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SECOND<ORDER CORRECTIONS TO THE FINE-STRUCTURE OF HELIUM
Lars Hambro
Department of Physics and Lawrence Radiation Laboratory
University of California
Berkeley, California
ABSTRACT -
The fine-structure constant can be determined to high accuracy from

3

precise measurements of the fine-structure of the 27P level in helium.

One of the necessary calculations is to compute the contributions from

the six Breit—operators.and the mass polarization operator in second-
order perturﬁation theoryf The eighteen spin-dependent perturbafions
from intermediate 3P states are calculated by solving an inhomogeneous
Schrodinger equation for the perturbation of the wavefunction by the
variational method. The second-order contributions are then given by

a single integral. These corrections are first calculated using standard
Hylleraas-expansions witﬁ up to 165 terms for the perturbed wavefﬁnctions,
resultihg in contributioné to the two fine-structure intervals of the
order of lO_4 cm—l, but only foﬁr of the results are sufficiently accurate.
These variatioﬁai calculations are improved by including additional terms,
réflecting the singularities of the Breit operators, in the expansions.
With this réfinement another five contributions are obtained to the
accuracy of 10_6 cm_l required by the larger'fine-structure interval.

It will require much more effort to match the experimental precision of
lO"7 cm_l in the smaller interval, but we have shown that the second-
order perturbations of the larger interval can be calculated accurately

enough to permit a new high-precision determination of the fine-structure

constant.



I. INTRODUCTION

Today there are several accurate values of the Sommerfeld fine
structure constant o = e2/hc ~ 1/137 obtained from high precision
measurements of the atomic energy levels of hydrogen and deuterium.
These levels can be calculated to any desired accuracy (in principle,
at least) from quantum electrodynamiés (QED) as a power series in o
(and fog @), and thus o can be determined experimentally. The classic
results are those of Lamb and co-Workers;l who measured the 2Pl/2 -

2P fine structure separation in deuterium. Using their value and a

3/2 |
theoretical formula by Layzer,2 Cohen and Du Mond3 obtained q_l =
137.0388(6) for-tﬁeir 1965 tabulation of the fundamental constants.
This has come to be regarded as the "official" value of @, but it is
nov very much in doubt. From recent measurements of the 281/2 - 2P3/2
fine structure in hydrogen, Kaufman et a.l.h obtain a_l = 137.0350(4)
and Metcalf et al.” get a_l = 137.0353(8) from level crossing ekperi—
ments in hydrogen.

The ac Josephson effect.provides a methbd for measuring 2e/h
-'direétly; from which & can be obtained without use of QED. From their

most recent determination of 2e/h,6 Parker, Langenberg and Taylor obtain7

ot = l37.b3608(26), so the accuracy is 1.9 parts per million (1.9 ppm).
Helium is better sulted to high-accuracy experiments than hydrogenic

atoms, because the 23P state (of Heu) has a lifetime of about 107 sec

and a fine-struéture comparablévto the 22P:state of deuterium which only

9

has a lifetime of about 7 X 107 sec. The natural line-width for the
23P state of helium is thus about 3 Mc/sec, whereas for the 22P state
of- deuterium (or hydrogen) it is about 100 Mc/sec. So .one should be

able to measure the fine-structure intervals of the 23P state of helium



with an accuracy higher than anything possible for hydrogenic finé—struc—
tures. There are furthermore two fine-structure intervals in the fine
structure of the»23P level (see Fig. 1), and @ can in principle be deter-
mined from either one. The smaller interval has been measured - to
Voo = 2291.195(7) Mec/sec or to'3 ppm. The present best value of the
larger interval is Vol = 29616.88(7) M.c/sec,9 good to 2.3 ppm. Kaufman
et al.LL determine the 281/2 -A2P'3/2 splitting in‘hydrogen to 3 ppm, but
to obtain the fine structure they ﬁust subtréét the exﬁérimentalvvalue
of the Lamb shift; fhe reéuiting.accuracy of the fine structqre'is onlyv
6 ppm. So the helium measurements are more accurate than the ones for
hydrogen; and it should be possible tofimprove the éxperimental value
for vOl to 1 ppm.lo |

| Since the fine—étructuré-intervalé arevproportional to the square
of o (to lowest order in ), one can in principle obtain o to 1.5 ppm
froﬁ the helium measurements that havé_already been done, and maybe
» eventually»get a to,O.5ippm from‘the experimental value Of'VOl.'

However, there is at present no thedretical formula for the fiﬁe 

siructurevéf helium wifh terms'up to, and inclﬁding, theforder‘a6mc2;
say, such és there is for hydrogen.2 To bfing the theory of the helium
atom uf to the.same level of éccuracy as dur?ent.experiments,.theorists.

face a.formidable'task. As‘ouflined by Schwartz,ll’le

this project
consists of several fairly'distinct jobs.

Formally,. the energyblévelsrare giVen:by a power series in a?:

N 21 bt L gy L by
EJ - EOY = (O|H2|O>J. + O (O'H2 m H2|O>J + (Oth|O>J
+ (terms of order o? and higher) . (1)
Here HO, EO and |O> are the nonrelativistic Hamiltonian, the energy of

the (unperturbed) 23P state in atomic energy units, 2 Ry = mcgag, and

L



the corresponding nonrelativistic wavefunction, respectively:
HO|O) = Eolo) .

The subscript J denoﬁes spin dependehce, 3?= f?+ 59 is the total angular
momentum (J = 0, 1 and 2). H, are the lowest-order corrections to the

13-16 which

nonrelativistic Hamiltonian; the.so-called Breit operators,
are well known. Thefe are botﬁ spin-de?ehdent (spiﬁ—spin and spin—orbit)
and spin independent Breit operators. In first order perturbation theory
only fhe former contribute to the fine-structure separations, but in
second order perturbation theory both contribute, sincevthe spin-indepen-
dent operators mix with the.spin-dependent ones to give a spin-dependent
result. Finally, Hh are higher order corrections to the Hamiltonian.
There are then four main jobs to be done. First, since the left

“hand side of (1) ie knoﬁn experimentally to 1 or 2 ppm, we want the
leading term on the right hand side of (1) to 1 ppm. This task has

been accomplished by Schwartill who evaluated the expectation values of
the spin—dependent‘Breit operetors fqr a sequence of variatienal wave-
functions.lO), using a Hylleraas-like expension with half'powers for

IO); with up ﬁo 439 terms in the expansion. Second, the calculation

of the second-order perfurbation energies

(oluM __LHE B2 o) (2)

Ey

where H

(1) ()

5 5 ), say, is spin-dependent,Abut,H(g) (H(l)

5 (H ) can be any

Breit operator. Sincea2 is of the order lO-u we only need this term,

as well as the_expectation value of‘Hh, to aﬁ accuracy of l%; and terms
of a5 and higher order in (l) can be ignored. This ie the job which we
shall try to do in this werk. Third, the determination of the operator

Hh' This is probably the most difficult of the four projects (the other



three are mainly coméutational problems), requiring much quantum electro-
dynamic know-how since it is at the eame level (same powers of ) as the
most recent2 QED uork on hydrogen. However, a simplifying feature is
that only epin—dependent operators are required. A first attempt at
this analysis.was made by Kim.l6 He started with a Diréc—type Hamiltonian
and added a quantized,’transverse electromagnetic-field to the instan-
taneous Coulomb interaction between the two electrons. Expanding'every-
thing in'powers of o and reducing'to'a Pauii-type'Hamiltonian he obtained
HO, all the Breit.terms and a large-number of complicated operators~pro-v
portional to ah. This is not" quite correct, since it does not prov1de
for creatlon and annlhllatlon of electrons and p031trons. A more complete
analys1s, starting from the Bethe-Salpeter equation is in progres.s.l7
Finally, the fourth job is to evaluate the ekpectation value of H) to 1%.
Work is in progress on this calculation;l8 using the'operators.that Kim
obtained;’since they are quite complicated,_this is not a trivial task.

| In addition to the terms in (1) there are other'corrections due to
the'anomalous magnetic moment of the electron'(whichbgives a a3 term in
(1)), which is.quite simple} then the reduced maes must be put'in and
there is also the operator pl-pg/M correctlng for the motion of the
nucleus whlch will contribute in second order perturbatlon theory when
" mixed with the spln-dependent Brelt operators. We will treat it along
w1th the spin-independent Breit‘operators. Finally, there are a number
of more subtle nuclear (strong 1nteractlon) correctlons, one may hope
.to take over most of the well known results20 from hydrogen. Schwa,rtzll
has glven an argument to show that a finite charge dlstrlbutlon of the
nucleus (emeared over nuclear dlstances R~ 10 13 cm)»has negligible

cffect. The leading‘term in the fine structure is proportional to



il

(e(r)) = {(1/r) ov/or) ¥’(l/r3>§ a deviation from a pure Coulomb poten-
tial V for distances r < R adds to the fine structure of an f-electron
an amount _ .

. | B Parlet(x) - £(r) 1%

jgo rgdré(r)r

times the fine structure, where a  is the Bohr radius (~ 10_8 cm) and
£'(r) is derived from the "true" potential for r < R. Assuming that we
get an upper limit by putting §' = 0, the above factor is of the order
(R/ao)gﬁ s (R/a.o)2 ~ lO-lo, and thus completely negligible. The same
argument can be used to show.that vacuum polarization modifications to
the nuclear potential also are insighificant; vacuum polarization sméafs
fhe gharge distribution tQ distances of order of the>electron Compton
wavelength which is ¢ timeé smaller than the Bohr radius; then we have
an additional factor o from the Feyrman diagram for vacﬁum polarization?
f<Te] that the effect of wvacuum polarlzatlon is a(a?) times the fine struc-

>

ture; again negligible. (Thls would give a o term in (1).)

The second order energy (2) is usually evaluated, formally at least,

by inserting a complete set of states:

(ol 58Y [a)(al{?) o)

(3)

but this method is certainly not practical forﬂfhe present ?roblem since

we do not have a complete set of helium wavefunctions at our disposal.

Insﬁead we shall start out by solving an inhomogeneous Schrodinger

equatlon for the. perturbatlon to the wavefunctlon. This can be formulated

as a varlatlonal principle, so that we get a problem 31mllar to the orlglnal

Hylleraas-problem of finding the ground state ‘nonrelativistic helium wave-

function, except that in the present case there is no unknown energy



eigenvalue in the variational prindiyle. Once the perturbétidn to. the
wavefunction has been found, the second order perturbation energy (2)
is given by a single integral.

We point out that there are several very sound reasons for a deter-
mination of @ to 1 ppm.  For one thing, as a matter of pride, one would
like to know o to the same precision as, say, the velocity of light and
the Rydberg for infinite mass (c is known to 0.33 ppm and Re tb 0.10 pp 7)f
But more important is the fact that a high-accﬁracy‘valué of ¢ is needed
to>compare the predictions of QED with precision experiments; the most
important of these are‘on.the'anbmalous magnetic moments of electrons
and muons, and the ﬁyperfinestructures (hfs) of hydrogen and muonium.

7

Parker et al. insert their,non—QED value of &¢ in the most recent theo-

retical expressions and compares with'the latest experiments. Theitheb—
‘retical Value.of a, = (ge - 2)/2 for the electron is known to 2 ppm,
where the dominant contribution to thevuncertéinty comes from . Clearly,
if one is to see ﬁhéjsmall a3 correctiéns’to ae_(a current estimate of
this term is 0.13 (o/n)3) one would have to know o to 1 ppm or better.

The experimenfal valué Of'ae'is good to_23 ﬁpﬁ;ibut'it does not. agree
well with the theoretical one: |

»ae(experimental) -bae(theory) = (- 81130) ><' 10_9 (Ref. T)

"This seems to indicate disagreement between experiment and theory; but

T

-the experimental result involvés.some'tricky corrections, and”should

perhaps be taken with a grain of salt. For muons, au has been measured

7

to 270 ppm, and the theory is good to 135 ppm'; the undertainty’in.a is-

not important here. Agreement with theory is again poor:

8

au(experimental) - ae(theory) = (+ 55122) X 10~ (Ref. T)



and the discreparicy has the opposite sign of that of the electron. IT

a“ can be deterﬁined to higher accuracy, one might hope to see hadronic
contributions to a.u from such things as vacuum polarization by plon pairs.
Before that can(bé done, one must know the a3 corrections to au; work on
this seems to be in progreés.El This gives a compelling motivation to

find @ to 1 ppm. The hydrogen hfs has been measured to an incredible
relative accuracy.of l.2 X lO_13 (Ref. 22) (the most precise measurement
of any physical quantity, published in a hard-to-find engineering journal) .
Theory is far from defiﬁitive because the hadronic corrections due to the
proton are somewhét speculative; using present estimates of nuclear recoil,
but omitting a proton polarizability contributién 5, one gets a result

for the hfs accurate to 4 ppm, where most of the uncertainty comes from

¢. This agrees well with experiment:

hfs(experiment) - hfs(theory)
hfs(experiment)

= (2.5t4.0) ppm - & (Ref. T)

Clearly, a better value of a is required if one Vahts‘to obtain information
on ® from the accuraﬁe hydrogen hfs experiments.j Muonium hfs has been
measured to 9 ppm, but the theory is only good to 14 ppm due to the uncer-
taintybin the theoretical value of the diamagnetic shielding correction

to muons in water. Within the uncertainties, the agreement between theory
and experiment 1s good.

Thus; although the labor involved in obtaining & to 1 ppm from helium
finévstructure megsuremeﬁté is substantial, it'seems’eminentiy worthwhile,
esbecially'since two determinations of O can be obtained. However, this
assumes that QED in its.present form is corfect. But there is some dis-
turbing evidence that this may not be the case; we have already mentioned

the discrepancies between theory and experiment as regards the electron

and muon values of g - 2, furthermore current measurements of hydrogenic



fow)

Lamb shifts do not dgree very well with the most up-to-date theoretical

7 a fact which a changevin the sixth digit of a-l will not alter.

valﬁes,
But it would probably be rash to say that we are faced with a violation
of QED at this time. One has to wait and see, in the meanwhile we proceed

with our calculations of helium fine structure.



'II. METHOD
The SchrBdinger equation is

(" +'XH1)W = BY | . (L)

0
' ﬁhere Ho is the nonrelativistic Hamiltonian for helium in atomic units
where the unit of length is ab = h?/mez and the unit of energy is

e2/aO = Otiem.c2 = 2 Ry:

ol

H. = -

5 1.2 : '
0 V-5V r Tt Es (5)

where Z = 2. Hi are the Breit operators. Expanding the energy E and

wavefunction ¥ in power of the '"parameter of smallness" A (in this case

N = ag):

2, :
Yo+ Ny A, e

n.

¥

il

»
E EO + KEl + A E2 T oo

inserting in (Y4) and equating coefficients of powers of A\ we obtain:

Hoto = Fo¥o | (6)
.Howl + Hlyo.; Elwo +_EO‘£l ' (7
HoY, + H ¥ =‘E2Yo + 31?1 + E¥, (5)

Multiply (6) by ¥. and (7) by ¥, integrating over all space of both

1

’:Particles and subtracting we get the usual result:
E) = (gl led/ () - (9)
1 o’ Ep and B, are known (7) is an

inhbmogeneous differential equation for the pérturbation to the wave-

assuming that H. is Hermitiah.' Once Y

function Yl:

(Hy - Ep)Y, = - (H, - E,)Y
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When this equation has been solved, E, is found by multiplying (6) by

2
¥, (8) vy ¥,, integrating and subtracting:

E, = (YOIHl - Ellwl)/(wolwo) g (10)

The perturbation Hl is a sum of operators:

and so we have unmixed (i = j) and mixed (i # j) second-order energies:

I A T A ST E VIR P (11)

The mixed energies must be counted twice in the final answers. In Eq.

(11): . ,
) <y eV [y )/ (e e | (12

and . | |
(H, - EO)Y£j) = - (Héj) - Eij))wo - L (13)

(11), (12) and (13) are the fundamental equations for obtaining the
éloJ)’ assuming that EO and YO are known.'_The.

homogeneous equation corresponding to (13) is just (6) whose solution

second-order energies E

is YO (the solution that satisfies boundary conditions appropriate for
atomic wavefunctions for some bound state), so the addition bf a multiple
op(1s3)

of YO to Yl is seen to leave the final answer E2 unchanged because

of (12).

We solve the inhomogeneous Schrddinger equation (13) approximately

by the variaﬁional mefhod. Consider the functional -
Eg[wii),wij)] = (Yii)|Ho - Eolwﬁj)) +'(Y§i)|H£j) - Eij)lio>

he variational principle



5 (1) ¢(3)y 2
——(Ty Eg[‘?{l ,\.Tll l=0
oY
1
With respect to Yil)vgives equation (13) for YéJ) and the value of the
functional (14) is then just the second order energy Eél’J) (11), apart

from normalization. ”Vafiation with respect to Y(J) gives the adjoint

_ 1
of equation (13) for Y(l)°bthe value of the functional E2 is then E(J’l)

v 1’ 2 :
Once thevsolutions Yil)'and Y&J) have been obtainedee have four different
ways of calculating (numerically) the same physical quantity Eél’J)
L= EéJ’l); for i # 3. (For i=j we have two ways.)
R(153) _ (1) w3y = o () (1)
E X (YOIYO) = - () IHO EOIYl )= (y IHO EOlYl )

2

i

ol - gV el8)) (Yii)lHij) -e [y (15)
Compafison of the numerical results obtained the four different ways will
indicate the sefiousness of round—off errors in our computer calculations
of the second order eﬁergieé.

, vThe method of solutions is the usual one of sefting up a sequencé
(1)

1
(1)

terms U, with coefficients X

of functions to approximate ¥ B each sequence consisting of a sum of

as linear parameters:

(1) _ (1) _
wl% - Il’:Ll -

‘ﬁMZ

x(i)U
1 n n

which turns (13) into a system of N inhomogeneous'linear equations for

(1),

L)
S

y

N ) S : N . ) ) . )
kél[(UﬂlHOlUk)u' EO(U£|Uk)]X£1) =it | | (16)
| £=1,2, «eu N
whefe |

o - ey ey o

11
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We do not use functions Un that form an orthonorzﬁal set. The accuracy
of the computed second order energies will be judged by how well (or bad)
they converge as the number N of trial functions increases.

Our choice of these trial functions will be guided by the ones used
for the variatiohal solufion YO of’the homogeneous Schrodinger equation
(6); which is actually more .difficult to solve_ﬁumerically than (13),
since both ﬁhe energy eigenvelue.EO and the coeffieients'in the expansion
of WO are unknown; and iterative methods have to be used. We will flrst
calculate the second order energies us1ng the same trial functions that
iwe use for the varlat;onal solutlon of (6), these functions are.called
the standard basis. Sinee YO is an atomic wavefuhetion, we inolode-a'
factor in ﬁhe trial functions so that they fail off exponentially as
r, o @, o, o ©. ’I'his fixes the boundary condition of ¥ and the \ygi)'s
at infinitj. However, due to the singular’ nature of the Breit- operators
as rl'—e 0, r2 -0 or r12 ‘-0, the left hend side of (13) will be less'
singular than the right hand side; i.e., H Uy (=1, 2 N).will not
reproduce the 81ngular1t1es of Hil) O’ and thls will in general manlfest
itself by slow convergence of Eél’J) ‘as N increases. Therefore, e shall
: eventually have to introduce trlal funot;ons whlch have slngularltles
as rl'—S O; rél—f,o. or T f§ O,‘io eddition to_the termSuinbthe
- standard basis. Once_wo'is known, one can aetermine What extra fuhdtione
Vm_are heeded from the reqﬁiremeot that H V .shall have the same leading

(1).

-0, r, 20 and r —N)asH ¥, has.

1 2 l2

This approach to second order perturbation theory,23_sometimes

singularities‘at, r

called the method of Dalgarno and Lewis,gu has been used to calculate

the second order Stark effect in hydrogen and the perturbation on a

25

hydrogen atom of a far-away charge. It was investigated by Schwartz



in a series of papers, culminafing with a very accurate calculation of
the nanélativ_iétic Lamb shift in hydrogen (Bethe sum), and it has also
'bee@ ﬁsed by Schwartz26 to calculate the Bethe sum in helium. In these
hydrogen problems exact solutions for gi in closed form were obtained;

in the case of the helium Lamb shift, a variational solution for Yl (for

each value of the photon momentum) was used.

13



1k

ITI. THE NONRELATIVISTIC WAVEFUNCTION
To start the second order calculation we need the nonrelativistic

wavefunction ¥, which is the solution of (6). It is antisymmetric in

0

space since we have a triplet state. Since there is no exact solution

*

f (6), we use the time-honored variational method. The antisymmetric
functions which define our standard basis are (Hylleraas basis):

KO K

1-P ' ~-5T, -3Tr .
Upr = — 12 f;yr? rg rfg e 2 ;_e 22 o - (18)
IPNE. . v ' S

where £ 20, m 2 O, n 2 0. The variational wavefunctions are:

Lmtnsw

o= ) Chm Vi (19)
£ym,n=0 '
where the coefficients Cppy 2re determined from the variational principle.

In (18) P12 exchanges coordinates rl and r,, and the P-state character
is given by the vector sign{

_ ThlS type of trlplet -p wavefunctlons were used by Schwartzll to
‘ S

vcalculate the expectatlon values of the spln dependent ﬁrelt operators,
with ® = 10 and 286 terms in the expans1on (19) the results were |
accurate tQ’l part in lO&. While this fell short of the goal of 1 ppu;
these functions sheuld be quite adequete for the present purpésefsince»

we only need an accuracy of 1% in the final answers. 'With.an,expended

basis, obtained from (19) by the replaéement C - C + DzmﬁJr + Lo

fmn 1 -

the goal of calculatlng the leadlng term of the fine- structure to 1 ppm

ﬂmn

was achleved with a 439-term wavefunctlon, but the computatlons had to
be done in 52 decimal arlthmetlc. The wavefunctions (19) have been used
by_the author27 to calculate the three reduced matrix elements determining

the hyperfinestrueture of the 23P level in helium 3 (which has nuclear
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spin 1/2); with 165 terms the accuracy was about 1/2%.
Our three basic variables are thus the two nucleon-electron distances

r. and r,. and the interelectron distance

1 2
S - - 1/2
rip =l -l = (] ¢ rp - aryry cos 0y,)
. - -
" where 912 is the angle betwsen rl and rye Other choices of variables

have been made, such as "elliptic coordimtes"” (Ref. 13, p. 146) or the
perimetric coofdinates of Pekeris.28 Howevér, there is no particular
difficulty in evaluating the many integrals with our choice of wvariables;
. -
fix rl,

only angular integration is. then over 6

, the azimuth of ;) The

say, along the z-axis so that 6., =06 X

12 2

o
The expansion (19) is not the most general trial function with

triplet-P symmetry, any sum of properly antisymmetrized products of two

one-particle wavefunctions with arbitrarily high angular momenta ﬁl and

ﬂg combined ﬁo give total angular momentum L = 1 1is acceptable. However,

most of these terms are implicit in the r..-dependence in (18); Schwartz26

> 2 2
1T = 5(r] * r5 - r,)

reduce the number of angular functions required, for each ML’ to 2L + 1.

12
. - - - - 1
has shown how the selection rules for rysTs and r

In the case of L = 1 we have the triplet functions

(1 - B) T Flrporyry,)  [(4,4)) = (0,1),(1,0)]
With odd parity,iand the even-parity functiop:
.(?i X Tp) (1 + Py o) F(r) 70,7 ) [(4,8,) = (1,01
VSincé thg lbwest:triplet-P'state i; sought, 23P,'the oddfparity fuﬁction
is the appropriate choice since it has the symmetry of a (sp)-configuration,

whereas the even function has (pp) symmetry. A (pp) configuration corre-

sponds to a doubly excited state and has much higher energy than a singly
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) excited (sp) state;'in fact doubly.excited states lie in the continuum
(Ref. 13, p. 125). |

| Wavefunctions arevcomputed for w=1,2,...8. The number of terms
in the expansion (13), i.e., the number of different choices of (E,m,n)

such that O = ¢ +.m +nsw®w when £ 20, m2 0 and n 2o is
N(mj - 3o+ 1(@+2)(@+3) . ~ (20)
The variational principle equivalent to the.Schrodinéer equation (6) is
8(Y|H EI‘Y)=O-_"-"-'>. (21)

Approx1mat1ng the lowest triplet- -P wavefunction Y by an expans1on W

of the form (19), the varlat;onal principle (18) gives

N(w) N (w) : -
6Lk§l Zl CC; ((U l5,lu, ) - O(Ukle)‘)]_‘é 0 - (22)

where we have done an ordering r(ﬂ,m,h) <« k; the so-called "natural"

order is used. This means that the %(w‘+ 1)(w + 2) possible values
of (z;m,n) such that Z + m +n=w with £20, m2 O and n 20 is

mapped one- ‘to-ohe into a range of k-values glven by N(w - l) <k = Nw).
Variation w1th respect to the coefflclents Ck gives a symmetrlc e1gen~
value problem; using an obvious notatlon: |

() o N o
kz;, [(Ho)zk - EyIgle =0 £=1,2,...0(@) . (33.)

We seek the lowest eigenvalue E, ='Eo(w)' and corresponding eigenvector

_(Cl’C2""’CN(w)) in thls~problem. The approximate wavefunctlon W ~ ;O
is then given by (19). The elgenvalue problem was solved by an approx1mate
: 1terat1ve method, descrlbed in Appendix C.-

Ideally, the screenlng parameters KO and k should also be varled.

However, differentiating the expre551on in square brackets in (19) with

respect to ko and k gives a huge expression and the resulting two equations
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"would be highly nonlinear and impossible to solve for ko and k. To obtain
the best values of k and 0, i.e., those which give the lowest eigenvalue
EO’ one must proceed by trial and error. For each.guess of (kg,k) the

and T

matrices (H K

O)kﬁ must be calculated, which requires the computa-
tion of a.lot_of integrals; then the secuiar equation (23) ﬁust be solved.
This should be done for eéch value of w, sincerthere is no reason for

fhe optimum values-of Ko and K, for_oﬁe value of W, to be optimum at

another value of ®w. We did not perform this variation, but used Schwartz’ll

values of k and 0 for all values of w:
k= b.62 and o =0.29 (Ref. 29)

These two numbers arevthé Qniy input for the caléuiations reported here.v'
>Schiff et al.3o_calcﬁlate wavefunctions and expectation values of the
Breiﬁ operators fof séveral states in helium, varying their screening
parametersf Hoﬁever, with a 560 tefm wavefunction (with only integer
vpowers of their variables) and varying the screening parameters_tﬂey do
not match fhe accuracy of Schwarté' calculation of the fine structure
intervals that.hé obtained with_439 terms, ﬁsing half-powers, but keeping
the screening parémeters coﬁstant. We therefbre conciude’that for anl

“accuracy of 1%, the values of k and 0 may be kept constant.
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Iv. A MODEL PRQBLEM
The procedure for obtainingVSecond-order pefturbation energies can
be tested on a simple case where the answers are known. The nonrela-
tivistic Hemiltonian is

O =T+ V, where T is the kinetic and V the

potential energy. If we take T and V as perturbatlons

Hil) = V. i and ) Hiz) = T

then it is known that

(1) (2) _ - o(2,2) _
B0 = 2Eg, viEl - _Eo’ 2 - By~ o7 Eo_’ 7 |
- . (l;2) '(2;1) _ -

These relations can be'deducted from the virial theorem, but it is easier:

to derive them from a simple scaling argument. In cgs units the Hamiltonian
is .
' 2

(8) = K

s = (D () @

au ‘au
where (T)a# and (V) au 8Te T and V in atomic ﬁnlts. The Hamlltonian
-H»= Hy + AT + uV = (1 + h)T + (l + 1)V, where M and p are parameters
of smallgese, has the spectrum of HO in scaled unlts, 31nce the energy
unit is e?/a = me /h 1t follows from (25) ‘that the scallng factor:
'ie (1 + u)g/(l + A). Thus the perturbed'Hamiltonian H hes a perturbed

energy level

. . |
-E-EO(:IL—Jri;\)—*vE(1+2p->\+u,2+>\2-_2p>\) (26)

The relatlons (24) follow 1mmed1ately from (26)
Because HO is Just the sum of the two perturbatlons, H U w1ll

O'n
reproduce the singularities of . Hil)YO ~ H§l)wo (i‘=tl,2), so the
standard basis (18) should be adequate for the expansion of Wil).
There are no singularities in this calculation to slow down the conver-

genee of Eél’d) as W increases.



The calculation of matrix elements (H of H, (and thus also of

O)kﬂ 0] (

T and V) between a pair of elements in the standard basis is described
in Appendix B. The inhomogeneous system of equations (16) to be solved
is:

N{w .
kél Ay f{l) = bgl) £=1,2,...,N(w) (27)

B _ _ 1 ' s . ..
where A, = <HO)EK Eo(w )Iﬂk' Here Eo(w ) is the approximation to

E, obtained when N(w') terms are used in the expansion (19) for L

using this variational wavefunction in (17), the right hand side of (27)

becomes Nw')
(1) _ ( ) (1) |
R P R, (28)
' where , ‘
Sy (e N o
) - [mgl X oc(att) J /(\lf v} (29)
and . |
N(w') N(w*) S '
-(urolwo) = L LT | - (30)

(i )J)

The second order energies E in (15) are given by:

. | N(w") @) .
) ' ) ) ' '
ERRCATR R xfa & xf;’ ) = 200V
N (w ' :
) : ,
= _nél b1 x | oGy

and similar expressions for EéJ’l).
If ® =w', then Eo(w') has just the value which makes the matrix
A

4 Singular, see Bq. (23). We could try to avoid this complication by

keeﬁing ' bigger (smaller) than the largest (smallest) value of ® for

19

which llf](Ll) and Eél’J)a;e elculated. But inany case Eo(d)) is quite close ® Eo(w-'), and

me would have to solve an "almost singular" system of linear equations,

and this can be very unpleasant numerically. It is also preferable to
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have. w' = w 1in the calculations for each value of w, 'so that the second-
order energies are obtained by exactly the same algorithm for each value
of w. We fhus use the same number of sténdard terms in the expansions
for wii) and V_. ‘Ihe:singular matrix A, then has rank N(w) - 1,
because Eo(w) is a nondegenerate eigehvalue,,and.we de;ete-one eqﬁation
from the system (27). One of the unknowﬁs may.be put equal to anything,
and the deleted system of equations is solved fro the ﬁ(w) -vl' unknowns.
This solution is insefted into the deleted equation and-combaréd with the.
corresponding right-hand side. This gives a test on consistenéyvand
round;off errors. o |
Clearly,.the systeﬁfof'ééﬁationsr(ET).are not over—detérmihed.'ﬂiMe

coeffiéienté Ck inlthe,expanSion (19) of Wo demonstrate the-linéar depend-_

ence among the rows of AkZ:

N (w)
' kél-Azkakf

B N o
(Uylhy - By ]2, v, = <Uz|Ho_‘ Bolv,)
=0 “for. 4 = 1,2,...,N(w)

‘The same relation holds for the right hand sides:

'N(w), N N(w) - s .
W bé;)ck'= (kél CkUkJHil)"inl)|Wo>';

I

SRR ) - By v ) = 0

because of (12).
Theoreticallyg any one of the equations in (27)fmay be'deleteda '
Butvthebmost important term in the eXpansion'(l9j'for Wo isvthe first .

‘one, with £ =m =n = 0, corresponding to the leading'(lsép) termlin

a configuration expansion. - As a practical matter, we put Xil) =0
. .

when we delete the n h equation. The truncated matrix obtained by
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deleting the first row and column of Akﬁlis less close to being singular

(has a determinant of greater magnitude) than the one obtained by deleting

the nth

column and row of Akﬂ with n > 1. At higher dimensions N(w)
this may be important.

In Table I and Table II we present the fesulté of the calculations
in atomic units. All the computations reportéd in this work ﬁere done
- on a CDC 6600 computer in single precision arithmetic, this is 48 binary

éi),xéi)... x&i)

and xgl) = 0 were inserted into the left hand side of the first equation

bits corresponding to slightly more than 14 decimals. When X,

of (27) and compared with the right hand side b&l), the numbers agreed

to as many or more digits than the ones gquoted for the results of Tables .

i and ITI. The iterativé procedure for obtaining vo was stopped when the

‘ difference between fhe eigenvalues calculated for two successiﬁe iterations
weretless than a certain prescribed € ih magnitude.' Fof l=ws=s5 vwe
used e = 107, but for o = 6,7 and 8, € had to be increased to 10710,
~This does éf course ﬁot im@ly that the elemgnts Cn of the eigeﬁvector.
are convérged to énywhére near this accuracy, since the variational
principle gives an eigenvalue one order better than the.eigenvectqr,
‘roughly speaking. We therefore iterated once more to obtain a slightly.
different wavefunction; the computations of Table I were done for these
two séts of wavefﬁnctions. The resulfs agreed to the digits quotéd..

(i,J)
2

Eq. (31) for both wavefunctions. The results using the two different

(

2

were in slightly better agreement (one more digit for ® =6, 7 and 8)

The second order energies E were calculated by the two methods of

1’2)) calculated with the same wavefunction

~ methods (four in the case of E

than the results calcuiated by the same method using different wave--

functions, for‘both methods.



Table T

Rgsults of variational calculations of the unperturbed energy of the
2°P level and expectation values of potential and kinetic energies, in

atomic units.

Second order perturbation energies from

and kinetic energies, in atomic units.

1p(1) _ 1 2) - ()
@ (@) E, ot = L) 5? = ()
1 b -2.1294717879 -2.1557992765 .1821267650
2 10 -2.1326784020 .  -2.1349720423’ ,1372656826
3 20 -2.1330850392 -2.1330337967 +1329825540
I 35 -2.1331402223 -2.1331028335 .1330654447
5 56 -2.1331575951 32.1331389305 +1331202659
6 8L -2.133162289 -2.13315571 13314913
7 120 ‘f2.133163594 -2.13316125 : .13315891
8 165 = -2.133163983 -2.1331631 .13316226
 Extrapolated -2.13316418(4) -2.1331643(6) . -1331644(9)
Table IT

perturbation by the potential

- 2 10) e 5B _ gen)
1. -1.8013144780 o Q;,801314u78o - 1.8013144780
2 -2.0881998é63; | -2.0881998263 2.0881998263
3 -2.1285361103 _ -2.1285361103 - 2.1285361103 -
4 -2.1324502372 v-2;132u502372' | 2.132&50237é
5 -2.1329769612 -2.132976961é | éQi329769612
6 -2.1330922 -é.133o922 2.i330922
7 -2.133137k -2;133;37u,‘ 2.1331374
8 -2.1331539 -2.1331539 2.1331539
Extra-
polated e £22) - 512) < 2.133165(2)

22
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The extrapolated results are obtained by methods discussed in the

next section. The extrapolated E. may be compared with Schwartz' best

0
result of -2.13316&1908,ll The relations (24) are well satisfied by
thezextfapolated results. Notice that the relations of thé second-order
energies among themselves are satisfied (to Wiﬁhin round-off errors) for
every value of ®, whereas the relations involving'EO and the first-order
energies are only obeyed accurately by the extrapolated results. This
issobvious if we look at the expression (3) for second-order energies,

using a sum over a complete‘set of quantum states. TFor any term in

the Infinite sum there are relations for the numerators:
(o n)(alv]o) = (olu, - vIn)talvlo) = - [{o]v|n)|® = - [{o|z[n)|?

since In) is an eigenstate of HO’ and In) % IO).
The results of this section gives us some confidence that we have

a sensible algorithm for éomputing second-order energies.



_ V. METHOD OF EXTRAPOLATION
Schwartz3l has déveloped a method for estimating convérgencevrates
of variational calculations, from an analogy with the problem of fitting

a function F with N functions un from an'orthohormal basis:

_ZN-l '
F z'FN = =0 ®n"n
The mean ‘square érror is:
I(N) = f,F - FNI dv = Zn=N Cn E i (32)
assuming that the expansion converges, i.e., F = Zn=Ochun’ For some

simple one-dimensional cases .with a known F and a'volume'élément, or
‘metric, dv = radr,,say; and using a well-behaved and smooth (infihity
differentiable) system of orthonormal fitting functions that fall off

exponentially at large distances, the expansion coefficients

cn.= f‘F w, QV

ol

can be fdﬁnd'éxplicitly. Schwartz shows that if F is free from singular-_-

ities and smooth, then

e, - a<ll o (33)

This is called the fastvréte ofbéonvergence. If F has a singularity at
ey . _ . ! R :

‘the origin, such as

Fuxﬁ;%<k>m or  F(r) > tar
r-*Oirrv' . . r—0

or does not fall.qff as faétjés,the fitting functions at large distances, .

say F(r) > rF a5 r = «, or if F has some discontinuities, then

' S E o ;(34) |
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If we construct a variational approximation ¥ to some exact (but

. : . -1
unknown) wavefunction ¥, ¥ = WN = Zﬂzo cnun say, then

g(m) = J(¢ - ) (E - B(Y - Yp)av
is analogous to (32) if the operator (E - H)dv is considered as some
sort of generalization of the metric. If E is the exact'energy of Y,
then

gm) = [ vy (E - H)dev =E - By

assumihg WN normalized, and therefore

J(N) - J(W + 1) =%H1'Eh“c§

which follows from (32). Now take H = Hy + N, . as in (4), then
2_ . o 2 '
E = Ey+ AE; + N E, and Ey = EON + NEjy t N E,

" geroth order problém_(6)_is solved, i.e.:

N Assume that the

E,=E.. and ¥ =YV

0 ON 0] ON

then

- ElN) + xg(E - E.)

CJ(W) = NME 5 = By

1

using equations (6) thrdugh (10), with a subscriptvN on ¥, and Ei;
i=20,1, 2.

The conélusion is therefore.that we expeét the differences between
'the'computed energiés for successive variational calculations, labeled
by N, tb_be proportibnal to o or NP (|d| <1, p> lj. This should be

the case, qualitativelyfat least, for the unperturbed energies EO as

ii) and Eéi’j).

- the operator H is, the slower the rate of convergence (smaller p in (34)).

31

well as the two perturbation energies E The more singular

For the one-dimensional function-fitting problems Schwartz gives explicit

expfessions for ﬁhe cdnvergence rates, but the analogy between these model
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problems and actual Variational_calculations is to loose to”permit-unam—'

biguous predictions of the convergence rates of variational calcnlations.

One can make educated guesses, but. we shall merely try to determine p or

O empirically from the computed energies. o _ v "
If the trial functions are good in ‘the sense that they have all the

51ngular1ties of ¥ built into them, one expects the fast convergence rate

(33). However, even in the case of the Variational calculation of the

unperturbed wavefunction Wo‘for the 23P state, using thenstandard basis

(18), we expect that the convergence rate Will'nltimately‘(for large )

be slow (3k), becanse of a:weak logarithmic'singulafity in the'"exact"

wavefunction.whenv r —§;O and r, = O s1multaneously, the so- called

1 2
32 The advantage of us1ng additional trial functions

Fock singularity.
proportional to J;If:—;— (Ref. 11) is that these approximate the Fock
terms. | V |

In the extrapolations in this work, we try to fit the data to both
(33) and (34), the fast and slow rates._ In the former case we guess the
ultimate values of ¢ from the three or four last computed values of a;
the ratio between success1ve differences between consecutively calculated -

energies, If Q is the last value of w for which the calculations are

done, then the extrapolation is

0-1) 1-a L (35)
which is added to the la st computed energy EQ; the uncertainty in o will : ' ~5
give an uncertainty in the extfapolation. “In the lattervcase we plot .
the logarithm of differences betneen consecntively calculated‘energies,
Jog

line with more emphasis on the points with higher values of w; the goodness

QD - Hn l|, versus &ucb, and try to fit the p01nts w1th a. stralght
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of the fit gives an indication of the usefulness of this extrapolation

~method. The slope of the'line is p and the extrapolation is

- (B, - EQ_l)F;(p)

where

R D) (e

+ ol 0 P Q 1
F (p) = X ( ) o~ = - =+
a ‘ 2 720 @3

~ P
.. p-1 129

énd, for the case when the differences alternate in sign:

_ 5 n_0 p__1,p plp+i)(p+2) :
Fo(p) = n§l<fl) G332 ~-3*1g o - (360)

The extrapolated results of Tables I and iI (where the enérgies'decreased
or increased mohotonically_with'w)vare somewhere_between thé values obtained
from the two échemes, but.closer‘ﬁo the extrapolated_value given by the
siow‘convergence rate. The uncertainties havevbeen taken-aé half the
difference.betwgen thevtwo.extrapolations. |

Each‘reaaer mustvjudge‘the accuracy of the exﬁrapolated resuits for
himéelf sincé the schemes are rather heuristic. A‘gobd pprtion of human
judgmeht goes.inﬁolthe final extrapolated values, especialiy in the aséign—
ment of-ﬁnceffainties. But ﬁévbelieve that a safe upper bound on the
uncertainty.is.ﬁhe’extrépolétéd increment itsélf,'i.e.; the différence

betwéen5the last éalculated and -the extrapolateavenergies.'



VI. SECOND-ORDER ENERGIES WITH INTERMEDIATE OP-STATES
~ USING THE STANDARD BASIS

In atomic units the Breit-operators*relevant'for.thisbworkpare;i;

= :
' o, + 0, r X p r X p T
B e R o~ IR 1
| 1 T2
SIS - N4 r>x<p S A
) 121 e s 3ETENETY
B sf o g (o ) (39
- fi2 o
) e I e e . L R
S T TSR €A - S
B % o _r_l_ (;i"% e = ;.2 _1 2) L (ko)
2 - 7 r o
o T12.

and the operator correctlng for the flnlte mass M. of the HelL nuoleue,is,

hln atomlc units
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-Here mis the (reduced) electron mass, m/M ~ l 36 X lO ,'so'the operator'

‘(43) is a somewhat more 1mportant operator than the Brelt operators since - -

2 =»O 5# x lO'u._ The operator H( 1) 1s the coupllng between the spln
and the orblt of the same. electron, for both electrons (Z 2), _iz)

the. coupllng between the spln of one electron and the orblt of the other,

&(3)
ey

spin-dependent Breit—operators. Hy is dne to the retarded interaction

'between the orbits of the two electrons; H(5)

% is a correction coming from

1s the spin-spin (or dipole dlpole) interaction. . These are the only.



the relativistic variation of the electrons mass with velocity, and tﬁé
contact interaction H§6) is a term characteristic of Dirac theory. There
has been some cocfusion dbout this operatorlh;'the one given by Bethe
and Salpeter33,is not Hermitian. The operator H§6) has been obtained‘in

the form (42) by Itohlu‘and Kim.16 In this work we shall only calculate
contributicns when the ﬁerturbation wavefunctions Wii) have the same |
symmetry as.wo, i.e., from intermediate triplet P-states with odd parity.
Therefore we have left out some terms in the spin-orbit opcrators propor-
tional.to 31-5; which have vanishing matrix elements between states of
the same multiplicity. From.the operators H§3)jand H§6> we have left

out terms proportional to 8(3) (;12) whose matrix elements between standard
terms (18) vanish.

The spin-orbit operator (including the cerm_that we dropped) is a
contraction of an irreducible spherical tensor operator of rank one in
spin space and a similar oﬁerator in ordinary space. Acting on a triplet
P-state it will then give a mixture of triplet P, triplet D and also |
singlet P and singlet D. There can be no higher multiplicities since
two electron spins can only give triplet and singlet. The spin-orbit
interaction‘has even parity, so it does not change parity, therefore

A

there are no S-states; these would have to have the odd parity of Yo?

. . . . . - - -
and it is impossible to construct an odd scalar from ry and rye The

L(3)

spin-spin operaior Hy is a contraction‘of a spin orerator of rank two

and an operaﬁor in ordinary space of the same rank. Acting on wo it will
then give a mixture of intermediate P, D and_F—states, all triplets with
odd parity. The second-order pefturbation cnergiés that we do not attempt |

to calculate in this work are thus second-order spin-orbit energies from

. . 1.1 - . . R . ﬂ
intermediate "D, P and 3D states, second-order spin-spin energies from
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3

intermediate ~D and_3F states and a mixed second-order contribution from
the spin-orbit and spin-spin interactions with intermediate 3D states. -

The details of the calculations of the matrix elements

(Uﬂ'm'n'lHil)lU,ngl) . i = 1,2,-;.,'7

where Uﬂmn is given by (18) are describeo in Appendix B, and the calcula-
tion of the necessary integrals is discussed in Appendix'A; In.Table 11T
we give the expectatlon values of the seven operators, using the wave-
functions W (19), for o = 1,2,...,8. The units .are chosen for comparison
with the results of SchWartzll and,Schiff et al.3o 'These results are for
"stretohed" states where J =m; = 2. As in Section IV all calculations
were done'with two sess of siightly-different waﬁefunctions Woy‘the
results agreed to the digits quoted. For w = ﬁ there.was complete
agreemeﬁt for all 11 digits with which wevhad.the computer.ﬁfint'the'
results. Careful extrapolatlons accordlng to the: schemes of Sectlon V
has been made, the ass1gned errors come mostly from the uncertalntles

in the values of & or p used in formulas (35) or (36); this is probably
too optlmlstlc. The expectatlon values_are in very satlsfactory agree-

ment with fhe results of Schwartzll and Schiff et al.3o 'Notice that

the sequences of energies are monotonic with @ for all but the lowest

values of W, except for E§5) and E§6),whererthebdifferences alteroate
in sign. ) '

‘The second order perturbatlon energles E( ’J are calculeted by
the methods described in detall in Sectlons IT and IV. The spin-dependent
results are given in Table IV; all values are for pertufbations on the
stretchea state. Since thesspin-independent second—order‘energies can

be done with no extra effort (and very little more computer time), we

also did these calculations and quote the results in Appendix D. Each
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Table III

Expectation values of the operators (37)-(43) using Hylleraas-expansions
(18) for the wavefunctions.

o BV Gfr 5P Glfm) Y dPm 5P el w
1 0.13621571056 -0.21827744969 0.019652745588 0.034490724822
2 0.13112509381 -0.20177641002 0;018015107575 0.032904898326

3 0.13479007901 -0.20308763420 0.017932223852 0.034113074489
L 0.13688109890 -0.20459137883 0.01798238L4057 0.03467268684
5 0.1378979722 -0.2053541147 0.01800112012 0.0349Lk044E83
6 0.1383407 -0.2056763 0.01800943 0.03503569
7 0.1385195 -0.20580367 0.018012740 0.035065736
8 ~ 0.138593h4 - -0.2058600 0.01801427 0.03507596
® 0.13864(1) -0.20591(1) 0.018016(1) 0.035082(2)

. B2 edfr) 50l r) 2T eEr

1 -9.650kTheB23  7.8022849193 -0.058229558253

2 -9.9742033112 7.9451810162 -0.059299556963

3 -9;9012260173 7.905371791k -0.06196076281

b ~9.9159907956 7.9121701450 -0.06337755521

5 49.91007660 T.908943679 -0.06419143230

.6 -9.91183 7.909714 -0.06446346

T -9.91152658 7.9095189 - -o.o6453566 }

8  -9.911905 T.909689 -0.0645629

©  -9,91180(5) ' 7.90964(15 , -0.064580(5)
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energy was computed by the two different methods.(3l), and this was done.
with the two slightly different wavefunctions WO. There are thus 4 num-
bers to compare for the unmixed and 8,forvthe mixed second-order energies.
The discrepancies"between the 8 (or 4) numbers increase with ®, indicating
accumulating round-off errors. One of the reasons for this may be the
fact that the matrix Aﬁk in (27) with the first row and column deleted

gets close to being singular as ® increases, as mentioned in Section IV.

This affects both wd and W§l) since the matrix A, enters the eigenvalue

£k
problem for Wo' Generally, the discrepancy between results calculated

the same way with the two Wo's was'slightly larger, usually one more

digit, than the disagreement between the wvalues calculated by the two

different methods, using the same Woo, When the solutions Xél), Xél),
ceey X§t1> were inserted into the left hand side of (27) and compared

(2)
1

digits than the ones quoted in Table IV, Jjust as in Section IV. The

with the right hand side b » the numbers agreed to as many or more
loss of accuracy is rather different for the various second-order
energies. It is most pronounced when the spin-dependént operators

(6)
1

are mixed with H§5) and H « In these qases, for the higheét values
of w, we ha&e quoted nﬁmbers with uncertainties, this being half the
difference between the sméllest and largest among the 8 values obtained
for the second-order energies.

Careful extrapolations have been done, using bqth (35), dénoted F
for fast, andl(36), denoéed S for slow. 1In thé former case ¢, the ratio
between successive différences, has béen assigned a valve with fairly
generous uncertainties. Whene&er o increased steadily with @ (there,

was no case with monotonic decrease of @), we guessed at an extrapolated

value of . In the latter case the absolute value of the successive
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differences was plotted versus @ on log-log paper, and several straight
lines were fitted to the points, giving the slope p with some uncertainty,
to be used in (36a) when all ratios & are positive or in (36b) when all
ratios of successive differences are negative. In Fig. 2 two examples

of these plots are shown, for Eé2’5) where thé points fitted very nicely
to a straight line and for Eé337) where the fit was less obvious. When
the spin-dependent operators are mixed with themselves and with Hih)
and H£7), the second-order energies are all.monotonic with ® as were

. the first-order energies Eii) (i=1, 2, 3, 4, and 7).. The quantities
EéE’S) and Eé2’6) oscillate in a ﬁery regular manner with increasing
W, permitting a rather aécurate extrapolation. This may be accidental

519, 516, 5(3:5) 45 5(3:6

sinée behave quite erratically as
® increases. In these four cases the extrapolation methods cannot be
used, so we have jﬁst guessed at the final values.

A general feature of these results is that slow or fuzzy convergenée
1s associated with sharp loss of numerical accuracy with increasing w,

as well as with enhanced sensitivity to a small variation in Wo, and

that the Sériousness of these diseases for a particular Eél’J) is
(1) (J)
1 and Hl

are 1nvolved nelther the first-order nor the second-order

(5:5), 5(6:6) (5,6)

energies are monotonic with w, except for E2

determined by how singular the operators H

(5) (6)

are. Whenever
or H
and also E
Ihat these two operators should cause s1mllar behavior is reasonable
since both yield ®-functions (of rl and r ) when actlngbon W The

other dperators all give pole-type singularities at the nucleus (rl =0

or r, = 0) or when the electrons come together (rl2 = 0). For

(HO - EO)Wil) to give d-functions we need terms proportional to r;_/r2

- i '
or ro/rl in the expansion of Wﬁl), but to reproduce the poles one only
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needs terms proportional to ;)/r or ;9/r or ;) /r (corresponding
171 2' 72 12/ 712

to an expansion like (19) starting with £ = - 1 for ng)),-so it is

6)

not surprising that the operators H(s) and H(

1 give perturbation

energies whose behavior as ® increases is quite distinct from that of
the other 5 operators. It seems as if the mixed second-order energies,
whose convergence is controlled by the poles at r; = 0 (or r, = 0)

and rip = O are better converged than the unmixed ones who are controlled

by ore kind of singularity only. One might expect that the convergence

rates determined by the pole at r = 0 would be faster than the cnes

12
associated with the poles at ri =0 or r, =0 since both W&l) and

2.
. o+ w(1,1)
= 0 (because of antisymmetry), thus that E,

should converge slower than Féz »2)

WO vanish when Ty
and Eé3’3), but this does not seem
to be the case for our values of w.

The spin—dependent-dperators.displace the three fine-structure .

levels. In first-order perturbation theory the displacements are:

#), = @D+ 52205 + 5P g(0)

l)J

where, for this particular case

' J
) = TPt e o) - G
which follows from the ngner -Eckhart tneoreﬂ.?’l‘L Here the expsctation
values Egi), i - 1,2,3 have been taken for the."stretched" state where
J=m_=2, so that | 7{2) = g(2) = 1. 1In second-order perturbation

theory the J-devendence of the correcticns are given by

ol M 1)1 [alld o)1

(1,9)7 _ 5 | |
[E2 J ]J—§ _ — (L)

where the matrix elements [(OIHgl)[n>]J are between triplet-P states,



hence their J-dependence is precisely that of the first-order perturba-
tions. These matrix elements are of course diagonal in J since Hil)
are scalar operators. .Since Eo and En are unperturbed, J-independent

energies, we obtain the second-order displacements:

= (2@ + 522 1 op(b?))

(s {

2)J

+

| 5
2£(J3)e(J) i§1 E§1’3) + (G(J))2Eé3’3)

+ 2£(J) % % g(1:3) 4 og(a) % E
=1 =k 2 Rt

(3,3)
2
where Eél’J) refers to the quantities of Table IV, they are the correc-

tions given by (44) with J = 2. The fine-structure interval

v

oL = (Bl - (B)); is adjusted by an amount oy = (By)y = (By)y:
Dvy, = %dg Ry{{f a2[3(Eél’.l) + Eé2’2) + 2Eél’2)) - BO(Eél’3) + Eé2’3))
b5 533] - M) 4 5@ 4 g(10) 4 5(29) 4 5(16)
+ 'Eé2’6)) + 36 ocg(Eé?”l*) + Eé3’5) + Eé3’6)’)
+ 2 B Eél’7) - Eé2,7) v 15 Eé3,7))] . | (#5) .

and similar formulas for Aw12 and QWOE' In Table V we combine the two

extrapolated results of Table IV tp single, finai values for the second-

order energies. The uncertainties in the extrapolations are mostly

products of human judgment (or prejudice). The contributions of these

18 corrections to the fine-structure intervals Vol and Vio in wave-

numbers are computed from (45) and the_corrésponding expression for Awlz.
As seen from Tablé V, many of thevsecond-ordervenergies Eéi’j) have

an acduracy which is a good deal greater than that of the present experi-

mental value for v.. (good to about 2 ppm), but the situation as regards

0ol
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Table V

Contributions of the second-order energies of Table IV to the fine-
structure intervals.

Final result for Contribution to - Contribution to
(1,5)  S%9) from mable Tv fy, in 107 ent fv,, in 107 ent
(L,1) -0.63(4) - -0.7h(5) ) o
(2,2) s1.12(5) : | -1.31(6) o
(1,2) 0.677(5) 1.58(1) o
(1,3) -0.0475(2) . 0.92k(k)  -0.1478(6)
(2,3) -~ 0.080(2) R -1.56(%) 0.249(6)
(3,3) ~-0.0060(3) -0.175(9) . . -0.056(3)
(1,4) -0;1356(5)‘ O ouize(2) O 0.8u(3)
(2,4) Coas62(d) . -0.579(1)  -1.159(2)
(3,4) - -0.01320(2) - -0.616(1) 0.2L64 (4)
(1,5) . -0.10(5) . 10.31(16) o 0.62(31)
(2,5)  0.1005(6)  -0.3k(2) . -0.681(k)
(1,6) 0.26(3) | “0.81(9)  -1.62(19)
(2,6)  -0.2512(9) o.782(3) . 1.563(6)
(35 0.0087(5)  0.31(2) -0.125(9)
(3,6) - 0.0075(5) - - - 0.35(2) ':‘, R -q.140(9)
(1,7) 0:239(5)  -L.oo(k) - -3.80(8)
(2,7 -07324(3)' o - 2.58(2) ._='} 5.16(k)

(37 0.0226(1) o258 0 -1.031(5)

Experimental values - 'v.9878.87(2) - 76#.2&1(2)




b

Y12

accuracy, which is to match or surpass the precision of the experimental

is not nearly so good. Clearly, the results fall short of the desired

values. But the results demonstrate that all second-order contributions
are important and will have to be calculated to several significant
figures before a determination of the fine-structure constant can be

made from the measured values of v and v Previously, only one

o1 12°

second-order correction has been calculated, the mixing (by the spin-

orbit coupling) with the nearby 2lP state, Pekeris et a.l.35 find thaf
i

this shifts the J=1 level 1.58 X 10~ cmnl downwards, of the same

order of magnitude as our results.

One can try two paths to achieve better accuracy for the various

Eél’J). One possibility is to go on to higher values of ®, using just

the standard basis as we have done here. In view of the rather sharp

loss of accuracy for some of the Eél’J) as ® increased one would prdbably

have to use double precision arithmetic for w 2 10, say. Although the
calculations reported here were done in a matter of minutes on a CDC 6600
computer without use of tapes, it was decided not to go on to higher -

values of W, since the computer time requirements would increase drastically.

The second alternative is to make the trial functions for W£1) more

flexible. 1In the next section we shall see some examples of how this

leads to increased accuracy..

In Table IV each correction Eél’a) has been extrapolated separately.

One might try to combine somé contributions with the samevJ-dependence,

(1,1) (2,2) (1,2)
o T B * 2E;

the combination. Somewhat improved accuracy can in fact be achieved

such as E » for each w and try to extrapolate

this way. We shall return to this question in the last section, after

improved Values for some of the Eél’a) have been obtained.
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VII. SOME IMPROVED RESULTS, USING AN EXPANDED BASIS
We believe that the poor convergence of some of the preceding

results is caused primarily by the singularities of the operators
(1)

fy 1

(H. - EO)Wil) when only standard terms (18) with £ 2 0, m Z 0,

5 l1.e., that 'J(H(l) _ Eil))wo is not well approximated by

v O

n O are used in the expansions for Wél). Let us first loek at

a simplified problem. Take Wd to be just a (2p,1s) produet wavefunction,

let H£l) act on it and pick oﬁf the P-part:

P-part of H(l) = const X r13 1A

where V. = a(l)a(E)T( )( l)exp( rl)exp(-2r2). (See Appendix B for ﬁhe

definition of T( )(r o) There is thus the pele term proportional to

Til)(gl)ri3 which will be reproduced by H W(l)

(1) _ 1 .
_Wl = ;I.WO : (46)

But with this expression for Wil), HOW£1) will include other, less

(2

(rl)exp(-r)/rn' with.n = 1,2 (and also a

term Til)(;1)56%51)= 0) which do not have any counterpart in Hil)wo.

singular, terms such as

The solufion.W£1) of (H, - E, )w( ) (H§l) - Eél))wo might thus be

O
a pdwer series starting with a term like (46), but also including terms
like T§l>(;1)&zr exp(-r), Til)(EZ)r nr exp(-r) and so on, so that an
exact solution for wil) (which might exist if the l/r12 term is dropped

~from Ho)vwould be rather cemplicated,'even in this simplified case.

Turning now.to the actual problem, the P-part of Hil)wo is

 4+mtn=0
c

£,m,n=0

l1-0p
' ~ fnn -ﬂmn(l 2)
Ly J2
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where Vzmn(l,E).is given by the expression in (B3). When m = O, the

(1),
Tl (rl Zon

sees that this pole term would result from (fourth term in (Bl))

HOTil)(;l)

first term of (B3) gives Ju (l,2)/ri. Looking at (Bl) one

(1,2), along with meny other singular terms. This non-

(1)

standard term in the expansion for Wl

Ye-1n
. (l)
s proportional to (1 - P15 (r )/ r.,

would also reproduce the terms

]_-—>—)-—> 1),
2 e 1)71° %5 2 Ti )(rl)
T3 3.2 Ugon(1s2) and 5= U gon(1s2)
] T1p L
. > 5 1.2, 2 2 " .
in (B3). (Use ry T, = 2(rl +rg rl2)') The two remaining terms in

(B3) cause trouble when n = O in which case they are

W) 2y2 .2 - oW ), (1,2) (A7)

The first of these can be obtained with n =-1 in (Bl). However, this

gives terms proportional to (1 - P

(1)
¥

-of the earlier sections, since (Wil)|HofW£l)> includes integrals with
-3

r2 in the-integrand; coming from the -2/r2 term in HO.

obtain the second term of (47), one would need terms like

(1 - PlE)Til)(;) u (1)

l)(EZ)/re in the expansion for

12/F
(1,1)

which would lead an infinitevvalue of E2 if we use the algorithm

Finally, to

2) y _1(1,2) in the expansion for Wl . Thus it would

(1)

be a rather hopeless task to reproduce all the terms of Hl

(1)

more and more special terms to the expansion for Wl « IEven if one

(1)

managed to do this, there would be very many terms in Howl

(1),

17V, Now all but the first term in (B3) are proportional

X ;;) and only contribute an exchange part to the matrix

(1)
1

the latter involves folding radial functions (like r, exp(- % Krl) and

WO by adding

without
counterpart in H

to T X (—9
@) I‘l I‘l

elements of H)™’, these are generally smaller than the direct part because

T exp(- % Krl)) with coinciding peaks, whereas the former involves
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folding of functions (like ry exp(- % &rl) and exp(- % Kdrl)) with
maxima occurring for different values of the argument. Therefore we
shall oniy include termé in'W(l) which will give the leading singularities

(l)

in H W » Which are the terms proportlonal to T( )(r )/r The following

extended expans1on for W( 1 is used, see (18)

W _ ¢ W,

1 1 1 :

o= nEIO *n Yo-rn ¥ Z  mn Ygmn (8
' £,m,n=0 :

Powers of rlelin the new terms have been dropped, their inclusion would

increase the number of new terms from ® + 1 to %(w + 1)(w + 2) while
adding little more flexibility. The new terms'approximate the behavior

' (1) | L .
of Wl as ry f>Q (r2‘—> 0) in which case r, 2T (r12 - rl).

The expansion (48) does not lead to many new integrals, and most of the

2

subroutines written for the earlier calculations can still be used..
It follows from the work of Schwartz3lvthat the convergence of the
second-order energies Should improve when additional trial terms, reflecting

i ), are introduced in the expansions for W(l)
If one tries to fit'a function F —r -d as- r = O w1th functions that _

(1)

are regular at the origin,. corresponding to fitting Wl

the singularities of H

with standard
terms, the convergence rate for the one—dimenéional model problem where
the volume element is dv = rdr is (see Section V):

2 . 1/n?m20r2 (Ref. 31)

Thevadditional’térms in .(48) should change d from 1 to O, so that a

(1,1)

significant improvement of the convergence of E2

should occur.
However, there may still be singularities, possibly logarithmic ones, .
to slow down the convergence.

Denoting the non-standard terms in (48) by V, and the standard ones

by Uy, the system of equations for W&l) is now:
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(.0+l~

. N(w) Ly .
Frad P a0

£ = 1,2,00.,N(w)+urt+l
where N(w) is given by (20) and

S U T S U (50)

,3 = 1,2,000,(1)'!'1.

and
pli) () L = wb2,0+3 N(c)+ar+1.
) -1 SUH3, 00 e,
with bgi) given by (28). Explicitly the matrix A in (49) is:
I
|
| I
(v_.lu, - BylV)) : . (v .l8, - Eylu)
|
_________ e
~o ‘
A = | (51)
| |
.
oy
(Uk,IHO - Eolvn) | (Uk,|HO EO|Uk>
l
]
R
I
n',n = 1,2,...,0¢1
Wm=1£p”m@)

We first tried to solve the system (L49) as it stands, without deleting

any of the equations. In principle the matrix A is non- singular; EO‘
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has a value which makes the lower rightvhand block in (5l)'singular, but
this should ﬁot stop K from having rank equal to its dimension N(w)+w+l.
However, this leads to quite unreasonable resulté, the second-order energies
came out as huge numbers. The reason for this is probably that X is quite -
close to being singular. After some experimentation it was décided to
ddjust E, in (51) to the lowest value which makes X singular. This number,
call it ﬁo, is bf course the smallest eigenvalue‘of HO in the enlaréed
Easis (vl,...,v 17 Ul,..., (w)). An adjustment-of Eii) in (50) and

(28) must also be made, otherw1se the equations (49) will be overdetermined

after E has been changed to E The elements of the elgenvector W of

0°*

~o

A correspondlng to’ EO demonstrate the llnear dependence among the rows

of & (see'page 20), thus E( 1) must be adjusted to ﬁil) determined by

1
0 = (ngHii) - ﬁgi)lw§> ‘ (52)
S0 that, explicitly
N(w) wtl N(w) ,
%1 (w Iw ) = iw c,l Z c (V IH(l)IU ) + Z c (u IH(I)Iqh)]

and a similar expression for (Wblwo). Here (cl""’¢w+1* Cl""’CN(w)) |
is the eigenvector $o' One can now delete any one of the N(w)+w+l equa-

(D)

in (49), so that the (w+2)®® row and column of X in (51) are deleted.

tions (49), but we choose to put = 0 and drop the (w+2) th equation

This choice is made for the reasons stated in Section IV (pages 20 and

21)5 the first standard term in the expansion for $O‘is‘the ﬁost important

( :J)

one, corresponding to a (1ls,2p) wavefunction. Finally, E 1s glven by

2
(i,3) _ (1) _ ~(2) 1,3y (1) ~ (j)
By 0 x Qv ) = Gy lmy ™ - B ved’) = - gt ey - B L)
Eii) must be used in this fgrmula rather than Eii), because if Eii)

used Eél’g) will change if an arbitrary multiple of $o’ the solution of
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the homogeneous equation corresponding to the inhomogeneous equation

(1,J)

for wil), is added to wil). Using ﬁil) the resulting E,

is unique
in this seﬁse.

This provides an algorithm resembling the one used in Sections IV
and VI, but'in addition to wo (EO is not required) one also needs EO
and wo as input. These are found by the iterative method used to deter-
mine EO and Wo, described in Appendix C. In Table VI we give the results
1,1)

(
for E2

They represent a significant improvement over the corresponding results

calculated by this method, using the expansion (48) for Wil).

from Table IV. Since the ratio of successive differences was rather

constant (ranging from 0.45 to 0.52 for 2 s @ = 8), only the fast

0
EO, they agreed to four digits fpr W =1 agnd 2, to six digits for

extrapolation has been used. The eigenvalues E_ were rather close to

w=23, 4k and 5, to seven digits for w = 6 and 7, and to eight digits

for ® = 8. The differences between ﬁil) and Egl) were greater, ranging

from two digits of agreement for ® = 1,..,6 to four digits for = 7

and 8.
Consider Eél’6) next. Since
Ko
7 1- Lm=w ~—= T
4\[2 £,m=0

(6)

we see that additional terms in.*lfl

(3)(1_,)2) o

singular terms that are undes1rable but cannot be avoided. Thus we

proportional to Til)(;Z)/rE will

produce © when acted upon by H.; in addition to other, less

‘use the following extended expansion for W( ), similar to (48):

© 2 (), - mmE g | |
¥ = 2 x''U + 2 X U (53)
1 m=0 W Omi 1 £,m,n=0 fon v



Table VI

The second-order energy-Eél;l)

with the expansion (48) for w(l)

calculated

@ o\ = W

Number
(1,1),1 o
of terms E ( Ry)
w  in WirT 2 )
1 6 -0.5119739882k4
o 13 . -0.56885476328
ok -0.61688183482
ko . - -0.6401105462
62 - =0.6522232
S 91 : -0.658084
128 ~0.660772
174 -0.6620L40
o j -0.6632(2) F
Table VII

The second-order energy

'<1’6) calculated with the
eXPan51ons (48) for W(l)'
a (53) gor WM.

© él 6)(1 O‘2 Ry)

2 . 0.27078605763
3 0.26328428177 |
Ty 0.2686979553

5 .}0,27667971

6 0.272784

7 0.27308

8

0.27315(16)

® 0.2732(3)

L8
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The matrix of (¢§6)|HO - §O|¢§l)> is then no longer symmetric. Denoting
the additional terms in (53) by Wh, the matrix A of Hy - ﬁo to be used
; 2 (L) (1) (1) . :

when solving (HO EO)Wl = (Hl - El )Wo is no longer given by

(51) 5 the two blocks in the lower left and right hand corners are
unchanged, but the block in the upper left hand corner is (Wh,‘HO - Eban>

and the one‘in the upper right hand corner is (Wn,|H - EblUk)' One must

0

7

now distinguish between the left and right eigenvectors %f and WZ of HO
in this extended, mixed representation, corresponding to ﬁo. (For a
symmetric matrix these are equal.) In (52), the value of Eil) was
determined by multiplication from the left, so that:

~(1) | dy (1) . |

B = Wl v )/ Wl,)

(6,1)
(6,1,

between the new and the standard terms are

~ With these modifications we calculate E Notice that the matrix

(1) (4(6)
1 (Hl )

(1) (6) v .
(Wthl lUk> ((Ulel IVn>) where W (Vn) are the new terms introduced

(6) (1)
1 1

variational functional (14). To calculate Eél’6) (see (11) and (13)

elements of H

to reflect the singularity of H (H ); this is evident from the

for the precise definition of Eél’J)) one solves (49) for W£6), but

(1)

where the matrix A is the transpose of the one used in solving for Wl .
Furthermore: _

~(6) _ (6) |7z o

By = om0/ v 135) |
So we have a slightly more complicated algorithm for calculating E2

(6,1)
2
by the method of Appendix C. For w =1 (6-dimensional matrix) the

. No new integrals were required and $§, $f'and-ﬁ were found

and £ 0

iterations did not converge, so there are no results for o = 1. In

(1,6) (6,1)
o

Table VII the values for ® = 2,...,3 are given, E2 and E

agreed tb the digitquuoted. The differences between calculated results

behave ruﬁher erratically with w, but they are quite small, so we have



Jjust guessed at the final value, with a generous uncertainty. For w = 2

only the two first digits of E. and E were equal, but IEO -E | decreased

0 0 O|

with w; for ® = 7 and 8 there was 6 digits of agreement. For ﬁil)

(distinet from the ﬁ(l) used in calculating E(l’l)) and §(6), the number
1 . 2 1

of digits that agreed with E£l)‘and_E§6) of Table III ranged from 2 to

4 with increasing w.

Finally: we tryvtwo différent expansions for W( ) and W(3) The
() ang 13 4

operators. Hl are 51ngular when r.., — O, and from (B4) and

12

(B5) it is seen that Hgl)w contains terms proportional to l/r12 when

£ =0 (i =2,3). Similar terms are obtained from HOW§ i) if functions
proportional to l/r12 are-included in Wii). This should take care of
the dominant singuiarities that slow down the convergence ofvEéE’g);
Eé3’3) and Eé2’3), although terms with&zrl2 should probably also be

included. We try two simple expansions:

EON u> o (55)
1 n=0 *n -lOn £,m,n=0 fon  fon
. w e fmnse :
TAC R X T By ' (55)
L m=0 1 =1mO .z’m,n=o fmn ,an . .
‘A better expansion would include terms U?lmn with m 2 0, n 2 0 .and

m+ n = &, but it is desirable, from a practical point of view, to keep

(&) is also singular when

1
= 0, but from (B6) it is seen that all terms in H£%)

the number of extra terms small. The operator H
. ‘ B 3
ryp Wo with l/r12

are proportional to (ri - rg)/ri2 when £ = 0. The angulaf average of

rg)/ri2 is equal to that of i/rlQ’ so that an expansion like (54)

r (55) is not required for W(h). Nevertheless we calculate E(2’u),

2
Eé3’u) and Eéu’”)

along with E(272) é3’3) and EéE’S) with both the

, 1 =2,3,4. No more work (calculation

(
2
expansions (54) and (55) for wil)



of integrals) is involved for the three energies E(l’u) (i = 2,3,4) once

2
EéE,E), Eé3’3) and Eéz’s) are done. These six second-order energies are

computed by the same algorithm that was used to compute E(l’l)

2‘ « One

could also use a mixed representation, say (54) for Wil) and (55) for

WiJ) (i,J = 2,3,%) and compute Eél’J) by the method used for Eél’6).

Some additional integrals are required for the matrix element of H. and

0
Hﬁl) between standard terms and the functions with l/r and of HO with

new terms on both sides. Great care is required 1n the evaluation of
these integrals since they are divergent unless certain combinations are
taken. This 1s described in Appendix A. It is interesting to note that
the matrix of HO is no longer automatically symmetric; denoting the
additional terms in (54) or (55) by v

*2 - *

[ &F (vv v - VIV = [ a0 (VY. V- V:;Van)
surface

The surface integral over the far-away surface vanishes as usual, but

there is also an integral over a small spherical surface of radius €,

say, surrbunding the singularity at rl2 = 0. It turns out that this

51

contribution vanishes because of the angular integration, but the integrand

does not go to zero as € — O. For the same reason there is never any

contribution to the matrix elements of H, from a d-function 6<3)(;12)

résulting from the action of HO on Vh-

In Table VIIT we give some of the results of these calculations.

For the unmlxed energies E(l’l)

(see Appendix D for a formal proof of this statement), therefore we have

(1 1) (

only quoted the results for E, i=2 3) when the expans1on (54) was

used for Wil) since these were slightly smaller (larger in magnltude)

than the values obtained with (55). The extrapolated results from both

(2,2)

sets of calculations (using (54) and (55)) were the same for E, .

what we compute is always an upper bound .



Second-order energies calculated with the expansion (54) for V

Table VIIT

2

(33 2 myt P

52

'<i)'
l 2

Eé2’3)(% ae Ry)% d?

i=2,3.
® Eée,e)(% o Ry)% P
1 -0.8857638070

2 | -0.9922391306

3 -1.0544582922

4 -1.0870891287

5 -1.1049002

6 -1.11637

7 -1.12170

8 -1.12623

© -1.143(5) s

-0.

005239656190
005741438702
.0059313306L4
.006006971263
.006033454
.00604915

. 00605681
.00606316

.006085(5) 8

0,067865863045
0;67476398040u
0.078126662368
0.0796813108
0.08036593
0.080787
© 0.080985

0.081148

- 0.0817(2) s
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53:3) ang 5(223)

with (54) were slightly closer to the extrapolated results than the ones

. In the latter case, the calculated numbers obtained

from (55), for the higher values of ®w, so again only the results from
(54) are quoted. For w = 8, the values obtained using (55) were:

E(2’2)'= -1.12280, E(3’3) = -0.006057 and E(2’3) = 0.08100. The results

2 2 2
obtained for Eég’h), Eé3’4) (and Eéu’h)), using both (54) and (55) for

¢§i) (i = 2,3,4), were virtually the same as the ones obtained from the
standard bésis; the extrapolated vélues were in completevagreement with
the fesults of Table IVvand V, with just as big uncertainties, so-there
is no point in quoting these numbers. It is not surprising fhat the

expansions (54) and (55) shéuld'givé essentially the same results since

the non-standard terms approximate the behavior of Wil) at To =~ 0

where r. = r One could prbbably noét expect any significant improve-

1 2’
ment in the fairly accurate results of Table IV for Eé2’g) and Eé3’u).
(3)

(1,) (2
21 ’ Wl 1

when (54) or (55) is used rather than just standard terms, but this is

k)

In the variational functional (14) for E or V¥ is improved

[

not true for V. ’'. Since one of the two perturbed wavefunctions in (1)

(
1
is improved one might have anticipated a slight improvement. The differ-

ences between E, and EO as well as between Eil) and ﬁ&l) (i = 2,3,#) were

of the same orders of magnitude (for w=1,2,...,8) as the corresponding

(1,1)
2

The results of Table VI, VIi and VIIT are in excellent agreement

quantities in the calculatidn of E reported'on page 47.

with the corresponding results from Tables IV and V, and we have achieved _

a significant improvement in accuracy with only a few extrs trial func-

él:l), Eél’6) and Eé3’3) were improved

by two orders of magnitude and Eé2,2) and Eé2’3)

tions. In fact, the values for E
were improved by one
order. This lends further confidence to the computer algorithms used

as well as to the extrapolation schemes. The calculations of this section
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were not repeated with slightly perturbed Wo's and Wo's (resulting from

. one more iteration of the procedure of Appendix C), except for the results
of Table VIII for w = l,2,3 and 4. With once-more-iterated Wo's, but

the same Wo's, numbersbwere obtained that agreed with those of Table

VIII to seven digits. However, in view of the fact that the extrapolated
results were equal when different expansions ((54) and (55)) were used

) (i = 2,3,4) and of the fairly quick converge of the five result

(i
for Wl
‘obtained here, we do not believe that a slight variation in Wg (or wo)

would change any of the extrapolated results of this section.
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VIII. SUMMARY AND CONCLUSION

To obtain the best possible values for the l8_second—order energies

(3,5) 4pa Eé3,6) of

from the calculations reported in this work, we add E2

Table IV for each of the five highest valueé of @ and extrapolate the
(1,7)

sum, as mentioned at the end of Section VI. The same was done for E2

+ Eé2’7), and the results given in Table IX. The final results have Just

been guessed, but there is an improvement in accuracy over the wvalues of
Table V. We also tried to use formulas like (45) for each value of @

and to extrapolate Av or'AwOE, but this did not prove profitable. In

0l

Table X we list the contributions of the five improved results of Section
VIT and of the final values from Table IX to the fine-structure intervals

o1 and VOE. Half of the 18 second-order contributions to-the larger

fine-structure interval vOl are now sufficiently accurate, i.e., the

uncertainty in their perturbation of the interval is less than 1 ppm of

the interval itself, or less than 0.0l X lO_l'L cm_l. The ones that pass

the test are the five results from Section VII and Eél’3), Eé2,4) and

(15)

v

Eé3’u) of Table V.  Of the remaining 9 contributions only E

Eé2’6) are quite good if one believes the extrapolation, but the fact

that one was able to extrapolate so accurately may be accidental (see

E(2’5) and

are borderline cases, 5

really inaccurate.

- page 37). If the résults of Table IX are taken at face value, the contri-

butions of (Eé3’5) + Eé3’6)) and (Eél’7) +8®1) 46y are also suffi-

2 Ol
ciently accurate. Adding all the contributions except the one from Eél’5)

we get
1

bvgy = 1.38(2) x 10'” cm

is not nearly so good, because

the contributions are reguired to an absolute accuracy of 0.001 X lO_L'L cm—l,

The situation for the smaller interval Vio
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Table IX

Combination of some results from Table IV

with the same spin-dependence.

2(Eé375) + E§3’6)) Q(E(l’7) + EéQ,"())

2
© (& o Ry)oP 2o my) 2
4 0.0276695 : ;0}17283054
-5 0.027877 ‘ -o.174053o
6 0.02849(7) -0.173843
7 0.02836(4) : -0.17471(2)
8 0.02833(3)' ' - =0.17478
- 0.0283(3) -0.1745(7)
~ Table X

Contributions of the improved values for some second-order energies to

the fine-structure intervals.

2 2

Second-order Final result from Contribution to  Contribution to
energy Sec. VII or Table X vy, in 1074 ent tvy, in 107" en?
'Eél,l)' ; T -0.6632(2) | -0.7738(2) 0
Eée,z) -1.143(5) ~-1.333(6) 0
'E§2’3) 0.0817(2) ~1.589(k) 0.p552(6)
Eé3:3) | -0.006085(5) —0.1775(1) ~ 0.05680(5)

p o) 0.2732(3) -0.8500(9) ~1.700(2)
23 + 539y o.0283(3) 0.660(7) - -0-264(3)
25{1 1) 4 g(&7)y -0.1745(7) 0.694(3) 1.388(6)




or one order of magnhitude better than for Vo1’ to match the experimental

value. OF the 15 contributions to Aw

from Eé2’3),

12 in Tables V and X, only those

3:3), (113 ang 53:Y

Eé are sufficiently accurate.

It should not take much more effort to obtainbthe required accuracy

for all the contributions to AWOl' Using a mixed representation with

(1,2)
2

in Section VI will probably give sﬁfficiently

accurate results. The same goes for Eé2’6) and Eé3’6)

(1,6)

do E
ne as 5

expansion (48) for Wil) and (54) for Wﬁg) to calculate E by the

(1,6)

method used for E2

, these can be
but with expansion (54) for Wig)'and W£3). Since HiY) is

not more singular than H. it might be sufficient to use just a truncated

. 0 ,
standard expansion for W(7) and (54) or (48) for wil)’ ¢§2) and'W§3) to

1
obtain better values for Eél’T), Eé2’7) and Eé3’7).

terms in the expansions for Wil) and Wia) are different functions of w

When the number of

57

it becomes necessary to truncate one of the expansions after an "unnatural"

number of terms so that the two expansions have the same dimension; other-

wise the matrix K in (51) will not be square. If standard terms prove
57)‘it'is probably becauseé H&Y) and Ho have different

angular behavior. It was found that to reproduée the angular dependence

inadequate for V¥

of H§7)Wo non-standard terms like U cos 6 with m or n (or‘both)

Amn 12
zero, in addition to the standard ones, should be included in the expan-
(7) (7,7), the results obtained

sion for wl . This was used to calculate E2 /

were slightly better than those_bf Table XI in Appendix D. Lastly, in
| (5) |

the "expansion for v one has to include (at least) non-standard terms

1
like those in both (48) and (53); We_tried using (48) for ng) and just
(53) for ¢§5), but the results for Eélf5) were poor. We regret that we

did not have time tb carry out these computations, since most of the

prngamming required has already been done. The second-order perturba-

(1) (@) (3)

1 1 end vy

tions when V¥

> ¥

have symmetries other than triplet P, i.e.,
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singlet P and D and triplet'D and F (see page 29) also remains to be
calculated, this will require more work.

However, to match the experimental value of the smaller fine-structure
interval yig one would have to push the accuracy one ofder of magnitude
further, this would probably require substantially more effort. One
could try to use the methods presented here for very much larger dimen-
sions, which would take a lot of computer time, or ene could try to make
the trial functions more flexible by inciuding terms with”&zri, &zrg and
fnr,, in the expansions , and possibly a;lso _'functib_ns that reflect the
angular dependence of the operatore. Thie.would lead to many new classes
of integrals which would have to be evaluated. |

Finally, it must be said that there is always the possibility of
some undetected errors in the extenéive computer progfams'written_for
this work. We have performed eVery_ﬁesthe could think of; the ihtegrals
were evaluated in more then one'Way'whenever possible, and the matrices
of all eight eperators were checked for symmetry. (This gives a usefﬁl
test, see Appendix B.) The results themselves aré reasonable, and our
values for the nonrelativistic energy of the 23P state in helium as well
as for the expectation values of the seven perturbing‘bperators are in
'excelleﬁt agreement with the results of other investigatofs;e'But the
best check of all is for someone else to repeat these calculatlons
1ndependently. This seems worthwhile in view of the fact that the
present work is one of the necessary steps requlred for a new high-

' precision determination (from vOl) of the fine-structure constant.
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APPENDIX A: INTEGRALS
We describe here the evaluation of the many integrals needed for
thevcalculation of the matrix elements of the operators between functions

used for the variational expansions. Most of the tricks have already

been used by Schwartzll and Hambro.27
The majority of the matrlx elements of the operators HO’ Hil) ceey
AH§7) are expressed in terms(of the four basic types of,lntegrals:

dv. d4v. -ar, -br '
- 1 2 1 2 M-2 N-2 L-2
A(L,M,N) = [ !JI J It e. € r, T P N

dvy dvy ary BTy Mo §e2 L-2

1 ‘ .
B(L,M,N) = [ T J I € e r) " T, rj, cos B,
there are two kinds of A and B 1ntegrals, the direct ones for which

a = kG, b = K, called ADI(L M,N) and BDI(L,M,N) and the exchange ones

1

for which a =b = 5

K(L + o), called AEX(L,M,N) and BEX(L,M,N). The

following recursion formulas are used:

zuuMm)=Aﬁfgwem)+Aﬂfamwe)-embeﬂﬁLm¢)'mm

which follows from

2 2 2 . AR . Y
rip, =r] try - 2rr, cos 912' ‘ | (A2)

and
B(L,M,N) =‘%E%[B(L—2,M}2,N) + B(L 2,M,N+2) - (L 2,M+1,N+1) ] (A3)

which follows from (A2) and

a0, aQ, - : , a0, aq. g . ,
1, 2 L -, 89 8% i
Tl s Sttt R e ey, R

this identity is proved by one partial integration, take.;z as.fixed

along the z-axis, then 912 ='92 =6 and



dQl dQE 1
J I J I F(9 =3 f d@ sin 6 F(0)

The recursive calculation is started by

MIN!
B(E,M)N) =0 F} ‘ A(E,M,N) = —M_rlﬁﬁ

a,
A(1,M,N) = F(M+1,N;a,b) + F(I+1,M;b,a)
B(1,M,N) = %‘[F(M+2,N-l;a.,b) + F(N+2,M-1;b,a) ]

where the F-integrals are defined by

aI‘le Bs N-1

F(M,N;o,B) —f dre . ds e r” s .

Theré are three kinds of F-integrals; for the computation of the direct

A and B integrals we need F-integrals with o =k, p = k0 and « = KO,

B = k and for the exchange integrals we need the F-integrals for
a=8-= % (1 + o). It is easy to calculate the F integrals:
1(M-1)¢
YF(M)l;O‘)B) = _B' ( )M
(o + 8)

(M+N-2)z N -1
B(a+B)M+Nl P

F(M,N;0, 5) =

F(M,N-1;0,B)

" which follows after one partial integration in s. The equations (A5)

and (A6) follow from

dQ _ dQ an,. cos 8

N ffl=i and o

I‘> r

where ry (r<) is the greater (smaller) of r, and r,-

These recursion schemes give the A-integrals forv L

and the B-integrals for L 21, M 22, N 2 2. The schemes are all safe

€1, M21, N

in the sense that there are no substantial loss of accuracy due to

subtraction of almost equal quantities. For L > 2 the B-integrals

61
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are all negative because the dominant contribution to B-integrals with

10 comes from large values of Tio when cos 912

is negative. So for L 2 4 the recursion formulas (Al) and (A3) are

a positive power of r

safe. By looking at the actual numbers involved one can convince one-
self that there is no important loss of accuracy when L = 3. These

integrals are sufficientAfor the calculation of matrix elements of H

- o?
H£6) and H§7) in the standard basis.

The integrals

: o - T | -1 +
FLOM, N30, B) = [© dr e ML [P g5 ePs Nl st r
: o r Ts -
for A=k, P=k0O and Q= kO, B =K and o = B = % k(1 + o) are

alsd required; vSubstitutihg r=yx and s = y we get:

v ’ 1. M-1 1+x (® M+N1—ax+
FL(M,;N;0,B) = [ ax x° o g— Jy &V ¥ - (k)
Wl%l+x
=(M+N—l)f dx . 1-x
AT (x + BT
(04
Substituting x = (1 - w)/(L1 + u) we obtain
(1- w™ra+ Wity d

m+N-1

N

u
))M}N-E

'FL(M,N a,a) =. f -2du

(L - u+ B(1 + u
To avoid dangerous reéurSion schemes we compute the'integrals along
M + N = constant and use the backwards recursion formula

aFL(M+l N;0,8) + gFL(M,N+l B) (A7)
M+ N - ' ‘_7

| FL(M,N30,8) =

For the actual calculation we must treat the three:cases separately.

For o = B, we have

M+ N-1)! g gt Y S AN u)M+N-j-l v;

TR = RS SR R T 2 A Iy

Il

FL(M,N;, B)
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where the expansion

N
ey L G

has been used. Define the integrals

" M-1 N-1
- u)

J(M,N) = - fj du u (1 nu
= - g% Lg du uM-l(l - u)Nfl - - é% B(M,N)
where B(M,N) is Fulers B-function.
__or M)II‘ N) _  (nrm) o' I'(M+ N)
JOLN) = - R T - T AN (T T TN
M-1 M+N-1
T(M)T'(N) 1 1
= - Fww [(§1E-Y) -(kél £-1]
where Y is Eulers constant.3 Thus
Co(M-1)i(N-1)! 1 1 1
TN ==yt Gttt wneD

and we obtain a closed expression:

. N

! (N-1)! 1o L 1
‘.FZ(M,N,c,c) = T Jél =5t (M+N-J-1) 12 (J + ovee + ﬁ:ﬁ:i)
where c¢ = k(1 + o).

For a=kK >8 = ko and B/a = 0 the expansion
ok k
_ 1 - = E - [1+ % %‘,LL(LH).;.(LALK-U]
(L - u+ o(+u)”  (1+o) e

is used where B = (1-0)/(1+0) < 1. This gives an infinite series for

the integrals:

1
- M+N

, FL(M,N;k,k0) =
' A

0 N )
2 [ X rI(I)PIK(T,%) SKI(J,k) ]
k=0 J=1 _

where A = k(1+0) and



6l

_PUU):2%N¢&@MN&&MANJH

CFIK(T,k) = BO(3*L) ... (k+J-1)/k!  for k=1
FJK(J,0) = 1
! , !
SKI(I,%) = g5 * o+ ¥ EEAL

This looks complicated, but the fgrmula lends itself to an efficient
progfamming. The series is rapidly converging, in the program we truncate
when the ratio of the kM term to the sum of the k-1 first terms fall

-lO)

below a certain e (we'used e =10
‘The third and last case is when a = ko < B ==k and B/a = 1/0;

the appropriate ekpansionris then:

i - = (%)L[l + 7 fLi%;El_ L(L+1) ... (T+k-1) ]
(1~ u+Z(1+u)” k=l o

 where B = (1-0)/2 < 1. Tnis gives an infinite series of the same form

as the one for FL(M,N;k,k0) but with A = 2k and

FIK(J,k) = BE(M+N-J) v oo (MHN-J+k-1) /k!  for k 21
FKEL) =1, SI(K) =L ek
' DGO 2R T gttt kHMHN-1

- and FJ(J) is unchanged.
Armed with these Fl-integrals we compute the A(L,M,N) integrals with

L=0,M21,N¥N21 and B(L,M,N) integrals with L =0, M2 2, N & 2;

ADI(0,M,N) = S(FL(M,N;k0,%) + FL(N,M;6,k0))

BDI(O,M,N) = %(FL(M}I,N-l;KG,n) + FL(MAl,N+1;nc,n)

+ FL(N+1;M-1;K,KG) + FL(N-1,M+1;K,k0))
-1

- 5(F(M,N;k0,8) + F(N,M;k,k0))

and similar formulas for AEX(O,M,N) and BEX(O,M,N).



We also require thé A and B integrals for M =0, N 21 and M é 1,
=0 when L 2 1. To obtain these, one has to evaluate the integrals
F(M,N;x,B) with N =0 and N = - 1. Once the integrals for N = O
are found, the ones for N.= -1 (and more negative values of N) are
obtained from: |

F(M,-N;0,8) = ﬁ% - £ F(u,-w150,8)  (a8)
01y . '
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which results from one partial integration. - So we can calculate F-integrals

with negative N as long as .M - N 21 with this scheme. A recursion
formula for F(M,0;q,B) starting with small values of M were not used
because of loss of accuracy by subtraction. Instead we used backwards
recursion:

[ (M-2)%
(arrp) Mt

F(M-1,0;0,B) = + aF (M,0;0,8) ] (49)

M—l

and start by approximately evaluating the integral for a high value of
M by an asymptotic series:

n

fw‘ds -Bs e_Br 5 l)kk' (n+1) & (

)n+l
e - a—
r s‘ | Br k=0 (Br) B

fw ds -Bs
n+l r Sn+2

after ntl partial integrations. This gives the asymptotic expansion

n k’ k 1.1
'F(M,Osa:ﬂ) = Zl (-l) (I_\f[-lf—2) ke + r (AlO)
where -
Jr | <o)t [ ar & M‘n3f s e P (n’fl)’, (Mn-3)t o
g, an+l \ | | Bn+2 (Q&B)N+N 3 " n

Of course, the formula, (A10) is only valid as long as n < M-3. The sum
in (A10) and Rn are evaluated for several values of n; we choose as the
approximate value of F(M,0;,B) the sum in (AlO) obtained with the value

of n which gives the sme llest Rn. The error then diminishes for each
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iteration using formula (A9) as long as M-1 >« (o = 4.62, 1.34 or 2.98).

The scheme is checked by comparing the value obtained for F(l,O;a;B) with

F(1,05a,B) = ﬁj %5 e7Ps ﬁf dr e = -‘é L? %5 e—ﬁs(e-as - 1)
-t o -(prox)s _ 1, otp
__L) dx ﬁ) ds e =503

29

With our values of K and O we obtained

F(50,0;K0,k) = 0.2702036705 X 1023

F(S0,0;—]é‘n(1+U) :‘Jg"n(lm) ) = 0.413306 X ‘1023

using 16 decimal arithmetic. Thé error esﬁimates Rn were too small to
affect the numbers quoted. This method did not work for F(50,0;k,k0);
' the asymptotic serles only gave thfeé good digits;'ife., Rn was‘neﬁér
less than the sum 1n (A10) divided by 1000. This iritegral was computed
by upwards iteraﬁion in 28 decimal arithmetic (with 8vdecimals a huge
negatiVé answer:was obtained, showing how drastic the errors can become
when an unsafé recursion formula’ié used);'vIt'was'aiso compﬁted.from
the‘formulé B | | |
| | -1 (-1 - ($2)5)

. 1+0
* (M'l)f W K(M-K-1) k!

1)t
(M &)- n l;o
K

F(M,0;3k,k0) =
and by truncating an infinite series:

v 1 ®© k 1
P(1,056,50) = - (1 + o)) L py - 3 Lol (el)?
K ' BT K

! . - -7 . - o)1
1) = [0 ar e My < B 1) + Q’I—ﬁ)—
' K

and I(1l) = - (gnk + T)/k. It turns out that Eulers constant ¥ cancels
in this expansion. None of the three methods described are very good
because the terms alternate in sign, but with 28 decimal arithmetic the

values obtained by the three methods agreed to 9 digits:
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F(50,0;:k,k0) = 0.880736751 X 1023

Actually the last and first methods (upwards recursion) agreed to 13 digits.
To calculate the matrix elements of H£5) the integrals A(0,M,N) with

M=0 or N =0 (but MtN 2 1) and B(O,M,N) with M =1 or N =1 are

reqﬁired, thus one needs F(M,0;0,8) and F(O,N;q,B). For both these cases

the procedure described earlier breaks down. Tnstead we employ a numerical

method devised by Schwa,rtz:37 which is well suited to these cases where

 the integrand has mild singularities at both endpoints. First, set

u = l/(l+ex§(-y)) to transform the region of integratioﬁ from O=usl

to ~® =y S o and then make the additional change of variable

x = exp(y) - exp(-y). The integral.

[, ax F(x)

is then approximated by the sum

00
5 néLw F(nd)
truhcating when the téfms fall below a certain accuracye Then the spacing
5 is reduced and the sum evaluated again. This method works very well,
convefging fast as the spacing ié decreased. |

This concludes the description of the methods used to.evaluate'all
integrals required for the matrix elements of the eight operators in the
standard basié.

To calculate E(l’l) and E(l’6)

2 2
(1)

with the extended expansions (48)
“and (53)_for Wl and ¢i6),_respectively, we need integrals A(L,M,N) with

M=0 or N=0(L21)and B(L,M,N) with M=-1 and M= 0 (or
N = - 1,0). - These are evaluated from F(M,N) integrals with N = - 1
and N_= - 2, since we already have calculated F(M,0)-integrals, the

new integrals are easily obtained by using formula (A8).
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When the expansions (54) or (55) are used for Wie), ¢£3) or wiu),

one runs into integrals with (ri - 1'2)/I'LL .in the integrand when calcu-

<e> 3) L )

l 1 So a new type of

lating the matrix elements of HO’ H
1ntegrals G(M,N; a,B) must be 1ntroduced, defined by

2 '2

dv dv -ar ¥br :
2 M- - . e
f f u2 1 Y 3 rg 3 e . t o “ = - 6(M,N;a,b) + G(N,M;b,a)
T2 _ o (A11)
where
¢(M,N;a,B) = L: ar e ﬁ?lds e Ps sN-l(.s2 - r?)_l

1 en-3)t 1 aw (1wl
2 aM+N'2 o u l-ll‘*‘B/Oﬁ(l"'li))M-*_N-e

(A12)

G-lntegrals are only calculated for M+N 2 3, they are logarithmically

dlvergent at the lower llmlt (r=s or u=0). Writing (-l+u.)N_l =

u(l+u) S (l+u)N-_2 .wevobtain, after one partial integration:
| ) M1
1 (M+N-3)! (1 dx .
G(M,N;0,B) = 5~ — —— + div(M,N)
2 dM N-2 ‘o 1lt+x X+B/G)M N-2

- (U-1)FL(M-1,8-150,8) + (N-2)FL(M,N-230,8)
- (B-a)F'L'(M,N-‘l')J “ L (Ai3)'

-The first intégral is convergent and is evaluated by the numerical method
of_Schwa.rtz,37 the FL-integrals are tabulated and the divérgence is

contained in the surface term

I

%ﬂﬁ&ﬁlhm%u (1) (12

~div(M,N) 2
- -2 350 l—u+B/a (1+u ))M+N 2

_ _l (M+N- )'
=-3 MNzllm&zu_
(atp)” u—0

Thus the logarithmic'divergéncés will cancel between the two G-integrals

in (All) if u goes to zero at the same rate in the divergent parts div(M,N)
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of the two G-integrals, i.e., if the principal value of the integral on

‘the left-hand side in (All) is taken at 1, = r Looking at the expres-

1 2°

sion (BO) for a typical matrix element it is seen that the principal
value should in fact be taken, writing out (BO) without commuting the

operator 1 - P through H one gets two direct and two exchange parts.

12

These occur with the same integral signs and are equal except that ry and

2 1

in'(All) and u = € in the other, at the lower limit, we get a term

r, are interchanged, thus if we put u = ¢ in one of the G-integrals

2
proportional to &Xel/eg). but then from the other integrals with éxchanged

vériables we get another term proportional to &Keg/el); so we are Jjusti-
fied in taking the principal value. Formula (Al3) cannot be used for

N = 1, but a similar formula, valid for N = l_(but not for M = 1) can

)N—2

be obtained by using '(1-u)N'l = - u(l-u + (1—u)N'2 ‘in (Al2) and

doing the partial integration. The G-integrals are only evaluated by
thése formulas along M+N = const, a backwards recursion formula similar
to (A7) is used for M+N < const. There is a formula similar to (A11)

for the case when there is a factor cos 912 in the integrand on the

left-hand éide of (All), this formula contains four G-integrals and two
A-integrals; aéain'the divergences cancel among the G-integrals. In all
cases where G-integralé arevrequired,\the divergences cancel for the
 exchange énd direct parté separately,vexcept for the matrix element of

l/ Typ in H w1th functlons w1th l/r on'both sides, when the divergences

12
cancel between the direct and exchange integrals. If the functions Wil)

had been symmetric (singlet intermediate states) this cancellation would

not have taken place.

(3) (4)

1 between

Finally, to evaluate the matrix elements of H and H

standard terms and functions with:l/r we have to define yet another

12

class of divergent integrals:
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H(M,N;a,B) = LT dr e ¥ [: as o P8 SN-l(s2 r2)_2 '

which are calculated along M+N = const after which a backwards recursion
formula similar to (A7) is used. These infegrals are evaluated by doiﬁg
the same tricks as for the G-integrals, but two pértial integrations are
required. The surface terms now gi§eva pole-type singularity as well as
a finite contribution. After some algebra we find |

XM—E

. 1 (wwe5)! o ax
00Ti008) = = 30 Yo 0 TralaP T

+ Div(M,N;a, 5)']

+ (FN-1)6(M-1,8-150,8) - 3 BG(M-1,N;0,B)

N

e

where the first integral is done numerically and the surface term is

(i_u)M-l(-i_l_ﬁ)l\T-l
)M+NT11

1. 1
piv(M,N;a,B) = + lim =
- ’ B u-0 b (L-utg/a(1+u)

. 1 1 . d ) ] v
(l+5/a)M+N-u [ iii)'u'+ N M_+ o + B(M+N L)l (a1k)

1

L E
By loQkiné at the-éctual cdmbination-éf intégrals involved in the matrix
elemenﬁs, one finds that ﬁhe logarithﬁic divergences includéd in the“G-
integrals céncels‘separately for the diréqt'and exéhange iﬁﬁegrals ﬁhéneVer
H?integrals are used and that the pole‘divérgenceé in (Alh) canceis between
exchange and direct parts; :The finite part Qf (Alk) is important and
should of éourse be included. The;H-integrals are only évaluated for )

MZ2, N22 and MN Z 5.
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APPENDIX B: MATRIX ELEMENTS OF OPERATORS
Here we-presen£ some of the algebra involved in expressing the matrix
elements of the eight operators in terms of the integrals defined in
Appendix A. It is most convenient to work with one spherical component
of the vector r. in (18); We take Til)(;Z) - (xl + iyl)/Jé corre-

1
sponding to mo= L = 1. The matrix elements are all of the form

1-P ' ' o 1-P '
12 (1) = 12 (1)
Moy = == " (r)u,, , ,(1,2) 5] T, (r)u, (1,2)) (BO)
k'k i Jé 1 174 m'n® " bt Jé 1 1’ " imn
LA :
where uﬂmn(l’g) = e el e 22 rT rg rfe and the ordering (4',m',n') «—k';

(£,m,n) <> k is implied. H is any of the eight operators, every one of
these is symmetric in the coordinates of the two electrons, H = H(1,2)
= H(2,1), so that

av

av 1)% o ' * -
Mk'k = f —E% f _Eé [Til) (rl)uﬁsm:nt(lyg) - Til) (r2)u£'m'n'(2’l)]
x 1 Y (@)u, (1,2)

Whenevef we have more than one differential operator (Vl or Vg), it is
preferable to let all operators act fo the right. The matrix elements
are then sums of terms whose coefficients only depend on unprimed indi;es;
so that the actual prdgréms are unsymmefric in the indices. The
matrices of the eight operators are all symmetric, since the matrix

" elements are réal and the operators Hermitian. If one lets one V-operator
act to the left and one to the right, the program will be symmetric in
primed and unpriméd indices and can pfbduce a symmetric matrix even if
the integrals used are wrong. When all operators act to the right, thé
computed matrices will be ﬁnsymmetric if the integrals have incorrect
values. We thus get a check on the integrals b& letting all operators

act to the right; several errors in the programs were detected this way.



We now discuss the operators one by one. -

The nonrelativistic Hamiltonian H, is given by'(5):

0
p(1) (l) 1 -
HyTy (r Ju LY (1,2) (r )[ (c + 1) + (E ko(2m ¥ u + 8) - 2)
: ' 11 _
+ ——CH k(2n + 2+ £) - Z) - F5mm+ 3+ 4)
r .
1
1.1 B 1 1 o
-—2--é-n(n+1+,8)-—2—§£(2£+4+m+n)+r—
r r 12
2 - 12,
r Ir T '
11 o 1 2 1
+ —é—-zncz + ;E—-an + 2r2 Emz
T2 12 110
2 2 ' 2
11 o 1
g et - —5 el
Tolio B Y- T 12
+ 1 (1’< ) 5 (1,2 (B1)
- r12

= {T(l)(i?)[_gl c.(z,m,n;nq,n)rll rzé rl;]

+ T(l)( ) ——} u, (1,2)

,r12 |
: Introduéing5‘L‘= L+8%, MD = mtm', ND = ntn', ME = mn' and NE = n+m*
one gets thé‘followihg formula for the matrix elements:

13

(M —i{ Z c. (z,m,n KG,K)[ADI(L+2+S sMDH+h+p, ,ND+2+q. )
K ko 371 i v 91

BEX(L#+2+s, ,ME+3+pi_,‘-NE+3+qi:) 1

54

£[BDI(L,MD+k, ND+2) - AEX(L ME+3 11\1E+3) 13

(l) (l)(

It is convenient to write out H; l)uzmﬁ(l,E) in detail to

see what terms, other than the standard ones,'are requiréd'in the expan-
§l> for Howgl) to reproduce the most singular terms in Hil)wo.

- Since we only consider intermediate triplet-P states, the P-parts are

sions of V¥

T2



projected out when thé three spin-dependent operators act on ﬁo. The
angular momenta of the unperturbed state are fixed by choosing the
"stretched" state; i.ee, I = mJ = 2 . so that the spin part of the wave-
function is a(1)a(2).

- . (I‘ X r )
BN aa@n (7)u, (1,2) = o)) 1 + 1—2—20
it t Tip
(. X 1)
X (F-5))-— L (a(1)p(2) + a(2)p(L)¥ o
ry ry Jé _ 1r,
(-5 ot (2w, (1,2) (=)
2 l,
where vectors have beeﬁ resolved in spherical components:
(v>i = Tr(vX * ivy)/Jé and v, = vZ
(51 X ;;)x =~ 12 Til)(El x.r2 =- 12 Z c(111; xu)T(l)( )T( )( r,

(>\- = +l)0:‘l)
by thé usual law for combining spherical tensors; C (£ z £ mlm2) are C-G
coefficients. The second term in (B2) is pure D, the first term is a

mixture of P and D. The P-part of

-J2 Tél (ry X r )T( )( r,)
is _ .
] E(Tél)(?l x 7M@) - V@ <7, (l)(r )
eV E R - 1P @)
which is proportional to [51 X (EZ X ;;)]+1“ So the_P;part of (B2) is:
ey D) - (- By oD @) (E 2 - 1 (@):3)
- Tief2 N1

X up(1,2) (53)

73
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The terms proportional to £ only contribute exchange integrals to the

matrix elements. Since

-

- - - o _ 22 .2 :
r2-(rl X (rl X r2)) = - ryr, sin ,912

we use (A4) to obtain a simple formula for the matrix elements:

i),

' %ADI(L+2,MD+1,ND+2) - %(EBEX(L+2,ME+3,NE) + £'BEX(L+2,ME,NER) ]

Proceeding to the next operator we obtain, aftera,similar angular

momentum projection, the expression:

P-part of B2 a(1)a(2)rit (F)u, (1, 2) = oz(l)oz(E)( 3)[T<l)( )
12
(1) ko 1 m k 1 . n (1)
ST F S - Ty )(r )
: 1 rl 2 r2 |
- NS, (1,2 (B4)

The integrals contributing to the matrix elements are easy to write down.

The first two terms must be treated separately when L = 0, when the

formals ,
dQ an '
2 1 1
/ f b 3T 2

rip T{rs - g
is used, in which case F—integrals are needed. Since

L=
r .

( 2
17T e

- =, 1 2 0.
r r.) = =(r Tt r ( ry -, - r12)

‘2. o) ) ' —>.(—>
1 12 Tp™\r

a _”) =
an.. l'- I‘2. =

mIHV

2
2 2 (1) .
the factor (r> - r<) cancels out. As with Hl the remaining terms only
give exchange integrals, (A4) is used again, except when L = 1, when

the formula

2 2 2 2,2 .
6 -
/ dQl f dq, sin 12 _ r] +rg ) (rl r2) Y r) + r,
hﬂ r2 by 2 2 8rdr3 [r. - z.]
12 l 2 12 1 2

is used, so that FL-integrals are required.



The spin-spin operator is a contraction of two tensors of rank two:

H£3) _.3 % 522 (2

(2)

Only the spin-operator Su with p = 0 gives back the spinor a(l)a(2)

when it acts on that state:

(2)a(1) (2) = \—/-]:g (201202Z - 01,00y " dlycgy)oz(l)a(E) = J2/3 oz(l)a(2)b

Tég)(?lE)T(l)(r ) is a comblna.tlon of P, D and F parts:
(2) ;2 (D) 2y _ R - 2 (1)
P-part of T_O (rlE)Tl (rl) = P-part of J6(-2212 - X, ylg)T (r )
- 13 @@ @2y - 37 @@ e @
V10 .
1 2),— 1
* N Té )(rlz) i @)
10 - '
_ 1 (1) 2 (1) 2
= o VA3 (T) 7 (rrl, - 3 (x )T 0T
' (2)=2 (%)=
after some C-C algebra. One had to express TP- (rl2) in terms of T, (r
) | | 5
and Ti;g) (?2); one can use a formula due to Rose3 or work the relations

out by inspection. We quote one exa,mple'

[P

@) = 1P E) + 2P ) - 287 N @) )
- J273 [t il)< ) + mH (& >T<1)<r )]
The result is:
p-part of B a(Va(@) Y (Fu, (1,2) =1 L a(a(2) BV (2 (7),7)
. ' 12
- oY), (1,2) (25)

For the matrix elements one gets:
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dv r r r. - 3r
(3) M 17 %o -
M Ve =16 1 i S 3 o 3 2r12]u tnt (1:2)

o 3rip .
> 22 2. 2
(rf - r3)° ro+r

- - AR el (2D ey (1,2)
2r 3r: A T12 m'n’
12 122 - »

which can easily be expreésed in terms of A, F and FL-integrals, when

]

the cases L = £ + 4! 0, 1, 2 and 3 are given special treatment. The

formulas -
f.dQl f d92 1 re
pren b 5 7 2 2,3
ris 3r>(r> - r<)

an, 4o,

li Sl i 2 1 1
)-HT ["TL' rll' - ( r2 _ r2) 2
. 12 1 2
are required. For L = 0 all tefms with (ri ~ rg)- cancel.

We have dropped the constant d2/4 from the spin-dependent Bréit-
operators in this discussion as well as»in'the actual calculations; the
factor is-included in‘thebunits in which the numerical results are given.

Pfoceeding now;to the.spin-independent operators, We shal1 jﬁst

write out the result of the action of H(u) on one of the trial functions.

1
After some tedious but trivial algebra we obtain, omitting the constant
02: :
H(u)T(l)( Ju, (1, 2) =_{T(l)( - 3% _1_ .30 1 | 2em/2 k2
1 71 _Erler 21« 2 3 T 73
5 2 1272 M2 12
e
.k 1 n ] N T(l)( p(24+2+mtn) + n(m+l)/2
r r3 2 r3 _ ) 3
2712 1272 ' , - To
2 r r 2 » 3 B r3 or.r 3: T ‘r
Ko 1 -T2 l 2 172 12, ', ko 1
+ ( + Y + ( - = - =) + 4—(24+n)—=
8 rpry ooy T I T e o~
: 12%2  T1oMp 12 , 12
To 2 mk rg KG,,. n rg me T
+ 'I;(2,8+l+m)‘—— - 'E(2£+l+—) - -B_ -—3—2- - T(E.z'i—g) 3 + 3 5

12 ras IR T12%1 1f2



T

3 ) 2
r . r r r. .
nko 12 nko 1 n 1 mn 12 m n 2
373 2" 8 3.2 5(‘%“1*")3 5371 22*2(2“5)3-19
T1To T1oTo T1of2 1%2 oty
K Ko 1 1
* H(2£+l_m)r r. n N l2 2(2£+l—m) 2 TF(gﬂ_ )r r
1272 » r12r2 r12r2 1271
K ré m, . '
S a-E E(2z-n) s, (1,2) - (86)

1271 T1of l

The matrix elements can now be written in terms of A, B, F and FL integrals,

-3

12 must be taken care

again in the cases when L=0, 1 all terms with r
of specially.
If we write out direcﬁly the action of H§5) on the trial functions

we get 112 terms. To evaluate its matrix elements we make use of
L a2
(£|V7g) = (v7£|v%)

where f and g are elements of the standard basis. (This is not necessarily
true if there are negative poweré of ry,T5 OT T'yp in f or g.) It turns

out that the matrix elements are sums of 225 terms. Instead of writing

a program containing these terms explicitly, we let the computer do

most of the work. With the notation of (B1) one has:

N - ' : p; 9 Ty
i @u, w2) = - 2 VE) + V@) £ a (msro)zg =t mh
12
o - X uimn(l’g)
o R , 7 s, t; u,
VY (ugn1.2) = 1V E) 2wy () = 2 g, (1,2)

This gives the foliowing‘expression for the matrix element, again omitting
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(Mis))k" —E{ Z g d ﬁmn,no)d (ﬂ'm n' KU)

X ADI(L+2+pi+pj,MD+u+qi+q.,NI»2+ri+r.) + L4L' ADI(L-2,MD+2,ND+k)

- 22 Zl dJ(z'm n'; KU)BDI(L+pJ,MD+3+q ,ND+3+r )
J—

7 - _ . _
YLD (zmn;nc)BDI(L+p.,MD+3+q;,ND+3+r.)
i=1 1 : 1 i

7 7 : : _ ,
+ Z h, (2mn, )h,(£'m'n' ;k)ADI(L+2+s, +s, ,MD++t  +4 ., ND+24+u, +u., )
i=1 j=1 73 _ 173 i’ i 73

- Zl Z a. (an KG)h (ﬂ m'n' n)BEX(L+2fpi+sj,ME+3+qi+uj,NE+3+ri+tj)

J=
7 o ' .
+ 24 Zi hj(z'm'n?;n)AEx(L+s.,ME+2+u;,NE+4+tj)_

- Zl %i hl (fmn ; K)d (z m'n' Kd)BEX(L+2+pJ+s ,ME+3+r +t, ,NE+3+q +u, )

+

24! Z h.(zmn,n)AEx(L+s},ME+u+t.,NE+2+u.)]
j=1 1 v | i i’

All the summations are done by the computer; the coefficients-di and hj
as well as the integers (pi, Sy r.) and (Sj’ tj’ uj) are determined by
a subroutine once (ﬂmn)lis given. The program thus becomes symmetrlc in

primed and unprlmed 1ndlces, so that the computed matrlx of H§5) w1ll be

'symmetrlc even 1f some of the 1ntegrals have 1ncorrect values However,

almost all the 1ntegrals used were also requlred for the. matrlces of H.,

a2, (" (7)

thus gave a valuable check on the 1ntegrals.

0’
and H

which were evaluated in a nonsymmetric fashion,»and'
It is tr1v1al to obtaln the - matrlx elements of the contact term
operator; they are zero unless ND = O in which case:
OIS <
2
k'k 12 (Ko)K}l
(1)
1

K =MD+ L+k .

(1)

Fihally,_the»operator H 1

is quite easy after we have done H

‘Omitting the factor m/M:



(1) (1) 2 TR B e N S S S - S 2
BT () ug, (1,2) = -1 ) - 5 22 )
2 12
(1) 27 £(&wint2) | Lko Ty K s> kg
+.Tl (rl)[ 5 * 5 r2 + £ 5 ;5_ + =~ cos 2]
' 12 - T2 - T1o
_ ko cos e - k cos 6 _ g ko rE cos 0 .k rl cos ¢
2 r, 2 rl ' 2 r2 2 r2
12 12
: r, cos 6 r. cos 6
cos O 2 1
+ mn _;Z;; + m# —t nt —5 ]}uﬂmn(l’z) . (B7)
f1%12 Tor1o

To evaluate the exchange part of the matrix elements we use cos2 6 =

1 - sin® 6 and (A%), or we may rewrite (BT) using
2,2 .2
17 f2 7 T
%2

Only A and B integrals are required to calculate the matrix elements

of HiT)j

This concludes the description of the evaluation of matrix elements

of the operators, the formilas of this Appendix are used also in the

cases where we go beyond the standard basis and include one negative

power of r., r,orr in the expansions for Wil).

1’ "2 12

79



80

APPENDIX C: DETERMINATION OF EIGENVALUES AND‘EIGENVECTORS'

The method employed by Schwartzll is used. The matrices (HO)ij

and 1 in some representation are given, and we wish to

and I.., of H
iJ 0] ‘
find E, and Wo = (xl...xn) such that
n | | ,

The approximative iteration procedure consists in making an initial guess
= é § . i i ' . o 0 LR
for EO, put Xk 1 (1 k n) and ob?gln;ngv ESEEY ’xk-l’xk+l’ {xn

from the inhomogeneous system

1.1 (c1)

- Bolyglxg = - [(H) gy - Bolyy

- n
il o'ij

O)ij
Jtk '

. i = l’2,o¢a,k-l,k+l, .v..,n-'
from which a new value for EO, call itvEé, is gotten frdm the Rayleigh

quotient

' n n n n - _ . _
E' = 2 2 'x.x.(HO)ij // )IEDY I . (c2)

x.x.I..

i=1 j=1 "17371ij

T ' .'=l ‘ o3
or _EO_— <WO'HO|W0)/(WOIW0>. Then pu# EO‘,.EO and continue the .alternating
iteration (Cl), (C2) until’ IEO -(Eél <'e where € is some small number.
In the standard (unmixed) basis the matrices are symmetric and we‘putf
k = 1 since the first term is the most important when the nonrelativistic
wavefunction is expanded in the standard basis, see page 20. This method

worké well, with rapid convergence if the initial value of E, is a very

0]
good gﬁess. In Fig. 3a and Fig.'Sb.Eé is plottéd #ersus EO for.the matrices
in the standard representation when ® = 3, i.e., for matrices of dimension

1204 For each of the two graphs one hundred points were éomputea. in

. Fig. 3a‘threé eigenvalues are seen where tﬁe line bf M59 élobe is taﬁgeﬁt

to the curve. -Figure 3b is an enlargement of the curve in Fig. 3a in

the neighborhood of the lowest eigenvalue. Unless the initial guess for
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)

EO is such that the curve lies below the hSo—line for this value of EO’
the iterations will not converge. The dashéd lines in Fig. 3a show what
happens after three iterations when the initial guess is too far from
the desired eigenvalue. The method is good only as long as one has at
least the three or four first digits of the lowest eigenvalue to start
with. For W = 2 and 3 ﬁe tried to vary Kk and 0 and find EO for each
choice, But after some small changes in k and ¢ this procedure converged

on some of the higher eigenvalues.

As mentioned in the text (page 21) we used € = 107 for 1 =ws=s5

and € = lO_lo for 6 = w s 8, and obtained convergence. Then one more

iteration was performed to get a slightly different Wo,vbut this sometimes

caused the eigenvalue E. to change by an amounﬁ larger than é, so the

0

convergence was probably accidental. For 6 = w £ 8 the eigenvalues

EO ~ - 2.1331 were nevertheless convérged to at least nine digits. The

differences between thevtwo Wo's (whose eigenvalues differed by an amount
less than €) was of course larger, for w =8 the values for xg'were
0.31938 and 0.31939 respectively, and the laét element of the eigenvectors
vere 9 X 1078 ana 1 x 1077 for the two ¥)'s

The eigenvalue problem in the extended bases of Section VII were

solved for ﬁo and $O by the same method, except that k in (Cl) was put

equal to wt2, cbrresponding to the first standard term in the expansions
(48), (53), (54), or (55). The convergence was sometimes slow and we

had to settle with Eo's converged to fewer digits than EO for the same

w, In the case where the matrices (H . and Iij aré unsymmetric (the

O)iJ
(1,6)
2

modificétion of the algorithm is required. An approximation to the right'

mixed representation used to calculate E in Section VII) a slight

2%

eigenvector is‘obtained from (Cl) with E

=

O"replacing Ey, but the left

=~ O

~

eigenvector .is also needed, it is gotten from

(o)
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%[(H 517 B IJ Iz, [(Ho xi - Ep T
J?éK |
i=1,2,eee,k~1,ktl,ee.,n
i.e., the left eigenvector is the same as the right eigenvector of the

transposed matrix. The Rayleigh quotient in this case is

B = (T, |90/ T

i

The convergence of EO for this unsymmetric case was rather slow.
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APPENDIX D: SPIN-INDEPENDENT SECOND-ORDER ENERGIES .

The spin-independeht second-order energies calculated along with
the spin-depehdent ones in Section VI are listed in Table XI, with thé
same convéntion for the number of digitquuoted as in Section VI. Eéh,h)
was also calculated with the expansions (5%) and (55) of Section VII for
Wih), the results were very close tb those of Table XI. For w = 8 the
values -0.0384789(1) and -0.0385239 were obtained, using (54) ahd (55)
respectively.

The unmixed second-order enérgies Eéi’i) (i = 1,2,...,7) that we

-calculate are always upper bounds to the true values. The exact unmixed

second-order energy is given by (1k):

true
By = (ylHy - Bolv) + 2y ) - B fe) (o)
where the (exact) perturbed function ¥, satisfies
-(HO - 'EO)‘l’l = - (‘Hl} - El)‘l’o (D2)

assuming that the unperturbed wavefunction and energy YO and EO are known
exactly. In practice the expression (D1) is calculated by using an

approximation'wl to Yl, Wl-= Wl +.Awl so that

ESC = E;I‘“e}é (o luy - Bolaw)) + 2oy 1) - B le)) + 2oy |1, - Elllwo>
(p3)

The two last terms.df (D3) cancel because of (D2), the second term of

(D3) is seen to be-p&sitive if Awl is expanded in the complete set of

(triplet P) eigenfunctiohs of H,, remembering that E, is the lowest

(triplet P) eigénvalue. Thus  E;alc 2 Egrue as we set out to prove,

but this does not hecessarilyvimply that E2 éhould'decrease monotonically

as more terms are included in the expansion for Wl. However, in all the

calculations reported here, this monotonic decrease does in fact take place.
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Notice that the diffefences between successive calculations for

Eé5’5), E25’6> and Eé6’6) are almost constant, so that extrapolation
of these values would give_infinité results. "This is just as it should

be since both H£5) and H£6) give delta-functions when acting on Wo, thus

(5) and W( ) should have terms proportlonal to (1 - P12) (l)(;;.)/r2
()J)_

as in (53). This makes the second-brder energies

<W£i)|H(j) —‘Eij)lwo) (i,3 = 5,6) proportional to an 1ntegral with 8(3)(

(1))

(from H(J)) and l/r2 (from ¥y

r,)
and'wo, which is regular, under the

integral sign, and this is obviously divergent. When only standard

6)

terms are used in the expansions'for W£5) and W§ » they try to ap?roii-

mate‘the pole-terms . in. (53), so the second-order energies should diverge

as more standard terms are included in the expansiohs for ¢£5) and Wié),

as in faét they do. Otherw1se, the energies Eé4 5) (4’6) (557)

Eé6’7) show falrly regular os01llatory behav1or w1th w, i.e., the differ-
(4, 4)

ences between succe531ve;calculatlons alternate in sign, and E2

Eé7’7) and Eé6’7) seem to converge monotonically.
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Fig. 2

Successive differences between calculated second-order energies

E;I’J) versus M.
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Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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