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Abstract
Many robotic path planning applications, such as
search and rescue, involve uncertain environments
with complex dynamics that can be only partially
observed. When selecting the best subset of ob-
servation locations subject to constrained resources
(such as limited time or battery capacity) it is an im-
portant problem to trade off exploration (gathering
information about the environment) and exploita-
tion (using the current knowledge about the envi-
ronment most effectively) for efficiently observing
these environments. Even the nonadaptive setting,
where paths are planned before observations are
made, is NP-hard, and has been subject to much
research.
In this paper, we present a novel approach to adap-
tive informative path planning that addresses this
exploration-exploitation tradeoff. Our approach is
nonmyopic, i.e. it plans ahead for possible obser-
vations that can be made in the future. We quan-
tify the benefit of exploration through the “adap-
tivity gap” between an adaptive and a nonadaptive
algorithm in terms of the uncertainty in the environ-
ment. Exploiting the submodularity (a diminishing
returns property) and locality properties of the ob-
jective function, we develop an algorithm that per-
forms provably near-optimally in settings where the
adaptivity gap is small. In case of large gap, we use
an objective function that simultaneously optimizes
paths for exploration and exploitation. We also pro-
vide an algorithm to extend any single robot algo-
rithm for adaptive informative path planning to the
multi robot setting while approximately preserving
the theoretical guarantee of the single robot algo-
rithm. We extensively evaluate our approach on a
search and rescue domain and a scientific monitor-
ing problem using a real robotic system.

1 Introduction
Many robotic path planning applications involve uncertain
environments with complex dynamics. For example, search
and rescue in a disaster struck environment involves finding
and rescuing the survivors with unknown locations using
noisy sensors. With limited number of resource-constrained

(limited time or battery capacity) robots available for moni-
toring such environments, it is essential to perform path plan-
ning to visit a subset of locations that are most “informative”.

Informative path planning – selecting the best locations
to observe subject to given sensing constraints, in such
uncertain environments necessitates a trade off between ex-
ploration (gathering information about the environment) and
exploitation (using the current belief about the state of the
environment most effectively). We distinguish two different
classes of algorithms: Nonadaptive (offline) algorithms,
that plan and commit to the paths before any observations
are made, and adaptive (online) algorithms, that update and
replan as new information is collected. Most of the previous
work has either dealt with approximation algorithms for the
nonadaptive setting (that also is a challenging, NP-hard
optimization problem) [Singh et al., 2007; Meliou et al.,
2007; Hollinger and Singh, 2008] or proposed (often myopic,
i.e., limited look-ahead) heuristics for the adaptive setting
that do not have any approximation guarantees [Stachniss et
al., 2005]. Partially Observable Markov Decision Processes
(POMDPs) have been used to perform adaptive path planning
in complex environments [Roy et al., 2005]. However, such
algorithms are only capable of near-optimally solving small
instances of the problem.

In this paper we first propose a novel near-optimal al-
gorithm for nonadaptive informative path planning which
empirically outperforms existing nonadaptive algorithms. We
then extend this nonadaptive algorithm to the adaptive set-
ting. Our NAIVE- Nonmyopic, Adaptive, InformatiVE path
planning algorithm, performs sequential model update and
uses the nonadaptive algorithm as subroutine for replanning.
We explicitly analyze the “adaptivity gap” (the potential per-
formance gain of adaptive vs. nonadaptive algorithms), which
allows us to give strong theoretical bounds on the suboptimal-
ity of our NAIVE algorithm. The previous state of the art in
nonadaptive informative path planning is based on optimiza-
tion of submodular set functions [Singh et al., 2007], which
model a diminishing returns property that naturally arises in
many information gathering tasks [Krause et al., 2006, 2008].
Our analysis is based on a novel extension of submodular
set functions to adaptive sensing policies. For problems with
a large adaptivity gap, we present an algorithm based on a
multi-criterion utility function that seeks to simultaneously
optimize exploitation (e.g., to rescue a large number of
survivors) and exploration (e.g., to localize the survivors).



We also provide a generic sequential-allocation algorithm
to extend any adaptive single robot path planning algorithm
to multi robot optimization while (almost) preserving the ap-
proximation guarantee of single robot path planning algo-
rithm. Specifically, the primary contributions of our work are:

• A new algorithm – PSPIELOR for near-optimal non-
adaptive informative path planning for a single robot.
• A general algorithm – NAIVE– for single robot adap-

tive informative planning. By exploiting the fact that we
can bound the “adaptivity gap” for interesting real world
problems (demonstrated here for a search and rescue ap-
plication and a scientific monitoring task), we can prove
that the adaptive solutions obtained using NAIVE,
using any near-optimal non-adaptive algorithm (such as
PSPIELOR) as a subroutine, are provable competitive
with the NP-hard optimal adaptive solution.
• A sequential-allocation algorithm for efficiently and

near-optimally extending any algorithm for planning
informative adaptive policies for a single robot (such as
NAIVE or a POMDP solver) to the multi robot setting.

• The extensive evaluation of our proposed algorithms for
two case studies, including a search and rescue problem
and scientific monitoring using a real robotic system.

2 Problem statement
We are given a graph G = (V, E) with a discrete set (of
locations) V connected by edges E , wherein the set V is si-
multaneously traversed by k mobile robots. To model the in-
formation gathering, we associate a random variable Xs with
each location s ∈ V . The random vector XV = (X1, . . . ,Xn)
describes the (unobserved) state of the world. In our search
and rescue example, XV models the distribution of survivors
in a disaster struck environment. We assume that we have a
prior joint distribution P (XV) that models the dependencies
among the random variables across space. We discuss details
about these models for both our search and rescue and
scientific monitoring examples in Section 6.

When a robot i visits a location s ∈ V , it partially observes
the state XV by making a noisy observation Ys = ys,
according to some distribution P (Ys | XV). In the search
and rescue example, the random variables Ys model possible
false positives and negatives of the robots’ noisy sensors
(c.f., Section 6). In the adaptive setting, after making the
observations, the robots then update the belief about the state
of world, P (XV = xV | Ys = ys) and use the updated belief
to choose the next observation location adjacent to s.

To quantify “informativeness” we define a function
u(A,xV) that measures the utility of observing a set A ⊆ V
of locations if the world is in state xV . The robots choose
their movement to cooperatively maximize this utility. In the
adaptive setting, the robots can select a different sequence
π(xV) = (s1, . . . , sB) of locations for each possible belief
about the state of the world. Note that, depending on the
context, we use the notation π(xV) to refer both to the
sequence (s1, . . . , sB) and the set {s1, . . . , sB} of locations
visited. We call the location selection function π a policy.
We only restrict policies to necessarily be sequential (i.e., a
location st in a sequence (s1, . . . , sB) is chosen only based

on observations yt′ where t′ < t), and respect the graph G
(i.e., there must exist an edge between each st and st+1 in E).

For each possible policy π we compute its expected
utility as U(π) =

∫
P (xV)u(π(xV),xV)dxV . In the search

and rescue domain, U(π) denotes the expected number of
survivors rescued when observations are made as per the
policy π. Our goal, then, is to find a policy π that maximizes
U(π). We call a policy nonadaptive if it selects the same
sequence of locations independently of the state of the world.

For each sequence A of locations we also associate a cost
C(A) that corresponds to the total number of time steps
required to visit all locations in A. The total cost of a policy
π is then given as C(π) =

∫
P (xV)C(π(xV))dxV . We also

associate a (possibly different) starting (s(i)
1 ) and finishing lo-

cation (s(i)
B ) with each robot. We call Πi the set of all feasible

policies starting at s
(i)
1 and finishing at s

(i)
B , with C(π) upper

bounded by some given budget B. Based on this notation,
our goal is to solve the following optimization problem:

max U(π1 ∪ · · · ∪ πk) s.t. πi ∈ Πi for all i, (1)

where π1∪. . .∪πk is the set of locations selected by all robots.

3 Structure in informative path planning
As shown by Krause et al. [2006], many problems of non
adaptively choosing locations satisfy the following intuitive
diminishing returns property: Adding a new location s ∈ V
helps more if we have selected only a few locations so far,
than if we have already selected many locations. This intu-
ition is formalized by the concept of submodular set func-
tions: A function F : 2V → A is called submodular
[Nemhauser et al., 1978] if whenever A ⊆ B ⊆ V and s ∈
V\B it holds that F (A∪{s})−F (A) ≥ F (B∪{s})−F (B).

In this paper, we generalize this notion to policies. For two
policies π and π′, we say π ⊆ π′ if π(xV) ⊆ π′(xV) ∀xV ,
i.e., in any state of the world, π selects a subset of observation
locations selected by π′. We say |π| ≤ m if |π(xV)| ≤ m
∀xV ∈ XV . Similarly, we generalize other set operations
π1 ∪ π2, π1 ∩ π2, π1 \ π2 etc. A function U that maps poli-
cies to real numbers is called submodular if for all policies
π1, π2, π

′ s.t. π1 ⊆ π2, it holds that U(π1 ∪ π′) − U(π1) ≥
U(π2 ∪ π′)− U(π2), i.e., adding π′ to π1 will lead to bigger
improvement in expected utility than adding π′ to π2. An-
other intuitive property is that the utility function U is mono-
tonic, i.e., as more locations are selected, the expected utility
never decreases. Formally, a utility function over policies is
called monotonic if U(π1) ≤ U(π2) whenever π1 ⊆ π2 ⊆ V .

In addition to submodularity and monotonicity, several
spatial information gathering problems, including search and
rescue and environmental monitoring, exhibit another impor-
tant locality property: Observation locations which are very
far apart are approximately independent. This implies that if
we observe a subset of locations A1 in one region, and a set
A2 in another region (far apart), then U(A1∪A2) ≈ U(A1)+
U(A2). This property can be abstracted by assuming that
there are constants r > 0 and 0 < γ ≤ 1, such that for any
sets A1 and A2 which are at least distance r apart, U(A1 ∪
A2) ≥ U(A1) + γU(A2). Such set functions U are called



(r, γ)-local [Krause et al., 2006]. In this paper, we generalize
this notion to policies: We say U is (r, γ)-local if for any poli-
cies π1 and π2, s.t. the sets π1(xV) and π2(xV) are distance
r apart in any state xV , then U(π1 ∪π2) ≥ U(π1)+ γU(π2).

One way to construct (r, γ)-local, submodular, monotonic
functions on policies is given by the following proposition:

Proposition 1. If u(A,xV) is (r, γ)-local, submodular and
monotonic in A ∀ xV , then U(π) =

∫
P (xV)u(π(xV),xV)

is (r, γ)-local, submodular and monotonic.

All the proofs for this paper are discussed in the Appendix.
Below, we will only assume that the expected utility function
U is (r, γ)-local, submodular and monotonic.

4 Single robot informative path planning
In this section, we develop NAIVE, a Nonmyopic Adaptive
InformatiVE path planning algorithm for a single robot (k =
1). We extend the algorithm to multiple robots in Section 5.
Our algorithm is based on the following approach. We start
with a prior belief P (XV) about the state of the world. Based
on this belief, we nonmyopically plan a nonadaptive path A
maximizing the expected utility U(A) as per our current be-
lief. The robot then moves to the first location s on the se-
lected path, makes the observation Ys = ys, updates its be-
lief P (XV | ys), and replans according to its posterior belief.
In Section 4.1, we present the nonadaptive algorithm used
as a subroutine for the adaptive procedure. In Section 4.2
we provide details on the adaptive procedure, and analyze its
performance.

4.1 Nonadaptive informative path planning
We now present an algorithm for planning a nonadaptive
policy πA where the sequence of observation locations
A = (s1, . . . , sB) is selected by the policy πA independently
of the state xV . It can be seen that if U is a (r, γ)-local
submodular function on policies, then F (A) = U(πA)
is a (r, γ)-local submodular set function. Hence, in the
nonadaptive setting we need to find a set A∗ satisfying

A∗ = argmax F (A), s.t. C(A) ≤ B,

where C(A) is the cost of the shortest path connecting the
selected locations A, starting with s1 and finishing at sB .

This optimization problem, seeking to maximize a sub-
modular utility function with an upper bound on the total
cost, is called submodular orienteering problem (introduced
by Chekuri and Pal [2005], who developed a theoretical, su-
perpolynomial algorithm). In this paper, we propose a new,
efficient algorithm, pSPIEL-Orienteering (PSPIELOR), for
solving the submodular orienteering problem while exploit-
ing the local-submodular property of the utility function. The
complete algorithm is illustrated in Figure 1.

1. The algorithm takes as input a starting location (s1), a
finishing location (sB), an upper bound on the path cost
B and a local-submodular set function F , conditioned
on previous observations. We, first, randomly partition
the locations V \ {s1 ∪ sB} into small clusters of
diameter αr (where α is a parameter). Subsequently,
nodes close to the “boundary” of their clusters are

stripped away, such that the remaining clusters are
“well-separated” (have distance ≥ r). (It was proved by
Krause et al. [2006] that not too many nodes get stripped
away). Due to the locality property of the utility func-
tion U , each cluster is approximately independent. This
well-separated clustering is called padded decomposi-
tion [Gupta et al., 2003], and is illustrated in Figure 1a.

2. Within the locations Ci of each cluster i, we
then use a greedy algorithm to get an ordering
gi,1, gi,2, . . . gi,ni

on the ni nodes (c.f., Figure 1b).
Hereby, gi,`+1 = argmaxv∈Ci\Gi,`

F ({v} ∪ Gi,`}),
where Gi,` = {s1, sB , gi,1, . . . , gi,`}. These nodes are
then connected to form a chain for the cluster using
cost for the edge (gi,j , gi,j+1) to be the minimum cost
required to reach the node j + 1 from the first j nodes
already selected in the chain. This minimum cost is
calculated by adding the cost of edges (as per E) in the
shortest path traversed to reach the node j + 1 from
the first j nodes. With each node gi,j , we associate
an additive reward ri,j = F (Gi,j) − F (Gi,j−1). The
submodularity of F ensures that the first k nodes in this
chain are almost as informative as the best subset of k
nodes in the cluster [Guestrin et al., 2005].

3. Next, we create a “modular approximation graph”
G′ from G by taking all these chains, and creating a
fully connected graph on s1, sB , g1,1, g2,1, . . . , gm,1,
the starting and finishing nodes and all the first nodes
of each chain. The edge costs are represented by the
shortest path distances between the corresponding nodes
and calculated by adding the cost of the edges (as per
E) traversed in this shortest path (c.f., Figure 1c).

4. Constrained by budget B, we then use an existing
modular orienteering algorithm [Chekuri et al., 2008]
on G′ with s1 and sB as starting and finishing node
respectively (c.f., Figure 1d). Note that modular ori-
enteering is a special case of submodular orienteering
where all observations are fully independent, i.e., utility
function u(·,xV) is additive.

5. The selected path in G′ is then expanded in terms of the
corresponding shortest path in G (c.f., Figure 1e). Since
each edge in G′ may represent multiple edges spanning
through locations in G, the corresponding expanded
path in G will now (possibly) have additional nodes
from G that were absent in G′.

6. Finally, tour-opt heuristics by Lin [1965] are applied
to smooth out and shorten the path over the selected
locations (c.f., Figure 1f).

The PSPIELOR algorithm and its analysis is based on the
PSPIEL algorithm, originally proposed for the purpose
of communication-efficient informative sensor placement,
by Krause et al. [2006]. However, it implements necessary
modifications for path planning such as handling a starting
(s1) and finishing (sB) location and applying the modular
orienteering algorithm followed by path expansion and
smoothening in steps 4-6. We prove the following result
about PSPIELOR:

Proposition 2. PSPIELOR finds a path A with cost
O(r dim(V,E)) × B and expected F (A) ≥ Ω(γ) × F (A∗).



(a) Clustering the observation locations (b) Greedy selection to create cluster chains (c) Modular approximation graph

(d) Perform modular orienteering (e) Path expansion in original G (f) Path smoothening

Figure 1: Illustration of nonadaptive informative path planning using PSPIELOR (pSPIEL-Orienteering) algorithm.

where A∗ is the optimal set chosen for this problem and
dim(V, E) is the doubling dimension, which is constant for
many graphs and is O(log n) for arbitrary graphs [Gupta
et al., 2003]. Running time of PSPIELOR is polynomial
in number of observation locations. In Section 6, we
empirically show that PSPIELOR outperforms state of the
art algorithms for submodular orienteering for the search and
rescue problem.

4.2 Adaptive informative path planning
We now describe NAIVE– our Nonmyopic Adaptive
InformatiVE path planning algorithm, based on an iterative
Bayesian updating and replanning approach. The algorithm
is initialized with specified starting (s1) and ending locations
(sB) and an upper bound of B timesteps on the path cost.
In first timestep, NAIVE applies a nonadaptive algorithm,
such as PSPIELOR, using the utility function F (A | ys) =∫

P (xV | ys)u(A,xV)dxV representing the “conditional
utility” conditioned on observation Ys = ys made at s1. The
algorithm then moves the robot to the next location on the se-
lected nonadaptive path and iteratively use PSPIELOR with
updated starting location s1 and budget B− 1, while keeping
the finishing location fixed at sB , in the subsequent timesteps.
Algorithm 1 outlines this non-myopic, adaptive algorithm.

Let πNAIV E be the location selection policy induced by
the NAIVE algorithm. It can be seen that πNAIV E performs
at least as well as the nonadaptive path πA that PSPIELOR

returns, i.e., U(πNAIV E) ≥ U(πA). Moreover, we have the
following result that compares the performance of NAIVE
to the performance of an optimal adaptive policy.

Theorem 3. Suppose

Γ = EyV [ max
|A|≤B

F (A | yV)]/ max
|A|≤B

EyV [F (A | yV)].

Then E[U(πNAIV E)] ≥ Ω(γ/Γ)U(π∗),

where π∗ is an optimal sequential policy of length
Ω(B/(r dim(V,E))).

Algorithm:NAIVE-PSPIELOR

Input: s1, sB , u, B
Output: Sequence of selected locations π(xV)
begin

s← s1; π[1] = s; Bpp ← B; obs← {};
for 1 ≤ t ≤ B do

ys ← observe(s); obs← obs ∪ {Ys = ys};
1 Pt ← pSPIELOR(s, sB , Bpp, F (· | obs));

s← Pt[2]; π[t + 1]← s; Bpp ← Bpp − 1;
return π;

end
Algorithm 1: NAIVE-Nonmyopic Adaptive InformatiVE
path planning algorithm using PSPIELOR.

Hereby, Γ is a (computable) upper bound to the adaptivity
gap, a fundamental quantity in active learning, defined as the
ratio (

max
|π|≤B

U(π)
)
/
(

max
|A|≤B

U(πA)
)
≤ Γ,

i.e., the ratio of the performance of the optimal policy
divided by the performance of the best nonadaptive path.
We explicitly bound Γ for the two case studies of search and
rescue and hotspot sampling in Section 6.

Theorem 3, along with the fact that we can bound
the adaptivity gap for interesting real-world applications
(Propositions 5 and 6) implies that the adaptive solutions
obtained by the NAIVE algorithm, using any near-optimal
non-adaptive algorithm (such as PSPIELOR or EMIP) as
a subroutine, are provably competitive with the NP-hard
optimal adaptive solution.

4.3 Trading off exploration and exploitation
If the adaptivity gap Γ is small, Theorem 3 proves near-
optimal performance of the NAIVE algorithm. In the case
of large adaptivity gap, we choose the following algorithm
to select paths that simultaneously exploit the current belief
about the state of the world as well as decrease the bound
on the adaptivity gap as much as possible. We define two



utility functions, U1 and U2. The second utility, U2(π) =∫
P (xV)u(π(xV),xV)dxV , seeks to exploit our current be-

lief of the world. The first utility U1 seeks to make observa-
tions that are likely to reduce the adaptivity gap, i.e., it is cho-
sen such that U1 → 0 implies Γ → 0. Both objective func-
tions are application specific, and we will explain our choices
in Section 6. We then use scalarization [Boyd and Vanden-
berghe, 2004] by setting U(π) = λU1(π) + (1 − λ)U2(π),
where 0 ≤ λ ≤ 1 and π(xV) ∈ V . λ is a knob we can turn:
if λ = 0, we exploit our current belief about the survivor lo-
cations, by seeking to observe the locations where survivors
are most likely located. If λ = 1, we explore in order to re-
duce the uncertainty about the survivor locations. Values 0 <
λ < 1 encourage a tradeoff of exploration and exploitation. A
similar analysis was used for Gaussian Processes by Krause
and Guestrin [2007] (who did not consider path planning).

5 Multi robot informative path planning
One approach for extending any single robot planning
algorithm to plan simultaneous paths with multiple robots is
to form a new graph where each node represents the vector
of locations of all k robots, and then apply the single robot
algorithm to this product graph. Unfortunately, the size of
this product graph grows exponentially in k, which is infea-
sible for large teams of robots. We now present an algorithm
for multiple robot adaptive path planning that scales linearly
in the number k of robots, while providing almost the same
performance as applying the single robot algorithm to the
product graph. The algorithm, sequential allocation, extends
any single robot algorithm for adaptive informative path
planning, such as NAIVE-PSPIELOR, or a POMDP solver,
to the multi robot setting. Sequential allocation is a greedy
algorithm, that optimizes the policy πi for robot i condi-
tioned on all policies π1, . . . , πi−1 that have already been
selected, by optimizing πi = argmaxπ Uπ(1:i−1)(π), where
Uπ(π′) = U(π ∪π′)−U(π) and π(1:i−1) = π1 ∪ · · · ∪πi−1.
This algorithm is similar to the algorithm proposed by Singh
et al. [2007] for the nonadaptive setting, and generalizes it to
the framework involving policies. We prove:

Theorem 4. Suppose we have an approximation algo-
rithm that, given policies πj ∈ Πj and π(1:i) = π1 ∪
· · · ∪ πi, finds a solution πG such that Uπ(1:i)(πG) ≥
1
η maxπ∈Πi+1 Uπ(1:i)(π). Then sequential allocation using
this algorithm guarantees a solution (π′i)i such that

U(π′1 ∪ · · · ∪ π′k) ≥ 1
η + 1

max
π1∈Π1,...,πk∈Πk

U(π1 ∪ · · · ∪ πk).

When using NAIVE-PSPIELOR, η = O(Γ/γ). The
approximation guarantee provided by sequential-allocation
algorithm holds even when the planning is done sequentially
at each timestep, i.e., the information about the observation
locations selected so far, for each robot, is known to all the
planners while they select their next observation location.
Further, this information may be communicated to all the
planners for distributed path planning or the paths may be
centrally planned by a single planner.

6 Experiments
We now present empirical results on two case studies.

6.1 Case Study I: Search and rescue
We perform our first set of experiments on a realistic
simulation environment for a search and rescue domain.

Experimental setup: This case study is based on the Sen-
sor Planning Research Challenge (SPRC), originally an-
nounced for the International Conference on Machine Learn-
ing, 2007, and extended by slight modifications. The SPRC
problem considers an earthquake in a large urban environ-
ment with survivors spread across heavily populated areas of
interest, accessible only using rescue helicopters (c.f., SPRC
2007 for details on the problem specification). Each heli-
copter is equipped with two capabilities – a long range, noisy
sensor to detect the survivors; and the ability of rescuing the
survivors using a short range sensor. Field of view of these
helicopters is assumed to be occluded by the buildings and
only the unobstructed survivors are assumed to be detected or
rescued. Noisy detection of survivors’ locations are received
over a cellular network as well (signals from only a few of
them are received probabilistically during each timestep).

With unknown survivor locations and noisy observations,
we therefore need to tradeoff the detection (exploration) us-
ing the long range sensor and rescuing survivors at known
locations (exploitation). For path planning, we discretized
the search space into 1000 locations distributed uniformly at
random. Cost for traversing between each of these locations
is calculated in terms of number of timesteps required for the
shortest path between the two locations (calculated based on
robot speed - assumed to be 20m/s, pixel length - 5meters
and duration of each timestep - assumed to be 10seconds).
We assume a total of 500 survivors distributed according to
a mixture of Gaussians with (unknown) 4 (resp. 9) centers.
The prior joint distribution P (XV) for survivor locations is
assumed to be uniform. A certain (unknown) number of sur-
vivors are also assumed to be mobile and can move in any di-
rection with equal probability. Figure 2a illustrates a snapshot
of one timestep during the path planning. The background
represents a grayscale bitmap image with 400x400 pixels.
Each pixel represents an urban region of 5 meters by 5 meters.
Grayscale value of the pixel represent the height of buildings
at that location. Only the survivors on ground (white region)
are assumed to be not occluded in field of view and can be
detected or rescued with sensors attached to the mobile robot.
Red points in the figure represent locations of survivors in
the beginning (uniformly distributed in 9 gaussian clusters).
Green points are the (rescued) survivors within the rescue
range of the mobile robot and blue points are the detected
survivors within the detection range of the mobile robot.

Model: At each time instant, we receive a new set of partial
observations from both the cellular network and sensors
attached to the mobile robot. Detection information received
over the cellular network is independent of the location of
the mobile robot and has a noise of 5 meters associated
with it. During each timestep, the survivors transmitting
over the cellular network during the previous timestep stop



(a) Search and rescue environment map
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(b) Four survivor clusters
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(c) Nine survivor clusters
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(d) Varying λ
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(e) Path using NAIVE-PSPIELOR (λ = 0.1)
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(f) Path using NAIVE-GREEDY (λ = 0.1)
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Figure 2: Search and rescue experiments comparing the performance of NAIVE-GREEDY, NAIVE-HEUR and NAIVE-PSPIELOR.

transmitting with a probability of 0.1 while survivors not
transmitting during the previous timestep start transmitting
with a probability of 0.01.

For each helicopter location s, the attached sensors are
directed vertically down. With each sensor, we associate a
circular field of view for,W1,s ⊆ V andW2,s ⊆ V , that pro-
vides a subset of unobstructed locations in the corresponding
range (with W2,s ⊆ W1,s). Range for W1,s is assumed to
be 25 meters and the range for W2,s is assumed to be 10
meters. For each s′ ∈ Wi,s, Xs′ is revealed with certain
false positive/negative probability pi (p1 = 0.5; p2 = 0).
The observation Ys therefore is the noisy measurement of
the random vector XW1,s

and the noise-free observation
of XW2,s

. which involves multi-person tracking and data
association (details in the longer version of this paper).

Using the observations ys, and detections using the cellular
network, we then perform Bayesian inference to compute
the probability density of survivor locations, P (Xs | ys) as
follows. Detections using the cellular network are assumed

to be labeled, i.e., are always attributed to a specific survivor
while the detections using the sensor attached with the
mobile robot are unlabeled. We track each person, for which
we have at least one cellular observation, using a mixture of
Gaussian distribution, with one component representing the
distribution over locations in case the person is static, and the
other component representing the location in case the person
is mobile. Variance of the “mobile” component grows with
time. Additionally, we maintain an “anonymous” distribution
over the location of the remaining survivors for which no
cellular detection is made so far. Instead of modeling the
location of each person separately, this distribution models
the probability of occupancy at every grid cell.

In order to incorporate detections from the sensor attached
with the mobile robots, we perform maximum likelihood data
association (i.e., attribute each observation to the most likely
survivor). For the Gaussian component, we perform updates
by linearizing the observations. For the “anonymous” distri-
bution, we apply a drift process to accommodate mobile tar-



gets, and track the occupancy probability at each cell using an
occupancy grid style algorithm Thrun [2003]. The survivors
rescued in each timestep are removed from the simulation.

The exploration utility function is the expected value of
u1(A,xV), the number of people detected at locations A in
state xV . The exploitation utility function is defined as the ex-
pectation over u2(A,xV), i.e., the number of people rescued
at locations A in state xV . We can show the following result:

Proposition 5. The adaptivity gap is bounded as Γ ≤
EyV maxs P (Xs | yV)/P (Xs).

Hence the adaptivity gap is bounded by the maximum
“amplification” in the occupancy probability P (Xs) that can
occur by knowing all observations. Note that the above bound
on Γ can be approximately computed with arbitrarily small
additive error by sampling possible observation vectors yV .

Experimental results: We empirically compare the per-
formance of NAIVE-PSPIELOR with two other algorithms
- (a) NAIVE-GREEDY with a greedy algorithm as subroutine
in Line 1 of Algorithm 1; and (b) NAIVE-HEUR with a path
planning heuristic proposed by Chao et al. [1996] (empiri-
cally shown to provide efficient results in the nonadaptive set-
ting by Singh et al. [2007]) as subroutine. For sake of brevity,
we refer to the nonadaptive greedy algorithm as greedy and
the nonadaptive heuristic algorithm as heuristicOP .

For both NAIVE-HEUR and NAIVE-PSPIELOR, we
fixed the starting and finishing location as the current
location. We fixed budget B to 50 timesteps and exploration-
exploitation parameter λ to 0.5. Each experiment was run
multiple times to compute the expected utility. To reduce
the computation effort for the nonadaptive path planning
algorithm, we fixed the lookahead to 8 timesteps. Lookahead
budget was empirically found to have insignificant influence
on the performance of the corresponding adaptive algorithm.

Figures 2b and 2c compare the expected utility (ex-
pected number of survivors rescued) for NAIVE-GREEDY,
NAIVE-HEUR and NAIVE-PSPIELOR with survivors
scattered in 4 and 9 clusters respectively. For smaller
number of clusters, the expected utility gap widens between
nonmyopic planning using NAIVE-PSPIELOR and myopic
NAIVE-GREEDY and NAIVE-HEUR. Figure 2c compares
the performance of all the three algorithms with their corre-
sponding nonadaptive versions. We also compared with the
performance of an efficient nonadaptive path planning al-
gorithm (with provable approximation guarantees) proposed
by Singh et al. [2007], referred to in the figure as EMIP. As
expected, the adaptive algorithms provide better expected
utility compared to the nonadaptive algorithms.

Figure 2d compares the expected utility while performing
path planning using NAIVE-PSPIELOR for different values
of exploration-exploitation parameter, λ. For the given
problem setting, the utility function favors exploitation of the
current knowledge about survivor locations (XV ) in larger
expected utility for smaller λ. Exploration benefit (to achieve
higher expected utility) between λ = 0.1 and λ = 0 also dimin-
ishes with time. Figure 2e and Figure 2f illustrate paths for
NAIVE-PSPIELOR and NAIVE-GREEDY for λ = 0.1 re-
spectively. Nonmyopic planning using NAIVE-PSPIELOR

results in seeking out more number of survivor clusters (even
when they are at a large distance from the current location)
more quickly than myopic NAIVE-GREEDY.

Figure 2g illustrates the comparison of computation
effort (on a standard dual core desktop) between NAIVE-
PSPIELOR and NAIVE-HEUR for an experiment running
over 50 timesteps with varying budget inputs. With polyno-
mial time running time guarantee, corresponding empirical
validation of low computation effort, as shown in Figure 2g
and significant increase in expected number of survivors
rescued (c.f. Figure 2c), NAIVE-PSPIELOR can be used
for efficient path planning in search and rescue domain.

Figure 2h illustrates the performance of sequential-
allocation when using NAIVE-PSPIELOR and PSPIELOR

as the single robot path planning algorithms. When using
NAIVE-PSPIELOR, each robot exchanges the the collected
observation information with other robots before performing
path planning to decide the next observation location. Since
each of the multiple robots can now (possibly) explore dif-
ferent regions of the environment, increasing the number of
robots from two to three when using NAIVE-PSPIELOR re-
sults in higher performance gain than when using PSPIELOR

(non adaptive path planning). Figure 2i illustrates typical
paths taken by each robot when a total of 3 robots were
available for path planning using sequential-allocation.

6.2 Case Study II: Hotspot sampling
Our second case study applies informative path planning to
the scientific application of monitoring photosynthetically
active regions in a forest understory. Tropical forests, in
particular the small plants growing in the below-canopy
environments, play a significant role in global climate
change [Houghton, 2005]. Spatial and temporal variation of
light intensity in such environments is not well known and
its measurement is technically challenging.

Experimental setup: We collected a series of 10 images,
each separated by≈ 20 minutes, from 8:30 - 11:30 AM, using
a down-looking camera to capture light intensity distribution
under a tree canopy at San Jacinto mountains reserve (South-
ern California). A camera can only capture the reflected light
intensity. However, the incident light intensity is of impor-
tance for the photosynthesis process. Accurate light measure-
ments require a physical sensing system and cannot be cap-
tured using a camera. We only used these images to model the
complex dynamics of such environments. We projected these
images onto a planar surface to be sampled using a light sen-
sor attached with Planar Networked Info Mechanical System
(NIMS-PL, Borgstrom et al. [2008], c.f., Figure 3a). We dis-
cretized the image into a uniform grid of 15 × 15 locations
for path planning.

Model: We modeled the observed light intensity as a
multivariate normal distribution over the grid locations XV :

P (XV = xV) =
1

(2π)n/2|Σ|1/2
e−

1
2 (xV−µ)T Σ−1(xV−µ).

In consultation with the biologists, we applied a suitable
transformation to the collected intensity data to identify the
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Figure 3: Hot spot sampling using NIMS-PL comparing an offline PSPIELOR with online NAIVE-PSPIELOR.

set of locations critical for photosynthesis (for the specific
plant species growing in the observed region). The goal of
this monitoring problem is observe as many critical regions
as possible. Hence, we define the exploitation utility func-
tion, U2, as expectation over u(A,xV), the number of critical
locations inA given true intensity xV . The exploration utility
function U1 quantifies the expected reduction in uncertainty
for the multivariate gaussian (trΣV − trΣV|A). In this
case, Σ represents the prior joint distribution P (XV), learned
empirically from the remaining projected images other than
the one used for performing path planning (leave-one-out
cross-validation). After observing each location Ys, we
perform Bayesian inference, updating our belief about the
joint light distribution, conditioned on the observations, i.e.,
we compute posterior mean µV|Ys

and covariance ΣV|Ys
.

We can prove an analogous statement to Proposition 5:
Proposition 6. The adaptivity gap is bounded as Γ ≤
EyV maxs P ([Xs ∈ R] | yV)/P (Xs ∈ R) where R rep-
resents the “interesting range” of light intensity.

Hence the adaptivity gap is bounded by the maximum in-
crease in the expected number of “photosynthetically interest-
ing” observation locations that can occur by knowing all ob-
servations. Red dots in Figure 3b represent all the photosyn-
thetically interesting locations in the corresponding image.

Experimental results: We fixed λ to 0.5, and path planning
budget (Bpp) for nonadaptive path planning algorithm to 10
timesteps (to reduce the computation effort) and budget (B)
to 40. Figure 3c compares the expected percentage of critical
observation locations observed in each of the projected im-
ages using NAIVE-PSPIELOR and PSPIELOR. The X-axis
represent the number of timesteps. As the time progresses,
the average utility gap between an online and an offline algo-
rithm increases. This result demonstrates that adaptive path
planning can successfully take into account observations to
predict relevant regions for further monitoring.

7 Conclusions
In this paper we presented a nonmyopic algorithm for
informative path planning using multiple robots. Our
adaptive algorithm – NAIVE– works by applying a novel
nonadaptive path planning algorithm – PSPIELOR– as a
subroutine at each timestep with the updated belief about

the state of the environment to decide the next observation
location. We analyze the performance of NAIVE using the
concept of submodular functions, which we generalize to
sequential policies. We bound the algorithm’s suboptimality
by analyzing the adaptivity gap, that quantifies the benefit of
the optimal adaptive over the optimal nonadaptive policy.

For the case of a small adaptivity gap, our algorithm ex-
hibits provably near-optimal performance guarantees for effi-
ciently monitoring the complex uncertain environments, out-
performing state of the art nonadaptive algorithms. To handle
large adaptivity gaps, we use a multicriterion utility function
that seeks to simultaneously optimize exploitation of the cur-
rent belief about the state of the environment and exploration
to decrease the uncertainty about state of the environment.

We also provide a generic sequential-allocation algorithm
for extending any single robot path planning algorithm in
this setting, such as NAIVE-PSPIELOR, for multi robot
optimization while (almost) preserving the approximation
guarantee of the single robot path planning algorithm. We
extensively evaluate our approach on the search and rescue
domain and on an actual robotic system for the critical appli-
cation of monitoring light intensity in the forest understory.
We believe that our results can benefit the development and
analysis of new adaptive algorithms and their application to
complex scientific and societal problems.
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APPENDIX
Proof of Proposition 1. To simultaneously prove submodu-
larity and monotonicity, it suffices to prove that for policies
π ⊆ π′ and an arbitrary policy x it holds that U(π ∪ x) −
U(π) ≥ U(π′ ∪ x)− U(π′). We have, for each xV ,

u((π(xV) ∪ x(xV)),xV)− u(π(xV),xV) ≥
u((π′(xV) ∪ x(xV)),xV)− u(π′(xV),xV),

due to monotonicity and submodularity of u. Hence:∫
P (xV) (u((π(xV) ∪ x(xV)),xV)− u(π(xV),xV)) dxV ≥∫
P (xV) (u((π′(xV) ∪ x(xV)),xV)− u(π′(xV),xV)) dxV .

(2)

which proves that U(π∪x)−U(π) ≥ U(π′ ∪x)−U(π′).
For proving the (r, γ)-locality property, we first define that

two policies pi and π′ are at least a distance r apart if, π(xV)
and π′(xV) are at least a distance r apart for all xV . Since u
is (r, γ)-local, for two policies π and π′, we have for all xV
u((π(xV) ∪ π′(xV)),xV) ≥ u(π(xV),xV) + γu(π′(xV),xV).

Therefore:∫
P (xV) (u((π(xV) ∪ π′(xV)),xV)) dxV ≥∫

P (xV) (u(π(xV),xV) + γu(π′(xV),xV)) dxV .

(3)

i.e. U(π ∪ π′) ≥ U(π) + γU(π′). Equation (2) and Equa-
tion (3) complete the proof.

Proof of Theorem 3. Let B′ = B/(dim(V, E)(r + 2) + 2).
Let Π be the set of all sequential policies π of cost C(π) ≤
B′, and Ā be the collection of sets A such that the respective
nonadaptive policies πA have cost C(πA) ≤ B′. We have
that

max
π∈Π

E[U(π)] = max
π∈Π

∫
P (xV)u(π(xV),xV)dxV

= max
π∈Π

∫
P (yV)P (xV | yV)u(π(xV),xV)dyVdxV

≤
∫

P (yV) max
π∈Π

∫
P (xV | yV)u(π(xV),xV)dyVdxV

=
∫

P (yV) max
A∈Ā

∫
P (xV | yV)u(A,xV)dyVdxV

=
∫

P (yV) max
A∈Ā

F (A | yV)xV

= EyV [max
A∈Ā

F (A | yV)]

due to Jensen’s inequality, the definition of sequential poli-
cies and the fact that given all observations yV , the optimal
policy is to choose a fixed set of locations A optimized for
the observations yV . Furthermore,

max
π∈Π

U(π) ≥ max
A∈Ā

U(A) = max
A∈Ā

EyV [F (A | yV)].

Hence,

maxπ∈Π U(π)
maxA∈Ā U(πA)

≤ EyV [maxA∈Ā F (A | yV)]
maxA∈Ā EyV [F (A | yV)]

= Γ.



Now, according to Proposition 2, for the solutionA′ obtained
by PSPIELOR it holds that

F (A′) ≥ (1− e−1)γρ max
A∈Ā

F (A).

Hence

F (A′) ≥ (1− e−1)γρ

Γ
max
π∈Π

U(π).

Proof of Theorem 4. Let π∗i be the stage i policy chosen by
the optimal solution. Define Oi = ∪i

j=1π
∗
j , with O0 = ∅ and

O1 = π∗1 . Similarly, let πi be the policy chosen by sequential
allocation, and set Ai = ∪i

j=1πj .
By the assumption of an η-approximation algorithm, the

reward collected at stage i can be bounded as:

UAi−1(πi) ≥ 1/η(UAi−1(π
∗
i )).

Summing up, after k stages, the total collected reward can be
given as:

k∑
i=1

UAi−1(πi) ≥ 1/η(
k∑

i=1

UAi−1(π
∗
i )). (4)

Since the left hand side is a telescopic sum, we get:
k∑

i=1

UAi−1(πi) = U(∪k
i=1πi) = U(Ak) (5)

On the right hand side (RHS):

R.H.S. = 1/η(
k∑

i=1

UAi−1(π
∗
i ))

= 1/η(
k∑

i=1

(U(π∗i ∪ Ai−1)− U(Ai−1)))

Adding Oi−1 to both the terms and using the submodularity
property, we get

R.H.S. ≥ 1/η(
k∑

i=1

(U(Oi ∪ Ai−1)− U(Oi−1 ∪ Ai−1)))

= 1/η [U(O1)− 0 + U(O2 ∪ A1)− U(O1 ∪ A1)+
· · ·+ U(Ok ∪ Ak−1)− U(Ok−1 ∪ Ak−1)]

Rearranging the terms, we get:

R.H.S. ≥ 1/η

[
U(Ok ∪ Ak−1)−

k−1∑
i=1

(U(Oi ∪ Ai)−

U(Oi ∪ Ai−1))]

Using the monotonicity (U(Ok ∪Ak−1) ≥ U(Ok)) and sub-
modularity of U ( U(Oi ∪Ai)− U(Oi ∪Ai−1) ≤ U(Ai)−
U(Ai−1)), we get

R.H.S. ≥ 1/η

[
U(Ok)−

k−1∑
i=1

(U(Ai)− U(Ai−1))

]
= 1/η [U(Ok)− U(Ak−1)]

Using the monotonicity (U(Ak) ≥ U(Ak−1)), we get

R.H.S. ≥ 1/η [U(Ok)− U(Ak)] (6)

Substituting Equation (5) and (6) into Equation (4), we get:

U(Ak) ≥ 1/η [U(Ok)− U(Ak)] ,

and thus:

U(Ak) ≥ 1/(η + 1)U(Ok).

resulting in an approximation guarantee of (1 + η).

Proof of Proposition 2. Consider the following lemmas:

Lemma 7 (Proposition 3 in Krause et al. [2006]). Given any
path P ′ in G′ with weight W , it is possible to find a path P in
G spanning the same vertices A′, with a total length no more
than `(P ′), and with F (A′) ≥ γ W .

Lemma 8 (Proposition 4 in Krause et al. [2006]). If the graph
G contains a path P∗ of length `∗ and value F (A∗), then
there is a path P ′ in graph G′ that has length at most

`∗ × (dim(V, E)(r + 2) + 2) (7)

and whose expected weight is at least

F (A∗)× (1− e−1)× ρ (8)

where ρ is the probability that every node s ∈ V is r-
padded.

Lemma 8 proves the existence of a path P ′ in the graph
G′, for which both cost and weight are close to the optimal
path P∗ in G. The construction in the proof also guarantees
that the path P ′ contains at least one cluster center Gi,1 for
some i (or is empty, in which case P∗ is empty). Lemma 7
handles the transfer of the solution to the original graph G.
Combining Lemma 7 and Lemma 8, it follows that:

Corollary 9. Corresponding to the optimal path P∗ with
length `∗, there exists a path P ′ in graph G′ with cost at most

`∗ (dim(V, E)(r + 2) + 2) (9)

and whose expected weight is at least

(1− e−1) γρF (A∗). (10)

Now, consider the following lemma for the approximation
algorithm for path planning:

Lemma 10 (Theorem 1.1 by Chekuri et al. [2008]). For any
fixed δ > 0, there is an algorithm with running time nO(1/δ2)

which gives a (2 + δ) approximation for orienteering in
undirected graphs.

Combining Lemma 10 on the modular approximation
graph G′, with Corollary 9, there exists a polynomial time
approximation algorithm that outputs a path starting at node
s1 and finishing at node sB with approximation guarantee of
(2 + ε)(1− e−1)γρ. Since the tour-opt heuristics applied for
path smoothening will only decrease the path length of the
selected path while keeping the nodes in the selected path,
Proposition 2 follows.



Proof of Proposition 5. Note that

Γ ≤ EyV

[
max
A∈Ā

F (A | yV)
F (A)

]
.

For any set of visited locations A letWi(A) =
⋃

s∈AWi,s.
Hence, F (A | obs) =

∑
s′∈W(A) P (X ′s | obs). Hence

F (A | yV)
F (A)

≤ max
s′∈Wi(A)

P (Xs′ | yV)
P (Xs′)

.

Proof of Proposition 6. The proof for the exploitation contri-
bution u2 to the utility is analogous to the proof of Proposi-
tion 5. For the exploration contribution, there is no adaptivity
gap, as shown by Krause and Guestrin [2007].


