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SECOND-OBDER CORRECTIONS TO THE FThE- STRUCTJRE OF HELIUM 

Lars Hambro 

Department of Physics and Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

ABSTRACT 

The fine-structure constant can be determined to high accuracy from 

precise measurements of the fine-structure of the 2 3  P level in helium. 

One of the necessary calculations is to compute the contributions from 

the six Breit-operators and the mass polarization operator in second-

order perturbation theory. The eighteen spin-dependent perturbations 

from intermediate 3P states are calculated by solving an inhomogeneous 

Schrbdinger equation for the perturbation of the wavefunction by the 

variational method. The second-order contributions are then given by 

a single integral. These corrections are first calculated using standard 

Hylleraas-expansions with up to 165 terms for the perturbed wavefunctions, 

resulting in contributions to the two fine-structure intervals of the 

- ) i. 	-1 order of 10 cm , but only four of the results are sufficiently accurate. 

These variational calculations are improved by including additional terms, 

reflecting the singularities of the Breit operators, in the expansions. 

With this refinement another five contributions are obtained to the 

accuracy of 10 6  cm required by the larger fine-structure interval. 

It will require much more effort to match the experimental precision of 

10 1  cm 1  in the smaller interval, but we have shown that the second-

order perturbations of the larger interval can be calculated accurately 

enough to permit a new high-precision determination of the fine-structure 

V 

constant. 



I. IRODUCTION 

Today there are several accurate values of the Sommerfeld fine 

structure constant a = e 2/c 1/131  obtained from high precision 

measurements of the atomic energy levels of hydrogen and deuterium. 

These levels can be calculated to any desired accuracy (in principle, 

at least) from quantum electrodynamics (QD) as a power series in a 

(and2o.a), and thus a can be determined experimentally. The classic 

results are those of Lamb and co-workers, 1  who measured the 2P112  - 
2P312  fine structure separation in deuterium. Using their value and a 
theoretical formula by Layzer, 2  Cohen and flu Mond 3  obtained a 1  = 

131.0388 (6) for their 1965 tabulation of the fundamental constants. 

This has come to be regarded as the "official" value of a, but it is 

now very much in doubt. From recent measurements of the 251/2 - 2P 312  
fine structure in hydrogen, Kaufman et al. obtain a 1  = 137.0350(4) 

and Metcalf et al. 5  get a = 137.0353(8) from level crossing experi-

ments in hydrogen. 

The ac Josephson effect provides a method for measuring 2e/h 

directly, from which a can be obtained without use of QED. From their 

most recent determination of 2e/h, Parker, Langenberg and Taylor obtain 1  

a 1  = 137.03608(26), so the accuracy is 1.9 parts per million (1.9 ppm). 

Helium is better suited to high-accuracy experiments than hydrogenic 

atoms, because the 2 3P state (of Hen) has a lifetime of about 10 sec 

and a fine-structure comparable to the 22P state of deuterium which only 

has a lifetime of about 7 X 	sec. The natural line-width for the 

23P state of helium is thus about 3 Mc/sec, whereas for the 2 2  P state 

of deuterIum (or hydrogen) it is about 100 Mc/sec. So one should be 

able to measure the fine-structure intervals of the 23P state of helium 

1 



with an accuracy higher than anything possible for hydrogenic fine-struc-

tures. There are furthermore two fine-structure intervals in the fine 

structure of the 2 3P level (see Fig. 1), and a can in principle be deter-

mined from either one. The smaller interval has been measured to 

v12  = 2291 . 197(7) Mc/sec or to 3 ppm. The present best value of the 

larger interval is v 01  = 29 516.88(7) Mc/sec, 9  good to 2.3 ppm. Kaufman 

et al. determine the 2S112  - 2P312  splitting in hydrogen to 3 ppm, but 

to obtain the fine structure they must subtract the experimental value 

of the Lamb shift; the resulting accuracy of the fine structure is only 

6 ppm. So the helium measurements are more accurate than the ones for,  

hydrogen; and it should be possible to improve the experimental value 

for v01  to 1 ppm. 10 

Since the fine-structure intervals are proportional to the sq .uare 

of a (to lowest order in a), one can in principle obtain a to 1.5 ppm 

from the helium measurements that have already been done, and maybe 

eventually get a to 0.5 ppm from the experimental value of v01 . 

However, there is at present no theoretical formula for the fine 

structure of helium with terms up to and including, the order a 6 2 
mc , 

say, such as there is for hydrogen. 2  To bring the theory of the helium 

atom up to the same level Of accuracy as current experiments, theorists 

11,12 face a formidable task. As outlined by Schwartz, 	this project 

consists of several fairly distinct jobs. 

	

Formally,, the energy levels are given, by a power series in a2 : 	. 

E .- E0  = a2 ( 0 IH2 1 0) + a(0IH2 E0 	H0 H2 1 0 ) J  + a(0lHI0) 

+ (terms of order a,5  and higher) . 	 (1) 

Here H0 , E0  and 10) are the nonrelativistic Hamiltonian, the energy of 

the (unperturbed) 2 P state in atomic energy units, 2 Ry = mc a , and 



the corresponding nonrelativistic wavefunction, respectively: 

Halo) = E0 1 0 ) 

-* -> - 
The subscript J denotes spin dependence, J = L + S is the total angular 

momentum (j = 0, 1 and 2). H2  are the lowest-order corrections to the 

nonrelativistic Hamiltonian, the so-called Breit operators,13_16 which 

are well known. There are both spin-dependent (spin- spin and spin-orbit) 

and spin independent Breit operators. In first order perturbation theory 

only the former contribute to the fine-structure separations, but in 

second order perturbation theory both contribute, since the spin-indepen-

dent operators mix with the spin-dependent ones to give a spin-dependent 

result. Finally, H1  are higher order corrections to the Hamiltonian. 

There are then four main jobs to be done. First, since the left 

hand side of (1) is known experimentally, to 1 or 2 ppm, we want the 

leading term on the right hand side of (1) to 1 ppm. This task has 

been accomplished by Schwartz
11  who evaluated the expectation values of 

the spin-dependent Breit operators for a sequence of variational wave-

functions. Io), using a Hylleraas-like expansion with half powers for 
10), with up to 439 terms in the expansion. Second, the calculation 

of the second-order perturbation energies 

(1) 	1 	(2) 

0 	0 

where H 	(11(2)), say, is spin-dependent, but H 2) (11(1)) can be any 
2 	2

Breit operator. Since a2  is of the order 10 we only need this term, 

as well as the expectation value of H1, to an accuracy of.  1%;' and terms 

of and higher order in (1') can be ignored. This is the job which we 

shall try to do in this work. Third,. the determination of the operator 

H. ' This is probably the most difficult of the four projects (the other 

3 



three are mainly computational problems), requiring much quantum electro-

dynamic know-how since it is at the same level (same powers of a) as the 

most recent2  Q,ED work on hydrogen. However, a simplifying feature is 

that only spin-dependent operators are required. A first attempt at 

this analysis was made by Kim.16 He started with a Dirac-type Hamiltonian 

and added a quantized, transverse electrornagneticfield to the instan-

taneous Coulomb interaction between the two electrons. Expanding every-

thing in powers of a and reducing to a Pauli-'type Hamiltonian he obtained 

H0, all the Breit terms and a large number of complicated operators pro-

portional to a . This is not quite correct, since it does not provide 

for creation and annihilation of electrons and positrons. A more complete 

analysis, starting from the Bethe-Salpeter equation is in progress. 17  

Finally, the fourth job is to evaluate the expectation value of Hj+ to 1%. 
18 Work is in progress on this calculation; using the operators that Kim 

obtained; since they are quite complicated, this is not a trivial task. 

In addition to the terms in (1) there are other corrections due to 

the anomalous magnetic moment of the electron (which gives a a3  term in 

(1)), which is quite simple; then the reduced mass must be put in and 

there is also the operator correcting for the motion of the 

nucleus which will contribute in second order perturbation theory when 

mixed with the spin-dependent Breit operators. We will treat it along 

with the spin-independent Breit operators. Finally, there are a number 

of more, subtle nuclear (strong interaction) corrections; one may hope . 

to take over most of the well known results20  from hydrogen Schwartz 11  

has given an argument to show that a finite charge distribution of the 

nucleus (smeared over nuclear distances 	10 3  cm) has negligible 

cfieet. The leading term in the fine structure is proportional to 



((r)) = ((l/r) V/r) 	(1/r3 ); a deviation from a pure Coulomb poten- 

tial V for distances r < R adds to the fine structure of an 2-electron 

an amount 

R 	, 2 	. 	 22 
f r dr[ (r) - (r)1r 

a0  2 	22 
f 	r dr(r)r 
0 

times the fine structure, where a 0  is the Bohr radius ( 108 cm) and 

'(r) is derived from the t ru fl potential for r < R. Assuming that we 

get an upper limit by putting ' = 0, the above factor is of the order 

(Wa0 ) 22  (R/a)2 1010, and thus completely negligible. The same 

argument can be used to show that vacuum polarization modifications to 

the nuclear potential also are insignificant; vacuum polarization smears 

the charge distribution to distances of order of the electron Compton 

wavelength which is a times smaller than the Bohr radius; then we have 

an additional factor a from the Fernman diagram for vacuum polarization, 

so that the effect of vacuum polarization is a(a 2) times the fine struc-

ture; again negligible. (This would give a a5  term in (i).) 

The second order energy (2) is usually evaluated, formally at least, 

by inserting a complete set of states: 

(oIH In)(nIH(2) 1 0 ) 2 	2 	 () 
n 	E0-E 

but this method is. certainly not practical for the present problem since 

we donot have a complete set of helium wavefunctionsat our disposal. 

Instead we shall start out by solving an inhomogeneous SchrSdinger 

equation for the perturbation to the wavefunction. This can be formulated 

as a variational principle, so that we get a problem similar to the original 

Hylleraas-problem of finding the ground state nonrelativistic helium wave-

function, except that in the present case there is no unknown energy 



eigenvalue in the variational principle. Once the perturbation to. the 

wavefunction has been found, the second order perturbation enerr (2) 

is given by a single integral. 

We point out that there are several very sound reasons for a deter-

mination of a to 1 ppm. For one thing, as a matter of pride, one would 

like to know a to the same precision as, say, the velocity of light and 

the Rydberg for infinite mass (c is known to 0.33 ppm and R to 0.10 ppm1). 

But more important is the fact that a high-accuracy value of a is needed 

to compare the predictions of Q,ED with precision experiments;'the most 

important of these are on the anomalous magneticmoments of electrons 

and muons, and the hyperfinestructures (hfs) of hydrogen and muonium. 

Parker et al. 1  insert their, non-Q,ED value of a in the most recent theo-

retical expressions and compares with the latest experiments. The theo-

retical value of ae = (g - 2)/2 for the electron is known to 2 ppm, 

where the dominant 'contribution to the uncertainty comes from a. Clearly, 

if one is to see the small a 3  corrections to a (a current estimate of 

this term is 0 13 (a/) 3) one would have to know a to 1 ppm or better.  

The experimental value of ae  is goo.d to 23 ppm, but it does not agree 

well with the theoretical one: 

a (experimental) - a(theory) = (- 81±30) x 10 	(Ref 7) 

This seems to indicate disagreement between experiment and theory; but 

the experimental'result.involves some'tricky corrections, 1  and should 

perhaps be taken with a grain of salt. For muons, a has been measured 

to 270 ppm, and the theory is good to 135.ppm 7'; the uncertainty in a is 	 S 

not important here. Agreement with theory is again poor: 

a (experimental) - a(theory) = (+ 571) x 0_8 (Ref. 7) 
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and the discrepancy has the opposite sign of that of the electron. If 

a can be determined to higher accuracy, one niight hope to see hadronic 

contributions to a from such things as vacuum polarization by pion pairs. 

Before that can be done, one must know the a3  corrections to a ; work on 
I1 

this seems to be in progress. 21  This gives a compelling motivation to 

find a to 1 ppm. The hydrogen hfs has been measured to an incredible 

relative accuracy of 1.2 x 10 13  (Ref. 22) (the most precise measurement 

of any physical quantity, published in a hard-to-find engineering journal). 

Theory is far from definitive because the hadronic corrections due to the 

proton are somewhat speculative; using present estimates of nuclear recoil, 

but omitting a proton polarizability contribution 61 one gets a result 

for the hfs accurate to i ppm, where most of the uncertainty comes from 

a. This agrees well with experiment: 

hfs(experiment) - hfs(theory) = (2.5±.0) ppm - 	(Ref. 7) hfs(experiment) 

Clearly, a better value of a is required if one wants to obtain information 

on 6 from the accurate hydrogen hfs experiments. Muonium hfs has been 

measured to 9 ppm, but the theory is only good to 14 ppm due to the uncer-

tainty in the theoretical value of the diamagnetic shielding correction 

to muons in water. Within the uncertainties, the agreement between theory 

and experiment is good. 

Thus, although the labor involved in obtaining a to 1 ppm from helium 

fine structure measurements is substantial, it seems eminently worthwhile, 

especially since two determinations of a can be obtained. However, this 

assumes that QED in its present form is correct. But there is some dis-

turbing evidence that this may not be the case; we have already mentioned 

the discrepancies between theory and experiment as regards the electron 

and muon values of g - 2, furthermore current measurements of hydrogenic 
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Lamb shifts do not agree very well with the most up-to-date theoretical 

values, 7  a fact which a change in the sixth digit of a 1  will not alter. 

But it would probably be rash to say that we are faced with a violation 

of QED at this time. One has to wait and see, in the meanwhile we proceed 

with our calcuJ.ations of helium fine structure. 



II. METHOD 

The Schrodinger equation is 

	

(H0  + Mi1)! = E! 	 (If) 

where H0  is the nonrelativistic Hamiltonian for helium in atomic units 

where the unit of length is a 0  =Ti2/me2  and the unit of energy is 

e/a=amc =2Ry: 

	

- 12 lV2  Z 	Z1 
H0 - 2 1 2 2 r1  - r2  r12  

where Z = 2. H1  are the Breit operators. Expanding the energy E and 

wavefunction! in power of the "pareter of smallness" X (in this case 

= !0±XTl + !2 + ... 

E=E0 + 1 +X2E2 + 

inserting in 4) and equating coefficients of powers of ? we obtain 

= o!o  

	

H0!1  + H1!Q  = E1!0  + E0!1 	 (7) 

	

H0!2 + Hi!i = B2!0  + B1!1  + E0!2 	 (8) 

Multiply (6) by T and (7) by !cJ  integrating over all space of both 

particles and subtracting we get the usual result: 

	

= (!0IHl J!o)/(!QJ!Q) 	 (9) 

assuming that Hi 
 is Herinitian Once !, E0  and E1  are known (7) is an 

inhomogeneous differential equation for the perturbation to the wave-

function !l. 	 . 	. 

(H0  - B0)!1  = - (H1  - E1)!0 



When this equation has been solved, E2  is found by multiplying (6) by 

2' (8) by To , integrating and subtracting: 

= ('J!01H1 - E1 1*'1)/(!0 1!0 ) 	 (10) 

The perturbation H1  is a sum of operators: 

H = 1 	11 

and so we have unmixed (i = j) and mixed (i j) second-order energies: 

	

E(1,3) = 	- 	 (U) 

The mixed energies must be counted twice in the final answers. In Eq. 

(U): 

	

41) 	(IH1) iii 	 (12) 

and 

(H0  -. E0 )! 	= - 	- 	 ( 3) 

(11), (12) and (13) are the fundamental equations for obtaining the 

second-order energies E1,3), assuming that E 0  and 	are known. The 

homogeneous equation corresponding to (13) is just (6) whose solution 

is J! (the solution that satisfies boundaryconditions appropriate for 

atomic wavefunctions for some bound state), so the addition of a multiple 

of 	to 	is seen to leave the final answer 	unchanged because 

of (12). 

We solve the inhomogeneous Schr6dinger equation (13) approximately 

by the variational method. Consider the functional 

E2 	 = (( i) I H - E0  I (j)) + (41) I 4J) - 	i) 

+ ( 0 J }4i) - 

10 

The variational principle 



11 

E 	,(i) = 

With respect to T W gives equation (13)  for 	and the value of the 

functional (i) is then just the second order energy .  E' 	(11), apart 

from normalization. Variation with respect to T 	gives the adjoint 

of equation (13) for T 	the value of the ±'unctional E2  is then 

Once the solutions T 	and Ti have been obtained we have four different 

ways of calculating (numerically) the same physical quantity E (i,2  

= E'; for i 	j. (For i 	j we have wo ways.) 

	

x 	= -(4IH0 - EI) = - (4 ) IH0  -  EQI4)) 

= 	01 Hl. 	
Eli) (j) = (( i) I H 	- 4J) I 	(1 5) 

Comparison of the numerical results obtained the four different ways will 

indicate the seriousness of round-off errors in our computer calculations 

of the second order energies. 

The method of solutions is the usual one of setting up a sequence 

of functions to approximate 	each sequence consisting of a sum of 

terms U with coefficients x 	as linearparameters: n 	 n 

N 
• 	 ,(') 	 () - 

1 	1 	n=ln n 

which turns (13)  into, a system of N inhomogeneous linear equations for 

.(i) 	(i) 
x1 ...xN : 

kl0k - Eo(utIuk)] 	= 	 (16) 

N 

where 

b 	= - (U2IHI1)!0) + EI(UtI!O) . 	 • 	(17) 
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We do not use functions U that form an orthonormal set. The accuracy 
n 

of the computed second order energies will be judged by how well (or bad) 

they converge as the number N of trial functions increases. 

Our choice of these trial functions will be guided by the ones used 

for the variational solution T o of the homogeneous Schrdinger equation 

(6); which is actually more difficult to solve numerically than (13), 

since both the energy elgenvalue E and the coefficients in the expansion 

of T are unknown, and iterative methods have to be used. We will first 

calculate the second order energies using the same trial functions that 

we use for the variational solution of (6), these functions are. called 

the standard basis.. Since T is an atomic wavefunction, we include a 

factor in the trial functions so that they fall off exponentially as 

r1  -* 00, r2 - Co. This fixes the boundary condition of J!Q  and the 

at infinity. However, due to the singular nature of the Breit-operators 

as r1  - .0, r-+0 or r12  -+0, the.left hand side of (13) will be less. 

singular than the right hand side; i.e., H0U (n = 1, 2 ... N) will not 

(i)  reproduce the singularities of H1 k' and this will in general manifest 

itself by slow convergence of E' as N increases. Therefore, we shall 

eventually have to introduce trial functions which have singularities 

as r1  - 0, r2  - 0 or r12  -* 0, in addition to .the. teis in the 

standard basis. Once 	is known, one can determine what extra functions 

V are needed from the requirement that H V shall have the same leading 

singularities at r1  0, r2  0 and . r12  0 as 	has. 

This approach to second order perturbation theory, 23  sometimes 

24 	 01 
called the method of IJalgarno and Lewis, has been used to calculate 

the second order Stark effect in hydrogen and the perturbation on a 

hydrogen atom of a far-away charge. It was investigated by Schwartz25 



13 

in .a series of papers, culminating with a very accurate calculation of 

the nonrelativistic Lamb shift in hydrogen (Bethe sum), and it has also 

been used by Schwartz26 to calculate the Bethe sum in helium. In these 

hydrogen problems exact solutions for T in closed form were obtained; 

in the case of the helium Lamb shift, a variational solution for Il  (for 

each value of the photon momentum) was used. 



III. THE NONRELATIVISTIC WAVEFUNCTION 

To start the second order calculation we need the nonrelativistic 

wavefunction T which is the solution of (6). It is antisymmetric in 

space since we have a triplet state. Since there is no exact solution 

of (6), we use the time-honored variational method. The antisymmetric 

functions which define our standard basis are (Hylleraas basis): 

12 - in n £ - 2 r1  - 

£ 	 r r1  r2  r12  e 	e 	 (18) 

where £ 0, m 0,n 0. The variational wavefunctions are: 

- 	
£ 	 (19) 

where the coefficients C 
£mn  are determined from the variational principle. 

In (18) P12  exchanges coordinates r1  and r2, and the P-state character 

is given by the vector sign. 

This type of triplet-P wavefunctions were used by Schwartz 11  to 

calculate the expectation values of the spin-dependent Breit operators, 

with w = 10 and 286 terms in the. expansion (19) the results were 

accurate to 1 part in 10 	while this fell short of the goal of 1 ppm, 

these functions should be quite adequate for the present purpose since 

• 	we only need an accuracy of 1% in the final answers. With an expanded 

basis, obtained from (19)  by the replacement C 	- C 	+ D jr + r , £mn 	£mn 	£mn 1 	2 

the goal of calculating the leading term of the fine-structure to 1 ppm 

was achieved with a 439-term wavefunction, but the computations had to 

be done in 52 decimal arithmetic. The wavef'unctions (19) have been used 

by the author27  to calculate the three reduced matrix elements determining 

the hyperfine structure of the 2 3P level in helium 3 (which has nuclear 

14 

01 
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spin 1/2); with 167 terms the accuracy was about 1/2%. 

Our three basic variables are thus the two nucleon-electron distances 

and r2  and the interelectron distance 

-- 	2 	2 	 1/2 
r12  = r1  - r2  = (r1  + r2  - 2r1r2  cos 12 

where 012  is the angle between r and i. Other choices of variables 

have been made, such as "elliptic coordirm.tes" (Ref. 13; . 16) or the 

perimetric coordinates of Pekeris.28  However, there is no particular 

difficulty in evaluating the many integrals with our choice of variables; 

fix ri,  say, along the z-axis so that 012 = 02 the azimuth of . The 

only angular integration is then over 02* 

The expansion (19)  is not the most general trial function with 

triplet-P symmetry, any sum of properly antisymmetrized products of two 

one-particle waveftnctions with arbitrarily high angular momenta 1 and 

£2 combined to give total angular momentum L = 1 is 

most of these terms are implicit in the r 12-dependence 

has shown how the selection rules for r l,r and 

cceptable. However, 

in (1 ); Schwartz 
26 

12 	2 	2 
+ r2  r12 ) 

reduce the number of angular functions required, for each ML,  to 2L + 1. 

In the case of L = 1 we have the triplet functions 

- 

	

(1 - p12 ) r1  F(r1,r2 ,r12 ) 	 (O,l),(l,0)1 

With odd parity, and the even-parity function: 

	

(r X r )(i + P12)F(r1,r2,r12) 	[(21,22) = (1,1)] 

Since the lowest triplet-P state is sought, 2 3P, the odd-parity function 

is the appropriate choice since it has the symmetry of a (sp)-configuration, 

whereas the even function has (pp) symmetry. A (pp) configuration corre-

sponds to a doubly excited state and has much higher energy than a singly 
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excited (sp) state; in fact doubly excited states lie in the continuum 

(Ref. 13, p. 125). 

Waveftnctions are computed for u = 1,2,.. .8. The number of terms 

in the expansion (13), i.e., the number of different choices of (2,m ) n) 

such that 02+m+nU) when £0,m0 and nw is 

N(W) = 	+ l)(U) + 2)(w + 3) . 	 ( 20) 

The variational principle equivalent to the Schrdinger equation (6) is 

(!0IH0 - E0f0) = 0 . 	 (21) 

Approximating the lowest triplet-P wavefimction T by an expansion 

of the form (19), the variational principle (18) gives 

N(w) N(w) 

kl jl Ckcj((UkIHoIU2) - EO(UkIU2))] = 0 	(22) 

where we have done an ordering (2,m,n) —f k; the so-called "natural t ' 

	

order is used. This means that the 	(w + i)(U) + 2) possible values 

of (.e,m,n) such that 2 + m + n = U), with 2 0, m 0 and n 0 is 

mapped one-to-one into a range of k-values given by N(w - 1) <k i(U)) 

Variation with respect to the cOefficients Ck gives a symmetric eigen-

value problem; using an obvious notation: 

	

k=l [(H
0)- E0 I]Ck = 0 	£ = l,2,...N(w) . 	(23) 

We seek the lowest eigenvalue E 0  = E0 () and corresponding eigenvector 

(c1 , C2 , . . . , C) in this problem. The approxinte wavefunction )f 

is then given by (19). The eigenvalue problem was solved by an approximate 

• iterative method, described in Appendix C. 

Ideally, the screening parameters ta and K should also be varied. 

However, differentiating the expression in square brackets in (19) with 

respect to ta and K gives a huge expression and the resulting two equations 



17 

would be highly nonlinear and impossible to solve for rcr and K. TO obtain 

the best values of K and a, i.e., those which give the lowest eigenvalue 

one must proceed by trial and error. For each guess of (Ka,K) the 

matrices (H Ai  and I must be calculated, which requires the computa-

tion of a lot of integrals; then the secular equation (23) must be solved. 

This should be done for each value of (D since there is no reason for 

the optimum values of Ka and K, for one value of (D to be optimum at 

another value of u. We did not perform this variation, but used Schwartz' 11  

values of K and a for all values of u: 

K = . 62 	and 	a = 0.29 	(Ref. 29) 

These two numbers are the only input for the calculations reported here. 

Schiff et al. 30  calculate wavefunctions and expectation values of the 

Breit operators for several states in helium, varying their screening 

parameters. However, with a 560 term wavefunction (with only integer 

powers of their variables) and varying the screening parameters they do 

not match the accuracy of Schwartz' calculation of the fine structure 

intervals that he obtained with 439 terms, using half-powers, but keeping 

the screening parameters constant. We therefore conclude that for an 

accuracy of i%, the values of K and a may be kept constant. 
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IV. A MODEL PROBLEM 

The procedure for obtaining second-order perturbation energies can 

be tested on a simple case where the answers are known. The nonrela-

tivistic Hamiltonian 	T. + V, where T is the kinetic and V the 

potential energy. If we take T and V as perturbations: 

= V 	and 	H2) = T 

then it is known that 

(i) 	2EE(2) 
- 	 E 	E' 	_E(2,2) 	E 1 	- 	 0' 	0' 	2 	- 2 	- 0' 

	

E' 	- 
E(2,1)

- - E 2 	 0 

These relations can be deducted from the virial theorem,but it is easier 

to derive them from a simple scaling argument. In cgs units the Hamiltonian 

is 	 ... 

2 
(H ) 	 = - (T) 	+ e2(V) 	 (25) Ocgs m 	au 	au 

where (T) and (V) 	are T and V in atomic units. The Hamiltonjan au 	au 

= H0  + XT + pV = (i + x)T + (1 + ii)V, where 7. and pare "parameters 

of smallness," has the spectrum of H0  in scaled units; since the energy 

unit is e2/a =me/. it follows from (25) that the scaling factor 

is (1 + )2I(l + 7k). Thus the perturbed Hamiltonian H has a perturbed 

energy level 

2 
E = E0 (1 

~ ) 	
E0 (l + 2 - 	

+ 2 
+ 	- 2) (26) 

The relations (24) follow immediately from (26). 

Because H0  is just the sum of the two perturbations, H 0U will 

	

reproduce the singularities of .  H'0 	H1)14f 	(i = 1) 2), SO the 

standard basis (18) should be adequate for the expansion of 

There are no singularities in this calculation to slow down the conver-

gence of E,'i )  as a) increases. 



The calculation of matrix elements (Ho)k  of H0  (and thus also of 

T and v) between a pair of elements in the standard basis is described 

in Appendix B. The inhomogeneous system of equations (16) to be solved 

is: 

A 	 £ = 1,2,.. .,N(w) 	(27) k=l 1k k 

where ALk = (HQ)lk - E0 (u')I 1k . Here E0 (U)') is the approximation to 

E0  obtained when N(W') terms are used in the expansion (19)  for 

using this variational wavefu.nction in (17),  the right hand side of (27) 

becomes 

(i) b 	= - 
£ [(H) 	- E 	i 	1 £n  

n=1 n 	1 	1 	£n 

where 

N(w') 41) = 
[ml 

N(u') 

c(H1) 	I /(l)  
nl 

and 
N((zt) N(&) 

CCI  
00 m=l n=l 	nmnm 

The second order energies E2(i,j) in (15) are given by: 

	

E'X o10 = - 	xi 	x[(H0 	- E0(wt)I]) 
 nm 

N(U)) 

	

= - 	h 	 (31) 
11=1 fl 	fl 

and similar expressions for 

If w = ce', then E0 (&) has just the value whiôh makes the matrix 

•Ak singular, see Eq. (23). We could try to avoid this complication by 

keeping w' bigger (smaller) than the largest (smallest) value of w for 

which 	and E'ai ceulated. But nany ca E 0 (U)) is cjiite close iD E0(w'), and 

oae wofld have to solve an "almost singular "  system of linear equations, 

and this can be very unpleasant numerically. It is also preferable to 
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have w 1  = w in the calculations for each value of w, so that the second-

order energies are obtained by exactly the same algorithm for each value 

of w. We thus use the same number of standard terms in the expansions 

for 	and 	. The singular matrix Ake  .then has rank N() - 1, 

because E0 (u) is a nondegenerate eigenvalue, and we delete one equation 

from the system (27). One of the unknowns may be put equal to anything, 

and the deleted system of equations is solved fro the N(w) - 1 unknowns. 

This solution is inserted into the deleted equation and.compared with the. 

corresponding right-hand side. This gives a test on consistency and 

round-off errors..  

Cleaily, the system of equations (27) are not over-determined The 

coefficients G in the expansion (19) of IV demonstrate the linear depend-

ence among the rows of Ak: 

N(w) 	 N(w) 

kl A 
	Ck = (UIH0 - E0  ()J 1 ckUk) = (UIHQ - E0If) 

= 0 	for. £ = 1,2, 	,N(u) 

The same relation holds for the right hand sides 

N(w) 	 N(u) 

b kl 	Ck = k1 CkUkIH1 - E11)Iro) 

= (IHf) - E(1)(I) = o 

because of (12). 

Theoretically, any one of the equations in (27) may be deleted 

But the most important term in the expansion(19) for 	isthe first . 
S 

one, with £ = m = n = 0, corresponding to the leading (ls2p) term in 

a configuration expansion. As a practical matter, we put 	= o 

when we delete the n th  equation. The truncated matrix obtained by 
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deleting the first row and column of A ki is less close to being singular 

(has a determinant of greater magnitude) than the one obtained by deleting 

the nth  column and row of Akt with n > 1. At higher dimensions I'T(w) 

this may be important. 

In Table I and Table II we present the results of the calculations 

in atomic units. All the computations reported in this work were done 

on a CDC 6600 computer in single precision arithmetic, this 

bits corresponding to slightly more than 14 decimals. When 

and = 0 were inserted into the left hand side of the 

of (27) and compared with the right hand side b1,  the nun 

is 48 binary 

(i) 	(i) 	(i) X 2  ,X3 ... 

first equation 

ers agreed 

to as many or more digits than the ones quoted for the results of Tables 

I and II. The iterative procedure for obtaining 	was stopped when the 

difference between the eigenvalues calculated for two successive iterations 

were less than a certain prescribed € in magnitude. For 1 U) 5 we 

used € = 10 1, but for w = 6,7 and 8, € had to be increased to 10_10. 

This does of course not imply that the elements C of the eigenvector 

are converged to anywhere near this accuracy, since the variational 

principle gives an eigenvalue one order better than the eigenvector, 

roughly speaking. We therefore iterated once more to obtain a slightly 

different wave±'unction; the computations of Table I were done for these 

two sets of wavefunctions. The results agreed to the digits quoted. 

The second order energies E1,3)  were calculated by the t methods of 

Eq. (31) for both wavefunctions. The results using the two different 

methods (four in the case of E,2))  calculated with the same wavefunction 

were in slightly better.agreement (one more digit for U) = 6, 7 and 8) 

than the results calculated by the same method using different wave-

functions, for both methods. 
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Table I 
Rsults of variational calculations of the unperturbed energy of the 
23P level and expectation values of potential and kinetic energies, in 
atomic units. 

N(w) E0 4) = . 42) = 
(T) 

1 	4 -2.12Q4717R7Q 	. 1cc7onoR 
-- -.-- I-,  .LULO(0)U 

2 10 -2.1326784020 -2.1349720423 2.1372656826 

3 20 -2.1330850392 -2.1330337967 2.1329825540 

4 35 -2.1331402223 -2.1331028335 2.1330654447 

5 	. .56 	. -2.1331575951 . 	. 	-2.133138930 . 	.2.1331202659 

6 84 -2.133162289 . 	-2 . 13315571 	. 2.13314913 

7 .. 	120 -2.133163594 -2.13316125 •  2.13315891 

8. 16 -2 . 133163983 -2.1331631 2.13316226 

Extrapolated -2 13316418(4) -2 1331643(6) 2 1331644(9) 

Table II 

Second order perturbation energies from perturbation by the potential 
and kinetic energies, in atomic units. 	. 	. 

w 	 E" 	 E(2, 2 ) 	 E,2) - E( 2 , 1 ) 2 	 .2 	 2 	2 

1 	 -1 8013144780 	-1 8013144780 	1 8013144780 

2 	 -2.QRA1QQR2 - 

3 	 -2 1285361103 -2 1285361103 2 1285361103 

4 	 -2 1324502372 -2 1324502372 2 1324502372 

5 	 -2.1329769612 ,. 	-2.1329769612 2.1329769612 

6 	 -2.1330922 -2.1330922 2.1330922 

7 	 -2 1331374 -2 1331374 2 1331374  

8 	 -2.1331539 -2.1331539 2.1331539 

Extra- 
polated 
	 / 	 2 



The extrapolated results are obtained by methods discussed in the 

next section. The extrapolated E0  may be compared with Schwartz T  best 

result of _2.13316I1908.11  The relations (24) are well satisfied by 

the extrapolated results. Notice that the relations of the second-order 

energies among themselves are satisfied (to within round-off errors) for 

every value of w, whereas the relations involving E 0  and the first-order 

energies are only obeyed accurately by the extrapolated results. This 

is obvious if we look at the expression (3) for second-order energies, 

using a sum over a complete set of quantum states. For any term in 

the infinite sum there are relations for the numerators: 

(OJTIn)(nIvIo) = ( oI H 	vin)(nlvlo> = - I(OIVIn)1 2  = - 	(OTIn)I2 

since In) is an eigenstate of H0, and In) J lo). 

The results of this section gives us some confidence that we have 

a sensible algorithm for computing second-order energies. 

23 



V. METHOD OF EXTRAPOLATION 

Schwartz31  has developed a method for estimating convergence rates 

of variational calculations, from an. analogy with the problem of fitting 

a function F with N functions u from an orthonormal basis: 
n 

N-i 
FF = 	cu N 	n=O nn 

The mean square error is: 

Co 

1(N) = fJF - FN J 2dv = ZN c2 	 (32) 

00 

assuming that the expansion converges, i e , F Zn 0c U 	For some 

simple one-dimensional cases with a known F and a volume element, or 

metric, dv = radr, say, and using a well-behaved and smooth (infinity 

differentiable) system of orthonormal fitting functions that fall off 

exponentially at large distances, the expansion coefficients 

•c=fFu dv n 	n 

can be found explicitly. Schwartz shows that if F is free from singular-

ities and smooth, then 

c2 oza' , 	a<l 	 (33) 

This is called the fast rate of convergence If F has a singularity at 

the origin, such as 

F(r) 	(k > 0) 	or 	F(r) 	en r 
r-+O r 	 r-'O 

or does not fall off as fast as the fitting functions at large distances, 

say F(r) 	r 	as r -* 00 , or if F has some discontinuities, then 

24 

(3k) = 
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If we construct a variational approximation V to some exact (but 

unknown) wavefunction 'i" ' = N = n=O cu say, then 

J(N) = f(T* r)(E - H)( - 

is analogous to (32) if the operator (E - H)dv is considered as some 

sort of generalization of the metric. If E is the exact energy of T, 

then 

J(N) = f (E - H)Ndv = E - EN 

assuming 
N 
 normalized, and therefore 

J(N) -. j(N + i) 	EN+l - EN 	
c 

which follows from (32). Now take H = H 0  + M as in (4), then 

E = E0  + 7.E 1  + X2E2  and EN = EON + 7E + 72E2N. Assume that theIN 

zeroth order problem (6) .is solved, i.e.: 

E0 = EON and To = "ON 

then 

• 	 - j() •= x(E1  - E) + x2(E2 - E2N) 

using equations (6) through (10), with a subscript N on T and E 1 ; 

i = 0, 1, 2. 

The conclusion is therefore that we expect the differences between 

the computed energies for successive variational calculations, labeled 

by N, to be proportional to 	or N (aI < 1, p > 1). This should be 

the case, qualitatively at least, for the unperturbed energies E 0  as 

well as the two perturbation energies 41) and E1,3).  The more singular 

the operator H is, the slower the rate of convergence (smaller p in (34)). 

For the one-dimensional function-fitting problems Schwartz31  gives explicit 

• 	 expressions for the convergence rates, but the analogy between these model 



problems and actual variational calculations is to loose to pennit•unam-

biguous predictions of the convergence rates of variational calculations. 

One can make educated guesses, but we shall merely try to determine p or 

a empirically from the computed energies. 

If the trial fünctions are good in the sense that they have all the 

singularities of T built into them, one expects the fast convergence rate 

(33). However, even in the case of the variational calculation of the 

unperturbed wavefunction 	for the 23P state, using the standard basis 

(18), we expect that the convergence rate will ultimately (for large u) 

be slow (311), because of a weak logarithmic singularity in the t?exactt? 

wavefunction when r1 - 0. and r2  - 0 simultaneously, the socalled 

Pock singularity. 32  The advantage of using additional trial functions 

proportional to .jr1  + r2  (Ref. 11) is that these approximate the Pock 

terms 

In the extrapolations in this work, we try to fit the data to both 

(33) and (34), the fast and slow.  rates. In the former •case we guess the 

ultimate values of a from the three or four last coputed values of a; 

the ratio between successive differences between consecutively calculated 

energies. If is the last value of w for which the calculations are 

done, then the extrapolation is 

(E - E1) 1 
- a 

which is added to the last computed energy E 0, the uncertainty in a will 

give an uncertainty in the extrapolation. In the latter case we plot 

the logarithm of differences between consecutively calculated energies, 

IE - 	versus 4 w, and try to fit the points with a straight 

line with more emphasis on the points with higher values of w; the goodness 

26 
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• 	 of the fit gives an indication of the usefulness of this extrapolation 

method. The slope of the line is p and the extrapolation is 

(E - E 1)F(p) 

where 

p( ) - 	(_ 
)P 	- 	+ p - p(p + l)(p + 2) (36a) 

n=i n + n 	p - 1 2 12n 	120 93 

and, for the case when the differences alternate in sign: 

00 

F(p) = 	(-l)(_ 	
) P 	- 1 +  p -  p(p + 1)(p+ 2) 	(36b) 

n 	 4n 

The extrapolated results of Tables I and II (where the energies decreased 

or increased monotonically with m) are somewhere between the values obtained 

from the two schemes, but closer to the extrapojAted value given by the 

slow convergence rate. The uncertainties have been takenas half the 

difference between the two.extrapolations. 

Each reader must judge the accuracy of the extrapolated results for 

• 

	

	 himself since the schemes are rather heuristic. A good portion of human 

judgment goes .into the final extrapolated values, especially in the assign-

ment of uncertainties. But we believe that a safe upper bound on the 

• 

	

	 uncertainty is the extrapolated increment itself, i.e., the difference 

between the last calculated and the extrapolated energies 
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VI SECOND-ORDER ENERGIES WITH INTEDIATE 3P-STAThS 

USING THE STANDARD BASIS 

In atomic units the Breit-operators relevant for this work are 

(l)l2al2 
H1  -az( 2

3 	3) 

3 2i2 	
()X(1p) 

H1 	=-1a( 	
2 (3) 

r312  

1 2 1 	 3( 	l22 r12) a 	 2 - 	2 	 (39 
r12  

= - 
	2 1 	+ 12 	12 	)) 	

(4o) r12 	
r12 

= - 1 24 + 4) 	
(Ia) 

= . zta2(o(3)() + (3) 	 (42) 

and the operator correcting for the finite mass M of the He 4  nucleus is, 

in atomic units 

1 	M 1 2 

Here m is the (reduced) electron mass, m N 1.36 X 10 , so the operator 

(43) is a somewhat more important operator than the Breit operators since 

a2  = o 4 x 	The operator H 	is the coupling between the spin 

and the orbit of the same electron, for both electrons (z = 2), }42) is 

the coupling between the spin of one electron and the orbit of the other, 	e 

43) is the spin-spin (Or dipole-dipole) Interaction These are the only.  

spin-dependent Brelt-operators 414) is due to the retarded interaction 

between the orbits of the two electrons, 	is a correction coming from 



the relativistic variation of the electrons mass with velocity, and the 

contact interaction H46)  is a term characteristic of Dirac theory. There 

has been some confusion about this operaor 
1j4;  the one given by Bethe 

and Salpeter33  is not Hermitian. The operator HI6) 
has been obtained in 

the form (2) by Itoh1  and  Kim.16  In this work we shall only calculate 

contributions when the perturbation wavefctions IV 	 have the same 

symmetry as 1r,  i.e., from intermediate triplet P-states with odd parity. 

Therefore we have left out some terms in the spin-orbit operators propor- 

29 

-4 -4 
tional to O12 whic] 

the same. multiplicity. 

out terms proportional 

terms (18) vanish. 

have vanishing matrix elements between states of 

From the operators HI3  'and  H(6) 
we have left 

(3)-4 
to b 	(r12) whose matrix elements between standard 

The spin-orbit operator (including the term .that we dropped) is a 

contraction of an irreducible spherical tensor operator of rank one in 

spin space and a similar operator in ordinary space. Acting on a triplet 

P-state it will then give a mixture of triplet P, triplet D and also 

singlet P and singlet D. There can be no higher inultiplicities since 

two electron spins can only give triplet and singlet. The spin-orbit 

interaction hs even parity, so it does not change parity, therefore 

there are no S-states; these would have to have the odd parity of 

and it is impossible to construct an odd scalar from r and r . The 

spin-spin operator H(13)  is a contractio.n of a 	in operator of rank two 

and an operator in ordinary space of the same rank. Acting on 	it will 

then give a mixture of intermediate F, D and F-states, all triplets with 

odd parity. The second-order perturbation energies that we do not attempt 

to calculate in this work are thus second-order spin-orbit energies from 

intermediate 1D, 1P and 3D states, second-order spin-spin energies from 
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intermediate 3D and 3F states and a mixed second-order contribution from 

the spin-orbit and spin-spin interactions with intermediate 3D states. 

The details of the calculations of the matrix elements 

Ymn  

where U 	 is given by (18) are described in Appendix B, and the calcula- 

tion of the necessary integrals is discussed in Appendix A. In Table III 

we give the expectation values of the seven operators, using the wave-

functions ir (19), for CD = l,2,...,8. The units are chosen for comparison 

with the results of Schwartz 11 and Schiff et al. 30 
 These results are for 

"stretched" states where J = m = 2. As in Section IV all calculations 

were done with two sets of slightly different wavefurictions 4c, the 

results agreed to the digits quoted. For U 	4 there was complete 

agreement for all 11 digits with.which we had the computer print the 

results. Careful extrapolations accordingto the, schemes of Section V 

has been made, the assigned errors come mostly from the uncertainties 

in the values of a or p used in formulas (37) or (36); this is probably 

too optimistic. The expectation values are in very satisfactory agree- 

11 
ment with the results of Schwartz and Schiff et al. 30 

 Notice that 

the sequences of energies are monotonic with CD for all but the lowest 

values of o-, except for 47) and 6 
where the differences alternate 

in sign. 

The second-order perturbation energies 	are calculated by 

the methods described in detail in Sections II and IV. The spin-dependent 

results are given in Table IV; all values are for perturbations on the 

stretched state. Since the 'spin-independent second-order energies can 

be done with no extra effort (and very little more computer time), we 

also did these calculations and quote the results in Appendix D. Each 



Table III 

Expectation values of the operators (37)-(43) using Hylleraas-expansions 
(18) for the wavefunctions. 

w 	E1) (1  a2 r) 	E(2) 
(1 

a2 Ry) 	43) ( a Ry) 	4) (2 a2 	) 

1 	0.13621771056 -0.21827744969 0 .019652747788 0.03 11.490724822 

2 	0.13112509381 -0.20177641002 0.018015107777 0.032904898326 

3 	0 .13479007901 -0.20308763420 0 . 017932223852  0.03411307 11.11.89 

4 	0.13688109890 -0.20459137883 0 . 017982384057 0.03)46726868)4 

5 	0.1378979722 -0.20535)411)47 0.01800112012 0.03)49)40)4)4683 

6 	0.1383407 -0.2056763 0.01800943 0.03703569 

7 	0.1385195 -0.20580367 o.o180127)+o 0.035065736 

8 	0.1385934 -0.2058600 0.01801427 0.03507596 

00 	 0.13864(1) -0.20591(1) 0.018016(1) 0.037082(2) 

31 

E16(2 
a2 Ry) 	47) (2 Ry) U) 

	

45) (2 a2  r) 

1 
	

9.65O4742823 

2 	- 9.9742033112 

3 
	-9.9012260173 

II. 	- 9.9159907976 

5 
	

- 9. 91007660 

6 
	

- 9. 91183 

7 
	-9.91152658 

8 
	- 9.911905 

00 	-9.91180(5) 

-0.058229558253 

-0.059299556963 

-0.06196076281 

- 0.06337755521 

- 0. 06)4191)43230 

-0.06446346 

-0. 06)453566 

-0.0645629 

-o.o6458o() 

7.8022849193 

7.911.51810162 

7.9053717914 

7.9121701450 

7.908943679 

7. 90971)4 

7.9095189 

7.909689 

7.9096)4(1) 



energy was computed by the two different methods (31), and this was done. 

with the two slightly different waveThnctions 4r0.  There are thus num-

bers to compare for the unmixed and 8 for the mixed second-order energies. 

The discrepancies between the 8 (or Zi-) numbers increase with a), indicating 

accumulating round-off errors. One of the reasons for this may be the 

fact that the matrix A in (27) with the first row and column deleted 

gets close to being singular as a increases, as mentioned in Section IV. 

This affects both 	and 	since the matrix A enters the elgenvalue 

problem for i.  Generally, the discrepancy between results calculated 

the same way with the two r's was slightly larger, usually one more 

digit, than the disagreement between the values calculated by the two 

different methods, using the same fo When the solutions X 1) , x 1 ) ,  

... X y  were inserted into the left hand side of (27) and compared 

with the right hand side •4, the numbers agreed to as many or more 

digits than the ones quoted in Table IV, just as in Section IV. The 

loss of accuracy is rather different for the various second-order 

energies. It is most pronounced when the spin-dependent operators 

are mixed with 45) and 
46). 

In these cases, for the highest values 

ofw, we have quoted numbers with uncertainties, this being half the 

difference between the smallest and largest among the 8 values obtained 

for the second-order energies. 

Careful extrapolations have been done, using both (35), denoted F 

for fast, and (36), denoted S for slow. In the former case a, the ratio 

between successive differences, has been assigned a value with fairly 

generous uncertainties. Whenever a increased steadily with W (there 

was no case with monotonic decrease of (Y), we guessed at an extrapolated 

value of a. In the latter case the absolute value of the succe.ssive 
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differences was plotted versus n on log-log paper, and several straight 

lines were fitted to the points, giving the slope p with some uncertainty, 

to be used in (36a) when all ratios a are positive or in (36b) when all 

ratios of successive differences are negative. In Fig. 2 two examples 

of these plots are shown, for E2,5) where the points fitted very nicely 

to a straight line and for 	where the fit was less obvious. When 

the spin-dependent operators are mixed with themselves and with H 1  

and HM , the second-order energies are all monotonic with u as were 

the first-order energies E1' (i = 1, 2, 3, 1, and 7). The quantities 

	

(2,7) 	(26) 	
i and E2 	osc

, 	
illate n a very regular manner with increasing 

w, permitting a rather accurate extrapolation. This may be accidental 

since 	E'6 , 	and E' 6  behave quite erratically as 

w increases. In these four cases the extrapolation methods cannot be 

used, so we have just guessed at the final values. 

A general feature of these results is that slow or fuzzy convergence 

is associated with sharp loss of numerical accuracy with increasing w, 

as well as with enhanced sensitivity to a small variation in , and 

that the seriousness of these diseases for a particular E' 	is 

determined by how singular the operators H(i) and 	are. Whenever 

orH 	are involved neither the first-order nor the second-order 

energies are monotonic with a, except for 	E 6' 6  and also E' 6  

That these two operators should cause similar behavior is reasonable 

since both yield 8-functions (of r and 
r2)  when acting on 	The 

other operators all give pole-type singularities at the nucleus (r1  = 0 

or r2  = 0) or when the electrons come together (r12  = 0). For 

(Ho - E0)41) to give 6-functions we need terms proportional to 

	

*1 	 (i) or rJr1  in the expansion of l 
	but to reproduce the poles one only 

37 
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needs terms proportional to r 1/r1  or r2/r2  or r12/r12  (corresponding 

to an expsion like (19)  starting with £ - 1 for 
41)),  so it is 

not surprising that the operators 45) and 
46) give perturbation 

energies whose behavior as a increases is quite distinct from that of 

the other 5 operators. It seems as if the mixed second-order energies, 

whose convergence is controlled by the poles at r 1  = 0 (or r2  = 0) 

and r12  = 0 are better converged than the unmixed ones who are controlled 

by one kind of singularity only. One might expect that the convergence 

rates determined by the pole at r 12  = 0 would be faster than the ones 

asociated with the poles at r 1  = 0 or r2  = 0 since both 	and 

vanish when r12  = 0 (because of antismetry), thus that 

should converge slower than E2,2)  and 	but this does not seem 

to be the case for our values of W. 

The spin-dependent operators. displace the.three fine-structure. 

levels. In first-order perturbation theory the displacements are: 

(E1) = (E 	
+ 42) )f(J)  + 43) g ( j ) 

where, for this particular case 

J 
( +1)- 1 	 120(-l) 

	

f(J) = 	2 	
and 	g(J) = 

which follows from the Wigner-Eckhart theorem. 3  Here the exrectation 

values 	i = 1,2,3 have been taken for the "stretched" state where 

J m = 2, so that f(2) = g(2) = 1. In second-order perturhaton 

theory the J-dependence of the corrections are given by 

	

• 	 [(OIH ' n)] [(nIHIO)] 
[E"

•
] = :' 	

1 	J 	
(1) 2 	J 

where the matrix elements [(0141)  I n)] 3  are between triplet-P states, 



hence their J-dependence is precisely that of the first-order perturba-

tions. These matrix elements are of course diagonal in J since H (
11)  

are scalar operators. Since E 0  and En  are unperturbed, J-independent 

energies, we obtain the second-order displacements: 

= (f(J)) 2 (E(ll) + E( 2,2 ) + 2E 2 )) 

2 
+ 2f(J)g(J) 	E" 	+ (G(J)) 2E(3 , 3) 

i=l 
27 

+ 2f(J) E Z E' 	+ 2g(J) E E' j=J j=)4. 2 j= 

where E' refers to the quantities of Table IV, they are the correc-

tions given by (4) with J = 2. The fine-structure interval 

v01  = (E1 ) 0  - (E1 ) 1  is adjusted by an amount Av 	 = (E2 ) 0  - (E2 ) 1 :Ol  

1 2 Av01  = a Ry(1 a2 [3(E(ll) + E( 2,2 ) + 2E,2)) 
- 5O(E' 	~ 423)) 

+ 75 E'I - 2a2(E1 	+ E( 2, )
+ 	+ E(2,5) + 

+ E26)) + 30 a2(E3 	+ 	+ E'6 ) 

+ 2 (- 	

- E(2,7) + 15 E')) 	 (45) 

and similar formulas for nw
12 
 and 6v 02  In Table V we combine the two 

extrapolated results of Table IV to single, final values for the second-

order energies. The uncertainties in the extrapolations are mostly 

products of human judgment (or prejudice). The contributions of these 

18 corrections to the fine-structure intervals v01  and v12  in wave- 

numbers are computed from (4) and the corresponding expression for Av 12 . 

As seen from Table V, many of the second-order energies E1,j)  have 

an accuracy which is a good deal greater than that of the present experi-

mental value for v01  (good to about 2 ppm), but the situation as regards 

39 



Table V 

Contributions of the second-order energies of Table IV to the fine-
structure intervals. 

Final result for 	Contribution to 	Contribution to 

(i,j) E1,3) from Thble IV 	n 10 cm1 	
12 in 10 cm 1  

(1,1) 0.63() -074(5) 0 

(2,2) -1.12(5) -1.31(6) 0 

(1,2) 0 .677(5) 1.58(i) 0 

(1,3) -o.9475(2) 0.92(1) -0.1478(6) 

(2 ) 3) 0.080(2) -1.56(4) 0.249(6) 

(3,3) -0.0060(3) -0.175(9) -0.056(3) 

(l,) -0.1356(5) 0.I22(2) o.81(3) 

(2,4) o.1862(1) -0.579(1) -1.159(2) 

(3,4) -0.01320(2) -0.616(i) 0.2464(4) 

(1,5) -o.io() 0.31(16) 0.62(31) 

(2,5) 0.1095(6) -0.31(2) -o.681() 

(1,6) 0.26(3) -0.81(9) -1.62(19) 

(2,6) -0.2512(9) 0.782(3). 1.563(6) 

(3,) 0 . 0067(5) 0.31(2) -0.125(9) 

(3,6) 0 0075(5) 0 35(2) -o 140(9) 

(1,7) 0239(5) -1.90() -3.80(8) 

(2,7) -0.32(3) 2 .58(2) 5.16(). 

0.0216(1) 2.58(1) -1.031(5) 

Experimetai values 9878.87(2) 764.2I1(2) 
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V12  is not nearly so good. Clearly, the results fall short of the desired 

accuracy, which is to match or surpass the precision of the experimental 

values. But the results demonstrate that all second-order contributions 

are important and will have to be calculated to several significant 

figures before a determination of the fine-structure constant can be 

made from the measured values of v and v12 . Previously, only one
01 

second-order correction has been calculated, the mixing (by the spin-

orbit couDling) with the nearby 2 1  P state. Pekeris et a1. 3  find that 

this shifts the J = 1 level 1.8 X 10 cm downwards, of the same 

order of magnitude as our results. 

One can try two paths to achieve better accuracy for the various 

(i,j) 	
i E2 	. One possibility s to go on to higher values of U), using just 

the standard basis as we have done here. In view of the rather sharp 

(i,) loss of accuracy for some of the E 2 	as w increased one would probably 

have to use double precision arithmetic for 	10, say. Although the 

calculations reported here were done in a matter of minutes on a CDC 6600 

computer without use of tapes, it was decided not to go on to higher 

values of U), since the computer time requirements would increase drastically. 

The •second alternative is to make the trial functions for 	more 

flexible. In the next section we shall see some examples of how this 

leads to increased accuracy. 

In Table IV each correction E(1,  has been extrapolated separately. 

One might try to combine some contributions with the same J-dependence, 

such as E' 	+ E( 2,2 ) + 2E,2), for each U) and try to extrapolate 

the combination. Somewhat improved accuracy can in fact be achieved 

this way. We shall return to this question in the last section, after 

improved values for some of the 	have been obtained. 



VII. SOME IMPROVED RESULTS, USING AN EXPAJDED BASIS 

We believe that the poor convergence of some of the preceding 

results is caused primarily by the singularities of the operators 

i.e., that 	- Ei) ) 	is not well approximated by 

(H0 - E0)41) when only standard terms (18) with £ 0, m 0, 

n 0 are used in the expansions for 	Let us first look at 

a simplified problem. Take jr to be just a (2p,ls) product wavefunction, 

(1) let H1  act on it and pick out the P-part: 

P-part of H10 = const X r 3  

where 	= a(1)a(2)T()exp(-r1 )exp(-2r2 ). (See Appendix B for the 

(1)-* definition of T1  (r1 ),) There is thus the pole term proportional to 

T()r1  which will be reproduced by 
HO4 if 

(1f6) 

But with this expression for 41), 
HO4 will include other, less 

singular, terms such as T1  (r1 )exp(-r)/r with n = 1,2 (and also a 

term 	 = o) which do not have any counterpart in Hl1f 0 . 

The soiution41)  of (H0  - E0 )4 = - ( H 	- E) 0  might thus be 

a power series starting with a term like (46), but also including terms 

like T 
1  (r 1  )9n r exp(-r), T1)()r ez r exp(-r) and so on, so that an 

exact solution for 4 (which might exist if the 1r 12  term is dropped 

from H 0  ) would be rather complicated, even in this simplified case. 

Turning now to the actual problem, the P-part of H(l) * is 

£+m+nQ l-p 
.LC. 	

) 	C 	V 	(1,2) 
.f2 	

2cm 2cm 
£,m,n=O 

12 



1 3 

where 2mn  (1,2).is given by the expression in (B3). When in = 0, the 

first term of (B3)  gives T1) 	2()u(l,2)/r. Looking at (Bl) one 

sees that this pole term would result from (fourth term in (Bi)) 

(l) - H0T1  (r1)u21 n(l2)  along with many other singular terms. This non- 

- standard term in the expansion for 
l
(1) 

 proportional to (1 - P12 )T1(i)  (r1)ir1 , 

would also reproduce the terms 

- 	 (l)- 
£ 1 (r1 )r1 .r2 	 (r1 ) 

u 	(1,2) 	and 	
2 T1 	

u 	(1,2) 2 	3 2 	ton 	 2 	r1 	ton 

- 	1 
in (B3). (Use r

-4 
 1 •r2  = (r 21 + r 2  2 - r 212  ).) The two remaining terms in 

(B3) cause trouble when n = 0 in which case they are 

2 	i 	(l) ----'(l) -* ) 2 )  
3 2 (T

1  (r1 )r1 .r2  - T1  (r2  r1 u£mo  (1,2) 	
(17) 

r2r12  

The first of these can be obtained with n = - 1 in (Bi). However, this 

(l) -3  gives terms proportional to (1 - P12 )T1  (r1 )/r2  in the expansion for 

which would lead an infinite value of E (1,J)  if we use the algorithm 

of the earlier sections, since (14IH O I4 ) ) includes integrals with 
r23  in the integrand, coming from the -2/r2  term in H0 . Finally, to 

obtain the second term of (1),  one would need terms like 

(1 - P)T()u21(l,2) in the expsion for 	Thus it would 

be a rather hopeless task to reproduce all the terms of Hijr by adding 

more and more special terms to the expansion for 	Even if one 

managed to do this, there would be very many terms in H04 without 

counterpart in Htr. Now all but the first term in (B3)  are proportional 

to 	x ( x  ) and only contribute an exchange part to the matrix 

elements of H, , these are generally smaller than the direct part because 

the latter involves folding radial functions (like r 1  exp(- Kr1 ) and 

r1  exp(- Kr1 )) with coinciding peaks, whereas the former involves 
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folding of functions (like r1  exp(- 	r) and exp(- 	with 

maxima occurring for different values of the argument. Therefore we 

shall only include terms in 41) 
 which will give the leading singularities 

in HIr, which are the terms proportional to T()/r. The following 

extended expansion for 1111  is used, see (18): 

2+m+nw 
(l) 

= ! 	 + 
	

Z 
X 	U 	 (18) 

£,m,n=O 

Powers of r12  in the new terms have been dropped, their inclusion would 

increase the.number of new terms from u + 1 to j(u + l)(( + 2) while 

adding little more flexibility. The new terms approximate the behavior 

of 4) as r1  -O (r2  - 0) in which case r12 - r2  (r12  ' r1). 

The expansion (48). does not lead to many new integrals, and most of the 

subroutines written for the earlier calculations can still be used., 

It follows from the work of Schwartz 31  that the convergence of the 

second-order energies should improve when additional trial terms, reflecting 

the singularities of 	are introduced in the expansions for 4. 
If one tries to fit a function F4rd as r ---> 0 with functions that 

are regular at the origin, corresponding to fitting 4 with standard 

terms, the convergence rate for the one-dimensional model problem where 

the volume element is dv = radr is (see Section V): 

c 2 "l / n a-2d+2 n (Ref. 31) 

The additional terms in (48) should change d from 1 to 0, so that a 

si 	 ignificant mprovement of the convergence of E2(1,1) should occur. 

However, there may still be singularities, possibly logarithmic ones, 

to slow down the convergence. 

Denoting the non-standard terms in (8) by Vn  and the standard ones 

by Uk, the system of eguations for 44 is now: 
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(nfl 	. 	 ( i) 	(i) x+ 	AXk =B in  n n=1 	 k=l 

£ = 1,2,.. .,N(u)++l 

where N(w) is given by (20) and 

B 1 ) = -(V2IH(1) - El') 

= 

and 

B' = b11 	£ = 

with b 	given by (28). Explicitly the matrix in (19)  is: 

(VI!H0 - E0 IV) I 	(VJH0 - EOIUk) 

A= 
	

(51) 

(UkJHO - E0 IV) 	(uk ililo  - EOIUk) 

- 	 n',n = 

k',k = 1,2,...,N(u) 

We first tried to solve the system (19)  as it stands, without deleting 

any of the equations. In principle the matrix A is non-singular; E0 

( 1i9) 

(50) 
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has a value which makes the lower right hand block in (51) singular, but 

this should not stop A from having rank equal to its dimension N(cu)-fo1-l. 

However, this leads to quite unreasonable results, the second-order energies 

came out as huge nuxabers. The reason for this is probably that A is quite 

close to being singular. After some experimentation it was decided to 

adjust E0  in (51)  to the lowest value which makes A singular. This number, 

call it EO, is of course the smallest eigenvalue of H 0  in the enlarged 

basis (v1,...,v1, ul...uN()). 	adjustment of Eli)  in (50) and 

(28) must also be made, otherwise the equations (49) will be overdetermined 

after E0  has been changed to E0 . The elements of the eigenvector 	of 

corresponding to E demonstrate the linear dependence among the rows 

of A (see page 20), thus Eli )  must be adjusted to 	determined by 

0 = (JOHI 	
- ( i)J) 	

(52) 

so that, explicitly:• 	. 

N(cn) 	UYfl 	 N(u)_ 
(i) (i) E 	X(1r fr)= 	, C[c(V H 	u)+ 	C(U H 	ufl 1 	. 0 0 	rn-i m n=l n n 1 	m 	k=1 k k 1 	ni 

and a similar expression for a
Ol'O 	

Here (c1,...,c1, 1'•••N 

is the eigenvector 	• One can now delete any one of the N(w)-ku+l equa- 

tions (19), but we choose to put 	= 0 and drop the (y2)th equation 

in 49), so that the (cnl2)t1 row and column of A in (51) are deleted. 

This choice is made for the reasons stated in Section IV (pages 20 and 

21); the first standard term in the expansion for 'Jr0  is the most important 

one, corresponding to a (1s,2p) wavefunction. Finally, 	is given by 

E1 	 =I 4i) - ( i) (j) = - ((i) H0 - 

11  must be used in this formula rather than Eli ) , because if E' is 

used 	will change if an arbitrary multiple of J( Q  the solution of 



the homogeneous equation corresponding to the inhomogeneous equation 

for 	is added to 4. Using 	the resulting 	is unique 

in this sense. 

This provides an algorithm resembling the one used in Sections IV 

and VI, but in addition to 	(E0  is not required) one also needs 

and 	as input. These are found by the iterative method used to deter- 

mine E0  and 	described in Appendix C. In Table VI we give the results 

for 	calculated by this method, using the expansion (8) for 4k). 

They represent a significant improvement over the corresponding results 

from Table IV. Since the ratio of successive differences was rather 

constant (ranging from 0.45 to 0.72 for 2 	8), only the fast 

extrapolation has been used. The eigenvalues E were rather close to 

E0, they agreed to four digits for U) = 1 and 2, to six digits for 

U) = 3, 4 and 7, to seven digits for w = 6 and 7, and to eight digits 

for U) = 8. The differences between 	 (1) 
and 	were greater, ranging 

from two digits of agreement for U) = 1,..,6 to four digits for U) = 7 

and 8. 

Consider 	next. Since 

/ ) 	-- H 6 	= 
a2 1 - P12 	

C T1 	
m+2 2 r1 

1 o 	 6 	(r2) 	
Lao 1 r1)r1  e 2, rn=0 

we see that additional terms in (6) 
proportional to T()/r2  will 

(3) produce 8 (r2) when acted upon by 110 in addition to other, less 

singular terms that are undesirable but cannot be avoided. Thus we 

use the following extended expansion for 6) 
similar to (ii.) :  

U) 	 £+m+nU) 

=x
6 U 1  + 	 (73) 

L,m,n=0 

17 



Table VI 
(1,1)  The second-order energy E calculated 

with the eçpansion (48) for 

Number 
of tis (ii)i 	2 	1 	2 E2 ' 	( 	a 	a 

i 6 -0.51197398824 

2 13 -0.56885476328 

3 24 -0.61688183482 

4 4o -0.6401105462 

5 62 -0.6522232 

6 91 -0.658084 

7 128 -0.660772 

8 174 -0.662040 

00 	 -0.6632(2) F 

Table VII 

The second-order energy 

calculated with the 

expansions(48) for t 

and (53) 	forl'1  

E" 6 ( 	a 	)2 

2 0.27078605763 

3 0 .26328428177 

4 0.2686979553 

5 0.27067971 

6 0 .272784  

7 0.27308 

8 0.27315(16) 

00 0.2732(3) 

I.I 
.:.i 
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The matrix of (1f6IH0 - 	I4r 1)) is then no longer symmetric. Denoting 

the additional terms in (53) by W, the matrix A of H0  - 	to be used 

when solving (H0 - 	= - (4 - 	is no longer given by 

(51); the two blocks in the lower left and right hand corners are 

unchanged, but the block in the upper left hand corner is (W11H0 - OIVn) 

and the one in the upper right hand corner is (WJH0 - EO IUk). One must 

now distinguish between the left and right eigenvectors 	and IIIQ  of H0  

in this extended, mixed representation, corresponding to E. (For a 

symmetric matrix these are eq .ual.) In (52), the value of 	was 

determined by multiplication from the left, so that: 

(l) = (vIHi1)!4r0)/(I1f) 

With these modifications we calculate E 6 '. Notice that the matrix 

elements of 	(H6)) between the new and the standard terms are 

(WlHIuk) ((UkIH16lV)) where  Wn  (Vn) are the new terms introduced 

to reflect the singularity of H 6)  (H); this is evident from the 

variational functional (11 ). To calculate E(1,6)  (see (11) and (13) 

for the precise definition of E1)  one solves (19)  for (6) but 

(1) where the matrix A is the transpose of the one used in solving for 

irthermore: 

(6) 
= 

So we have a slightly more complicated algorithm for calculating E' 6  

(6,1) 	 "r ' and E2 	. No new integrals were required and 1, 	and E were found 

by the method of Appendix C. For u = 1 (6-dimensional matrix) the 

iterations did not converge, so there are no results for CD = 1. In 

Table VII the values for CD = 2,...,8 are given, E1,6)  and 

agreed to the digits quoted. The differences between calculated results 

behave rather erratically with CD but they are quite small, so we have 



just guessed at the final value, with a generous uncertainty. For w = 2 

only the two first digits of E0  and E0  were equal, but JE0 - 	decreased 

with w; for w = 7 and 8 there was 6 digits of agreement. For E1 
(distinct from the 	used in calculating E2(1 '1) ) and E (6)  1  , the number 

of digits that agreed with E1) and E 6  of Table III ranged from 2 to 

4 with increasing w. 

Finally, we try two different expansions for (2) 
 and 43). The 

operators H2) and 
H13  are singular when r12  - 0, and from (B11.) and 

(B5) it is seen that H11 4f contains terms proportional to l/r 2  when 

= 0 (i = 2,3). Similar terms are obtained from 1104 1)  if functions 
proportional to 1r 12  are included in 	) . This should take care of 

the dominant singularities that slow down the convergence of 

2 	2and E(2,3)  although terms with £n r12  should probably also be 

included. We try two simple expansions: 

U) . 

x'U 	+ 
£+m+n 

E 1 n=0 n 	-lOn £,m,n=0 
X 	U 	 (5I) £mn 	£mn 

(i) 
U) • 

= m=0 
xU0 + 

£,m,n=0 
X± i  U 	 (55) 

A better expansion would include terms 
lmn  with m 0, n 0 and 

m + n CO, but it is desirable, from a practical point of view, to keep 

the number of extra terms small. The operator H 
((4)

is also singular when 

r12  = 0, but from (B6) it is seen that all terms in H4r0  with 1/r 2  

are proportional to (r1 - r 2 ) r12  when £ = 0. The angular average of 

(r - r)/r is equal to that of l/r, so that an expansion like (1) 

or (55) is not required for 	Nevertheless we calculate 

and E' 	along with E(2,2) 	and E(2,3)  with both the 

expansions (54) and (55) for 4, i = 2,3,4. No more work (calculation 

50 
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of integrals) is involved for the three energies 	(i = 2,3,4) once 

E(2,2), 	and E(2,3)  are done. These six second-order energies are 

computed by the same algorithm that was used to compute 	One 

could also use a mixed representation, say (54) for 	and (57) for 

(i,j = 2,3,4) and compute 	by the method used for E(1,6) 

Some additional integrals are required for the matrix element of H 0  and 

between standard terms and the functions with hr 12  and of H0  with 

new terms on both sides. Great care is required in the evaluation of 

these integrals since they are divergent unless certain combinations are 

taken. This is described in Appendix A. It is interesting to note that 

the matrix of H0  is no longer automatically symmetric; denoting the 

additional terms in (74) or () by V: 

f d3 ( v*v2v  - v*v2v ) = f a. (vv v - 	v 1 nlm 	mm n 
surface  nim 	m m 

The surface integral over the far-away surface vanishes as usual, but 

there is also an integral over a small spherical surface of radius €, 

say, surrounding the singularity at r 12  = 0. It turns out that this 

contribution vanishes because of the angular integration, but the integrand 

does not go to zero as € - 0. For the same reason there is never any 

(3) contribution to the matrix elements of H 0  from a s-function b (r12 ) 

resulting from the action of H on V 
0 	n 

In Table VIII we give some of the results of these calculations. 

(i,i) For the unmixed energies E 2 	what we compute is always an upper bound 

(see Appendix D for a formal proof of this statement), therefore we have 

only quoted the results for E' 	(i = 2,3) when the expansion (54) was 

used for 	since these were slightly smaller (larger in magnitude) 

than the values obtained with (57). The extrapolated results from both 

sets of calculations (using (4) and (55)) were the same for E2,2), 



52 

Table VIII 

Second-order energies calculated with the expansion (54) for 

i=2,3. 

w E22)(. 	a2 	
1 
a2 	E(33)(l a2 	

)1 
 a2 E23)( 	a2 

1 -0.8857638070 -0.005239656190 o.o67865863o1 5 

2 - 0.9922391306 -0. 00571)4.387O2 0. O7)4.763980!I.O1  

3 -1.051 4582922 -0.0059313306 0.078126662368 

4 -1.0870891287 -0.006006971263 0 . 0796813108  

5 -1.1049002 -0.006033454 0.08036593 

6 -1.11637 -0.00604915 o.o8o8 

7 -1.12170 -o.006o681 0.080985 

8 -1.12623 -0.00606316 0.081111.8 

-1.111.3(5) 	S -o.006o85() s 0.0817(2) 	S 
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and E(2,3).  In the latter case, the calculated numbers obtained 

with (54) were slightly closer to the extrapolated results than the ones 

from (55), for the higher values of u, so again only the results from 

(54) are quoted. For w = 8, the values obtained using (55) were: 

E(2,2) 	-1.12280, 	= -0.006057 and E(2,3) = 0.08100. The results 

obtained for E(2,, 	(and E' )- ), using both (5 )-i.) and  (55) for 

(i. = 2,3,4), were virtually the same as the ones obtained from the 

standard basis; the extrapolated values were in complete agreement with 

the results of Table IV and V, with just as big uncertainties, so there 

is no point in quoting these numbers. It is not surprising that the 

expansions (54) and (55) should give essentially the same results since 

the non-standard terms approximate the behavior of 	at r12  0 

where r1  r2 . One could probably not expect any significant improve- 

ment in the fairly accurate results of Table IV for 	and 

In the variational functional (14) for E(i,i) (2) or 43) is improved 

when (54)  or  (55) is used rather than just standard terms, but this is 

not true for 
4)-u. 

Since one of the two perturbed wavefunctions in (ui.) 

is improved one might have anticipated a slight improvement. The differ-

ences between E and E as well as between E11  and E1' (i = 2,3,)-!-) were 

of the same orders of magnitude (for CD = 1,2,...,8) as the corresponding 

quantities in the calculation of E2(1,1)  reported on page 47. 

The results of Table VI, VII and VIII are in excellent agreement 

with the corresponding results from Tables IV and V, and we have achieved 

a significant improvement in accuracy with only a few extra trial func-

tions. In fact, the values for E( 1, , E(1,6) and 	were improved 

by two orders of magnitude and E2  ' and E2  were improved by one 

order. This lends further confidence to the computer algorithms used 

as well as to the extrapolation schemes. The calculations of this section 
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were not repeated with slightly perturbed V's and i7s (resulting from 

one more iteration of the procedure of Appendix C), except for the results 

of Table VIII for U) = 1,2,3 and -i. With once-more-iterated 
0''' but 

the same 10ts,  numbers were obtained that agreed with those of Table 

VIII to seven digits. However, in view of the fact that the extrapolated 

results were equal when different expansions ((54) and (55)) were used 

for 	(i = 2,3,4) and of the fairly quick converge of the five result 

obtained here, we do not believe that a slight variation in 	(or r) 

would change any of the extrapolated results of this section. 



VIII. SUIvIMARY MID CONCLUSION 

To obtain the best possible values for the 18 second-order energies 

from the calculations reported in this work, we add 	and E' 6  of 

Table IV for each of the five highest values of Co and extrapolate the 

sum, as mentioned at the end of Section VI. The same was done for 

+ E(2,7), and the results given in Table IX. The final results have just 

been guessed, but there is an improvement in accuracy over the values of 

Table V. We also tried to use formulas like (47) for each value of 

and to extrapolate niv01  or Av 02 , but this did not prove profitable. In 

Table X we list the contributions of the five improved results of Section 

VII and of the final values from Table IX to the fine-structure intervals 

v 01  and v02 . Half of the 18 second-order contributions to the larger 

fine-structure interval v01  are now sufficiently accurate, i.e., the 

uncertainty in their perturbation of the interval is less than 1 ppm of 

the interval itself, or less than 0.01 X lO cm 1 . The ones that pass 

the test are the five results from Section VII and 	E(2,) and 

of Table V. Of the remaining 9 contributions only 	is 

really inaccurate. E,2)  and 	are borderline cases, E(2,5)  and 
2 	2

E(2,6) are quite good if one believes the extrapolation, but the fact 

that one was able to extrapolate so accurately may be accidental (see 

page 37). If the results of Table IX are taken at face value, the contri-

butions of 	+ E' 6 ) and (E' 	+ E(2,7))  to v01  are also suffi- 

ciently accurate. Adding all the contributions except the one from 

weget 

Avol = 1.38(2) X 10 cm 1  

611 

liThe situation for the smaller interval v12  is not nearly so good, because 

the contributions are required to an absolute accuracy of 0.001 X 10 cm1, 



56 

Table IX 

Combination of some results from Table IV 

with the same spin-dependence. 

- 2(E' + E' 6 ) 	2(E' + E 2 ) 
CO ra (1 a2 	a2 	 . 2 By) 

0.0276693 	 -0.17283054 

5 	0.027877 	 _0.1740530 

6 	0.02849(7) 	 -0.173813 

7 	0.02836(4) 	 -0.17471(1) 

8 	0.02833(3) 	 -0.178 

CO 	 0.0283(3) 	 -0.1745(7) 

Table X 

Contributions of the improved values for some second-order energies to 

the fine-structure intervals. 

Second-order 	Final result from 	Contribution to 	Contribution to 

energy 	Sec. VII or Table IX Av 01  in 10 cm 1  Lv12  in 10 cm 1  

-0.6632(2) -0 7738(2) 0 

E(2,2) -1.13(5) -1.333(6) o. 
E(2,3) o.o8l7(2 -l.589() 0.232(6) 

-0.00608() - 0.1775(1) 0.05680(3) 

0.2732(3) -0.8500(9) - 1.700(2) 

2(E' 	+ E' 6 ) 0.0283(3) o66o(7) -0.26(3) 

2(E' 	+ E27)) -0.175(7) 0.69(3) 1.388(6) 
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or one order of magnitude better than for v01 , to match the experimental 

value. Of the 15 contributions to Lv12  in Tables V and X, only those 

from E(2,3, 	 and 	are sufficiently accurate. 

It should not take much more effort to obtain the required accuracy 

for all the contributions to nw01 . Using a mixed representation with 

expansion (1i-8) for 4 and (5) for 
2)  to calculate E,2)  by the 

method used for E" 6  in SectiOn VI will probably give sufficiently 

accurate results. The same goes for E(2,6)  and (3,6) these can be 

done as E(1,6)  but with expansion (1)  for 
42)  and 43). Since H1) 

 is 

not more singular than H 0  it might be sufficient to use just a truncated 

standard expansion for 47) and (l)  or (18) for (i) ,  (2) and 43) to 

obtain better values for 	E(2,7) and 	When the number of 

terms in the expansions for 4 and 4j) are different functions of CD 

it becomes necessary to truncate.one of the expansions after an unnatural" 

number of terms so that the two expansions have the same dimension; other-

wise the matrix A in (i) will not be square. If standard terms prove 

inadequate for 4 it is probably because H17 
 and H have different 

angular behavior. It was found that to reproduce the angular dependence 

of H* non-standard terms like U 	cos e 	with m or n (or both) 
10 	 £mn 	12 

zero, in addition to the standard ones, should be included in the expan-

sion for 4. This was used to calculate E'?; the results obtained 

were slightly better than those. of Table XI in Appendix D. Lastly, in 

the expansion for 45) one has to include (at least) non-standard terms 

like those in both (18) and (53); we. tried using (8) for 4 and just 

(53) for 45), but the results for 	were poor. We regret that we 

did not have time to carry out these computations, since most of the 

programming required has already been done. The second-order perturba- 

tions when ,(l) 
	(2) and 43) have symmetries other than triplet P, i.e., 
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singlet P and D and triplet D and F (see page 29)  also remains to be 

calculated, this will require more work. 

However, to match the experimental value of the smaller fine-structure 

interval v12  one would have, to push the accuracy one order of magnitude 

further, this would probably.req,uire substantially more effort. One 

could try to use the methods presented here for very much larger dimen-

sions, which would take a lot of computer time, or one could try to make 

the trial functions more flexible by including terms with P47 r1, gn r2  and 

2n r12  in the expansions, and possibly also functions that reflect the 

angular dependence of the operators. This would lead to many new classes 

of integrals which would have to be evaluated. 

Finally, it must be said that there is always the possibility of 

some undetected errors in the extensive computer programs written for 

this work. We have performed every test we could think of; the integrals 

were evaluated in more than one way whenever possible, and the matrices 

of all eight operators were checked for symmetry. (This gives a useful 

test, see Appendix B.) The results themselves are reasonable, and our 

values for the nonrelativistic energy of the 2 3P state in helium as well 

as for the expectation values of the seven perturbing operators are in 

excellent agreement with the results of other investigators., But the 

best check of all is for someone else to repeat these calculations 

independently. This seems worthwhile in view of the fact that the 

present work is one of the necessary steps required for a new high-

precision determination (from v01 ) of the fine-structure constant. 
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A.PPE1DIX A: INGRALS 

We describe here the evaluation of the many integrals needed for 

the calculation of the matrix elements of the operators between functions 

used for the variational expansions. Most of the tricks have already 

11 	 27 been used by Schwartz and Harnbro. 

The majority of the matrix elements of the operators 	 ••, 

4
7) are expressed in terms of the four basic types of integrals: 

dv 	dv -ar -br 
A(L,M,N) = f - f --- e 	e 	r1  r2  r12  

dv  1 dv -ar -br 
B(L,M,N) = f --- f —ii:-; e 	e 	r1  r2 	'l2  cos  12It 

there are two kinds of A and B integrals, the direct ones for which 

a =KCJ, b = i, called ADI(L,M,N) and BDI(L,M,N) and the exchange ones 

for which a = b = . i(i + Cl), called AEX(L,M,N) and BEX(L,M,N). The 

following recursion formulas are used: 

A(L,M,N) = A(L-2,M+2,N) + A(L-2,M,N+2) - 2B(L-2,M+1,N+l) (Al) 

which follows from 

2 	2 r12  = r1  + r2  - 2r1r2  cos e12 	 (A2) 

and 

B(L,M,N) ={B(L-2,M+2,N) + B(L-2,M,N+2) - 2A(L-2,M+1,w+l)] (A3) 

which follows from (A2) and 

dn 	 dfl 	 dl 	dn 	 r 2  
f 	f 	sin 012  r12  = L+2 	f 	cos 12 r1r2 	(A ) 	 * 

this identity is proved by one partial integration, take r as fixed 

along the z-axis, then e
l,

= 02 0 and 
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d 	an  
1t i 	2 

	

f -n- —ri— F(6) = . f ae 	e F(e) 

The recursive calculation is started by 

- 

B(2,M,N) = 0 , 	A(2,M,N) 
MN! 

- aMY+l 

A(1,M,N) = F(M+l,N;a,b) + F(N+i,M;b,a) 	 (A5) 

B(i,M,N) = [F(M-l-2,N-l;a,b) + F(N-t-2,M-l;b,a)] 	 (A6) 

where the F-integrals are defined by 

F(M,N;a,) = 
	

dre' rM_l f1 as e 	5N-1 

There are three kinds of F-integrals; for the computation of the direct 

A and B Integrals we need F-integrals with a = 	a and a = 

and for the exchange integrals we need the F-integrals for 

a = 	= . ic(l + cl). It is easy to calculate the F integrals: 

F(M,l;a,) - 	
(M - i) 

- (a + 

F(M,N;a,) 
-- (M+N - 2)  

	

+ N 	1 F(M,N-1;a,) 
+ ) M+N-1  

which follows after one partial integration in s. The eq .uations (A5) 

and (A6) follow from 

an 	dfl 	 d92 	 an cose 	r<12 
and

rl2 = r 

where r> (r<) is the greater (smaller). of r1  and r2 • 

These recursion schemes give the A-integrals for L 1, M 1, N 1 

and the B-integrals for L 1 1  M 2, N 2. The schemes are all safe 

in the sense that there are no substantial loss of accuracy due to 

subtraction of almost equal quantities. For L >2 the B-integrals 



are all negative because the dominant contribution to B-integrals with 

a positive power ofr12  comes from large values of r12  when cos 612 

is negative. So for L + the recursion formulas (Al) and (A3) are 

safe. By looking at the actual numbers involved one can convince one-

self that there is no important loss of accuracy when L = 3. These 

integrals are sufficient for the calculation of matrix elements of .  H0, 

HI 
and  Hl  in the standard basis. 

The integrals 

	

co  FL(M,N;a,) = 	
dre ar  rM f ds 	N-lbs 

for a = 	= a and a = KU, P=K and a = = 	(i + a) are 

also required. Substituting r = yx and s = y we get: 

	

FL(M,N;a,) = 	dx M1 1 ± 
	dy M+1 

M-1 l±x 
(M+N_l)! fl d X 	1 - x 

(x + 

Substituting x = (1 - u)/(l + u) we obtain 

M-1 	N-i 1 
+ 	)' 	

(i - u) 	(l+u) 

	

FL(M,N;a,) = 	 2du (i - u + (l + u))M 2  

To avoid dangerous recursion schemes we compute the integrals along 

M + N = constant and use the backwards recursion formula 

aFL(M+l,N;a,) +  FL(M,N+l;a,) FL(M,N;9,P)— 
- 
	 M + N 	 A7 

For the actual calculation we must treat the three cases separately. 

For a = , we have 

FL(M,N(x,) = (M + 	
+N 	Jl(j:1 ) 	+N-J f du u(i - u)M+N_gn 

WE 



where the expansion 

(
U 

)Nl =  7 (N_i) (2u)J_1(1 
- 

u) N-J 
J-1 

has been used. Define the integrals 

J(M,N) = 
- 	

du uM 1 (l - u) 1  €z u 

1 	N-i 	N-i 
d u u 	(i - u) 	=-B(M,N) 

where B(M,N) is Euiers B-function. 

	

r(ivi)r(i'i) - 	 r(M)r(N) r t (M) 	rt (M + N) 
J(M,N) - - 	

+ N) - - r(M + N) 	rM) 	FM + 

P /M/P(N) 
., 	 N-i 	 M+N-1 1 

if 	 \ 	f 

- - r(M + N) L k=l k - / - ' k=l k - 

36 

	

where 1' is Eulers constant. 	Thus 

(M-l)!(N-l)! ( 1 + 1 + 	+ 	1 
J(M,N) 

- (M+N-l) 	N M+l 	M+N-1 

and we obtain a closed expression: 

FL(M,N;c,c) 
= M+N ji N:j! (M

~N-Jl)!2( + •• 
+ M+N-1 

where c = (i + cl). 

For a = K > 	Ka and /a = o the expansion 

00 	kk 
1 	

[i + E 	L(L+l) ... (i-ic-i)] 
(i - u + 	

L 
(i+u)) 	(l+a)L 	

k1 Ic. 

is used where B = (i-Y)/(i+) < 1. This gives an infinite series for 

the integrals: 

CON 

FL(M,N;,KcJ) = 	 { 	FJ(J)FJK(J,k)SKJ(J,k)] 
AM N  :i=o J=i 

where A = c(i+c1) and 
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FJ(J) = 2(N-i)(M+N-J-l)1(N-J) 

	

FJX(J,k) = BkJ(J+1) ... (k+J_i)/k 	for 	k 1 

FJK(J,O) = i 

1 scJ(J,k) = 1  + ••• 
+ k+M+N-1 

This looks complicated, but the formula lends itself to an efficient 

programming. The series is rapidly converging, in the program we truncate 

when the ratio of the kth  term to the sum of the k-i first terms fall 

10 below a certain € (we used € = 10 ). 

The third and last case is when a = ta < =K and /a = 

the appropriate expansion is then: 

L 	
CO k 	k 1 	 (2) Li + 	B (1-u) L(L+1) ... (L+k-1)J 

(lu+(l+u))L 	2 	k=1 	k. 

where B = (1-o)12 < 1 This gives an infinite series of the same form 

as the one for FL(M,N,K,Kcx) but with A = 2K and 

FJX(J,k) = BK(M+NJ) 	(M+N-J+k-l)/k' 	for k i 

FJK(J,l) = 1 , 	sKJ(J,k) = + 
	+ k+M+N-1 

and FJ(J) isuñchanged. 

Armed with these, FL-integrals we compute the A(L,M,N) integrals with 

L = 0, M 1, N 1 and B(L,M,N) integrals with L = 0, M 2, N A 2 

ADI(0,M,N) = (FL(M,N;Ka,K) + FL(N,M;K,KY)) 

BDI(0,M,N) = (FL(M+l,N-1;K,K) + FL(M-1,N+1;Ka,K) 

+ FL(N+l,M-l;K,Ka) + 

- (F(M,N;K,K) + F(N,M;ic,Ka)) 

and similar formulas for AEX(0,M,N) and BEX(0,M,N). 
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We also require the A and B integrals for M = 0, N 1 and M 1, 

N = 0 when L 1. To obtain these, one has to evaluate the integrals 

F(M,N;a,) with N = 0 and N = - 1. Once the integrals for N = 0 

are found, the ones for N = - 1 (and more negative values of N) are 

obtained from: 

F(M,-N;a,) = 	
- 	- 	F(M,-N+l;a,) 	 (A8) 

N(a4-) - 	N 

which results from one partial integration. So we can calculate F-integrals 

with negative N as long as N - N 1 with this scheme. A recursion 

formula for F(M,O;a,) starting with small values of M were not used 

because of loss of accuracy by subtraction. Instead we used backwards 

recursion: 

F(M-1,0;a,) = .L 	(M-2)! + aF(M,O;a,)] 	 (A9) 

and start by approximately evaluating the integral for a high value of 

N by an asymptotic series: 

-r n 
1
cods -s 	e 	+ (n+l)!(-1) 1 	ds 	-s r - e 	

= r k=O (r)k 	n+l 	1r flf 2 e 
S 

after n+l partial integrations. This gives the asymptotic expansion 

	

n 	)k 	)tt 
F(N,O;a,) = kO ( 
	)Nklk±l + r 	 (AlO) 

where 

Ir < (+1 j°°  dr e 	rM_3 
j00 

ds 	= (n+l)! (M-n-3) 	R n 	n+l o 	 r 	 n+2 ()N+N3 	n 

Of course, the formula (AlO) is only valid as long as n M-3. The sum 

in (AlO) and R are evaluated for several values of n; we choose as the 

approximate value of F(M,O;a,) the sum in (AlO) obtained with the value 

of n which gives the smallest R n . The error then diminishes for each 



iteration using formula (A9) as long as M-1 > a (a = 4.62, 1.34 or 2.98). 

The scheme is checked by comparing the value obtained for F(1,0;a,) with 

F(1,0;a,) = J ° 	e 	fSdr e 	= - • ': 	e(e 	- 1) 

= ji dx 
Jo ds e  

With our values of K and a 29  we obtained 

F(50,0;a,) = 0.2702036705 x 1023  

F(50,0;(l+a)iK(l+a)) = 0.11.13306 x 1023  

using 16 decimal arithmetic. The error estimates H were too small to 

affect the numbers quoted. This method did not work for F(50,0;,ca); 

the asymptotic series only gave three good digits; i.e., R was never 

less than the sum in (Alo) divided by 1000. This integral was computed 

by upwards iteration in 28 decimal arithmetic (with 8 decimals a huge 

negative answer was obtained, showing how drastic the errors can become 

when an unsafe recursion formula is used).' It was also computed from 

the formula 
a k 

)t 	 M-1 	1) l - 

	

=
[g-2 + (

M-l) k1 k(M-k-l)k 	II 

and by truncating an infinite series: 

00 k 
F(M,0;K,a) = - (1 +a)) (Ml) - 1(M) - 	

(_a) (M+k-l)! 
KM 	 k=l KMk 	k k! 

1(M) = 	dr e 	rM_l n r = 	I(M-l) + (M1) 

and 1(1) = - (9n K + 1)/K. It turns out that Eulers constant I cancels 

in this expansion. None of the three methods described are very good 

because the terms alternate in sign, but with 28 decimal arithmetic the 

values obtained by the three methods agreed to 9 digits: 
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F(50,0;,Ka) = 0.880736751 x 1023  

Actually the last and first methods (upwards recursion) agreed to 13 digits. 

To calculate the matrix elements of 45) the integrals A(0,M,N) with 
M = 0 or N = 0 (but M+N 1) and B(0,M ) N) with M = 1 or N = 1 are 

req.uired, thus one needs F(M,O;a,) and F(0,N;a,). For both these cases 

the procedure described earlier breaks down. Instead we employ a numerical 

37 method devised by Schwartz which is well suited to these cases where 

the integrand has mild singularities at both endpoints. First, set 

u .= 1/(1-l-exp(--y)) to transform the region of integration from 0 U 1 

to - 	y 	and then make the additional change of variable 

x exp(y) - exp(-.y). The integral. 

00 

dx F(x) 

is then approximated by the sum 

+00 

S 	F(nS) 
n=-°° 

truncating when the terms fall below a certain accuracy. Then the spacing 

5 is reduced and the sum evaluated again. This method works very well, 

converging fast as the spacing is decreased. 

This concludes the description of the methods used to evaluate all 

integrals req,uired for the matrix elements of the eight .operators in the 

standard basis. 

To calculate 	and E' 6  with the extended expansions (48) 

and (53) for 	and 
(6), 

respectively, we need integrals A(L,M,N) with 

M = 0 or N = 0 (L 1) and B(L,M ) N) with M = - 1 and M = 0 (or 

N = - 1,0).. These are evaluated from F(M,N) integrals with N = - 1 

and N = - 2, since we already have calculated F(M,0)-integrals, the 

new integrals are easily obtained by using formula (A8). 



	

when the expansions (1)  or (55) are used for 42), 
	

or 

one runs into integrals with (r1  - r2 )/r 	in the integrand when calcu- 

lating the matrix elements of H0, 11( 2 ) , 	and H 	 So a new type of 

integrals G(M,N;a,) must be introduced, defined by 

dv1  dv 2  r1 2 - r2 
2 rM_3 	3 _ar -br i 

e  .2 = - G(M,N;a,b) + G(N,M;b,a) 
r 	1 

r  2 
e  

12 	 (All) 

where 

G(M,N;a,) = 	dr e 	
f00 

ds e 	s1(s2 - r2 ) 

- 1 (M+N-3)! l du 	(luM(l+u) 	
(Al2) 

- 2 aM2 0 U (1- u-i-/a( B-u) )M 2 

G-integrals are only calculated for M+N 3, they are logarithmically 

divergent at the lower limit (r = s or u = o). Writing (l+u) = 

u(l-I-u) N-2 + (l+u) N-2 we obtain, after one partial integration: 

G(M,N;a,) = 	(;3 fQ l+x (x+/:)M2 + div(M,N) 

+ (N-2)FL(M,N-2;a,) 

	

- (-a)FL(M,N-l)] 	(A13) 

The first integral is convergent and is evaluated by the numerical method 

of .  Schwartz, 37  the FL-integrals are tabulated and the divergence is 

contained in the surface term 

(M+N 3, . 
lim u 	

(l_n )M_ 1  (l+u )N_ 1 	 en div(M,N) = - 2 a
2  u-O 	(l-u+/a(l+u)) 

1 (M+N-3)! 
limenu 

= - 2 (a+)M2 u-O 

Thus the logarithmic divergences will cancel between the two G-integrals 

in (All) if u goes to zero at the same rate in the divergent parts div(M,N) 



of the two G-integrals, i.e., if the principal value of the integral on 

the left-hand side in (All) is taken at r 1  = r2 . Looking at the expres-

sion (BO) for a typical matrix element it is seen that the principal 

value should in fact be taken, writing out (Bo) without commuting the 

operator 1 - P12  through H one gets two direct and two exchange parts. 

These occur with the same integral signs and are equal except that r 1  and 

112  are interchanged, thus if we put u = €1 in one of the G-integrals 

in (All) and u = 2 in the other, at the lower limit, we get a term 

proportional to e4€1/€2 ) but then from the other integrals with exchanged 

variables we get another term proportional to 	 so we are justi- 

fied in taking the principal value. Formula (A13) cannot be used for 

N = 1, but a similar formula, valid for N = 1 (but not for M = 1) can 

N-i 	 N-2 	N-2 be obtained by using (1-u) 	= - u(1-u) 	+ (1-u) 	in (Al2) and 

doing the partial integration. The G-integrals are only evaluated by 

these formulas along M+N = const, a backwards recursion formula similar 

to (Al) is used for M+N < const. There is a formula similar to (All) 

for the case when there is a factor cos e in the integrand on the 12 

left-hand side of (All), this formula contains four G-integrals and two 

A-integrals, again the divergences cancel among the G-integrals. In all 

cases where G-integrals are required, the divergences cancel for the 

exchange and direct parts separately, except for the matrix element of 

in H0 .withfunctions with hr12  on both sides, when the divergences 

cancel between the direct and exchange integrals. If the functions 

had been symmetric (singlet intermediate states) this cancellation would 

not have taken place. 

Finally, to evaluate the matrix elements of 43) and H 	 between 

standard terms and functions with 1r12  we have to define yet another 

class of divergent integrals: 
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-ar 00 	 -s N-i 22-2 

	

H(M,N;a,) = 	dr e 	J ds e 	s 	(s - r 

which are calculated along M+N = const after which a backwards recursion 

formula similar to (A7) is used. These integrals are evaluated by doing 

the same tricks as for the G-integrals, but two partial integrations are 

required. The surface terms now give a pole-type singularity as well as 

a finite contribution. After some algebra we find 

M-2 
H(M,N;a,) = - 	

(~r-). [ji 	
2 	M+N k + Div(M,N;a,)] 

	

2 a 	- 	 ° 
(i-I-x) (x-I-/a) 	T 

+ (N-l)G(M-1,N-l;a,) - 	 G(M-1,N;a,) 

where the first integral is done numerically and the surface term is 

M-1 	N-1 
Div(M,N;a,) 	urn 	(1-u) 	(l+u) 

u-0 U  (l-u+/a(l-I-ü)) 	- 

1 	1 	
[urn 	+ N M +  a 	(M+N-)] (Al) 

(l+/a)M 	u->0 U 	 a + 

By looking at theactual combination, of integrals invOlved in thematrix 

elements, one finds that the logarithmic divergences included in the G-

integrals cancels separately for the direct and exchange integrals whenever 

H-integrals are used and that the pole divergences in (Al) cancels between 

exchange and direct parts. The finite part of (A14) is important and 

should of course be included. The H-integrals are only evaluated for 

M 2, N 2 and M+N 5 
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APPENDIX B: MAThIX ELEIViNTS OF OPERATORS 

Here we present some of the algebra involved in expressing the matrix 

elements of the eight operators in terms of the integrals defined in 

Appendix A. It is most convenient to work with one spherical component 

of the vector r in (18); we take T ()= - ( x1  + iy1)/%12 corre-

sponding to mL = L = 1. The matrix elements are all of the form 

Mktk = 1 - P12 	
2)I H T()u,,(l, 	

1 - P 

	

I 	12 (l) -4  
T1 ( r 1 ) u 	(1,2)) (BO) 1 	 £mn 

KU 	K 

where u (1,2) = e2 	-r2 m n £ e 	r1  r2  r12  and the ordering (2t, m ?, n t) 	*kT; 

(,m,n) -9  k is implied. H is any of the eight operators, every one of 

these is symmetric in the coordinates of the two electrons, H = H(1,2) 

= H(2,1), so that 

dv 	dv 
1 	2 	1)* _3 

lk = f 	f 	[4 	)Uyt 	- T1 	(r2)u2 ,(2,l)] 

X H 	
Ymn 

Whenever we have more than one differential operator (V1  or v2), it is 

preferable to let all operators act to the right. The matrix elements 

are then sums of terms whose coefficients only depend on imprimed indices; 

so that the actual programs are unsymmetric in the indices. The 

matrices of the eight operators are all symmetric, since the matrix 

elements are real and the operators Hermitian. If one lets one V-operator 

act to the left and one to the right, the program will be symmetric in 

primed and unprimed indices and can produce a symmetric matrix even if 

• 	the integrals used are wrong. When all operators act to the right, the 

computed matrices will be unsmmetric if the integrals have incorrect 

values. We thus get a check on the integrals by letting all operators 

act to the right; several errors in the programs were detected this way. 



We now discuss the operators one by one. 

The nonrelativistic Hamiltonian H0  is given by (): 

Ymn 	
= (T1)(){ 	2(2 + 1) + --( 	 i(2m + 4 + 2) - z) 

+ --( 	(2n + 2 + 2) - z) - 	m(m + 3 + 2) 
2 

+ •_• 	T4kO•2 + 	
~ 22 	m2 r12 	r1r12  

2 	 2 	 2 r 	 r 	 r 11 	21 	11 
+ 2 2 2n2 - 	2 	- 	 2 

r2r12 	r1r12  

+
(r2 ) --) um(l,2) 	 (Bi) 

r12  

	

13 	 p. 	q.. 	s. 

	

1 	1 	1 CT1  (r1)[1 	c(2,m,n;tct)ri  r2  r12 ] 

(1) 	2 
+ T1  (r -p  2 ) ---) u(1,2) 

r12  

Introducing L = 2+2', MD = ni+in', I'D = n+n', NE = m+n' and NE = n+m' 

one gets the following forn1a for the matrix elements: 

13 
(Mo)ktk 

( 
. : ( J. ::l  c (2,m,n,r,ic) [AI(L+2+s,MD+li-+p,ND+2+q) 

- HEX(L+2+s 1 ,NE+3+p ,NE+3+q) 

+ 2[BDI(L,Iv]D+4,ND+2) - A.c(L,NE+3,]E+3)1) 

It is convenient to write out 	 UOmn 	in detail to 

see what terms, other than the standard ones, are required in the expan-

sions of 43 for H041)  to reproduce the most singular terms in H1f. 

Since we only consider intermediate triplet-P states, the P-parts are 
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projected out when the three spin-dependent operators act on 'V.  The 

angular momenta of the unperturbed state are fixed by choosing the 

ttstretchedt! state, i.e., J = m. = 2 so that the spin part of the wave-

f'unction is a(1)a(2). 

-4 	-4 
) o  

	

41)a(l)c(2)T 	()u2(1,2) = z(a(1)a(2) [- 
+2 (r 1 X r 2 

2 
jr12  

-9 	-4 

1 1 	 (r1xr2) ~1 

	

r 	
- (a(l)(2) + a(2)(1))2 	

r 2 i 

	

X ( 
1 	1  

- 	)) T1)()u2 
2 	

(1,2) 	 (B2) 

	

r 	r1  

where vectors have been resolved in spherical coni.ponents: 

	

= :1(v ± iv)/.T2 	and 	v = v 

1 - 

(r x r, = - i 2 T1 	X 	= - I 2 	c(l1l;)T(1)(r
-4 
)T '(r)

11 	1 	2 I-L 

= +1,0,-i) 

by the usual law for combining spherical tensors; C(21222;m1m2 ) are C-G 

coefficients. The second term in (B2) is pure ID, the first term is a 

mixture of P and D. The P-part of 

(1) - 	- 	 (1) -' 
- %[2 T0  (r1  x r2)T1  (r1 ) 

is 	

- 	 x r)4() - T( 	x)T()) 

1(i)-* -4- 	 (i) -* 2 
=(T1  (r1)(r12) - T1  (r2)r1 ) 

which is proportional to 	x (r X r 	So the P-part of (B2) is: 

+ 22 	
- 	 )(T( ) - T()r)] 

r12 r2  r1  

X u(l,2) 	 (B3) mn 
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The terms proportional to £ only contribute exchange integrals to the 

matrix elements. Since 

- - 	-, 	-* 	222 r2 .(r1  x (r1  x r2)) = - r1r2  sin .e12  

we use (All-) to obtain a simple formula for the matrix elements: 

(M 1) ) k ,.k  = [ADI(L+2,MD+l,ID+2) - (BEx(L+2,ME+3,iE) + 

Proceeding to the next operator we obtain, aftera similar angular 

momentum projection, the expression: 

	

(2) 	(1)-' . 	 3 	(i) P-part of Hi a(i)a(2)T1  (r1)u(l,2) = a(i)a(2)(---){T1  (r1 ) 
r12  

	

(i) -9 	 Ka i 	m 	K. 1 . 	(1) -p - -p 
- T1 (r2) + 	+ 	+ 	- .—).(T1 .(rl)(rl.r2) 

1 r1 	2 r2  

(i) - 	2 - T1  (r2)r1)]u(l,2) 	. 

The integrals contributing to the matrix elements are easy to write down. 

The first two terms must be treated separately when L = 0, when the 

formula 

	

d 1  d21. 	
21 	2 

r12 r>(r>-r<) 

is used, in which case F-integrals are needed. Since 

r  1* (
- 	12. 	2 	2 	- - 	-, 	12 	2 	2 r1  - r2) = (r1  - r2  + r12) and r 2*(r1 - r2) = (r1  - r2 - r12 ) 

2 	 (1) the factor (r> - r<) cancels out. As with H 1  the remaining terms only 

give exchange integrals, (All-) is used again, except when L = 1, when 

the formula 

	

dn, dn sin2 012 r 2  1  + r 22  (r  21 - r 
2  
2)  2 
	

r1  + r2  

2 	= 	22 	
8r r12 	1l-r1r2 	r 	fr1 	r2 1 

is used, so that FL-integrals are required. 
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The spin-spin operator is a contraction of two tensors of rank two: 

- =+2 s(2)T(2) 	-i) 
1 	r5 	i 

12 

Only the spin-operator s2)  with 	= 0 gives back the spinor a(1)a(2) 

when it acts on that state: 

s 2 ) a(1) a(2) = 	(2a 	- 	 - 1 a2 )a(1)a(2) = 	a(i)a(2) 

(2) -*  T0  (r12)T1  (r1) is a combination of P, D and F parts: 

(1) 	 - 	2 	
2 	2 	(i) - P-part of T0  (r12)T1  (r1 	 of -(2 ) = P-part 	z12  - x12  - y12)T1  (r1) 

=L( 	T2)(2)T() 
- 

3/10 T2)(2)T1)() 
 ri 

± 	T( '  )T( ' )) 
.Ji?5 0 	12.1 	1 

(1) = 	 (T11)(rl)r2 - 3 T1  (r12)r12 .r1 ) 

(2)-' 
after some C-G algebra. One had to express T (r 12) in terms of T  (r1) 

and T(); one can use a formula due to Rose 8 or work the relations 

out by inspection. We quote one example: 

(2) -' 	(2) -~ 	(2) -, 	 (i),.-* 	(1) -' T0  (r12 ) = T0  (r1) + T0  (r2 ) - 2 	T0 	r  1  ) T  0  (r2) 

	

-' 	(i) 	(i) 	(1)-' 
- 	 [T(r1)T1 (r2) + T1  (r1)T1 (r2)] 

The result is: 

(1)-' 	 - 

	

11 	 (1)' 	-' - P-part of H1  a(l)a(2)T1  (i'1)u(l,2) = -- a(i)a(2) [3T1  (r12) (r12 .r1 ) 
r12  

(1) 	2 
- T1  (r1)r12 ]u(l,2) 	 (B5) 

For the matrix elements one gets: 
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2 	22 	2 	2 dv
1 

dv 	- r2 ) + r1  - r2 
+ 

 	( 1,2) 
2 	_______ ____ 

1 ) ktk = 
1 	

2r 2 	3r2 	2r12 
 .81I mn 

2 	22 	2 	2 
12 	r1+r2 	

]U

___ 

2r5 	3r 	
6r122tmmn (2,1) )u2 (1,2) 

12 

which can easily be expressed in terms of A, F and FL-integrals, when 

the cases L 2 + £ = 0, 1, 2 and 3 are given special treatment. The 

formulas 

	

dQ 	 d22 	r + 3r 

2 	23 • 	 r12 3r> r> - 

dS 1  d2 1 	1 
222 r12 	(r1 - r2 ) 

are required. For L = 0 a ll  terms with (r2  1  - r2) 
2-2 

 cancel. 

We have dropped the constant a2/11- from the spin-dependent Breit-

operators in this discussion as well as in the actual calculations; the 

factor is included in the units in which the numerical results are given. 

Proceeding now to the spin-independent operators, we shall just 

write out the result of the action of 4 on one of the trial ±'unctions. 

After some tedious but trivial algebra we obtain, omitting the constant 

2 
a: 

	

(4)(1) - 	 - 	3 	1 	3n 1 	22+n/2 	r2 H1  T1 	
Omn 

	 - T1  (r2 ) L 	r r + 2 	2 ~ 	3 - 

	

2 	2 	
12 2 	r12r2 	r12 	r12  

K 	r1 	r1  i + 
(l) ( - \f  2(22+2+m+n) + n(m+l)/2 

	

•3 	2 3 2 	T1 	r11L- 	 3 r2r12 	r12r2 	 ••  12 

a 	1 	2 	a 	1 	2 	12 	12 	K 	 1 
+ 	r + r r + 	3 	+ 3 	- 	 - 	

+ 
12 1 2 	12 1 	r12r2  r12r1 	r3  12 	r 1 2 	 r12  

2 	 3 	 2 

+ (22+l+rn) 	- (22~l)_r1 
- 	 r2 

- 	 (22),_r2 + 	
r12 

 MK 

	

r12 	 r12r2 	r12r1  • 	 r12r1 	r1r2 



77 

2 	 2 

	

r 2 	r cr  r 	 r2  

	

2 	3 2 +2 32 3 	22+2(223 2 

	

r1r2 	r12r2 	 r12r2 	r1r2 	r12r1  

- n 	- (22+1-m)_1 2 + (2-n) r  
12 2 	r12r2 	 r12r2. 	 12 1 

- m 	2 - (2-n)_ 	Ymn 	
(B6) 

r12r1 	r12r1  

The matrix elements can now be written in terms of A, B, F and FL integrals, 

again in the cases when L = 0, 1 all terms with r 1  must be taken care 

of specially. 

If we write out directly the action of I45) on the trial fmctions 

we get 112 terms. To evaluate its matrix elements we make use of 

(fVg) = (V2fV2g) 

where f and g are elements of the standard basis. (This is not necessarily 

true if there are negative powers of r 1,r2  or r12  in f or g.) It turns 

out that the matrix elements are sums of 227 terms. Instead of writing 

a program containing these terms explicitly, we let the computer do 

most of the work. With the notation of (Bi) one has: 

2€ 	... 	 7 	 P. 	a. 	r. 
= (- --- T(r2) + T() j1 d.(2mnpc)r1  r11  r21 ) 

r12  

X u 1 (l,2) 

VTj()u2(l,2) = (T1)() 	h(,)r1 	r23 )u(l, 2) 

This gives the following expression for the matrix element, again omitting 

2 
a: 



(M 5 )ktk = - 	
jl d.(2mn,K)d.(2'm'n';) 

X ADI(L+2+P 1+PIv1D+4+.+q.,ND+2+r.+r.) + 11.22' ADI(L-2,1ytD+2,1w+4) 

7 
- 22 E d.(2'm'n';Y)BDI(L+p.,MD+3+q.,ND+3+r.) 

j=1J 	 J 	J 

7. 
- 22' E d.(2mn;tcd)BDI(L+p.,ND+3+q.,I\]D+3+r.) 

i=l 1 	 1 	 1 	 1 

77 
+ 	h.(2mn;K)h.(2'm'n';)ADI(L+2±s.+s.,ND+II.+t.+t.J,JD-I-2+u.+u.) 

i=lj=l 1 	 3 	 iJ 	1 	 3 

77 
- 	d.(tmn;)h.(2'm'n'.;t)BEx(L+2+p.+s.,IviE+3+q.+u.,JE+3+r.+t.) 

i=lj=l 1 	 3 	 1 J 	1 3 	1 3 

7 
+ 22 E h.(2' 	

3 
m'n T ;I)AEX(L+s.,NE+2+u.,I\IE+ 1l.+t..) 

j=lJ 	3 	J 
77 

- • I 	h.(2mnpc)d.(2'1n'n';J)BEX(L+2+p.+s.,ME+3+r.+t.,TE+3+q.+u.) 
i=lj=l 1 	 3 	 3 1 	 3 1 	 3 

7 
+ 22t 	h.(2mn,K)AEX(L+s.,ME+4+t.,JE+2+u.)) 

All the summations are done by the computer; the coefficients d. and h. 

as well as the integers (p., q., r.) and (s., t, u.) are determined by 

a subroutine once (2mn) is given. The program thus becomes symmetric in 

primed and unprimed indices, so that the computed matrix of will be 

symmetric even if some of the integrals have incorrect values However, 

almost all the integrals, used were also required for the matrices of H 0 , 

H2), and 47) which were evaluated in a nonsymmetric fashion, and 

thus gave a valuable check on the integrals. 

It is trivial to obtain the matrix elements of the contact term 

operator; they are zero unless 1D'= 0 in which case: 

= 	K' 	
, K =MD + L+ 

() 

• 	Finally, the operator 47) is quit easy after we have done 4 . 
Omitting the factor m/M: 	 . 
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(l) - 	1 	£ 
H1  T1 	u2mn 	= -CT1  (r2){- . - + 	+ 

2 r2  r12  

(i) - 	£(.+m+n+2) + 
 !K,, rl

+ £ 	
r2 	2a 

+ T1  (r1) [_ 	2 	2 2 	2 2 + 	COS 
r12 	r12  

r cosO 	r cose 
cJcosO 	Kcos6 	2 	 i 1 

-r1 	 2 	2 	2 	2 r2 	r 	 r12 	 r12  

COse 	
r2 cos6 	r cose 

~ mn 	+ m2 	2 	+ 2 1 2 	])u(l,2) 	(B7)imn r  1  r  2 	r1r12 	r2r12  

To evaluate the exchange part of the matrix elements we use cos 2  e = 

1 - sin2  e and (All.), or we may rewrite (B'?) using 

	

2 	2 	2 + r2  -  12 
Cos e = 

2r1r2  

Only A and B integrals are required to calculate the matrix elements 

of  HM 

This concludes the description of the evaluation of matrix elements 

of the operators, the formulas of this Appendix are used also in the 

cases where we go beyond the standard basis and include one negative 

power of r1, r2  or r12  in the expansions for 



APPEIDIX C: DEThIINATION OF EIGEITVALJJES AND EIGENVECTORS 

The method employed by Schwartz 11  is used. The matrices (H0 ) 1  

and I... of 
110 
 and 1 in some representation are given, and we wish to 

find E0  and = (x1 ...x) such that 

n 
[(H ). . - E I. . 

j
]x = 0 	i = 1,2,...,n 

13 =l 013 	0  

The approximative iteration procedure consists in making an initial guess 

for E0, put Xk = 1 (1 k n) and obtaining 

from the inhomogeneous system 

jlOij - R
0i1 ]x = - [ (HO)k - EOiik] 	 C1) 

j+k 
i = 

from which a new value for E0, call it :E, is gotten from the Rayleigh 

quotient 

n n 	

/i=l

n n  
E' = 	x.x.(ii ).. 	x.x.i.. 	 (C2) 0 	j=j j=l 1 3 0 13 	j=1 1  3 ij 

or 	= ( r0 lH0 I1r0 )/('Jr0 J'V0 ). Then put E0  = E andntinue the alternating 

iteration (Cl), (C2) until JE 	EJ < € where € is some small number. 

In the standard (unmixed) basis the matrices are simmetric and we put 

k = 1 since the first term is the most important when the nonrelativistic 

wavefimction is expanded in the standard basis, see page 20. This method 

works well, with rapid convergence if the initial value of E 0  is a very 

good guess. In Fig. 3a and Fig. 3b E 
I
is plotted versus E0  for the matrices 

in the standard representation when u = 3, i.e., for matrices of dimension 

20. For each of the two graphs one hundred points were computed. In 	 - 

1 0 Fig. 3a three eigenvalues are seen where the line of 1+5  slope is tangent 

to the curve. Figure 3b is an enlargement of the curve in Fig. 3a in 

the neighborhood of the lowest eigenvalue. Unless the initial guess for 



E0  is such that the curve lies below the 45
0-line for this value of E0 , 

the iterations will not converge. The dashed lines in Fig. 3a show what 

happens after three iterations when the initial guess is top far from 

the desired eigenvalue. The method is good only as long as one has at 

least the three or four first digits of the lowest eigenvalue to start 

with. For w = 2 and 3 we tried to vary K and a and find E 0  for each 

choice, but after some small changes in K and a this procedure converged 

on some of the higher eigenvalues. 

As mentioned in the text (page 21) we used € = iohl for 1 	5 

and € = 1010 for 6 	8, and obtained convergence. Then one more 

iteration was performed to get a slightly different ' but this sometimes 

caused the elgenvalue E0  to change by an amount larger than €, so the 

convergence was probably accidental. For 6 	8 the eigenvalues 

- 2.1331 were nevertheless converged to at least nine digits. The 

differences between the two 1''s  (whose eigenvalues differed by an amount 

less than €) was of course larger, for w = 8 the values for x2  were 

0.31938 and 0.31939  respectively, and the last element of the eigenvectors 

were 9 X 10 and 1 X lO for the two f's. 

The eigenvalue problem in the extended bases of Section VII were 

solved for E and 	by the same method, except that k in (Cl) was put 

eq,ual to 0-1i-i-2, corresponding to the first standard term in the expansions 

(48), (53), (54), or (5). The convergence was sometimes slow and we 

had to settle with E 's converged to fewer digits than E 0  for the same 

W. In the case where the matrices (H0).. and I.. are unsymmetric (the 

mixed representation used to calculate E(i,G) in Section VII) a slight 

modification of the algorithm is required. An approximation to the right 

elgenvector fI'  is obtained from (Cl) with E0  replacing E01  but the left 

eigenvector 	is also needed, it is gotten from 



n 
.a[(H ).. - E I..]x. 	- [(H) . - 	L.] 
3L 	0 ji 	0 ji j 	 0 ki 	0 ici 
j k 

I = 	 n 

i.e., the left elgenvector is the same as the right eigenvector of the 

transposed matrix. The Rayleigh q,uotient in this case is 

= 

The convergence of E0  for this u.nsymmetric case was rather slow. 

82 



APPENDIX D: SPIN- INDEPENDENT SECOND- ORDER ENERGIES 

The spin-independent second-order energies calculated along with 

the spin-dependent ones in Section VI are listed in Table XI, with the 

same convention for the number of digits quoted as in Section VI. E (4,4) 2  

was also calculated with the expansions (54) and (55) of Section VII for 

the results were very close to those of Table XI. For w = 8 the 

values -0.0384789(1) and -0.0385239 were obtained, using ()+) and (55) 

respectively. 

The unmixed second-.order energies E' 	(i = 1,2,...,7) that we 

calculate are always upper bounds to the true values. The exact unmixed 

second-order energy is given by (i )#): 

Etrue =(!11H0 - E0 I 1) + 2(!iJH - E1 1 110 ) 	 (Dl) 

where the (exact) perturbed function T satisfies 

(H0  - E0 )If1  =. - (H1  - E1)!0 	 (D2) 

assuming that the unperturbed wavefunction and energy T and E 0  are known 

exactly. In practice the expression (Dl) iscalculated by using an 

approximation 	to Tl, 	= 	+ l 
 so that 

calc = rue E 	+ 	- E0 I 1) + 2(AiV1IH0 - E0I1) + 2(i1 H1  - E1I0) 

(D3) 

The two last terms of (D3) cancel because of (D2), the second term of 

(D3) is seen to be positive if V l is expanded in the complete set of 

(triplet P) eigenfunctions of H 0, remembering that E0  is the lowest 

(triplet p) eigenvalue. Thus E2
calc 

 E2  true  as we set out to prove, 

but this does not necessarily imply that E2  should decrease monotonically 

as more terms are included in the expansion for 	However, in all the 

calculations reported here, this monotonic decrease does in fact take place. 
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Notice that the differences between successive calculations for 

77 E' 6  and E 6 ' 6 . are almost corstant, so that extrapolation 

of these values would give infinite results. This is just as it should 

be since both 	and HI6give delta-functions when acting on 	thus 

and (6) should have tes proportional to (i - 

as in (73). This makes the second-order energies 

((i)pH(i) - 	 (i,j =7,6) proportional to an integral with 

(from HI3) and hr2  (from 	and ' which is regular, under the 

integral sign, and this is obviously divergent. When only standard 

terms are used in the expansions for 	and 
(6) 

they try to approxi- 

mate the pole-termsin(73), so the second-order energies should diverge 

as more standard terms are included in the expansions for 	and 46), 

as in fact they do. Otheise, the energies 	E ,6) , 	and 

show fairly regular oscillatory behavior with , i.e., the differ-

ences between successive calculations alternate in sign and 

6 ' and E 	seem to converge monotonically. 
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J= 0 

v 01  = 29616.88(7) Nc/sec 

= 0.987887(2) cm 

J= 1 

v 12  = 2291 . 195(7) Mc/sec = 0.0764241(2) cm 
J=2 

Fig.1 

3  Fine structure of the 2P state of helium. 
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