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Abstract

We show that a choice of Pauli-Villars regulators allows the cancellation of all the conformal
and chiral anomalies in an effective field theory from Zs compactification of the heterotic string

with two Wilson lines and an anomalous U(1).
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1 Introduction

Starting with the determination of the full anomaly structure of Pauli-Villars (PV) regularized
supergravity [1], we recently showed [2] that an appropriate choice of PV regulator fields allows
for cancellation of all the T-duality (hereafter referred to as “modular”) anomalies by the four-
dimensional version of the Green-Schwarz term in Z3 and Z; compactifications of the heterotic
string without Wilson lines.! We further matched our results to a string calculation [3] of the chiral
anomaly in those theories. Here we extend our results to a specific Zz compactification [4] (hereafter
referred to as FIQS) with two Wilson lines and therefore an anomalous U (1), hereafter referred to as
U(1)x. In the following section we briefly describe the orbifold model we are studying. In Section 3
we outline the four-dimensional Green-Schwarz mechanism and the structure of the anomaly when
an anomalous U(1) is present. In Section 4 we discuss some aspects of the cancellation of ultra-
violet (UV) divergences and anomaly matching that are specific to the case with an anomalous U(1),
as well as some simplifications with respect to the Z; case studied in [2]. We summarize our results
in Section 5. The full set of conditions for cancellation of UV divergences and anomaly matching
are given in Appendix A, a sample solution to these constraints is presented in Appendix B, and
the full spectrum for the FIQS model is displayed in Appendix C. The determination of the correct

Pauli-Villars (PV) masses can have implications for soft supersymmetry breaking terms [5].

2 The FIQS model

Here we will give a brief review of the orbifold model we will consider for the rest of the paper. The
FIQS model [4] is a Z3 orbifold compactification of the 10d Eg ® Eg heterotic string compactified
to 79 with two Wilson lines and a nonstandard embedding for the shift vector. The embeddings

of the shift vector and Wilson lines are given by

1

V. = 5(1L1,1,1,2,0,0,0)(2,0,0,0,0,0,0,0) (21)
1

ar = 5(0,0,0,0,0,0,0,2)(0,1,1,0,0,0,0,0) (2:2)
1

az = 5(1717172717070)1?1)(1?17070’0’05050), (23)

Where the prime indicates that the last 8 elements of the above vectors correspond to the second

factor of Eg. With these specifications, the massless spectrum of the FIQS model can be worked

!Corrections to this paper are given in Appendix D.



out following the standard recipes [6]. The 4D gauge group is SU(3) ® SU(2) ® SO(10) ® U(1)8.
The generators of the eight U(1) factors can be written as linear combinations of the Eg ® Fg

Cartan subalgebra generators H! as

16
Q=3 an’ 24
I=1
The constants qé are determined by requiring that g, - g5 = 0 and ¢, - ap; = 0, where the ay; are
the sixteen dimensional simple root vectors of the nonabelian gauge group factors. Thus the index
b corresponds to SU(3), SU(2), or SO(10) and j runs over the rank of each group. One choice of
qa’s is [7]:

@ = 6(1,1,1,0,0,0,0,0)(0,0,0,0,0,0,0,0) (2.5)
& = 6(0,0,0,1,—1,0,0,0)(0,0,0,0,0,0,0,0) (2.6)
g3 = 6(0,0,0,0,0,1,0,0)(0,0,0,0,0,0,0,0) (2.7)
gi = 6(0,0,0,0,0,0,1,0)(0,0,0,0,0,0,0,0) (2.8)
¢ = 6(0,0,0,0,0,0,0,1)(0,0,0,0,0,0,0,0) (2.9)
g = 6(0,0,0,0,0,0,0,0)(1,0,0,0,0,0,0,0) (2.10)
¢ = 6(0,0,0,0,0,0,0,0)(0,1,0,0,0,0,0,0) (2.11)
g = 6(0,0,0,0,0,0,0,0)(0,0,1,0,0,0,0,0) (2.12)
To get the charges of the matter fields, one normalizes the U(1), generators as
Q ! Q (2.13)
—_— 5 .
a \/i ’qa‘ a

where the v/2 is inserted to adhere to the standard phenomenological normalization. For this choice,
one finds that the traces Qg, @7, and Qg are all nonzero. One can perform a re-definition of the

generators so that only one factor of U(1) has a nonzero trace. In [4], the following re-definition

was made:
FIQS
(Jé @ = g6 + q7 (2.14)
FIQS
Q$ 99 = q7 + qs (2.15)
gx = 496 —q71 g8 (2.16)



While Tr [ ((SF]QS)} =Tr [ &FIQS)] = 0 in this basis, one also has Tr [QéFIQS)QgFIQS)QX # 0
which is rather undesirable. Therefore, we will use a different choice such that the above mixed

anomaly does not appear. In particular, we define

N FI1QSs FIQS
o = g as =gy 'O — g9 (2.17)
¢ = g+ 20+ g5 =i OV + g9V (2.18)

In what follows, we will simply drop the superscript N and use these as the definition of the U(1)g
and U(1)7 generators. As a final note, the charges defined above are generally not orthogonal to
one another, i.e. Tr[Q,Qs] # 0 for some a # b. It is possible to define a new set of charges that
are mostly orthogonal to one another, but we will not need to do so for our purposes.

We close this section with some relations among the gauge charges ¢5 and modular weights gh of
the chiral superfields ®P of the model. These will be useful in the analysis that follows. These

include the universality conditions

8r%b = Ca+ Y (2¢ —1)C¥
p

1
— E: po_ N — ;
24 (2 - qn — N + Ng 21> vV oi,a,

1 1
—21%5x = o T = ngTj’; =Tr(T?Tx) ¥V a#X. (2.19)

Here C, is the quadratic Casimir in the adjoint representation of the gauge group factor G, and C%
is the Casimir for the representation of the chiral supermultiplet ®P, T, is a generator of G,, and

N, Ng are the number of chiral and gauge supermultiplets respectively, with, in the FIQS model,
N = 415, Ng = 64, 872b = 6, —472%5x = 3V/6. (2.20)
In addition we will use the sum rules

Ydh = A, qhdh = Az + Babym,
p p

> d'ahgh = As+ B3 (6im + Smn + 0nt) + C301mbmn,

p
Z ngz = Qlav Z qzngz = Q2a + P2a5mn7 (221)
b b

with, in particular,
By =42,  Pyx = 5V6. (2.22)



3 Anomalies and anomaly cancellation with an anomalous U(1)

The effective supergravity theory from generic orbifold compactifications with Wilson lines is
anomalous under both U(1)x and T-duality:
; a; — ib/T" .
™ = chsz —: d;’ a;b; — c;d; =1, a;, b, ci,d; € Z, i=1,2,3,
P = @M FUTY = In(ic, T + dy), (3.1)

where ®® is any chiral supermultiplet other than a diagonal Kéhler modulus 7%, and g are its
modular weights.

We are working in the covariant superspace formalism of ref. [8] in which the chiral multiplets
ZP =T S, &%, with S the dilaton superfield, are covariantly chiral:

Dz =, (3.2)

with Dy, A = a,« a fully covariant superspace derivative. In particular, under a U(1) gauge
transformation
ZP=glazr 7P —gTeazb A= A% — g 'Dyyg, (3.3)

where ¢ is a hermetian superfield, and A4 is the gauge potential in superspace. Gauge invariance
assures that holomorphy of the superfield is maintained under (3.3). If gauge invariance is unbroken,
the gauge potential A4 does not appear explicitly in the superspace Lagrangian. Instead the usual
Yang-Mills superfield strength W, is obtained as a component of the two-form superfield strength
Fap. One can still introduce [8] a superfield superpotential V, such that

W, = —é(ﬁ —8R)DaVa, Vi =Vi+ Ao+ A, (3.4)
but V,, never appears in the Lagrangian and the chiral superfield A, is independent of g in (3.3).
However in the presence of an anomalous U(1), gauge invariance is broken. It is easy to see that
the UV divergences cannot be regulated by PV fields that all have U(1)x invariant masses. There
is a quadratically divergent term proportional to DxTrTx, where Dy is the auxiliary field of
the U(1)x supermultiplet, which must be cancelled by the analogous term from the PV sector.
Invariant masses require the coupling of PV fields with equal and opposite charges that do not

contribute to (TrTx)py. Noninvariant masses arise from the superpotential for PV fields ®¢:

W (@, &) = pcd e, (3.5)



with po constant (in the absence of threshold corrections, as for the cases considered here). If
Q)C( + Q’)? # 0, holomorphy of (3.5) is not respected under (3.3) for a = X. For this reason we do

not include the U(1)x connection in the covariant derivative (3.2). Instead of (3.3) we require
PO = mRAPC, PO = ¢ @KAGC (3.6)

under a U(1)x transformation, and the Kéhler potential depends on U (1)x-charged fields through
the invariant operators ®e@xVx®.
It was shown in [1] that modular noninvariant masses can be restricted to a subset of PV chiral

supermultiplets ®¢ with diagonal Kéhler metric:

K(®°,89) = exp[f(Z, 2)]|°|*. (3.7)
and superpotential (3.5).
As in [2], we define a superfield
7 - 1
M@ = My = exp(K — f€ = f') =exp(K = 2f),  f9=(f9+ ), (3.8)

whose lowest component m2C = M%‘ is the @, &' squared mass. Then the anomalous part of

the one-loop corrected supergravity Lagrangian takes the form [1]

Lonom = Lo+Li+L,= / d*FE (Lo + L1+ L,) = / d*0EQ, (3.9)
where FE is the superdeterminant of the supervielbein, and
1
L= 55 [TrnIn M?Qo + K Qs + Qp)] (3.10)

with 7 = £1 the PV signature. The operators in (3.10) are given explicitly in [1, 2|, except that

now
Qo = Wy + %, (3.11)
where ), contains the Gauss-Bonnet Chern-Simons superfield and operators composed of auxiliary
superfields of the gravity supermultiplet, and
Rn = Y Wr = Ovm — R, (3.12)
a#X
is the Yang-Mills Chern-Simons superfield without the U(1)x term, and and QS,; is defined by its

chiral projection:
(D? — 8R)Q%y = WoWE. (3.13)



2, is composed of terms linear and higher order in In M, and Qp represents a “D-term” anomaly [1,
2] that, together with a contribution to the Gauss-Bonnet term Qgg, arises from uncanceled to-
tal derivatives with logarithmically divergent coefficients, requiring the introduction of a field-

dependent cut-off:
1
O\ = Z%K. (3.14)

L1 is defined by its variation:

1
TrnA In M2Q), = — TrnHQ’ + h.c., (3.15)

1= 872 192

872 192
where under (3.1) and (3.6) In M? transforms as

AlnM?* =H + H, (3.16)
with H holomorphic. Defining

(D* =88R = [far  (D*=8R)Q;=["fa, (D’ =8R)Qpx = [*Xq,

fo = —é(ﬁ —8R)D,f, fo= —é(ﬁ —8R)D.,f, (3.17)
we have
Q= 1920 — 12807 — 64Q;,
AL = #Tmﬂ{ (Qf — ng - ;Qfx> + h.c. (3.18)

In the presence of an anomalous U(1)x the form of f¢ is taken to be
¢ = aCK(2,2)+ BC9(T,T) + 6k(S, 5) —|—ch (T T 4+ QS Vi,
f¢ = a“K+p%+6%+ Zq 9" + Q% Vx,
HE = (1-279) 2chF” (T™) —2Q%A, 3¢ =a%+ 3%, (3.19)

where k is the dilaton kéhler potential, and ¢ is defined in (3.31) below. The traces in ALypom can
be evaluated using only PV fields with noninvariant masses or using the full set of PV fields, since

those with invariant masses, H® = 0, drop out. The contribution ALg to the anomaly is linear in



the parameters o, 8, ¢¢, Q% &, and the trace of the coefficient of €Y is completely determined by

the sum rules [9]
N = Y n9=-N-29 N;=> n¥=-12-Ng,
C 2

DonCr¢ = 10K =) dhg" = ¥ Vx, (3:20)
c p a

that are required to assure the cancellation of quadratic and logarithmic divergences. In (3.20) the
index C denotes any chiral PV field, the index v runs over the Abelian gauge PV superfields that
are needed to cancel some gravitational and dilaton-gauge couplings, and the sum over p includes all
the light chiral multiplet modular weights with q;? =0, qni =26 . All PV fields with noninvariant
masses have § = 0, and most? with 6 # 0 have a = 8 =¢, =0 = Q)C(. For the purposes of the
present analysis we can largely ignore the latter. Similarly, the cancellation of linear divergences

that give rise to the chiral anomaly proportional to

-~ 1
ImTr¢G - G > Im§ Z {F(t)Ca — ;

a#X

— QquF” (t") — 2q5% A

(T§)2} Fe.F, (3.21)

fixes the coefficient of QY,,. Here G, > —iT,F, 1 1s the field strength associated with the fermion
connection, ' = Ti}, A = A| are the lowest components of the chiral supermultiplets 7%, A, and a

left-handed fermion f transforms as

f—elf (3.22)
under modular and U(1)x transformations; ¢ = —<ImF for gauginos, and
fImF quF” ) — gh A (3.23)

for chiral fermions x?. The compensating PV contribution

Im (TmbG : é) oy m Y 7 (¢9 + ¢'“) (TC)?FuF* = ~ImTr¢G - G (3.24)
C

2There is a set of chiral multiplets in the adjoint representation of the gauge group that has f = K — k; these
get modular invariant masses though their coupling in the superpotential to a second set with f = k. These cancel
renormalizable gauge interactions and gauge-gravity interactions, respectively. Together with a third set, that has

f =0 and contributes to the anomaly, they cancel the Yang-Mills contribution to the beta-function.



that cancels (3.21) determines the anomaly coefficient of QY. ,,, since for each pair ®C &'C the sum
of fermion phases ¢© + ¢'C = HC is just the holomorphic part of the variation (3.16), (3.19) of the
PV mass term Aln M%

In the chiral formulation for the dilaton, the anomaly is cancelled by the variation of the superspace
Lagrangian

L= /d49E (S+9) . (3.25)

where 2 is the real superfield introduced in (3.9). The quantum Lagrangian varies according to
ALnom = /d49 {b [F(T)+ F(T)] - %X (A+ I\)} Q, (3.26)

so the full Lagrangian is invariant provided
5 A

AS = —bF(T) + TXA, F= ZF (3.27)
However the classical Kahler potential for the dilaton is no longer invariant and must be modified:
Eelass(S, S) = —In(S + S) — k(S,S) = —In(S + S + Vgs), (3.28)

where Vg is a real function of Vx and of the chiral supermultiplets; it transforms under (3.1) and
(3.4), (3.6) as

) _
AVes =b(F+F) = (A+4). (3.29)
A simple solution consistent with string calculation results [10, 11] is
I
Vas =bg(T,T) — 5 VX (3.30)
where
g(T.T)=> (T, T), ¢ =-In(T"+T" (3.31)

is the Kahler potential for the moduli. The modification (3.28) is the 4d Green-Schwarz (GS) term
in the chiral formulation. As discussed in [2], the 4d GS mechanism is more simply formulated in
the linear multiplet formalism [8] for the dilaton. In this case the linear dilaton superfield L remains

invariant, its Kéhler potential is unchanged, and instead one adds a term to the Lagrangian:

ﬁGS’ = —/d49ELVGS, AﬁGS - _Aﬁanom (332)

8



Only terms in the anomaly that are linear in the combination H, where

(3.33)

can be canceled by the Green-Schwarz term. The values of b and §x are fixed by the conditions
(3.20), (3.24) for the cancellation of divergences, together with the universality conditions (2.19),
that hold for all Z3 and Z7 orbifold compactifications.
In contrast to Ly, the contributions to the anomaly from £; and £, are nonlinear in the parameters
a, B, qn, Qx, and depend on the details of the PV sector. In particular £, has no terms linear in
In M and must vanish. To insure that the anomaly coefficient depends on the T-moduli only
through F(T') we impose [2]

=0 (3.34)

for (almost?) all PV fields with noninvariant masses.

4 The anomaly and cancellation of UV divergences in the FIQS

model

The full set of conditions for cancellation of the divergences and for obtaining an anomaly linear
in H, Eq. (3.33), that matches the string result [3] is given in the Appendix A. In this section we
outline some features of the case of Z3 with an anomalous U(1)x. We will be primarily concerned
with the contribution of AL;, Eq. (3.18), to the anomaly. This expression is nonlinear in the
parameters ¢$ ,Q% of the PV fields, and therefore model dependent, as noted above. This was
illustrated in [2] where it was shown that cancellation of the modular anomaly requires (3.34).

However, the contribution cubic in Qg’; is model independent. It is given by

2(A + A)
2472

2(A +A)

247T2 TYUQ%(Q{/(Mv (41)

AL (Q%) = — TrnQx (3Q%( - 2@%{) Oy = —

where the sum is over all PV fields, and we used the definition (3.6), (3.19) of Q¥ and the fact that

Y QM@ = QP (@K (4.2)
C C

3The exception is for some PV fields, introduced in Appendix B.6, needed to cancel divergences from light fields

with Abelian gauge charges.



for any powers p,p’. Cancellation of the term in Tr¢G - G that is cubic in Q3% requires

2(A+A) Ox

—M Tr (nQ%) 5y = i Tr (q%) 5y = —?(A +M)QF, (4.3)

2472

from (2.19), so the anomaly (4.1) is consistent with the requirement for anomaly cancellation.
In contrast, anomaly terms quadratic in Qg( are model dependent. For example, in [1] it was

assumed that f¢ = fC¢ for all PV fields with noninvariant masses, giving a contribution

F+F

ALy = 2 n 29 (3% 203 0 ()
F+F 3 F—l—F b
= i T (1 —29) Q% = YR Trqx 5y = g(F‘i‘F)QYJW (4.5)

from (3.21) and (3.24) with a = X, and (2.19). Here we instead assume, in addition to (3.34), that
Q% = 01if 1 — 7 # 0, that is PV masses can be noninvariant under either T-duality or U(1)x, but
not both. In this case the last term in (4.4) drops out and we recover a factor three, in agreement
with the requirement for anomaly cancellation.

The full set of PV fields sufficient to regulate light field couplings is described in Section 3 of [1].
These include a set Z¥ = Z1, Z4, with negative signature, nZ = —1, that regulates most of the
couplings, including all renormalizable couplings, of the light chiral supermultiplets Z? = T% ®°.
The Z get invariant masses through a superpotential coupling to PV fields Yp with the same

signature, opposite gauge charges and the inverse Kéhler metric:
(To)y = —(13); = —(13 )z (4.6)

It remains to cancel the divergences introduced by the fields Y. To this end we take the following

set:

P P = el K+ B g+ apg" +QuVx,  ah + B, =7y, G, =0,
TF . F =l K+ BEg+ QL vy, ar + Br =,
¢ 7 =a’K. (4.7)

In the solution to the constraints given in Appendix B, the ¢ and T¢ are further subdivided,
together with additional fields, into sets S,, a = 1,...,12, some of which are charged under the
nonanomalous gauge group. The ¢ regulate certain gravity supermultiplet loops and nonrenor-
malizable coupling of chiral multiplets. These must be included together with the other PV fields

introduced above in implementing the sum rules (3.20). Their contributions will be included in all

10



the finiteness and anomaly conditions that involve only the parameters « in (4.7); otherwise they
play no role in the analysis below. In the expressions given in the remainder of this section, we
drop terms that contain only X, or X, since their contributions are included in the sums (3.20)

and the additional sum rule [9]
> 0 = 4. (4.8)
C

In [2] we also introduced pairs ®, &7 with modular invariant masses that did not contribute to
the anomaly, but played an important role in canceling certain divergences. However, because the
Z3 sum rules (2.21) are much simpler than the analogous sum rules for the Z7 case studied in [2],
here we need only the set in (4.7).
The quadratic and logarithmic divergences we are concerned with here involve the superfield
strengths —i(T,) W,

r$, = —é(@Q — 8R)D 2T, (4.9)
and

X, = —é(@z —8R)D, K, (4.10)

associated with the Yang-Mills, reparameterization and Kéhler connections, (T, a)%AM, auZngD

and 6gFM, respectively, where
r,= % (Duz'K; — Duz" K - (4.11)
Cancellation of quadratic divergences requires
Trnly = TenTx =0, (4.12)
and cancellation of logarithmic divergences requires
TenloTs = TeonT o T* = Trn(T%)* = 0, (4.13)

where n = +1 for light fields. Cancellation of all contributions linear and quadratic in X, is assured
by the conditions in (3.20) and (4.8). The Yang-Mills contribution to the term quadratic in W,
is canceled by chiral fields in the adjoint (see footnote on page 7) that we need not consider here.

Finally, cancellation of linear divergences requires cancellation of the imaginary part of

- 1
Trn X, = TmeG - G, GW = 56“”’)‘76‘00, (4.14)

11



where G, is the field strength associated with the fermion connection;* for left-handed fermions:

) 1
G = -TG,, +iFL(T.)5 + ixw(sg, (4.15)
where
Xy = (Duz'Dyz™ —Dy2'Dyz™) Kim — iF, (Ta2")K;
= 20,1, -9,I), i=p,s, (4.16)

is the field strength associated with the Kihler connection (4.11). For a generic PV superfield ®¢

with diagonal metric, its fermion component x¢ transforms under (3.1) and (3.6) as

c 1 o
VO =e9\C, 4° = <2 —a% - 50) F—Y Fi(the - \Qx. (4.17)
i
In evaluating (4.14) we will use the fact that the expression®
g, g =0, (4.18)
vanishes identically, and the expressions
X9 = P ImFlg, 007t = 4e" P TmF 0,9, 0,9] = 40, (""" TmF'0,g.q9%)
, 1 . o
X' = ie””pUImFZgLVXPU = 4i0, (""" ImF' 0,9, 1) ,
X' = ¢ ImF'g, Fg =40, (¢ ImF'd,g, A%) , (4.19)

are total derivatives, where A7, is an Abelian gauge field, and

Iutt — 9,1

g'==W(t'+1), g =—TH

9 = Ougl, — Oug),. (4.20)

The full Kéhler potential for ¥, with no anomalous U (1) x, is given in [1, 2]; here it takes the form

K(Y) = ¢ (Z e 9" TIVX |y, 12 + 267291"5/[,2 +)° |YN\2> +...,
T N

A
g¢ = qu{g", G = aK + Ay, a+p=1, (4.21)
n

“Here we neglect the spin connection whose contribution was discussed in [2].
°It was noted in [2] that the expression (4.18), which is in fact the T-dependent part of the chiral anomaly found

in [3], vanishes. The authors of [3] attribute [12] this to their approximation that neglects higher order corrections.
However if these corrections take the form gi(Ti7 T — g4(T", T’i) +AY(TY, Ti), our results our unchanged. Note that
the functional form of A’ is severely restricted by the fact that it has to be invariant under T-duality.

12



where YN:1,273 (and their counterparts zZN ) are gauge singlet PV fields needed [9] to make the
Kihler potential and superpotential terms for Z,Y fully invariant, and the ellipsis represents terms

that make no contribution to the expressions given below. Using the sum rules in (2.21) and (3.20)

we obtain:
Tl = — [(N +2)5 - Al} gos  TeRTY = TrTx,
Tty T = —24 [B(N 1 2) - Al} Xogs — [BQ(N +2) - BA; + Az] 9590
—By Z gugh
ToilY T, = GaxTTYGo— Qagar  Ga = 4 X + ga- (4.22)

Using (4.19) and (2.21), the part of X Y that is independent of gauge charges takes the form:

XY 5 C[(N42) =241 FG -G — (A — 245) FG - §— A3Fg-§

N | =

+total derivative, G = aXp + B (4.23)
The modular weights for the 1 satisfy
Zg” o= gah, > nbatalkelk =0,
P

ngg”qﬁ’qﬁ = (@) 99" (4.24)
n

I,m,n

Like X}:, X;f depends only on F,g,, and X,,, and (4.22) and (4.23) can be cancelled by some
combination of the fields in (4.7), with the condition

> ni(af)? = Ba. (4.25)
P
The pure T-moduli anomaly is given by
F _
AL(Fg?) = o—Trny (1= 23y) q;Qy,  (D* = 8R)Q ZgngZ- (4.26)
Consistency with string results [13] requires

Trny (1 —2%y) qi = —872b (4.27)
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Finally, we require

oA 1
AL1(Qxg?) = =g 5TmQx 9y = SAIxQy. (4.28)

Using (4.24), the condition (4.28) requires
> nhQu(q))? = —4n*x. (4.29)
P

All other other contributions to AL are required to vanish.

We conclude this section by noting that cancellation of divergences linear in the U(1), field
strengths is much simpler than for the Z; case considered in [2], as outlined below.

The gauge charges for the FIQS ( [4]) model are listed® in Appendix C. The universality of the
anomaly term quadratic in Yang-Mills fields strengths is guaranteed by the universality condition
(2.19), as discussed in Section 3. Since gauge transformations commute with modular transforma-
tions, a set of chiral multiplets ®° that transform according to a nontrivial irreducible representation

R of a nonabelian gauge group factor G, have the same modular weights ¢ such that
> d(Tw)h = ¢ (TxT)r = 0. (4.30)
beR

Therefore terms linear in Yang-Mills field strengths occur only for Abelian gauge group factors.

We need to cancel the Y-loop contribution to logarithmic divergences

<Trn > QngZTa>
n

=-> ¢hQhgr = —Qiaba, (4.31)
bn

Y

and, dropping terms proportional to the last expression in (4.19), the relevant Y contributions to

linear divergences:
XY 5 > QhF*

.1
"¢ (F -2) qanm> +2¢0 F™ (G — 2X>]
a,b,n m

— Y e { [g (1 + 25‘) + X (24— 1)} QraF —2) g”F”Qza} , (4.32)

5We have made some corrections to the U(1), charges given in (2).
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where we used (2.21). The last term in (4.32) is cancelled by

XY s =2 > nfQlqfgi P gt = 2> nlQE(¢")PF Y g"F",  (4.33)
n

a,P,l,m,n (Z,P

provided
> iRl (@")? = —Qua. (4.34)
P

The remaining terms in (4.32), as well as (4.31) can be cancelled by a combination of the fields in

(4.7). For a = X there are additional terms proportional to (TrnTx)py = —TrTx.

5 The final anomaly in the FIQS model

In Appendix A we show that is possible to cancel all the ultraviolet divergences from the Y fields

with a choice of the set (4.7) such that the fields with noninvariant masses have the properties
Trn(ln M)"™ 1 = ATrn(In M) = Tep(Aln M) (fo)"° = 0. (5.1)

Then, including the results of [2], the anomaly due to the variation of (3.9) takes the form

1
8Lonom = /d49E (bF - 25XA> Q+ /d49EbFQ’, (5.2)
where

Q = Qym—Qas +Qy,
- . _ = 1

O = P2 (4G, G*P —16RR+D?R+D*R) — —0Q 5.3
48()( Pa + t > 2D (5.3)

where g is defined in (4.26), and bspin governs the contributions from PV masses, as opposed to

those arising from uncancelled divergences:
872 bgpin = 8T2b 41, (5.4)

with 872b = 6 in the FIQS model. In the absence of an anomamous U(1), A = 0, the anomaly can
be cancelled by the four dimensional GS mechanism as described in [2]. However with A # 0, the
anomaly as written in (5.3) is no longer universal and cannot be cancelled by the GS term alone.

However all of the “D-terms”, in other words the full expression ', can be removed [14] by adding
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counterterms to the Lagrangian, giving a universal anomaly which can now be cancelled by the GS
term.”
The results for the Gauss-Bonnet and Yang-Mills terms are well-established [10] and result from

the universality conditions (2.19).

6 Conclusions

We have shown that a suitable choice of Pauli-Villars regulator fields allows for a full cancellation
of the chiral and conformal anomalies associated, respectively, with the linear and logarithmic
divergences in the effective supergravity theory from a Zjs orbifold compactification with Wilson
lines and an anomalous U(1).

A future work [13] will compare this result with that obtained directly from string theory.

Acknowledgments. This work was supported in part by the Director, Office of Science, Office
of High Energy and Nuclear Physics, Division of High Energy Physics, of the U.S. Department of
Energy under Contract DE-AC02-05CH11231, in part by the National Science Foundation under
grant PHY-1316783, and in part by the European Unions Horizon 2020 research and innovation
program under the Marie Skodowska-Curie grant agreements No 690575 and No 674896.

"The elimination of Qp further obviates the need for a modification of the linear-chiral duality transformation, a

possibility condsidered in Appendix B of [2] and Appendix E of [1].
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Appendix

A Conditions for the cancellation of ultraviolet divergences and the evaluation
of the anomaly

A.1 Notation

We pair PV fields according to their mass terms. A pair of PV fields (&7, ®'F) has a superpotential

coupling
Wpy =Y upd"o” (A.1)
P
and a Kahler potential
Kpy =Y el o ol 13" e oPeP, (A.2)
P P
where
ff=a"K+8"g+> afg" (A3)
n

with an identical definition holding for f’* but with primes on the constants {af, 3, ¢}, While
we will not use it often, summing over the index C' means summing over PV fields and then their
primed partners whereas summing over P means summing over only the unprimed or primed fields,

depending on the quantity being summed. For example,
chac = Z npal + Z npa't. (A.4)
c P P

However, to reduce clutter, we will abbreviate the above. When summing over primed and unprimed
fields, we will use “Tr”. When summing over only primed or unprimed ones, we will use “Sum”.

Thus the above would be written as
Tr[na] = Sum[na] + Sum[na’]. (A.5)

We will also encounter sums over various combinations of U(1) charges, U(1)x charges, and modular

weights. To abbreviate these, especially when dealing with the quantum numbers of the light fields,
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we will define

Qe = Sum[nQagn] (A.6)

Q24 + Poabnm = Sum[nQagngm] (A7)
R, = Sum[nQ.Qxan] (A.8)

Rapy = Sum[nQa.Qugy] (A.9)

Se = Sum[nQaQx] (A.10)

Sab = Sum[nQaQp]- (A.11)

A.2 Conditions for Regularization

The terms we must cancel come from linear, logarithmic, and quadratic divergences. It is helpful
to organize these terms by forming subsets based on whether terms depend on nonabelian gauge
interactions, nonanomalous Abelian gauge interactions, anomalous Abelian gauge interactions, or
none of the above. We will refer to these groupings as nonabelian divergences, U(1), divergences,
U(1)x divergences, and modular divergences, respectively. As an overview, the divergences come

from the terms

Tr[nly] (A.12)
Tr[nl'oI'g] (A.13)
Tr[nl o T4] (A.14)
Tr[nT,Ty] (A.15)
Tr[nQal, (A.16)
where
rg, = —é (D?* - 8R) Do Z'T%, (A.17)
1 A
¢ = <2 - 5C> F— ZquiC —¢§A (A.18)
1 ra .
G/W = Fg/u/ - §XMV5g - ZF;LV(TG)% - ZFii(QX)g (A'lg)

for our PV fields defined above.
The PV fields involved in this procedure are numerous. We take all of the PV fields described in

sections 3 and 4 of [1] and supplement them with further fields. However, to satisfy the divergences
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above, we need only focus on the Y and QAS fields of [1]. We now group all the terms in the above

expressions with our organizational scheme.

Modular Divergences

To cancel all the modular divergences, we require

o~ aluso)] o)
0 = =y To|u(1 20001 = 29|+ T (1 - 20)]
—%Tr [77(1 —2a)(1 - 27)%} + Tr [nqnqm(l - 204)]

0 = %Tr [7752(1 - 27)} - TY[?W%} + Tr [nﬁ(l - 27)%} — 2Tr [nﬁqnqm]

1
+§TI“ |:77(1 - 2’7)(]an:| —Tr [nQanQk] .

U(1)x Divergences

To cancel all the U(1)x Divergences, we need

0 = Tr[nQx]
0 = TrnQxA] + Tr[nQxqm]
0 = Tr[nQxal

0 = T (an <a - ;>2>
0 = —Tr (anﬂ (@ - ;)) o <77QX"" (C“ - D)

0 = Tr(nQxpf*) +2Tr NQxanB) + Tr (MQxGngm)

o = s (o 1) (32)) - e (o)
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(A.23)
(A.24)
(A.25)
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0 = —2Tr (nQ%0) — 2Tr (nQ%an) (A.33)
0 = 2Tr <77QX/3 < - '7)) — 2Tr (nQx qn) + 2Tr (anqn <; - v))

—2Tr (UQXQan) . (A34)

Note that only fields that have Qx # 0 will contribute to Eq. (A.29).

Nonabelian Divergences

To cancel the nonabelian divergences, we need

0 = TeTLTy) (A.35)
0 = TpQXT.T (A.36)
0 = Tr [nTaTb <’y — ;) }, (A.37)

where T is a generator of a nonabelian gauge group factor.

U(1), Divergences

0 = Tr[nQd (A.38)

0 = T[Qual (4.39)

0 = Tr[nQaf] + Tr[ngnQul (A.40)

0 = TrnQxQaQ] (A.41)

0 = Tr[nQXQaﬂ] + TI'[TIQXQnQa] (A‘42)
1

0 = Tr |:/’7QXQ(I (a - 2> ] (A.43)

0 = —Tr [UQXQa (1 - 7) } + Tr[nQx Qagn] (A.44)

oo ) () )]
o whaa((10) )] b () )]
o = whaa((r L) )| )
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In all of the above sets, we have assumed that the modular weights of all PV fields satisfy sum
rules reminiscent of those satisfied by the light sector, (2.21). Indeed, this will be baked directly
into our choice of PV fields. We have also used the total derivative identities (4.19). In addition to

the above conditions, we must enforce the sum rules of [1]:

—N—-29 = Trn| (A.48)
—-10 = Trna] (A.49)

—4 = Tr[na?] (A.50)

0 = Tr nﬁ} (A.51)

0 = Tr -7752] (A.52)

0 = Tr —nﬂa] . (A.53)

A.3 Conditions for Anomaly Matching

By drawing an analogy with the calculation of [3], we infer that in four dimensions the anomaly
polynomial for the FIQS model has the form [13]

3
_ b ox 2 SU(3)\2 SU(2)\2 S0(10)\2
to= (=g DGt e ) (R — SR - SR - ()

7
- Z(Fa)2—(Fx)2+2ZG§) (A.54)
a=1 7
where
Gy = dZ; (A.55)
Z = ;,dg;g) (A.56)
2 7 7
(A.57)
and
tr(R*) = R%R’, A.58
b
1
= ZRTewReTpada:“dx”dfcpdx” (A.59)
1
(Fa)? = FauFapde’dz”da?dz’ (A.60)
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In the above, we have implicitly assumed wedge products in the multiplication of differential forms.
To get the 4D anomaly from the 6-form anomaly polynomial, one goes through the usual descent

equations:

27T16 = dI5 (A61)
6y = dIy (A.62)

For example, under a modular transformation, Z; — Z; + dIm(F?) so that the modular-gravity-

gravity anomaly has the form

/ua/_

which is precisely what one would expect if one considers the modular-gravity-gravity anomaly to

3
3 ,
392 ( > Im(F Z)> R R o7 Jgd (A.63)
i=1
have the same form as a U(1)-gravity-gravity anomaly. To match this anomaly, we look at the

anomalous contributions of PV fields with masses that are noninvariant under modular and U(1)x

transformations. The general form of their contribution is

ﬁmmiﬁmMm+m+m) (A.64)
with
1
Ly = o (Trlnin(M*)]Q + K(Qap + Q) (A.65)
1

Focusing on the second term of Eq. (A.64) , we again break up terms based on whether they

contribute to the U(1)x related anomalies or the pure modular anomaly.

U(1)x Anomaly Conditions

To match the anomalies involving U(1) x, we require

0 = gTr _an (2a2 +a— 3a2>] (A.67)
0 = %T& -nQX <B +4a8 — 6aﬁ>} (A.68)
0= ’m 10x (25 — 35?) ] (A.69)
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8720 x0mn = —2Tr

8’h = gTr

0 = —4Tr
0 = —4Tr
LT
0 = gTI'-
2
3

0 = -Tr{nQx (1-2%) (36Qx —28Qx))

0 = 2efn(@xan (1-27)]

1

0 = %Tr nQX(ZlaQX—i-Qx—(iaQX)]

LT
0 = -Tr

3 L

0 = —4Tr
—4n?sx = Tr [77

Pure Modular Anomaly Conditions

-77(1 - 2y) (3Q% - 2@%)]

n (83G% — mmxczx)}

[77 (QXQXQn)]

(4?} - 2Q§(QX> ] ~In

Note that the last term is fixed by cancellation of the linear divergence term Eq.(A.29).

To match the pure modular anomaly, we require

0
0
0

— 8723,

~Tr _n (1-27) (—2a° — a+3a?) ]

= Tr {UQan (1-2%) ]

23

—_

)

STy :n (1-27) (36% - 252)} +2Tr [nﬁ (1-27) qn]

—Tr -77 (1-2%) (6aﬁ — (4a+1) B) ] + 2Tr [na (1-29) qn}

(A.70)
(A.71)
(A.72)
(A.73)
(A.74)
(A.75)
(A.76)
(A.77)
(A.78)
(A.79)

(A.80)

(A.81)
(A.82)
(A.83)

(A.84)



As for the third term of Eq. (A.64), we need it to vanish identically. This can be achieved so long

as the following are satisfied

0 = Tr—m:(l—Q'y)ﬂ (A.85)
0 = Tr_nqu(l—%y)] (A.86)
0 = TT:nxq_%(} (A-87)
0 = Tr—naﬁ(l—?y)] (A.88)
0 = T|naiax)] (A.59)
0 = TY:an(l—Qﬁ)} (A.90)
0 = Tr:nﬁkq‘X]Tr[nB3ch], (A.91)

where z = 1, @, 3, gx, &%, 32, 4%, @B, agx, Bgx and k = 1,2, 3.

B Solution to the Pauli-Villars Regularization Conditions

We will now elucidate a solution to the system described above. The solution consists of sets Sg,
a=1,2,...of PV fields that address each of the divergence and anomaly sets of conditions more or
less separately. For example, it is possible to introduce PV fields that cancel only the nonabelian
divergences and contribute to no other conditions. We will try to follow the same strategy for all
the sets of conditions described above. It is not entirely possible to do so - for example, fields
that solve the modular anomaly conditions will generically contribute to modular divergences. Of
course, this is far from the only way to tackle the system, but it is straightforward method to
illustrate that a solution can be found. To this end, we define the notion of clone fields for PV
fields. For a given pair of PV fields (@7, ®'"), we define clone fields (®7, ®')") that have almost
the same parameters («, 3, ¢n, ...) and quantum numbers as the original pair but with negative
signature. We say almost here because this notion is only useful if the (<I>P , PP ) have quantum
numbers different from the clones so that the two sets cancel each other’s contributions to some
subset of the conditions, but not all conditions. As a concrete example, which will be described

below, one can introduce PV fields with nonabelian gauge interactions to eliminate divergences
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associated with those same interactions. One can then introduce clone PV fields without gauge
interactions that exactly cancel the contributions of the gauge charged PV fields to all other terms.

The primary advantage of this technique is tidiness.

B.1 PV Fields for U(1)x Anomaly Matching

The fields described here will satisfy Eqgs. (A.67)—(A.80) and will contribute to some of the U(1)x
divergence conditions (A.24)-(A.34). In particular, only PV fields with Qx # 0 contribute to Eq.
(A.29), so this condition will be taken care of by this sector only. The sets of PV fields we need are

e Si: A set of PV fields with modular invariant masses,a; = of =¥ = 1/2, and (}(11) =0 and

modular weights of the form (¢")¢ = q&&ﬁi and clone fields with no U(1)x.

e Sy : A set of PV fields with as = 8 = 72 = 7&?) = (q(2))g = 0 and clone fields with no
U(1)x charge.

We then place the following conditions on the parameters for these fields:

sum [QF'] = —sum [nQY] (B.1)
sun[ (@57 = ~{m(@V¥] (B.2)
0 = T [mQY (1 ~3a)] (B:3)
0 = [m@%’alqg)} (B.4)
0 = Trﬁm@&?@&?} (B.5)
0 = Tr:n(@&?)z_ (B.6)
0 = Tr:n@%))?’: (B.7)
0 = Tr:n@%’)‘l: (B.8)
0 = Tr 17@&?(19;} (B.9)
0 = Tr:nc}ﬁ?czﬁ?qﬂ (B.10)
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A% x O = Tr{n@ s qﬁn)} (B.11)
a6y = —;Sum[( ;L))S] —Tr[nQ(l)(Q )2 ] (B.12)

Once again, the first condition is a linear divergent term that can only be cancelled by fields with
masses that are noninvariant under U(1)x. This in turn forces the correct coefficient for the pure

U(1)x anomaly in the last condition. While the second set must satisfy

0 = Tr[?72] (B.13)
0 = Tr ngagQg?] (B.14)
0 = Tr-mﬁgQg?)} (B.15)
8rlh = Tr-ng(Qg?))Q]. (B.16)

The first condition here comes from Eq. (A.85) and potentially can be relaxed.

B.2 PV Fields for Modular Anomaly Matching

The fields described here will satisfy conditions (A.81)-(A.84) and contribute to the modular di-
vergence conditions (A.20)—(A.22). The sets are

e S3: A set of pairs of PV fields with 83 = 35 = 0, q(?’) Gn '3) _ 0,

e Sy: A set of pairs of PV fields with ay = oy = 64 = ) = @} =0, (q(4))% = (q(4))P5,ZLl , and

clone fields with no modular weights.

These fields will also contribute to the modular divergence conditions, as outlined below. We also
have to consider the ¢ fields of [1] here since they have noninvariant masses under a modular
transformation. These fields have no 8 or modular weight parameters but do have f 3= aK. then

the conditions the Ss3, S4, and qg fields must satisfy are
0 = Tr [ﬁ(l — 2&)2] + Tr {ng(l — 2073)2} (B.17)

0 = Tr [ﬁ&(l — 2&)2] + Tr [773073(1 — 2543)2} (B.18)
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0 = Tr [77(342(1 — 2@)2] + Tr {7]3&%(1 - 2a3)2] (B.19)
0 = Tr [77 (1-24) (—2&2 —a+ 3d2> } + Tr [m (1 —2a3) (—2a3 — az +3a3) | (B.20)
and

—87%h = Tr [774qqu] = 2Sum [n4qqu] . (B.21)

B.3 PV Fields for the Regulation of Modular Divergences

Here we introduce fields that can cancel the contributions to Eqs. (A.20)~(A.22) from the Y, Ss,
and Sy and contribute to the sum rules in Egs. (3.37), (3.38) and (A.16) of [1]. The only new set

we introduce here is

e S5 : A set of pairs of PV fields with 75 = 3 and (7®)$ = 0 with (¢®)S, = (¢®)Fsn.

m

Then the conditions we must satisfy are
. 1 . 2 1 . 2 1 2 1 2
0 (N +2)p (5 — ﬂ) — A (5 — ﬂ) — Sum |}75ﬁ5 (5 — a5) :| — Sum [1755@ (5 — o/5> :|
p(l 2 p(l A’
—Sum |:775q5 <§ - a5) + Sum |:775q5 (5 - a5> :| (B.22)
0 = (N+2)8 (%—B) — A (%—B) — 24,8 (%—B) + 24, (% —B)

+ Sum [nsﬁé(l —2a5)(1 —