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Abstract

Objective. Protoacoustic imaging showed great promise in providing real-time 3D dose verification of
proton therapy. However, the limited acquisition angle in protoacoustic imaging induces severe
artifacts, which impairs its accuracy for dose verification. In this study, we developed a hybrid-
supervised deep learning method for protoacoustic imaging to address the limited view issue.
Approach. We proposed a Recon-Enhance two-stage deep learning method. In the Recon-stage, a
transformer-based network was developed to reconstruct initial pressure maps from raw acoustic
signals. The network is trained in a hybrid-supervised approach, where it is first trained using
supervision by the iteratively reconstructed pressure map and then fine-tuned using transfer learning
and self-supervision based on the data fidelity constraint. In the enhance-stage, a 3D U-net is applied
to further enhance the image quality with supervision from the ground truth pressure map. The final
protoacoustic images are then converted to dose for proton verification. Main results. The results
evaluated on a dataset of 126 prostate cancer patients achieved an average root mean squared errors
(RMSE) 0f0.0292, and an average structural similarity index measure (SSIM) 0f 0.9618, out-
performing related start-of-the-art methods. Qualitative results also demonstrated that our approach
addressed the limit-view issue with more details reconstructed. Dose verification achieved an average
RMSE 0f0.018, and an average SSIM 0f 0.9891. Gamma index evaluation demonstrated a high
agreement (94.7% and 95.7% for 1%/3 mm and 1%/,/5 mm) between the predicted and the ground
truth dose maps. Notably, the processing time was reduced to 6 s, demonstrating its feasibility for
online 3D dose verification for prostate proton therapy. Significance. Our study achieved start-of-the-
art performance in the challenging task of direct reconstruction from radiofrequency signals,
demonstrating the great promise of PA imaging as a highly efficient and accurate tool for in vivo 3D
proton dose verification to minimize the range uncertainties of proton therapy to improve its
precision and outcomes.

1. Introduction

Proton therapy is a radiation treatment where proton beams are delivered to the target to disrupt and destroy
tumor cells. After the protons enter the patient’s body, the absorbed dose increases gradually at the beginning and
then substantially at the end of the proton travel path, reaching a peak called Bragg peak (BP), before dropping off
sharply. This finite range and sharp dose falloff at the distal end of the BP increase our ability to conform radiation
therapy treatment dose to the tumor and minimize collateral damage to neighboring critical organs. However, the
precision of proton therapy is highly affected by the variations of patient positioning, anatomic structures, and
dose calculation errors due to the sharp dose falloff of the BP. A small delivery error could cause a significant
underdose to the target and an overdose to the healthy tissues. Therefore, online 3D dose verification during
treatment is highly desirable in proton therapy to verify and minimize dose delivery errors to maximize its efficacy.

© 2024 Institute of Physics and Engineering in Medicine
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Over the years, many in vivo dose verification methods have been developed to address this clinical need. For
example, methods were developed to verify the proton dose range by measuring the dose or fluence with wireless
implantable dosimeters (Lu et al 2010, Bentefour et al 2012, Telsemeyer et al 2012). However, these methods are
not capable of fully verifying the tumor and organ at risk (OAR) dose since they don’t provide the 3D volumetric
information. Proton Radiology (Schneider et al 2004, Penfold et al 2009, Schneider et al 2012) technique is
designed for the direct measurement of the range of proton beams by using dedicated proton beams for delivery
and imaging, distinct from the beams used for treatment. However, these methods come with limited image
resolution and they do not provide verification for the range of the actual treatment beams, making them lack
the capability to confirm the precise delivered dose during the treatment process. Proton dose deposition can
also be verified by measuring the surrogate data generated by proton irradiation. For example, Positron emission
tomography (PET) (Fiedler et al 2008, 2010, Miyatake et al 2010, Nishio et al 2010) and prompt gamma (PG)
imaging (Polf et al 2009, Kormoll and Compton efal 2011, Min et al 2012, Draeger et al 2018, Pietsch et al 2023)
detects the gamma rays generated by irradiation along the proton beam path. Yuan et al (2013) used magnetic
resonance imaging (MRI) to detect the radiobiological change of liver tissue after radiation. Specifically, MRI
images were registered to the planning computed tomography (CT) images. Then MR signal intensity (SI) was
correlated to the radiation dose. Finally, dose-SI correlation was employed on registered MR images to estimate
the proton end-of-range. In summary, methods utilized in PET and MRI lack real-time dose verification
capabilities during treatment, while prompt gamma imaging methods still contend with the challenges posed by
limited accuracy arising from low signal intensity and the absence of 3D volumetric information. Although
recent studies employed deep learning to obtain volumetric information in PG imaging, its efficacy and
robustness in real patient applications remain to be validated.

In recent years, protoacoustic (PA) imaging has been developed to detect proton-induced raw acoustic (RA)
signals for dose verification (Ahmad et al 2015, Carlier e al 2020, Yu et al 2021). Specifically, the proton beam
creates heat during the dose deposition, causing tissue expansion and contraction to generate acoustic waves,
which can be detected by ultrasound transducers. Positioned strategically, these transducers detect the acoustic
waves and convert them into digitized acoustic signals. Subsequently, these raw acoustic signals are utilized in
the reconstruction of a pressure map and derive the corresponding dose deposition. Many researchers have
conducted simulations on 2D CT images to verify dose range with protoacoustic signals (Yu et al 2019b, Freijo
etal2021, Yao etal 2021). More recently, matrix array transducers (Yu et al 2019a, Wang et al 2020) have been
utilized for 3D ultrasound imaging, which showed a potential to provide real 3D online dose verification. The
initial pressure map is reconstructed from the RA signals, and then related to the dose deposition. Traditional
algorithms of reconstruction from the signal domain has been proposed. For example, universal back projection
(UBP) (Xuand Wang 2005) projects the quantity calculated from the transducer measurements backward on a
spherical surface within a solid angle, which is integrated to obtain the pressure with respect to position. This
method suffers from distortion due to that tissue heterogeneity was not considered. Time reveral (TR) (Hristova
etal 2008, Treeby et al 2010) is a method that iteratively updates the current pressure by adding the residual
errors calculated with time reversed back-projection. Despite the progress, the reconstructed PA pressure map
still suffers from severe distortion and artifacts due to the limited-angle view of the matrix array detector, limting
its accuracy for dose verification.

Deep learning-based methods have been developed in recent years to improve image reconstruction (Chen
etal 2018, Lan et al 2020, Luo et al 2021, Chen et al 2022). Zhu et al (2018) proposed a network that performs
image reconstruction from RA signals directly by mapping the dual domain (signal-to-image) correlations with
fully connected (FC) layers. Then they used a series of convolutional layers to denoise the output. However, this
method is limited to memory capacity when dealing with high-resolution protoacoustic images. Higgstrom et al
proposed encoder-decoder architecture called DeepPET for direct PET image reconstruction (Haggstrom
etal2019). To reduce memory consumption, DeepPET used convolutional layers rather than FC layers tolearna
latent space representing the dual domain correlations. The latent space was then upsampled in the decoder to
restore the image. However, this method ignored the consistency in the signal domain without accounting for
the data fidelity constraint. Zhang et al (2021) proposed a self-supervised learning method for ultrasound image
reconstruction. The model is trained based on the data fidelity constraint, which minimizes the difference
between the sinogram projected from the reconstructed image and the initially measured sinogram. Although
this method has demonstrated improved reconstruction accuracy in ultrasound images, it still suffers from
severe distortion artifacts when applied for protoacoustic images due to the limited angle view issue. In response
to constraints encountered in image reconstruction, the utilization of deep learning has been advanced for the
purpose of enhancing images post-reconstruction, as evidenced by the work of Jiang et al (2019). In mitigating
challenges associated with limited view PA reconstruction, Jiang et al (2022) utilized a 3D U-net that enhances an
initial pressure map reconstructed by TR to reduce the distortion artifact, then derived a 3D dose map for dose
verification. Despite the improvements, the efficacy of deep learning enhancement is limited by the quality of the
initial reconstruction. The initial pressure map reconstructed by the TR method suffers from severe distortion
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Figure 1. The workflow of our approach for protoacoustic image reconstruction with a Recon-enhance strategy.

with many detailed anatomical structures lost, which consequently impairs the accuracy of the image
enhancement afterward. Meanwhile, this method suffers from time consuming in testing stage since TR method
needs numerous time (120 s) for reconstruction. The low efficiency makes this method impractical for online
dose verification. Recently, transformer network has been applied in various medical imaging research (Parmar
etal 2018, Matsoukas et al 2021) due to its long-range dependency and adaptive self-attention characteristics.
Swin Transform (Liu et al 2021) was proposed with moving receptive field windows of reduced size to greatly
reduce the computational complexity. Huang et al (2022) utilized a Swin transformer-based generator to
enhance the quality of k-space downsampled MRI images. A discriminator was used to distinguish the enhanced
result from ground truth to improve the accuracy further. This work demonstrated that the transformer-based
models showed great performance in enhancing MRI image quality after reconstruction.

To address the limited angle view problem in PA imaging and further improving the reconstruction quality,
in this study, we proposed a deep learning-based protoacoustic image reconstruction method, where a Recon-
enhance two-stage strategy is applied as shown in figure 1 to harness the power of deep learning for both image
reconstruction and post-reconstruction enhancement. Specifically, in the Recon-stage, the proposed network
directly reconstructs the image from RA signals with hybrid supervision and transfer learning. In the enhance-
stage, a 3D U-netis applied to further improve the image quality. Compared with the method in Jiang et al
(2022), where the reconstruction was implemented by Time Reversal, our approach directly reconstructs the
initial pressure map from raw RA signals, which can reduce the processing time and improve the accuracy since
more essential structural information can be preserved. The main contributions of our article are multi-fold: (1)
an end-to-end image reconstruction and enhancement strategy using deep learning is developed for PA imaging
to improve its quality; (2) we apply convolutional layers rather than fully connected layers to construct a
domain-transfer module to address the memory consumption problem, while maintaining a higher inference
speed; (3) we replace the general convolutional layers with transformers to build our network for its long-range
dependency, and proposed a novel hybrid supervison method to keep the data fidelity consistency; (4) the
proposed method is evaluated on protoacoustic data generated from the CT images and clinical treatment plans
of prostate cancer patients, demonstrating the feasibility of high precision 3D dose verification in proton
therapy.

2. Methods

2.1. Problem formulation

During protoacoustic process, proton deposits energy when traveling through the patient’s body, causing tissue
temperature to rise and generating acoustic signals, which can be formulated as:

2
(vz - 1232) (r, 1) = *_H( )86(:) 1

where p(r, t) denotes the measured pressure at location rat time . H(r) denotes the initial pressure. cis speed of
sound in the medium. I is the dimension less Griineisen parameter, and 6(t) denotes the delta function. The
objective of our study is to reconstruct the initial map H(r) from the measurements p(r, t).
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Figure 2. The architecture of the proposed DTR network. (a) Two-step hybrid-supervised training where the network learning
weights are shared across the initial learning and transfer learning steps. (b) Details of the residual transformer block. (¢) Details of the
swin transformer layer.

UBP (Xuand Wang 2005) is a linear reconstruction method derived from equation (1), which can be
formulated as:

N

lr —d;j AQ;

H((r)) =) bd1) = (2)

2 ¢ XN,AQ;

where d; and AQ; denote the position and solid angle, respectively. b(d;, t) is the back projection term of the i-th
transducer, which can be formulated as:

b(d;, 1) = 2p(d;, 1) — 2t 3

ap (di> t)

ot
Apparently, the reconstruction of the initial pressure map H(r) from the measurements p(r, t) critically depends
on the first-order partial derivative Op(d;, t)/Ot, which can be used as prior knowledge for our model design.

Direct reconstruction of high-quality initial pressure map from RA signals is challenging since the network
needs to balance the domain transfer for image reconstruction and the enhancement to correct the distortions
caused by limited view in PA images. To address this problem, a recon-enhance strategy is proposed, as shown in
figure 1, to first use a network for image reconstruction to generate an initial pressure map with reasonable
quality. Then another network is applied afterward to further enhance the reconstructed images.

2.2. Domain transfer reconstruction network (DTR-Net)

The overview of the proposed DTR-Net is shown in figure 2(a). DTR-Net utilizes a contracting-expanding
architecture, taking both the 3D RA image S € R W"™*D"and the corresponding first order derivative image
0S/0t € REXW™D a5 input, where HY, W*and D’ represent the height, width and depth of the RA image,
respectively. The contracting path consists of four residual transformer blocks (RTBs) followed by down-
sampling layer to extract high level features as shown in figure 2(a). Each RTB shown in figure 2(b) is built by
several 3D Swin transformer (ST) layers shown in figure 2(c) due to its characteristic of long-range dependency.
Swin transformer (Liu et al 2021) was developed from the original transformer layer where window based multi-
head self-attention (W-MSA) is implemented. Specifically, given a feature map, the ST layer first partitions the
input into several non-overlapping windows. For each local window feature F, the query (Q), key (K ) and value
(V) matrices are calculated by:

Q = FPy, K = FPy, V = FPy, 4)

where Pg, Pxand Py are the projection matrices. Then, a self-attention mechanism is applied to calculate the
attention matrix by:
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Att(Q, K, V) = 0(QKT/+B)V, 5)

where Bis the relative positional encoding. o denotes the softmax activation fuction. The final output of the ST
layer is computed as:

Eq = W — MSA(Norm(F)) + F, 6)
Fsr = MLP(Norm(Ey)) + Fu (7)

where Norm denotes layer normalization. MLP denotes multi-layer perceptron with two fully connected layers
for further feature transformations. Residual connection is applied here for feature consistency as shown in
figure 2(c). We applied 2, 4, 8 and 16 STs in each RTB respectively to extract hierarchy features. The final
extracted feature map FS € Ris * 6 ¥ is fed into a domain transfer module, which is simply built by alearnable
convolution layer, resizing the feature map from % X % X .% to % X % X %, where H, W and D’
represent the height, width and depth of the initial pressure map, respectively. The expanding path consists of 4
residual blocks, each of them is built by a up-sampling layer, and two consistent 3D convolution layers with

3 x 3 x 3 kernel, followed by ReLU activation and group normalization layers. Finally, a convolution layer with
akernalsize 1 x 1 x 1isapplied to output the reconstructed initial pressure map P € RH'*W'*D' Notably,
different to U-net, skip connection is not applied for the following reasons: (1), feature map size inconsistency.
Since the size of the feature maps in the contracting and expanding paths are different, skip connection cannot
be directly applied; (2) domain inconsistency. The features in the contracting and expanding paths are extracted
from two different domains (signal domain and image domain), it is not reasonable to simply concatenate them
by a skip connection. Moreover, adding domain transfer module to each skip connection could increase GPU
memory consumption.

The reconstruction network is trained using hybrid supervision with transfer learning, as explained below:

2.2.1. Initial training

As shown in figure 2(a), in the initial training, the model is trained to reconstruct PA images by minimizing the
difference between the reconstructed pressure map Pby the model and the reference pressure map P*
reconstructed by the TR method. Since iterative TR can recover most of the reconstruction details, we utilize the
TR results as the reference for initial training. Contrary to the I2 and /1 loss, the structural similarity index
measure (SSIM) loss provides a measure of the similarity by comparing two images based on luminance
similarity, contrast similarity and structural similarity information. As the main task in initial training procedure
is to reconstruct the structural details, we apply the SSIM loss L, (P, P*) to train the network. Besides, we also
apply perceptual loss Ly,.(P, P*) that calculates the difference between features yielded by a designed VGG
network to further enhance the stability of the reconstruction. The training loss is defined as:

LI = alLssim(Pr P*) + ﬂleerc(P) P*): (8)

where a; = 1.0 and (3; = 0.025 are the training weights that have been set empirically. This step enables DTR-
Net focus on discovering the most representative features for fast reconstruction.

2.2.2. Transfer learning

Considering that the inverse problem is ill-posed and the TR reconstruction is prone to artifacts itself, we applied
self-supervised transfer learning to further improve the reconstruction network based on data fidelity
constraint. Specifically, as shown in figure 2(a), the network is fine-tuned using transfer learning and self-
supervision based on data fidelity constraint, which forces the projected RA data from the reconstructed images
to match the measured raw data. The forward projection of RA data from the reconstructed images is carried out
using Matlab k-wave toolbox (Treeby and Cox 2010). Empirically, we found that using a 12 loss is more efficient
than SSIM loss or /1 loss for regression in signal domain. Thus, the loss function Lty used for transfer learning
(TL) is defined as a 12 loss to focus on eliminating the difference between the input RA signal S and the predicted
RA data S* in the data fidelity constraint, as shown below:

N
Lt =3 (S — §) ©)
i=1
where N denotes the entire number of image voxels. This step enables the network to further fine-tune the
reconstruction solely based on the raw data, thus removing the impact of imperfect supervision by the TR
reconstructed images in the initial training to improve the reconstruction quality.

2.3.Enhancement and dose conversion network

Due to the limited angle scan of PA imaging, the image generated by the reconstruction network can still have
residual artifacts, such as image distortion. A 3D U-net will be applied to further enhance the reconstructed
images to address the residual artifacts. The network has the same architecture and parameter setting as
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Table 1. Tissue-specific parameter setting for RA signal simulation. v, pand I" refer to the speed of sound, tissue density
and the Griineisen parameter, respectively. a denotes the attenuation coefficient.

Tissue HU value v(ms ) pkg m>) T pxI'(kg m) «(dB/cm/MHz)
Air [-1000,-200) — — — — —

Water Air overwritten 1500 1000 0.11 110 0.0022

Fat [-200,-50) 1480 920 0.80 736 0.5

Soft tissue [-50, 100) 1540 1040 0.30 312 1

Bone [100, max) 2000 1900 0.80 1520 10

proposed in Jiang et al (2022). Specifically, the network takes the reconstructed results as input, and output the
residual difference between the input and ground truth. During this phase, the network is dedicated to the
refinement of the reconstruction quality, the optimization of model weights is undertaken through the
minimization of the mean squared error (MSE) loss, which quantifies the disparity between the enhanced
images and their corresponding ground truth counterparts during the training process. The final result is
obtained by adding the output of the enhancement network to the input.

Finally, the enhanced pressure map is converted to dose map for proton dose verification. Specifically, an
initial dose map was calculated by dividing the reconstructed pressure map by the dose conversion coefficient
map derived from patient CT images. A 3D U-net was developed with the same architecture and training settings
asin Jiang et al (2022) to predict the residual errors compared with the ground truth to generate the final
dose map.

2.4. Training implementation and inference

The models in both Recon-enhance stages were trained by an ADAM optimizer with an initial learning rate of
0.001, reduced by a factor of 5 after every 500 000 epochs. In the Recon-stage, we set &; = 1.0 and 3; = 0.025 for
initial training with the loss defined by equation (8). After 3000 000 epochs, we started the transfer learning with
theloss defined in equation (9) for another 1000 000 epochs. Finally, in the Enhance-stage, we train the
enhancement network for another 1000 000 epochs. The entire training process takes about 3 days to be
finished.

During the inference, the trained DTR-Net uses RA data measured by limited angle PA imaging to
reconstruct the pressure map, which is then enhanced by the enhancement network to generate the final PA
images. This recon-enhance approach takes less than 6 s to process a 3D RA signal image with the size of
32 x 32 x 112 toreconstruct a PA pressure map with the size 0of 48 x 48 x 112. The network was implemented
based on Pytorch with a 40 GB Nvidia server GPU and a 64 GB RAM.

2.5.Data collection
In this study, a dataset consisting of 126 anonymized patients with prostate cancers was collected under an IRB
approved protocol. Data of each patient contains the planning CT scan and the corresponding clinical treatment
plan. Dose map of the plan was provided by a commercial software named RayStation (RaySearch Laboratories,
Stockholm/Sweden), and then normalized to the maximum dose. Each CT scan was firstly segmented into four
categories: air, fat, soft tissue and bone according to the predefined HU value thresholding. All the tissue-specific
parameters including the density, speed of sound, and the Griineisen parameter are predefined in table 1.

The acoustic simulation for generating the RA signal started with the calculation of the initial pressure (P0)
by multiplying the dose map with the tissue density and the Griineisen parameter:

PO = dose_map x p x T, (10)

Then, the simulation was performed using the open-source k-wave toolbox on Matlab. Specifically, a planar
detector of 8§ cmx 8 cm witha 64 x 64 ultrasound transducer array was simulated below the prostate and near
the perineum area with a % tilt angle to cover the prostate area and avoid the pelvic bones. The central frequency
of each transducer element was set to 500 kHz with 100% bandwidth and a sampling rate of 5 MHz. Tissue-
specific heterogeneity and attenuation were considered during the acoustic signal propagation. Finally, a
Gaussian white noise with 10 dB signal-to-noise ratio (SNR) was added to the acquired RA signals, which is used
as input of our network. TR method was applied for 10 iterations to reconstruct the initial pressure maps from
the simulated RA signals, which are used as ground truth for the initial training of DTR-Net in the Recon-stage
in figure 2(a). The initial pressure map PO and the dose map were used as the ground truth for training the
pressure map enhancement network and the dose conversion network. Both the pressure map and dose map
were resampled to the resolution of 2.50 x 2.50 x 1.25 mm° with the size of 48 x 48 x 112, and the simulated
RA signal was resampled to the size of 32 x 32 x 112 to reduce the memory consumption.
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Figure 3. Augmentation setup. To simplify the visualization, we fix the patient body and rotate the 2D plannar matrix along the lateral
direction to cover the entire prostate that s illustrated by the dose area. Three examples of acquisition are given in this figure.

3. Experiments and results

3.1. Data augmentation

We perform data augmentation to improve the model generalization while avoiding over-fitting. In this study,
the PA detector was simulated at different positions in the perineum area to generate more raw acoustic-initial
pressure (RA-PO0) pairs to enlarge the training set. Specifically, the detector was located below the prostate and
near the perineum area with an initial % degree tilt angle. Then the detector was rotated along the lateral axis by
different angles that are equally sampled within a range of [ — %, %] that covers the whole prostate area, as shown
in figure 3. For each sampled angle, protoacoustic simulation procedures was performed to generate the
corresponding RA signals from the initial pressure map P0. The augmentation was repeated for 20 times with
equally spaced angles for each patient. The augmented dataset are used for training the proposed network. Using
5-fold cross-validation, we randomly selected 66 patients for training, 20 patients for validation, and the rest 40
patients for testing. No augmentation was performed for validation/testing sets.

3.2. Competing methods
We quantitatively and qualitatively compared our method with twobaseline methods:

+ Timereversal: An iterative method for image reconstruction. In each iteration, a pressure map is
reconstructed based on forward projection, then the time parameter is reversed and a RA signal is calculated
from the reconstructed pressure map and compared with the acquired RA signals. The current pressure is
updated by adding a residual pressure obtained by back-projecting the RA signal differences. In this
experiment, TR method was repeated for 10 iterations empirically considering the balance between
reconstruction quality and time consumption to reconstruct the initial map.

+ Method in Jiang et al (2022): A state-of-the-art deep-learning method that jointly performs initial pressure
reconstruction and dose verification. The first network takes the pressure reconstructed by TR method as
input, and outputs a result with enhanced quality. An initial dose map is generated by multiplying the
reconstructed results with the dose coefficients derived from the CT scans, and then further refined by the
second network. We trained the network for pressure reconstruction using the same architecture and
paremeter setting as described in Jiang et al (2022) with the input size of 48 x 48 x 112. Same training/
validation set and augmentation method were applied for the training.

3.3. Pressure map reconstruction results

The reconstruction quality was evaluated by comparing the predicted pressure with the ground truth using root
mean squared errors (RMSE). Additionally, we also compared Peak signal-to-noise ratio (PSNR) and SSIM to
further investigate the performance on details and basic structure reconstruction. The overall quantitative

7
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coronal axial

sagittal

Figure 4. Example initial pressure reconstruction results (Normalized). From left to right: color bar of the initial maps, ground truth,
results by using TR, results by using the method in (Jiang et al 2022), difference maps between ground truth and results from (Jiang
et al 2022), results by our approach, and difference maps between ground truth and our results, color bar of the difference maps.

Table 2. Quantitative analysis of the reconstruction results of initial pressure maps and dose verification.

Modality Method RMSE PSNR (dB) SSIM Speed (s)
PA image Time reversal 0.145 £ 0.059 24.02 £ 0.58 0.854 £ 0.045 120
Method in Jiang et al (2022) 0.033 4+ 0.021 29.6 +£0.34 0.939 + 0.013 120
DTR-A 0.042 4+ 0.029 26.52 + 0.41 0.892 + 0.015 6
DTR-B 0.030 + 0.014 30.21 + 0.37 0.959 + 0.015 6
Our approach 0.029 + 0.011 30.37 £ 0.26 0.962 + 0.013 6
Dose verification Method in Jiang et al (2022) 0.026 + 0.013 31.79 + 0.34 0.973 + 0.016 120
Our approach 0.018 + 0.009 34.86 + 0.27 0.989 + 0.007 6

results of pressure map reconstruction are summarized in table 2. The qualitative results are also shown in
figure 4. Among the three compared methods, TR method results in the largest RMSE (0.145) and the lowest
SSIM (0.854). The method in Jiang et al (2022) improved the reconstruction quality by reducing the RMSE to
0.033. Meanwhile, the SSIM was improved to 0.939, demonstrating the effectiveness of using 3D U-net for
quality enhancement. However, details were still not reconstructed in some challenging locations, while the
whole structure was blurred.

Our method is more accurate than all compared methods, with a RMSE error as low as 0.029. As shown in
figure 4, most of the details were successfully reconstructed in the challenging areas while the blur effect was
eliminated, suggesting the effectiveness of the explicit learning of correlation between the image and signal
domains. Specifically, the SSIM was improved to 0.962, showing a high similarity of anatomic structure
compared with the ground truth, confirming the effectiveness of using SSIM and perceptual losses for training.
RMSE and SSIM results are boxplotted in figures 5(a) and (b). Notably, we also compared the runtime for testing
using different methods. TR and method in Jiang et al (2022) both took about 2 minutes to process a single case
due to iterations. Our approach achieved the fastest speed taking as low as 6 s, making the method much more
applicable for online dose verification in proton therapy.

3.4. Dose verification results

We compared the dose maps that were predicted from the pressure maps recontructed by our approach and the
method in Jiang et al (2022), in terms of RMSE, PSNR and SSIM. Table 2 also gives the quantitative results, where
our approach gains significant improvements. Particularly, our approach reduces the RMSE from 0.026 to
0.018, and increases the SSIM from 0.973 to 0.989, showing a high similarity between the predicted and the
ground truth 3D dose maps. Figure 6 shows qualitative results of several challenging cases, where the dose maps
restored by using our method show more accuracy, due to the high quality of the input pressure maps. Finally,
the pressure reconstruction and dose prediction with the proposed method only take about 6 s in total.
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Figure 5. Boxplot of the (a) RMSE of the predicted pressure maps using different methods, (b) SSIM of the predicted presure maps
using different methods, and (c) Gamma index of the predicted dose maps using different metrics.

Additionally, we compared the predicted dose maps with the ground truth in terms of gamma index as
shown in table 3 and figure 5(c). Our approach increased the gamma index from 97.9% to 99.3%, from 98.3% to
99.6%, from 95.7% t0 97.1%, and from 96.5% to 97.8% for 3% /3 mm, 3% /5 mm, 2% /3 mm, and 2% /5 mm,
respectively. Notably, our approach achieved high gamma index rates as 94.7% and 95.7% for 1%/3 mm and
1%/5 mm, showing a high agreement between the predicted and the ground truth dose maps, which further
demonstrates the effectiveness of our approach.

3.5. Ablation study
We performed an ablation study by comparing our approach with two variants: (1) DTR-A, where transfer
learning was not applied. We used the loss function defined in equation (8) to train the network in the Recon-
stage, then performed enhancement in the enhance-stage; (2) DTR-B, where we kept the same network
architecture and training losses that were used in our proposed method, except that we used the initial pressure
rather than TR results as the ground truth in the Recon-stage. The reconstruction results were quantitatively
evaluated with RMSE, PSNR and SSIM. All compared methods were trained using the same augmented dataset.
The results of the ablation study, denoted as DTR-A and DTR-B, are also summarized in table 2 and
figures 5(a) and (b). Specfically, DTR-A had the highest RMSE (0.042) and the lowest SSIM (0.892). Compared
with DTR-A, DTR-B further improves the reconstruction quality with a RMSE of 0.030 and SSIM of 0.959,
confirming the effectiveness of transfer learning. Our approach achieved the lowest RMSE and the highest SSIM.

4, Discussion

4.1. Pressure and dose reconstruction for protoacoustic imaging

Our approach used transformer-based blocks to build the network, which is trained by hybrid-supervision for
reconstructing the initial pressure map directly from the RA signals. Results showed that our approach has
gained an improved accuracy and speed. For the compared TR method, due to the limited angle view of the 2D
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Figure 6. Example dose verification results (Normalized). From left to right: Color bar of the dose maps, ground truth, results by using
the method in (Jiang et al 2022), difference maps between ground truth and results from Jiang et al (2022), results by our approach,
difference maps between ground truth an our results, and color bar of the difference maps.

Table 3. Quantitative analysis of the reconstruction results of dose maps.

Modality Metric Method in (Jiang et al 2022) Our approach
Dose Gamma Index (3%,/3mm) 97.9%=+ 1.1% 99.3%=+ 0.4%
Gamma Index (3%/5 mm) 98.3% =+ 0.8% 99.6% + 0.3%
Gamma Index (2%/3 mm) 95.7% + 2.2% 97.1% + 1.9%
Gamma Index (2%/5 mm) 96.5% =+ 2.0% 97.8% + 1.8%
Gamma Index (1%/3 mm) 92.7% =+ 2.5% 94.7% + 2.5%
Gamma Index (1%/5 mm) 93.7% =+ 2.4% 95.7% + 2.5%

matrix array, the reconstructed pressure map suffers from severe distortions, where most of the structure details
cannot be distinguished. The method in Jiang ef al (2022) applied a 3D U-net to enhance the quality of the initial
map reconstructed by TR method. However, the efficacy of the network enhancement is limited by the quality of
the TR reconstruction. Specifically, in areas where the TR image is severely distorted with missing details, image
enhancement will not be able to recover anatomical details that are completely lost in the input image as shown
in figure 5 highlighted by red arrows. For DTR-A, without the transfer learning to tune the model based on data
fidelity constraint, the reconstruction is highly affected by the limited quality of TR reconstruction used as the
reference in the initial training, leading to suboptimal results. DTR-B further improved the accuracy. However,
using initial pressure as the ground truth requires the network to perform both domain correlation learning for
image reconstruction and correction of image distortion caused by the limited-angle acquisition, which is hard
to balance during the training and leads to slightly lower quality compared with the proposed method.
Increasing learning parameters could potentially solve this problem but will cause more memory consumption.
Compared with the method in Jiang et al (2022), our approach directly reconstructs the initial pressure map
from RA signals to preserve the essential structural information. Using TR results for initial training in the
Recon-stage made the network focus on domain transfer mapping, thus improved the training efficiency and
efficacy. Meanwhile, the transfer learning with self-supervision based on data fidelity constraint ensured
consistency in both domains. Figures 4 and 5 showed that our approach can successfully reconstruct most
structural details, leading to high quality 3d dose verification result. Quantitative results also demonstrated the
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superiority of our method compared to other methods. Another major advantage of the deep learning
reconstruction network is its high efficiency. The proposed network achieved an end-to-end processing time of
6 s, which is substantially shorter than the 2 min required by the TR method. This high efficiency is critical for
the clinical adoption of the technique since time is of the essence when performing online dose verification
during proton therapy.

To further verify the robustness of our approach, we conducted additional experiments wherein dose maps
were subjected to random shifts of 1 cm along the axial, sagittal, and coronal directions. This simulation aimed
to replicate scenarios resembling beam overshooting. The inputs are the RA signals generated from the PA
simulation and the corresponding first order derivatives, and we calculate the RMSE, PSNR and SSIM for the
predicted dose maps in comparison with the ground truth. The RMSE and SSIM reached 34.15 and 0.981, which
is very close to the results without overshooting. This proximity indicates the robustness of our approach even
under conditions where the beam overshoots. Qualitative results are also shown in figure 7.

4.2. Temporal characteristics of the proton pluse

Itis worth to note that stress confinement is presumed during the PA simulation. In actual clinical or
experimental settings, achieving perfect stress confinement is challenging, leading to the generation of degraded
protoacoustic signal. In this study, the resolution of the generated PA signal is between 5 and 6 mm. The
outcomes of the reconstruction and dose verification, conducted under such resolution, affirm the efficacy of
our approach, signifying its applicability to 3D dose verification. We can improve the resolution in further
research by reducing pulse duration and increasing frequency. For instance, employing a pulse duration of

0.5 ms with a frequency of 1 MHz can yield a generated PA signal resolution ranging from 1 to 2 mm.

4.3.Inverse crime

During the simulation, time reversal was performed to derive reconstruction results using as ground truth for
the training of our network, where a uniform grid size (1.25 mm) was applied for both forward and backward
projections, leading to a same resolution between the simulated signals and their corresponding
reconstructions. In practice, this may give rise to an instance of inverse crime, yielding unrealistic good results,
thereby compromising the model’s generalizability. To address the inverse crime issue and mimic real
situations, an additional study was conducted wherein a diminished grid size (1.00 mm) was employed during
forward projection, resulting in a higher resolution of the generated signals. We performed such simulation to
generate a testing set containing 80 cases. The dose verification results achieved to a PSNR 0f 33.69 and a SSIM of
0.978, closely approximating outcomes derived from low-resolution signals. Qualitative results, presented in
figure 7, reveal accurate reconstruction of the majority of the dose distribution areas. The background is slightly
noisy compared with the results shown in figure 6, which can be potentially refined by fine-tuning with an
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additional high-resolution dataset. Nevertheless, the results affirm the generalization efficacy of our network in
practical situations.

4.4. Clinical relevance

In practice, online dose verification necessitates the reconstruction of dose deposition from each individual
pencil beam in real-time during its delivery. In this work, additional experiments were performed to validate our
approach on initial pressure map reconstruction and dose verification for individual pencil beams. To achieve
this, we extracted 120 individual pencil beams from diverse patient datasets and subjected them to the same
simulation processes, thereby generating a comprehensive dataset instrumental in fine-tuning the pretrained
network for pencil beam verification. The network then underwent testing on a seperate set of 30 pencil beams,
yielding an average PSNR of 40.38 for the initial pressure reconstruction and an average PSNR 0f41.98 for dose
verification. Figure 8 presents the qualitative results, demonstrating the successful reconstruction of the initial
pressure map for each pencil beam. This accomplishment contributes to a high-quality three-dimensional dose
verification outcome, affirming the efficacy of our approach in the context of online dose verification.

4.5. Limitations and future work

There are some limitations of this study. First, since we applied k-wave toolBox to perform projection from the
image domain back to the signal domain during the transfer learning, the training time has increased
numerously. Second, the reconstruction quality is still expected to be improved, although our method has
eliminated the distortion and artifacts caused by limited angle view.

In the future work, we will focus on developing a deep learning method to automatically learn the back-
projection mapping to accelerate the training process. Besides, we will investigate RA signal pre-processing to
improve the RA signal quality, which can further improve the performance of our proposed method. We will
also apply our approach to other image modalities to verify the generalization of the proposed network.

Our approach was evaluated on simulated data due to the lack of patient experiments. Simulation data have
the advantage of providing the ground truth of initial pressure and dose map for evaluation compared to real
patient data where ground truth is often unavailable. The simulation parameters were set empirically to make
the simulation results close to real data. Experimental and real patient studies are warranted in the future to
further evaluate the clinical efficacy of the technique.

5. Conclusion

In this work, we have proposed a hybrid-supervised deep learning method to reconstruct PA images for proton
therapy dose verification. DTR-Net using transformer blocks, transfer learning and hybrid supervision has been
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developed for direct PA image reconstruction from the RA signals, and image enhancement has been applied to
solve the limited angle view problem. The results show that our method outperforms competing state-of-the-art
methods. Most importantly, our approach achieved superior performance on reconstructing 3D dose with a fast
processing speed, making it very practical for online 3D dose verification in proton therapy.
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