γ .

Remark 4.3.1. The preceding discussion of adjoint sensitivity analysis for terminal cost functions

can be easily adapted to a cost function consisting of both a terminal cost and a running cost,

C(g(T ))+
∫ T

0
L(g(t))dt.
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This is done by augmenting the adjoint Hamiltonian with the running cost Lagrangian L, i.e., by

using the augmented adjoint Hamiltonian

HL(g, p)≡ H(g, p)+L(g) = 〈p,F(g)〉+L(g).

The only modification is an additional term in the momentum equation (4.3.6a) corresponding to

the derivative of L. For more details, see [113].

The significance of this approach is that it is intrinsic; at any iteration in the line-search

algorithm, the iterate g0 is valued in G, to numerical precision. Furthermore, while this is also

true of projection-based optimization algorithms, such methods generally no longer preserve

the adjoint-variational quadratic conservation law and hence, may not capture the appropriate

descent direction.

Parameter Sensitivity. We now consider problem (4.3.10). The problem (4.3.10) is

to find a parameter u ∈U which minimizes the terminal cost function C(g(T )), subject to the

dynamics of the parameter-dependent ODE ġ = F(g,u) with g(0) = g0 fixed. We assume that F

is continuously differentiable with respect to u.

For a gradient-based algorithm, we will need the derivative of the terminal cost function

C(g(T )) with respect to the parameter u; we refer to this derivative as the parameter sensitivity.

We begin with a discussion of how the parameter sensitivity is obtained from the adjoint

system in the continuous setting, since the derivation will be analogous in the discrete setting.

Define the parameter-dependent action as

S[g, p;u]≡
∫ T

0
〈p, ġ−F(g,u)〉dt.

Consider the augmented cost function, given by subtracting the parameter-dependent action from
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the terminal cost function,

J ≡C(g(T ))−S[g, p;u]

=C(g(T ))−
∫ T

0
〈p, ġ−F(g,u)〉dt.

By left-trivialization, this is equivalent to

J =C(g(T ))−
∫ T

0
〈µ,ξ − f (g,u)〉dt, (4.3.11)

where ξ = g−1ġ and f is the left-trivialization of F . Observe that since the integral of (4.3.11)

vanishes when ġ = f (g,u), we have that the derivative of J with respect to u equals the derivative

of C with respect to u, subject to the variational equations, where the variation δug is given by

the variation of g induced by varying u. Thus,

d
du

C(g(T )) =
d

du
J.

Proposition 4.3.4. The (continuous) parameter sensitivity is given by

d
du

C(g(T )) =
d

du
J =

∫ T

0
〈µ, ∂

∂u
f (g,u)〉dt,

where µ is chosen to satisfy the adjoint equation −µ̇ + ad∗
ξ

µ − g∗[Dg f (g,u)]∗µ = 0 and the

terminal condition µ(T ) = g−∗dC(g(T )).

Proof. We compute dJ/du explicitly,

d
du

J(g(T )) = 〈dC(g(T )),δug(T )〉−
∫ T

0

[
〈µ,δuξ − [Dg f (g,u)]gηu〉−〈µ,

∂

∂u
f (g,u)〉

]
dt,

where we introduced the left-trivialized variation ηu = g−1δug and we have decomposed the

total derivative of f with respect to u into its implicit dependence on u through g as well as its
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explicit dependence on u, i.e.,

d
du

f (g,u) = [Dg f (g,u)]δug+
∂

∂u
f (g,u).

Using the relation η̇u = δuξ − adξ ηu, this becomes

d
du

J(g(T ))

= 〈dC(g(T )),δug(T )〉−
∫ T

0

[
〈µ, η̇u + adξ ηu− [Dg f (g,u)]gηu〉−〈µ,

∂

∂u
f (g,u)〉

]
dt

= 〈dC(g(T )),δug(T )〉−〈µ,ηu〉
∣∣∣T
0

−
∫ T

0

[
〈−µ̇ + ad∗

ξ
µ−g∗[Dg f (g,u)]∗µ,ηu〉−〈µ,

∂

∂u
f (g,u)〉

]
dt,

where we integrated the 〈µ, η̇u〉 term by parts. Now, the first pairing in the integral vanishes if

µ satisfies the adjoint equation. Furthermore, ηu(0) = 0 since the initial condition for problem

(4.3.10) is fixed. Hence, we have

d
du

J(g(T )) = 〈dC(g(T )),δug(T )〉−〈µ(T ),ηu(T )〉+
∫ T

0
〈µ, ∂

∂u
f (g,u)〉dt.

If we choose the terminal condition µ(T ) = g−∗dC(g(T )), the first two terms on the right hand

side cancel, which gives the expression for the desired parameter sensitivity

d
du

C(g(T )) =
d

du
J(g(T )) =

∫ T

0
〈µ, ∂

∂u
f (g,u)〉dt,

where µ is chosen to satisfy the adjoint equation −µ̇ + ad∗
ξ

µ − g∗[Dg f (g,u)]∗µ = 0 and the

terminal condition µ(T ) = g−∗dC(g(T )).

From here, the generalization to the discrete setting is straightforward. In analogy with
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the continuous case, we define the parameter-dependent left-trivialized discrete action

sd[{gk},{mk};u] = ∆t
N−1

∑
k=0

(
〈mk+1,ξk+1〉−h(gk,mk+1l;u)

)
,

and form the discrete augmented cost function by subtracting the discrete action from the terminal

cost, i.e.,

Jd ≡C(gN)− sd[{gk},{mk};u]

=C(gN)−∆t
N−1

∑
j=0
〈m j+1,ξ j+1− f (g j,u)〉.

We then have an analogous result to determine the parameter sensitivity by computing the

derivative dJd/du.

Proposition 4.3.5. The (discrete) parameter sensitivity is given by

d
du

C(gN) = ∆t
N−1

∑
j=0
〈m j,

∂

∂u
f (g j,u)〉,

where m j is chosen to satisfy the discrete Lie–Poisson adjoint equation (4.3.6a) and the terminal

condition mN = (dτ−∆tξN )
∗dLC(gN).

Proof. Analogous to the continuous setting, we have

d
du

C(gN) =
d

du
Jd.

Now, we calculate dJd/du explicitly,

d
du

Jd = 〈dC(gN),δugN〉−∆t
N−1

∑
j=0
〈m j+1,δuξ j+1−Dg f (g j,u)δug j−

∂ f
∂u

(g j,u)〉.

Using the identity δuξ j+1 = dτ
−1
∆tξ j+1

(−g−1
k δugk +Adτ(∆tξ j+1)g

−1
j+1δug j+1)/∆t, the above can be
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expressed as

d
du

Jd = 〈dC(gN),δugN〉−∆t
N−1

∑
j=0

[
∆t−1〈(dτ

−1
∆tξ j+1

)∗m j+1,−g−1
j δug j〉

+∆t−1〈Ad∗
τ(∆tξ j+1)

(dτ
−1
∆tξ j+1

)∗m j+1,g−1
j+1δug j+1〉

−〈g∗j [Dg f (g j,u)]∗m j+1,g−1
j δug j〉−〈m j+1,

∂ f
∂u

(g j,u)〉
]
.

Now, we reindex j! j−1 the second pairing inside the square brackets above; the sum for this

term now runs from 1 to N. However, we explicitly write out the j = N term and note that we

can include the j = 0 term in the sum since δug0 = 0, as the initial condition g0 is fixed under

the variation. Hence, we have

d
du

Jd = 〈dC(gN),δugN〉−〈(dτ
−1
−∆tξN

)∗mN ,g−1
N δugN〉

−∆t
N−1

∑
j=0

[
∆t−1〈(dτ

−1
∆tξ j+1

)∗m j+1,−g−1
j δug j〉

+∆t−1〈Ad∗
τ(∆tξ j)

(dτ
−1
∆tξ j

)∗m j,g−1
j δug j〉

−〈g∗j [Dg f (g j,u)]∗m j+1,g−1
j δug j〉−〈m j+1,

∂ f
∂u

(g j,u)〉
]
.

The first two terms above vanish if we set the terminal condition (dτ
−1
−∆tξN

)∗mN = g−∗N dC(gN),

i.e., mN = (dτ−∆tξN )
∗dLC(gN). Furthermore, the first three terms in the square brackets vanish if

m j satisfies the discrete Lie–Poisson adjoint equation (4.3.6a). Hence, we have the parameter

sensitivity
d

du
C(gN) =

d
du

Jd = ∆t
N−1

∑
j=0
〈m j+1,

∂ f
∂u

(g j,u)〉.

Thus, assuming that we can calculate ∂ f/∂u (which is generally known since we

know how the parameter-dependent vector field varies with u), we can calculate the sensitivity

dC(gN)/du. This is summarized in the following algorithm.

This can be combined with a line-search algorithm to solve the optimization problem
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Algorithm 2. Parameter Sensitivity
Input: ginit
Initialize: g0 ginit,{gk}N

k=1,{mk}N
0

Output: Derivative of C(g(T )) with respect to u
for k=1,...,N do

gk gk−1τ(∆t f (gk−1))
end for
mN  (dτ−∆t f (gN))

∗dLC(gN)
for k=1,...,N do

mN−k  Solve m : (dτ
−1
∆tξk+1

)∗mN−k+1 − Ad∗
τ(∆tξk)

(dτ
−1
∆tξk

)∗m =

−∆tg∗k [Dg f (gk,u)]∗mN−k+1,
end for
Return ∆t ∑

N−1
j=0 〈m j+1,

∂

∂u f (g j,u)〉

(4.3.10). Note that U could be a vector space, in which case a standard line-search algorithm

could be used, or U could be a manifold, in which case a line-search algorithm on manifolds

could be used (see, for example, [2]).

Numerical Examples

As examples of adjoint sensitivity analysis on Lie groups, we will solve an example of

each of the problems (4.3.9) and (4.3.10).

Initial Condition Sensitivity Example. Fixing gtarget ∈ G, find g0 ∈ G such that g(T ) =

gtarget subject to the initial-value problem ġ = F(g),g(0) = g0.

Using the Frobenius inner product (·, ·)F and its induced norm ‖ · ‖F , this can be cast as

an optimization problem of the form (4.3.9),

min
g0∈G

C(g(T ))≡ 1
2
‖g(T )−gtarget‖2

F ,

such that ġ(t) = F(g(t)), t ∈ (0,T ),

g(0) = g0.

This optimization problem is clearly equivalent to the above shooting problem because C is

minimized at the unique minimizer g(T ) = gtarget, since C(gtarget) = 0 and C(g) > 0 for any

311



g 6= gtarget by nondegeneracy of the norm. We choose this simple problem because the analytic

answer is known: g0 should simply be chosen to be the reverse time-T flow of gtarget under F .

For our numerical example, we take G = SO(3), F(g) = gX with

X =



0 −1 1

1 0 2

−1 −2 0


∈ g, gtarget =



0 −1 0

1 0 0

0 0 1


∈ G,

and some initial iterate

g0 =



0 0 −1

0 1 0

1 0 0


∈ G.

The left-trivialized gradient can be computed to be ∇g(T )C(g(T )) = g(T )T g1−gT
1 g(T )

[71] which is identified with the left-trivialized derivative through the inner product. This allows

us to initialize the terminal momenta mN as described in the previous section. Subsequently,

we solve the optimization problem using Algorithm 1 and a line-search method. For simplicity,

since this example is just to provide a demonstration of the theory laid out in the paper, we

will use a fixed line-search step size γ = 0.1, although in practice one would likely use a more

sophisticated method such as Armijo backtracking. We take T = 1 with ∆t = 0.01. Finally, for
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the retraction, we use the Cayley transform and its derivatives given by

τ(ξ ) = cay(ξ )≡ (I3×3 +
1
2

ξ )(I3×3−
1
2

ξ )−1,

dτξ (x) = (I3×3−ξ/2)−1x(I3×3 +ξ/2)−1,

dτ
−1
ξ

(x) = (I3×3−ξ/2)x(I3×3 +ξ/2).

The cost function C(g(T )) over 50 iterations is shown in Figure 4.1. The SO(3) manifold error

of each iteration of g0 is shown in Figure 4.2, where the manifold error is defined as

Error(g)≡ 1
2
‖gT g− Id3×3‖2

F ;

as can be seen in the figure, each iterate lies on SO(3) to machine precision.

Figure 4.1. Cost function minimization via line-search algorithm for shooting problem on SO(3)
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Figure 4.2. Iterate SO(3) manifold error

This example can be visualized as follows. The objective is to find an element g0 of

SO(3) such that under the time T = 1 flow of F , g(1) = gtarget where g(0) = g0. For this example,

gtarget is chosen to be a π/2 counterclockwise rotation about the z-axis, i.e., in the xy plane.

Thus, we can imagine some test mass located at~v ∈R3 which is rotated by g(t), which generates

a curve g(t)~v. In particular, choosing ~v = x̂, the unit vector in the x direction, then the curve

produced from rotating the test mass should end at gtargetx̂ = ŷ. Each iteration in the algorithm

generates such a curve. In Figure 4.3, several such curves are shown, with the initial point in the

curve g0x̂ marked. Additionally, the desired terminal point gtargetx̂ is marked.

Figure 4.3. Visualization of the shooting problem on SO(3) using a test mass over several iterations

Parameter Sensitivity Example. For our second example, we consider the following
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problem of the form (4.3.10),

min
u∈U

C(g(T ))≡ 1
2
‖g(T )−gtarget‖2

F ,

such that ġ(t) = F(g(t),u), t ∈ (0,T ),

g(0) = g0.

Thus, this optimal control problem is to find u ∈U such that the vector field F(·,u) steers the

initial condition g0 ∈ G to some desired terminal-value gtarget ∈ G.

We again take G = SO(3). We will assume that F is a parameter-dependent left-invariant

vector field F(g,u) = gX(u), where u ∈ R3 parametrizes so(3) as

X(u) =



0 −uz uy

uz 0 −ux

−uy ux 0


.

For simplicity, we take g0 = Id3×3 = gtarget since the analytic answer is known: F should be the

zero vector field, since g0 = gtarget and hence, the optimal value of u is u = (0,0,0)T . We take an

initial guess of u = (1,2,−1)T . We again take T = 1 with ∆t = 0.01, using the same retraction

as the previous example. We combine the parameter sensitivity, obtained from Algorithm 2, with

a simple vector space line-search algorithm,

u u− γ
d

du
C,

with a fixed line-search step size γ = 0.1. The cost function C(g(T )) over 50 iterations is shown

in Figure 4.4.
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Figure 4.4. Cost function minimization via line-search algorithm for optimal control problem on SO(3)

4.4 Conclusion and Future Research Directions

In this paper, we developed continuous and discrete global Type II variational principles

on the cotangent bundle of a Lie group G. In the discrete setting, the Type II variational principle

leads to a structure-preserving variational integrator on T ∗G which we showed to be symplectic

and momentum-preserving. Subsequently, we applied these Type II variational principles to the

class of adjoint Hamiltonian systems on T ∗G. This results in a structure-preserving method to

perform adjoint sensitivity analysis on Lie groups, allowing one to exactly compute sensitivities

in optimization problems subject to the dynamics of an ODE on G.

One research direction which we are currently pursuing is to explore the geometry of

adjoint sensitivity analysis in the infinite-dimensional setting, with the application of PDE-

constrained optimization in mind. It would be interesting to synthesize this line of research

with the ideas presented in this paper, to develop Hamiltonian integrators for PDEs where the

solutions are valued in Lie groups, algebras, or more generally, solutions which are stationary

sections over principal and fibre bundles associated to a structure group G, such as gauge field

theories (see, for example, [53; 92]). It would be particularly interesting to extend the Type II

multisymplectic Hamiltonian variational integrators developed in [112] to apply to the setting

of Lie groups-valued fields, in order to investigate the role of multisymplectic integrators for
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adjoint sensitivity analysis in both space and time.

Another natural research direction would be to explore the applications of geometric

structure-preserving adjoint sensitivity analysis on Lie groups. One such application is the

training of neural networks via backpropagation. In particular, if a neural network is viewed as a

discretization of a neural ODE [31], then backpropagation can be viewed as a discretization of

the corresponding adjoint equation [88]. As is discussed in [88], utilizing symplectic methods to

perform backpropagation leads to efficient methods for training neural networks. It would be

interesting to utilize the methods presented in this paper to perform symplectic backpropagation

of neural networks where the neural ODE evolves over a Lie group, which would arise in

group-equivariant neural networks [33; 64] where a Lie group symmetry is a fundamental feature

of the neural network. In particular, the reduction theory for adjoint systems on Lie groups that

was developed in this paper would be relevant.
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[9] M. Barbero-Liñán and D. Martı́n de Diego. Retraction maps: a seed of geometric
integrators. ArXiv, abs/2106.00607, 2021.
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Geometric reduction in optimal control theory with symmetries. Reports on Mathematical
Physics, 52(1):89–113, 2003.

[39] E. G. Fahnestock, T. Lee, M. Leok, N. H. McClamroch, and D. J. Scheeres. Polyhedral
potential and variational integrator computation of the full two body problem. Proc.
AIAA/AAS Astrodynamics Specialist Conf., AIAA-2006-6289, 2006.

[40] E. S. Gawlik and M. Leok. Interpolation on symmetric spaces via the generalized polar
decomposition. Found. Comput. Math., 18(3):757–788, 2018.

[41] M. B. Giles and N. A. Pierce. An introduction to the adjoint approach to design. Flow
Turbul. Combust., 65(3):393–415, 2000.

[42] M. J. Gotay and J. M. Nester. Presymplectic Lagrangian systems. I : the constraint
algorithm and the equivalence theorem. Annales de l’I.H.P. Physique théorique, 30(2):
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