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Object detection, localization, and segmentation in medical images are essential in several

medical procedures. Identifying abnormalities and anatomical structures of interest within these

images remains challenging due to the variability in patient anatomy, imaging conditions, and the

inherent complexities of biological structures. To address these challenges, we propose a set of

frameworks for real-time object detection and tracking in ultrasound scans and two frameworks

for liver lesion detection and segmentation in single and multi-phase computed tomography (CT)

scans. The first framework for ultrasound object detection and tracking uses a segmentation
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model weakly trained on bounding box labels as the backbone architecture. The framework

outperformed state-of-the-art object detection models in detecting the Vagus nerve within scans

of the neck. To improve the detection and localization accuracy of the backbone network, we

propose a multi-path decoder UNet. Its detection performance is on par with, or slightly better

than, the more computationally expensive UNet++, which has 20% more parameters and requires

twice the inference time. For liver lesion segmentation and detection in multi-phase CT scans,

we propose an approach to first align the liver using liver segmentation masks followed by

deformable registration with the VoxelMorph model. We also propose a learning-free framework

to estimate and correct abnormal deformations in deformable image registration models. The

first framework for liver lesion segmentation is a multi-stage framework designed to incorporate

models trained on each of the phases individually in addition to the model trained on all the

phases together. The framework uses a segmentation refinement and correction model that

combines these models’ predictions with the CT image to improve the overall lesion segmentation.

The framework improves the subject-wise segmentation performance by 1.6% while reducing

performance variability across subjects by 8% and the instances of segmentation failure by 50%.

In the second framework, we propose a liver lesion mask selection algorithm that compares the

separation of intensity features between the lesion and surrounding tissue from multi-specialized

model predictions and selects the mask that maximizes this separation. The selection approach

improves the detection rates for small lesions by 15.5% and by 4.3% for lesions overall.
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Chapter 1

Introduction

Medical imaging is essential in many medical diagnostic and therapeutic procedures,

allowing doctors to visualize, examine, and observe various anatomical structures, abnormalities,

physiological interactions, and disease progression within the body. In radiology, imaging is

key for detecting and diagnosing many critical diseases such as cancer, cardiovascular diseases,

lung infections and neurological disorders. Beyond critical diseases, medical imaging is also

used for detecting and monitoring bone fractures, tendon sprains, arthritis, and kidney stones.

During pregnancy, ultrasound is used for monitoring the growth of the fetus as well as checking

for any possible health issues that might require medical interventions. In research fields such as

psychology and neuroscience, medical imaging modalities such as functional magnetic resonance

imaging (fMRI) are used to examine and analyze brain functionality, and neurological connectivity

and interactions. The significance of medical imaging in clinical settings is evident by its

continually increased use in medical examinations as shown in Fig. 1.1.

Currently, most medical imaging is implemented using computerized systems and is

digitized including acquisition, reconstruction, visualization, and analysis. Digitized medical

imaging introduced several improvements to the field overall. Advanced acquisition and recon-

struction approaches helped reduce radiation exposure from X-rays and computed tomography
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Figure 1.1: The rate of medical scans by age group per 1,000 people using computed tomography
(CT), magnetic resonance imaging (MRI), ultrasound, and nuclear medicine in the United States
(left) [2]. The rate of CT scans (middle) and MRI scans (right) per 1,000 people in several
OECD (Organisation for Economic Co-operation and Development) countries [3].

(CT) while improving image quality at the same time [4]1. Computer-assisted imaging and image

analysis advanced several fields such as radiometrics [7], surgical planning and navigation [8],

and drug discovery and analysis [9]. Furthermore, at-scale computer-assisted diagnostic (CAD)

systems have become possible with the digitization of medical imaging and are used to support

clinicians in examining, analyzing, and interpreting images. They are used to identify anatomical

structures of interest in addition to abnormalities and diseases such as the presence of lesions

[10, 11]. The clear potential for CAD to improve patient outcomes has made it into one of

the major research fields in medical imaging with hundreds of articles published in scientific

journals and conferences annually on the subject [12]. Throughout the past decade, artificial

intelligence-based medical image analysis and CAD algorithms, specifically deep learning ones,

have dominated most of the development in the field, which should come as no surprise due to

their powerful learning capabilities in extracting features from images for classification, detection,

segmentation, and tracking purposes [13, 14, 15, 16, 17, 18, 19]. These algorithms have the

potential to revolutionize medical imaging by providing clinicians with more accurate information

about underlining diseases and abnormalities for improved diagnosis and interventions. Another

1It is worth noting that computerized imaging can also lead to the overall increased exposure to radiation due to
the speed and ease at which the scans can be completed, increasing repetitions of exposure [5, 6].
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aspect that might not be mentioned often when these algorithms are in discussion is their ability

to increase access to healthcare and unify outcomes across patients of different backgrounds and

identities taking healthcare a step forward towards equity and inclusion [20, 21]2.

Our objective in this work is on the development of deep learning approaches for the

purpose of 1) object detection, localization and tracking in ultrasound scans, and 2) liver lesion

detection and segmentation in single- and multi-phase CT scans. However, before we dive into

the technical presentation and discussion of our work, we believe a brief review of the background

and motivation from the perspective of medical imaging in general, and the perspective of object

detection, segmentation and tracking in medical imaging is needed to contextualize and situate

our work.

1.1 Background and Motivation

1.1.1 Medical Imaging

Throughout history, studying the internal structure of human bodies while still alive was

virtually non-existent. Aside from invasive surgical interventions or dissections, there were no

methods available to do so; while the fear of bleeding, pain, and infections as well as cultural

barriers limited those interventions [23]. All this changed in the late 19th century when medical

imaging became possible through the use of direct electromagnetic radiation to create clear,

contrasting pictures—although not by today’s standards—between bones and soft tissue [24], a

technique that is known to us now as X-ray. Prior to that, clinicians and researchers used external

observations and their imaginations to formulate ideas on how the inner parts of our bodies are

structured and work together. The invention of X-ray by the German physicist Wilhelm Röentgen

in 1895 enabled physicians for the first time to have a peek inside the human body and see the

2Without careful planning of AI methods in healthcare through the assurance of representation, and bias analysis
and reduction, AI methods can instead amplify inequality and increase disparities in the healthcare system [22].
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different anatomical structures without invasive interventions. This was a significant breakthrough

in the medical field and enabled doctors to diagnose a variety of conditions such as broken bones,

lung diseases, and gastrointestinal disorders without invasive interventions.

Since the discovery of X-ray, medical imaging has continued to evolve with the devel-

opment of new imaging modalities such as computed tomography (CT), magnetic resonance

imaging (MRI), ultrasound, positron emission tomography (PET) and several others. A timeline

summarizing the main breakthroughs in medical imaging is outlined in Fig. 1.2. Each of these

modalities scan the body using various and differing techniques to generate a representation of the

internal structure of the human body that is different based on the technique used [25]; providing

clinicians with a variety of options to assist in diagnostic and therapeutical procedures. These

imaging techniques have revolutionized anatomical and physiological studies by allowing doctors

to visualize internal structures, detect abnormalities, and monitor disease progression without

the need for invasive procedures that would impact patients’ health negatively and might not be

possible, to begin with.

Medical imaging has also led to significant advances in the fields of cardiology, neurology,

and oncology, among others. For example, MRI machines use strong magnetic fields and radio

waves to generate detailed images based on the magnetic resonance of dipoles in tissues, making

them ideal for soft tissue visualization and diagnosis, such as the brain, spinal cord, joints, tendons

and muscles [25]. On the other hand, CT scanning employs X-ray to generate cross-sectional

projections that are reconstructed to produce images, allowing for an exceptionally high-resolution

visualization of bony structures and organs like the lungs, liver, and other anatomical structures in

the abdomen [28]. For ultrasound, high-frequency sound waves are used to generate real-time

images of organs and tissues, making it particularly useful for examining fetal development and

the cardiovascular system. Fig. 1.3 shows examples of X-Ray, CT, MRI, ultrasound, and PET

scans together with a summary of their corresponding imaging method, typical target anatomical

structures and diagnostic use.
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Figure 1.2: A timeline summarizing some of the major breakthroughs in medical imaging. The
first ever X-ray image was taken in 1895, which was of a hand (public domain), the first MRI
image taken in 1973 of two water tubes [1], and the first clinical CT scan, which was of the
brain taken in 1971 [26] are shown. An example of a PET scan of the brain taken by the first
clinical PET machine (PET III) in 1975, and an example scan of the brain from a modern MRI
machine (from the MedPix® database [27]).

Medical imaging plays a significant role in clinical settings by empowering clinicians to

investigate patients anatomically and physiologically through non-invasive or minimally invasive

means. Not only is it used as an essential part of the standard of care for many diagnostic and

therapeutic procedures [29, 30], it is also used in many clinical trials and research studies [31].

When coupled with algorithms and methods to assist clinicians in detecting, and tracking objects

of interest and abnormalities within scans, medical images have the potential to further improve

patient outcomes through consistent diagnostic and intervention performance across patients and

clinicians alike.
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Figure 1.3: The most commonly used medical imaging modalities with their corresponding
imaging method, typical target anatomical structures, diagnostic use, and example scans. Scans
are from the National Institute of Health open-access MedPix® database.
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1.1.2 Object Detection, Tracking and Segmentation in Medical Imaging

and The Challenges it Faces

Object detection, tracking, and segmentation methods in medical imaging allow for the

targeted characterization and representation of objects of interest within a scan. This has many

benefits ranging from the identification and detection of lesions and tumors to location and size

monitoring of organs and other anatomical structures’, which can assist in therapeutic procedures

such as radiation therapy or nerve stimulation [32, 33, 34, 35]. In addition, researchers have

demonstrated that these methods can be used for many applications ranging from critical ones

such as cardiac function analysis in ultrasound and MRI scans [36] to bone fracture detection and

quantification in X-rays [37]. In its simplest and earliest forms, these methods started with simple

thresholding and edge detection filtering approaches to separate objects within a scan based on

their intensity values [38] or the changes in these values [39].

These methods developed over time to be more sophisticated and generalize better to

account for variations in images such as intensity variations and noise which hinders the perfor-

mance of thresholding and edge detection methods. Methods such as active region growing [40],

ROI matching [41], and histogram of oriented gradients [42], which we will discuss in more detail

in Chapter 2. Although several of these traditional methods (as opposed to deep learning-based

approaches) were proposed to overcome the challenge of generalization, they still performed at

a level that did not provide significant added value for clinicians and doctors since they could

not provide them with information beyond quantitative measurements that experienced doctors

could manually find themselves. They also required manual intervention and calibration while in

operation and could not operate autonomously.

Most of the current advances over the past decade in the detection, segmentation and

tracking of objects in medical images are based on deep learning models that use convolutional

neural networks. These models have demonstrated significantly improved abilities in feature
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extraction and decision making [43, 14, 15] such as whether a scan contains a lesion or not and

if it does, where that lesion is located [44]. Although superior when compared to traditional

methods in their ability to generalize and accurately perform the task they were trained on, deep

learning methods suffer from a set of drawbacks. First, they require relatively large annotated

datasets, which are expensive to generate in the medical field as they require expert annotations

and labeling. If trained on smaller datasets, they can suffer from overfitting and the inability to

generalize beyond the data they were trained on. These models are also hard to interpret and

can give incorrect predictions with high confidence, which is why they are usually referred to

as black boxes where users typically do not have much control and understanding of the state

of the model beyond its input and the predicted output. Deep learning models learn what they

are trained on, and if the data is biased or lacks representation from certain groups, then these

trained models will perform poorly when presented with data from these groups. Deep learning

models also require extensive computational resources for training and, depending on the model

complexity and size, for deployment and inference as well. Finally, One of the major challenges

that face deep learning models for detection and segmentation purposes in medical images is

class imbalance where the target anatomical structure or abnormality, such as lesions, are severely

underrepresented with respect to the overall scan. In many instances, these segmentation and

detection targets are orders of magnitude smaller than the overall size of the scan.

1.2 Research Objectives and Contribution of Thesis

The aims and objectives of this dissertation are as follows:

1. A real-time object detection, localization and tracking framework for ultrasound imaging

based on convolutional neural networks that can perform well and generalize when trained

from a small dataset.

2. A multi-stage and multi-target framework for liver lesion segmentation in multi-phase CT
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scans based on convolutional neural networks that can combine learning from individual

phases with learning from combined phases to improve the segmentation and detection of

lesions as well as reduce performance variability across subjects.

3. A lesion selection approach that compares the predictions from multiple specialized models

lesion-wise, evaluating lesions based on intensity features separation between the lesions

and surrounding tissue within each of the predictions; selecting the prediction that max-

imizes feature separation for liver lesion segmentation and detection in both single- and

multi-phase CT scans to improve detection rates and reduce the number of missed lesions.

1.2.1 Real-Time Object Detection, Localization and Tracking in Ultra-

sound Scans

We designed a real-time object detection framework that is designed to autonomously

detect, identify, and localize a specific anatomical structure in ultrasound scans. The designed

method uses a weakly supervised and modified UNet convolutional neural network (CNN), which

is an encoder-decoder architecture designed for segmentation tasks, as its backbone detection

and localization algorithm [18]. The proposed approach is designed to autonomously assist

sonographers in real-time to enhance their ability to detect and track objects of interest during

scanning sessions.

We then designed an improved framework that is also capable of real-time object detection

and localization using the same weakly trained segmentation-based UNet accompanied by an

optical flow CNN that can track the target object location across frames by estimating its move-

ments. The framework can detect and localize a target anatomical structure within an ultrasound

scan field of view with an average localization error of less than 1.25 mm, and a tracking error of

less than 0.75 mm. Finally, we designed a weakly supervised backbone segmentation network

that incorporates multi-path decoders, which improves object detection accuracy by up to 7%
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while maintaining low computational complexity for real-time operation.

The proposed approaches outperform state-of-the-art object detection models in detecting

and localizing anatomical structures of interest within ultrasound scans. They do not require a

large training set and are trained using bounding box labels, which are easier and significantly

cheaper to generate than pixel-wise segmentation annotations.

1.2.2 Liver Lesion Detection and Segmentation in CT Scans

Detecting and segmenting lesions within the liver in CT scans is a challenging problem that

is still largely unsolved. Current approaches have average recall and precision that hovers around

40 to 50% [45] for lesion detection and segmentation. These lesions within the liver are of varying

sizes, shapes, and locations within the liver. They are also often of similar texture and intensity to

the healthy liver tissue that surrounds them adding to the complexity of the problem [45]. Most

of the proposed methods that aimed to solve this problem approached it from a segmentation

perspective where a segmentation convolutional neural network is designed and trained to segment

the lesions directly or in a cascaded framework where the liver is first segmented before lesions

to reduce the search space for the lesion segmentation model [46, 47, 48, 49]. Methods that

approach the problem with 3D segmentation models achieved on average better segmentation and

detection performance when compared with methods that approach the problem on a 2D per-slice

matter. This allows contextual information from different slices within the CT volume to be used

for the prediction of the segmentation decision [45, 50, 48].

Prior to detecting and segmenting lesions within the liver, we employ three approaches

that improve the ability of the lesion segmentation frameworks we propose to identify the lesions

within the liver. These approaches are:

1. A slice classifier to identify all the slices of a CT scan that contains the liver with a

post-processing stage that utilizes structural information on the continuity of the liver to

minimize false negatives.
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2. A 3D liver segmentation model that isolates the liver within the CT volume, which is

implemented on the slices that were identified by the slice classifier.

3. A deformable liver registration approach that aligns the liver in multi-phase CT scan.

On the liver region of the CT scan, we propose two frameworks for lesion detection and

segmentation. The first is A multi-stage and multi-target framework for liver lesion segmentation

in multi-phase CT scans based on convolutional neural networks. The framework uses three

stages. The first stage identifies the regions within the liver where there might be lesions at three

different scales (4, 8, and 16 mm). The second stage is the main segmentation stage and uses four

models. The first model is trained on the combined CT volume of all the phases, which are three

phases (the arterial, delayed, and venous phases). The remaining three models are trained on each

of the phases individually. The third stage is a segmentation refinement and correction stage that

incorporates the predictions and CT volume as inputs to refine the predicted segmentation mask.

The overall structure of this framework is outlined in Fig. 1.4. The framework enhances feature

extraction from multi-phase CT scans and improves the subject-wise segmentation performance

by 1.6% while reducing performance variability across subjects by 8% and the instances of

segmentation failure by 50%.

Figure 1.4: The overall structure of the multi-stage liver lesion segmentation framework from
multi-phase CT scans.
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The second framework aims to improve detection rates and reduce the number of missed

lesions, especially small ones, as they are significantly more challenging to detect. It uses a

lesion selection approach that compares the predictions from two specialized models lesion-

wise. The models are trained to specialize in detecting lesions based on their size, with the first

model focusing on segmenting lesions regardless of their size, while the second specializes in

small lesions. The framework evaluates the lesion masks generated from both segmentation

models. It then creates corresponding lesions from these masks based on their overlap. For each

corresponding lesion pair, we compare the separation between the lesion and surrounding tissue

for each lesion individually using intensity-based features and intensity distribution divergence

metrics. The lesion mask that maximizes the separation between the lesion and its surrounding

tissue is selected out of the two. The framework was tested on both single- and multi-phase

CT scans to improve detection rates and reduce the number of missed lesions. It improves the

detection rates for small lesions by 15.5% and by 4.3% for lesions overall.

Our approach also focuses on complimenting the segmentation and detection frameworks

with data-centric training and inference pipelines by incorporating extensive data augmentation,

pre-processing, and sampling. Without careful planning for data pre-processing, sampling, and

augmentation, our models’ detection and segmentation performance would deteriorate. For

example, without proper sampling that accounts for the significant imbalance in the data, stage 1

of the proposed multi-stage approach would not be able to localize lesions.

1.3 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 discusses the literature

on object detection, segmentation, and tracking for images in general, and for medical imaging,

specifically ultrasound and CT scans as they are the focus of our proposed approaches. Chapter

3 discusses our approach to detect, localize and track objects of interest within an ultrasound
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scan in real-time to assist sonographers while imaging a patient for diagnostic and intervention

purposes. In Chapter 4, we introduce our proposed approach to adaptively balance the recall

and precision while training 2D lesion segmentation models, which we extend to 3D models and

incorporate into the training of the models that are part of our second liver lesion segmentation

framework described in Chapter 7. In Chapter 5, we present multi-phase CT scan registration for

the purpose of aligning the liver to detect and segment liver lesions using scans from different

phases. Finally, Chapter 6 discusses the multi-stage and multi-target liver lesion segmentation

framework for multi-phase CT scans.
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Chapter 2

Object Detection, Segmentation and

Tracking in Medical Images

Object detectors are designed to localize objects and identify their underlying category

or class within an image [51, 16]. Segmentation, on the other hand, is tasked with providing

a detailed pixel-by-pixel representation of either a class of objects within an image (semantic

segmentation), or for each instance of an object (instance segmentation). Object tracking across

images, such as frames in a video, is tasked with localizing a target object of interest across these

images and identifying the direction of its movement.

2.1 Traditional Object Detection, Segmentation, and Tracking

Approaches

Before the era of deep learning (DL), many traditional object detection algorithms used

handcrafted features to detect objects that usually did not generalize well to real-life situations

beyond the specific application they were designed for [52, 53]. However, some prominent

traditional methods, such as the 1) Viola-Jones Detector, which uses integral images and a cascade
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of classifiers that utilize Adaboost to detect face features [54, 51], 2) Histogram of Oriented

Gradients (HOG), which uses the histogram of gradients directions at different image locations

[55], and 3) Deformable Part-based Model (DPM) [56] were quite successful. Nevertheless, since

the introduction of DL-based object detection algorithms, they outperformed traditional methods

significantly on all performance metrics [43, 16, 57].

Traditional segmentation approaches such as thresholding an image based on different

intensity levels, or edge detection to separate regions based on the change in intensity levels

indicating edges between objects are susceptible to many of the issues that are found in real-life

scenarios such as noise, brightness and contrast variations. Other segmentation methods such

active contours [58] and watershed segmentation [59] are more resilient to noise and intensity

distribution variations, but lack the ability to autonomously operate on an image, and need fine

refinement and modification at inference.

Several traditional methods prior to deep learning were proposed to track objects across

frames as it is an important task for many applications such as augmented reality and sports

analytics [60, 61], and once the object is identified by a user at a certain frame and does not

move abruptly across frames, this task is usually easier for an algorithm to perform than object

detection and segmentation. These approaches used template matching [61], distribution shift of

intensity values [62], and optic flow representation of frame elements movement when compared

to a previous frame [63]. Similar to object detection and segmentation, traditional object tracking

approaches are currently outperformed by deep learning ones in almost every public evaluation

metric.
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2.2 Object Detection, Segmentation, and Tracking Using Deep

Learning

Deep learning-based object detection methods, and specifically CNN-based methods, are

currently the state-of-the-art methods [64, 65], especially for small objects. These detectors can

be categorized into two broad categories, the two-stage detectors, such as Faster R-CNN [66],

and the one-stage detectors, such as SSD [67] and YOLO [17]. Two-stage detectors defined the

early success of DL-based methods, and are designed to have high identification and localization

accuracy, while one stage detectors are designed to be fast and operate in real-time at 30+ frames

per seconds (fps). Recently, these real-time methods achieved state-of-the-art object detection

accuracy with a performance that is as good as, or better than, two-stage methods [64]. However,

both one- and two-stage detectors require large training sets. If one and two-stage detectors are

trained on smaller data sets, which is often the case in medical imaging, overfitting and poor

generalization can occur [68].

Deep learning-based segmentation methods that use CNN are based on the encoder-

decoder architecture. An encoder is designed to extract features from an image using a series

of convolutional layers, which are then followed by a decoder to contextualize these features

spatially to generate a segmentation map that assigns each pixel the class the model believes it

belongs to [18, 69]. One specific approach, the UNet, that uses a contracting path followed by an

expansive path, with skip connections between the two paths to preserve localization information

has proven to be highly trainable with a small training set, making it very suitable for usage

with medical images [18]. Several improvements have been made to the design of UNet, such as

utilizing increased skip connections and deep supervision, which have improved the accuracy

performance of the network at the expense of inference time [70] as well as the use of attention

blocks in the skip connections [71]. Object tracking using deep learning mainly uses similarity

matching models [72]. These models use networks where a cutout of the object of interest is used
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together with the image containing it as inputs to the network. Localized similarity measurements

between the cutout of the subject and the image are then used to identify the location of the

object within the image. In addition to using similarity measurements, these models are recently

being trained with both a similarity and a dissimilarity metric to not only train the network

on matching cutouts, but also on cutouts that are dissimilar, improving the model’s ability to

maximize the similarity metrics and feature embeddings for similar objects while minimizing

them for dissimilar ones [73].

2.3 Object Detection and Tracking in Ultrasound Scans

In ultrasound imaging, object detection problems have been historically tackled using

region of interest (ROI) tracking or segmentation-based approaches. For ROI tracking, several

methods have been developed such as block matching [74] where exhaustive search-based block

matching (ES-BM) is used to track anatomical structures such as arteries across sequential frames

[75], elliptical shape fitting to track and localize arteries and veins [76], and deep learning methods

using networks that compare similarities between frames [77]. Even though these ROI tracking

methods have shown great potential in tracking objects in ultrasound scans, their ability to assist

sonographers in detecting and localizing target anatomical structures during scanning sessions is

hindered by their slow inference speeds [77, 78], or their dependency on operators to identify the

target ROI at the beginning of a scanning session [74], or both.

In ultrasonography, sonographers regularly use traditional computer-aided detection

(CAD) methods to assist with image interpretation and detection of structures. These are used

to decrease the effect of ultrasound imaging dependency on operators’ effectiveness, producing

more unified detection and diagnostic capabilities [79]. Traditional CAD platforms that do not

utilize deep learning approaches typically use handcrafted features such as histogram slicing

and indexing combined with filtering to flag areas that are different from surroundings or have
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significant unique representation when compared to surroundings [80, 81]. However, they tend

to fail in their ability to detect and identify structures that are not easily identifiable and distinct

from their surroundings. In addition, CAD platforms frequently use active contour models for

image segmentation in ultrasound scans [82]. These contours are designed to identify salient

features and boundaries of an object to separate it from its surroundings. Nevertheless, they also

suffer, from their inability to autonomously identify the object of interest and localize it as they

need to be initiated by a user in a location within the image that closely surrounds the object of

interest or within it.

Autonomous object detection in medical imaging including ultrasound has been histor-

ically treated as a segmentation problem. Segmentation-based approaches are used to recover

a pixel-wise representation of every part within an image that belongs to an object [18]. Often,

the goal of such algorithms is to identify the presence of an object in a medical scan, localize it,

and estimate its size. These three goals are achievable through object detection algorithms [57].

Using DL models designed for object detection in natural images, Cao et al. [83] performed a

comparative study of their performance on detecting breast tumors in ultrasound scans. They

trained and compared the performance of Fast R-CNN [84], Faster R-CNN [66], You Only Look

Once (YOLO) [17], and Single-Shot MultiBox Detector (SSD) [67] on a dataset from 1043

cases (579 benign and 464 malignant). Yap et al. [85] used various DL models including the

encoder-decode model UNet [18] to segment and identify lesions in ultrasound scans of the

breast on two datasets with a total of 469 cases (356 benign and 133 malignant). Further models

were proposed for ultrasound image segmentation based on the encoder-decoder [86, 87], or the

Fully Convolutional Network (FCN) architecture [88, 89]. Other successful approaches, such as

Sono-Net [90], used saliency maps of image classification networks to identify views, and detect

anatomical structures of interest in fetal ultrasound scans.

Even though these DL-based approaches were accurate and successful in detecting,

and localizing anatomical structures, they faced several challenges that hindered their ability
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to be deployed efficiently. Object detection models such as Faster R-CNN and YOLO need

large training sets [66, 17] than is usually, and practically, available for many medical imaging

applications. Networks using classification and saliency maps also require extensively large

datasets [90] for classification networks to develop the saliency maps needed to detect and

localize target anatomical structures. Even though segmentation-based networks do not need

large datasets to accurately segment anatomical structures of interest [18], they need pixel-wise

annotations and labels, which are orders of magnitude more expensive to develop than bounding

box and classification labels [91].

2.4 CT Scans Registration

Medical image registration techniques can be categorized as rigid, affine, or deformable

depending on the spatial transformation degrees of freedom and the scope at which the transfor-

mation varies spatially. Rigid and affine registration transformations are parameterized using

a set of parameters that defines the rotation and translation operations for rigid registration in

addition to scaling and shearing for affine registration. Deformable registration, on the other hand,

is defined by a non-parametric dense correspondence, or the shifts in all directions for each pixel

in a 2D image, or voxel in 3D volumes, which is usually called the deformation or registration

field. This allows the alignment of different anatomical structures using a more realistic local

representation of their movement beyond the constrained global rigid and affine transformations

[92].

Traditional deformable registration methods such as HAMMER [93], demons [94],

ELASTIX [95], and ANTs [96] used iterative optimization algorithms, which are highly ac-

curate but extremely slow, taking hours to align medical image volumes [97]. To improve

registration speed while maintaining accuracy, deep-learning-based registration methods use a

learning-based approach to train a model on predicting the transformation between two images;
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eliminating the need for the time-consuming iterative optimization at inference. These models

are trained using different approaches, including unsupervised [98, 99], semi-supervised [100],

and fully supervised methods [101, 102]. Unsupervised methods use general similarity metrics

such as the mean square error (MSE) [99] or the normalized cross-correlation (NCC) [98], while

semi-supervised methods use a segmentation mask of an anatomical structure of interest as

guidance through metrics such as the Dice score [100]. Fully supervised models use the error

between predicted and synthetic ground truth deformation as a training metric [101, 102].

Early deep-learning methods, such as those proposed by Cao et al. and Yang et al., used

key patch-wise alignment to improve computational efficiency [103, 104]. Other methods used

both whole image volumes and patches to predict the deformation that aligns images [102]. Patch-

wise registration methods require pre-alignment of images using a rigid or affine transformation

as the range of predicted deformation is bound by the patch size, which is typically around 15

voxels [103]. VoxelMorph [105] is among the most prominent deep-learning methods for medical

image registration that uses an encoder-decoder convolutional neural network (CNN) architecture

inspired by the UNet model [18]. Despite performing well, VoxelMorph can produce large

distortions [105], which may hinder the use of registered images for diagnostic and therapeutic

procedures as these images would not represent the actual shape and location of anatomical

structures. Other deep-learning methods such as SynthMorph [106], which is trained to learn

contrast-invariant registration, have demonstrated promising registration performance in aligning

anatomical structures of interest with high accuracy. To reduce deformation errors and distortions,

Mok et al. proposed cLapIRN [107], which learns the conditional features that are correlated

with the regularization hyperparameters to select the optimal smoothness regularization during

inference. Although accurate in their ability to align objects within medical imaging, all of these

models still introduce deformation errors with varying levels.

20



2.5 Liver and Liver Lesion Detection and Segmentation

Detecting and segmenting lesions within the liver in CT scans is a challenging problem

that is still largely unsolved where current approaches have average recall and precision that

hovers around 50% for lesion detection and segmentation [45]. Detecting and segmenting the

liver itself within CT scans is, however, a relatively easy problem with most approaches proposed

to solve this problem achieving segmentation Dice scores that are higher than 90%. Most of the

proposed methods that aimed to solve this problem approached it from a segmentation perspective

[46, 47, 48, 49]. Methods that approach the problem with 3D segmentation models achieved, on

average, better segmentation and detection performance than 2D per-slice or 2.5D multi-slice

models. This allows contextual information from different slices within the CT volume to be

used for the prediction of the segmentation decision [45, 50, 48]. Yuan et al. [108] used fully

convolutional neural networks (FCN) to segment both the liver and lesions within the liver

achieving a reasonable Dice score segmentation performance of 65.7% for lesions and 94.3% for

the liver while Han [46] used a 3D volumetric UNet achieving a lesion Dice score of 67%. Using

both 2D and 3D UNet for feature extraction followed by volumetric aggregation of features, Li

et al. [109] achieved a lesion segmentation Dice score of 72.2%. Using multiple connections

among layers in different convolutional blocks of UNet, Tran et al. proposed work [110] reached

a segmentation Dice score of 73.69%. Using a spatially contrasting encoder branch (similar to

UNet) and a parallel spatially expansive branch, Valanarasu et al. proposed KiUNet with a Dice

score of 77.5%. These approaches mostly report the global Dice score, which aggregates the true

positives (TP), false positives (FP), and false negatives (FN) over all subjects and then computes

the Dice score as follows:

Dc =
2T P

2T P+FP+FN
. (2.1)

The global Dice score is higher than the Dice score computed by subject when there are variations
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in lesion sizes across subjects as the score will be heavily influenced by the count of TP, FP, and

FN from large lesions, which models consistently perform better on.

Current state-of-the-art liver lesion segmentation networks use the encoder-decoder with

skip connections design paradigm based on the UNet [111] architecture. Several developments

have been proposed to the UNet architecture to improve its segmentation and efficiency per-

formance. These developments targeted different components of the network. Notably, these

improvements included modifications to the convolutional block, such as the integration of resid-

ual or bottleneck blocks, which aid in mitigating the vanishing gradient problem and improving

feature representation without substantially increasing computational complexity [112, 113].

Additionally, advancements have been made in the architecture’s skip connections, with the

introduction of nested and multi-stage connections that facilitate the model’s ability to capture and

integrate multi-scale contextual information more effectively [114]. Moreover, the incorporation

of attention mechanisms within the skip connections further refines the model’s focus on relevant

features, enhancing segmentation precision by selectively emphasizing important spatial features

while suppressing less relevant information [71].

Among the improvements that focused on redesigning the skip connections of the UNet

architecture, UNet++ [114], Attention UNet [71], and MultiResUNet made large strides in

improving the overall segmentation capabilities of the UNet architecture across different medical

image segmentation tasks. UNet++ uses a nested architecture that refines skip connections

using multiple interconnected convolutional blocks at different depths, enabling an increased

mixture of features across the network. Attention UNet incorporates attention gates within its skip

connections, focusing the model spatially on relevant image regions by selectively emphasizing

important features while suppressing less relevant information. Other models such as the ResUNet,

UNetR [115], SwinUNetR [116], and MedNext [117] improved on the UNet architecture by

modifying the design of the convolutional block or replacing it with a transformer-based block.

The ResUNet architecture replaces the convolutional blocks within the encoder and decoder with
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residual convolutional blocks while the MedNext model uses a residual bottleneck convolutional

block, which is a 3D version of the ConvNext block [118] that is used in the current state-of-the-art

model for natural image classification. The UNetR and SwinUNetR models replaced the encoder

with a transformer-based encoder using the VIT-B model and the Swin Transformer, respectively.

The MultiResUNet, on the other hand, included modifications to both the convolutional block

and the skip connections by incorporating multi-residual paths inspired by DenseNet in the first

and successive residual blocks in the second. Transformer encoders, in general, however, struggle

with smaller objects and extracting localized dense representations as they encode features using a

patch-based manner. The Swin Transformer aimed to mitigate this problem with shifted windows,

but it still lags behind in its ability to recover small objects, such as lesions, in their early stages.

Deep learning models based on the UNet architecture are the most widely used and best

performing for the task of liver lesion segmentation in CT scans [119]. These models include

the current state-of-the-art model, nnUNet [48]. The nnUNet model uses the original UNet

architecture and incorporates a self-configuration approach that modifies the network’s depth,

width, and under-sampling stages, among others, based on the dataset footprint in terms of the

target anatomical structure intensity and spatial characteristics. The Model Genesis [120] UNet

model, which uses self-supervised learning as a pre-training approach to learn transferable image

representations, also performs comparably to the nnUNet model. Transformer models, in general,

do not perform on par with CNN models due to the relatively small size of lesions to the overall

scan. However, the SwinUNetR model can achieve comparable results due to the use of shifted

windows, which improves local and small feature extraction for dense segmentation predictions.

All of these methods, however, miss a large number of lesions within the liver, suffering from a

large false negative rate. For small lesions, this is more prevalent as they are harder to detect due

to the limited distinctive features (because of size) when compared to their surroundings.
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Chapter 3

Real-Time Object Detection and Tracking

in Ultrasound Scans

3.1 Problem Definition and Motivation

Ultrasound scanning is an important step in many medical diagnostic and therapeutic

workflows due to its well established safety record, its ability to visualize differences among

soft tissues, and portability [121, 122]. However, ultrasound scanning is labor intensive where a

scanning session can take up to 30 minutes. Ultrasound scans are also sonographer dependent,

creating relatively high cross operator variability in accurate anatomical structure identification;

novice sonographers demonstrate high diagnostic error rates at up to 52% more than expert sono-

graphers [123]. Ultrasound imaging is primarily used to image soft tissue, which is inherently

compressible, creating additional within-subject image variability. Despite these limitations, the

trained clinician must carry out accurate and precise ultrasound scanning as it is critical for identi-

fication of targeted structures, as well as for precise and accurate therapy administration [121].

An automatic framework tool that assists sonographers in detecting and localizing anatomical

structures may radically improve reliable across-subjects scanning for both novice and expert

24



sonographers.

In medical imaging, object detection problems have been historically tackled using region

of interest (ROI) tracking or segmentation-based approaches. For ROI tracking, several methods

have been developed such as block matching [74, 75, 76], and deep learning methods using

networks that compare similarities between frames [77]. Although capable of tracking objects,

ROI tracking methods’ ability to assist sonographers in detecting and localizing target anatomical

structures during scanning sessions is hindered by their slow inference speeds [77, 78], or their

dependency on operators to identify the target ROI at the beginning of a scanning session [74],

or both. Segmentation-based approaches can be used instead to autonomously detect, localize,

and track anatomical structures of interest. However, they require pixel-wise annotations that are

expensive to generate as they require a large number of expert working hours. Deep learning

object detection approaches, on the other hand, require extensively large training sets to prevent

overfitting and generalize well [66, 17], which is usually not possible in medical imaging and

clinical studies. They used bounding box labels and do not require pixel-wise annotations and

labels, which are orders of magnitude more expensive to develop [91].

3.1.1 Proposed Approaches and Contribution

Motivated by these constraints and needs, we proposed two different frameworks in

progression to solve the problem of object detection and tracking in ultrasound scans. Our first

proposed framework to detect, localize and track a specific target anatomical structure in real-time,

uses a weakly supervised and modified UNet convolutional neural network (CNN) as its backbone

detection and localization algorithm [18]. It is designed to autonomously assist sonographers in

real-time to enhance their ability to detect and track objects of interest during scanning sessions.

We show that the proposed method outperforms YOLOv4 [124] and EffecientDet [64], which are

two state-of-the-art real-time object detection methods, in detecting and tracking a test anatomical

structure, which is the Vagus nerve using a dataset that was internally developed [34]. We
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use bounding box information to train the backbone network and achieve high detection and

localization accuracy even when the model was trained on a small training set. The second

proposed framework incorporates a CNN optical flow model in addition to the weakly supervised

segmentation model to estimate movements of elements within a scan across frames. The

framework can detect and localize a target anatomical structure within the ultrasound scan field

of view with an average localization error of less than 1.25 mm, and a tracking error of less than

0.75 mm. Both frameworks have an inference latency of less than 33 ms when operating on a

medium-range graphical processing unit (GPU) such as the Nvidia RTX 2080Ti.

To further improve object detection and localization accuracy in ultrasound scans, we

designed an improved UNet network that utilizes a multi-path decoder (MD UNet) for deep

supervision and early attention (at deeper layers) to the anatomical structure of interest. We

designed the model with multi-level-supervision and multi-level spatial attention from the training

labels. We weakly trained the network on detecting and localizing anatomical structures of

interest using bounding box labels. We tested the performance of the proposed network on two

public ultrasound datasets, the breast ultrasound tumor dataset [125], and fetal head dataset [126].

We also tested its performance on our own Vagus nerve dataset [34]. The proposed network

outperforms UNet in detecting and localizing anatomical structures of interest in different ultra-

sound datasets. Its performance is on par with, or slightly better than, the more computationally

expensive UNet++. The design of the network improves the localization performance by up

to 7% while only increasing the number of parameters of the network by 0.75%. On the other

hand, UNet++ [70] requires 20% more parameters and twice the inference time than UNet,

and the proposed network. Furthermore, the proposed architecture detects and localizes key

anatomical structures with greater consistency and accuracy across different subjects and scans

when compared to both UNet and UNet++ as well as Faster R-CNN and YOLOv5.
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3.2 Methods

In this section, we introduce the datasets used to test the performance of the two proposed

frameworks and the designed multi-path decoder UNet model. We then outline the set of data

augmentation used to promote generalization and prevent overfitting of our models. Finally, we

will discuss the evaluation metrics used to judge the performance of the proposed frameworks

and models.

3.2.1 Datasets and Data Preparation

We evaluated the performance of the first framework on two different ultrasound datasets

that were created by researchers at UC San Diego (UCSD) Health and Jacobs School of Engi-

neering. The experimental procedures involving human subjects described in this thesis were

approved by the Institutional Review Board (IRB) at UCSD (IRB No. 171154). The datasets’

scans targeted imaging the Vagus nerve in the mid- and upper-cervical regions of the neck. The

scans span different fields of view of the neck to create a variety of scans that would be generated

by a sonographer who is looking to image the Vagus nerve within the neck. The two datasets were

created using different probes and image reconstruction devices. The 1st dataset was created using

a probe and device with high-quality diagnostic capabilities. The 2nd dataset used a probe that

has a small footprint to work alongside non-invasive therapeutic and stimulation devices, and is

designed to generate scans at a very rapid pace at the expense of quality. The 1st dataset contained

6,368 scans from 3 different subjects, while the 2nd contained 26,313 scans from 5 different

subjects. Both datasets contained scans from both the left and right sides of the neck. The Vagus

nerve shape, location, and surrounding anatomical structures varies greatly within subjects and

across subjects. Even a slight movement of the probe can make it challenging for sonographers

to re-identify the nerve and its location due to the high variability of neck anatomy visualized

with medio-lateral or cepahlo-caudal scanning along the cervical neck [127]. In aggregate, nerve
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detection with variable anatomy datasets, provides a substantial challenge to test the proposed

framework and verify its robustness. Fig. 3.1 shows an example scan from each dataset with the

ground truth and predicted bounding boxes. The second framework was evaluated on the 2nd

dataset.

(a) 1st dataset (b) 2nd dataset

Figure 3.1: Ultrasound scans of the Vagus nerve with the ground truth (green) and predicted
(yellow) bounding boxes using the first proposed framework.

The multi-path decoder UNet model was evaluated on 3 different ultrasound datasets. Two

public datasets and the 1st Vagus nerve dataset. The first dataset is the dataset of breast ultrasound

images [125]. This dataset contains a total of 780 scans. Out of those, 210 contain malignant

lesions, 437 contain benign lesions, and 133 contain no lesions. The scans were acquired using

breast ultrasound scans of women ranging in age from 25 to 75 years. The average scan size

in the dataset is 500 × 500 pixels. The second dataset is the fetal head circumference dataset

[126]. This dataset contains 999 ultrasound scans of fetal heads at all pregnancy trimesters. The

size of the scans in this dataset is the same and is 800 × 540 pixels. The third is the cervical

Vagus nerve dataset. From this dataset, we use 1,000 scans from 3 different subjects of size

680 x 448 pixels. Example scans from each of the datasets with the bounding box enclosing the

anatomical structure of interest is shown in Fig. 3.2. These datasets have objects of interest that

are semantically different, and are of different sizes and shapes. This constitutes a reasonable

challenge to test the performance of the proposed model in detecting and localizing objects of

interest within the field of view in ultrasound scans.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.2: Example scans from the three datasets with the bounding box enclosing the object
of interest. (a) and (b) showing benign lesions while (c) and (d) showing malignant lesions from
the breast ultrasound dataset. (e) and (f) are two examples with different head sizes at different
trimesters from the fetal head dataset. (g) and (h) are from the Vagus nerve dataset.

Throughout training and testing of the proposed frameworks, the scans were resized to

256× 256 pixels for the 1st Vagus dataset, and to 192× 192 for the 2nd dataset before being

supplied to the models. For the breast ultrasound dataset and the fetal head dataset, the scans

were resized to 256×256 pixels. In addition to resizing the scans, their intensity values were

normalized, and throughout training extensive data augmentation was performed, which is

discussed in the next section.

3.2.2 Data Augmentation

During training, we used extensive data augmentation to improve our frameworks’ ability

to overcome overfitting, and generalize to data outside of the training set [128, 129]. The aug-

mentation pipeline includes geometrical transformations and color space randomized contrast

and brightness transformations to account for differences in ultrasound signals’ energy levels.

Most importantly, the pipeline deployed: 1) deformable elastic transformations [130] with ran-
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dom Gaussian kernels to elastically deform the grid of an image, which simulates the elastic

differences among soft tissues within and across subjects, and 2) mixtures of input scans to

enhance the coverage of the probability space while minimizing the risk function during training

by implementing vicinal risk minimization instead of empirical risk minimization [131]. While

computationally efficient, the empirical risk defined as Re( f ) = 1/n∑
n
i=1 ℓ( f (xi),yi) only consid-

ers the performance of f (x) on a finite set of training examples for a dataset consisting of training

data D = {(xi,yi)}n
i=1 with n examples of input (xi) and target (yi) pairs, prediction algorithm

f (x), and a loss function ℓ( f (xi),yi). The empirical risk is used to approximate the expected risk,

which is the average of the loss function ℓ over the joint distribution of inputs and targets P(X ,Y ),

where the joint distribution is only known at the training examples and can be approximated by

the empirical distribution Pδ(x,y) = 1/n∑
n
i=1 δ(x = xi,y = yi). However, the distribution can be

approximated by Pv(x̃, ỹ) = 1/n∑
n
i=1 ν(x̃, ỹ|xi,yi) where ν is a vicinity distribution that computes

the probability of finding the virtual input-target pair (x̃, ỹ) in the vicinity of the training input-

target pair (xi,yi) [131]. The virtual input-target pair (x̃, ỹ) can be defined as x̃ = λxi +(1−λ)x j

and ỹ = λyi +(1−λ)y j, where (xi,yi) and (x j,y j) are two randomly selected input-target pairs

from the training set, and λ is sampled from a beta distribution (λ∼ Beta(α,α), α = 0.1). This

approximation offers a more comprehensive representation and coverage of the joint distribution

P(X ,Y ). The use of mixtures of inputs have been implemented in image classification problems

to minimize vicinal risk [132]. In our framework, we have built and implemented an approach to

use mixtures of inputs to minimize vicinal risk for segmentation-based algorithms.

Prior to training, the masks that are used to train the network are created from bounding

box coordinates as images (tensors) of size H×W where pixel values within the bounding box

are set to 1. This mask will be used to weakly train the segmentation network to detect and

localize the presence of target objects within the boundaries of the box.
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3.2.3 Evaluation Metrics

To evaluate the accuracy of the proposed frameworks, we used the average precision and

recall of localization, where a detection is considered a true positive when a certain localization

threshold is met, otherwise, that detection is considered a false positive. The main localization

metric is the intersection over union, which is the main metric used to evaluate object detection

algorithms [133]. We also used the deviation of the predicted center location of detected and

tracked objects from the ground truth location in mm. The intersection over union is used to

evaluate the overlap between two bounding boxes and is defined as follows:

IoU(A,B) =
|A∩B|
|A∪B|

, (3.1)

where A and B are the areas of the two bounding boxes, A∩B is the area of intersection of A and

B, the region where both bounding boxes overlap, and A∪B is the area of union of A and B. To

compute the precision, we use the following definition:

Precision =
T P

T P+FP
, (3.2)

and to compute the recall, we use the following definition:

Recall =
T P

T P+FN
, (3.3)

where T P stands for the number of true positives, FP for the number of false positives, and FN

for the number of false negatives.
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3.3 Segmentation-Based Framework

In this section, we will explain in detail the structure of our first proposed framework as

well as the experimental setup and results of the tests we used to evaluate its performance.

3.3.1 The Framework and Its Structure

The proposed framework consists of 4 stages, as outlined in Fig. 3.3. The 1st stage is

designed to pre-process the scans, the 2nd stage to detect and localize the target object within a

scan, the 3rd stage to classify whether a scan contains the target object, and the 4th and final stage

to fine-tune the detection parameters.

Stage 1: Pre-Processing

In this stage, the frames are prepared for the backbone network in stages 2 and 3. The

current ultrasound frame is stacked with the previous two frames as a three-channel tensor of

size H×W ×3, where H and W are the height and width of the scan (frame). Using 3 frames

instead of 1 has improved the localization accuracy by 1.7%. The frames’ intensity values are

then normalized to be in the range [0,1). During training, we used extensive data augmentation

to improve our framework’s ability to overcome overfitting, and generalize to data outside of the

training set [128, 129]. The augmentation pipeline was discussed in detail in section 3.2.2.

In this stage, the masks that are used to train the network are created from bounding box

coordinates as images (tensors) of size H×W where pixel values within the bounding box are

set to 1. This mask will be used to weakly train the network in stage 2 to detect and localize the

presence of target objects within the boundaries of the scan.
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Stage 2: Backbone Detection Network

Our framework’s backbone network is designed based on a modified UNet architecture

as shown in Fig. 3.3. The proposed network uses 4 depth levels as the standard UNet with 2

convolutional layers in each depth level as well as the bridge of the network. However, in our

proposed framework we used 32, 64, 128, 256, and 512 channels in the feature maps at levels 1,

2, 3, 4, and the bridge, respectively. The original method used twice the number of feature maps

channels at each of these levels. Reducing the number of channels allows the network to operate

in real-time.

Stage 3: Classifier

Stage 2: Backbone NetworkStage 1: Pre-Processing Stage 4: Post-Processing

Ultrasound Scans
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Figure 3.3: Overview of the proposed object detection framework with its four stages outlined.

Reducing the size of a neural network usually reduces performance. To cope with this,

we incorporated several modifications to improve the performance of the network such as two

dimensional (2D) dropout layers in addition to original dropout layers. 2D dropout layers

regularize the activations more efficiently when high correlation exists among pixels that are close

to each other [134]. We also incorporated batch normalization layers and added a localization

promoting term to the cost function. The original cost function of UNet is a confidence promoting

loss function that computes the binary cross-entropy (BCE) between each pixel of the ground
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truth and predicted mask. For each element of the predicted mask with a value x and ground truth

value y at location (i, j), where i = 1,2, ...,H and j = 1,2, ...,W , the BCE cost function can be

computed for each training batch as:

Lbce(X ,Y ) =− 1
N

N

∑
n=1

[
1
M

M

∑
m=1

[
ℓ(xm,n,ym,n)

]]
, (3.4)

where N is the size of the batch, M is the number of elements in the mask and is equal to H×W ,

X is the predicted mask, Y is the ground truth mask, and ℓ(xm,n,ym,n) is the loss computed

element-wise between the ground truth and predictions, and is defined as:

ℓ(x,y) = wcy logσ(x)+(1− y) logσ(x). (3.5)

In (3.5), the weight wc adjusts the loss function penalization for class c based on the training set

size imbalance for each class, and σ(x) is the sigmoid function defined as σ(x) = 1/(1+exp(−x))

and it maps the predicted elements into a probability space of predictions where σ(x) constitutes

an object if larger than or equal to 0.5, and background otherwise. The weight wc and the

threshold of σ(x) are used to influence the precision and recall of the network. The loss function

promoting localization is based on the Dice coefficient between the predicted and ground truth

mask. The Dice coefficient (Dc) is defined as [100]:

Dc(Ŷ ,Y ) =
2∑(Ŷ ⊙Y )

∑
M
m=1 ŷm +∑

M
m=1 ym

, (3.6)

where ⊙ represents the element-wise multiplication and ŷm = σ(xm). The Dice coefficient loss

can then be defined to penalize lower Dc values, which yields lower localization performance, as:

LDc(X ,Y ) = 1−Dc(Ŷ ,Y ). (3.7)
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The overall object detection loss function is defined as:

Lob j(X ,Y ) = αbceLbce(X ,Y )+αdiceLDc(X ,Y ), (3.8)

where αbce and αdice are coefficients that control the contribution of BCE loss and Dice loss,

respectively, to the overall loss function. In our implementation we chose αbce = 0.25 and

αdice = 1.

Stage 3: Classifier

Stage 2 is designed to localize an object within a scan, but is not optimized to identify the

presence of the target object in the scan. Thus, to detect whether the target object is in the scan or

not, we use a classifier optimized for this task as can be seen in Fig. 3.3. The classifier adds two

extra layers to the framework and uses the output of the last layer of the bridge in stage 2, which

contains 512 feature map channels, as input. This input is flattened to a tensor of length 512 using

the average global pooling layer that was proposed as part of ResNet [112]. This is then followed

by a fully-connected layer and an output layer for the 2 classes activated by a softmax function

where the BCE loss is used to train the classifier.

Stage 4: Post-Processing

The output mask of the backbone network from stage 2 is of size H×W . After being

threshold by the sigmoid function, the output mask will have elements with values between 0.5

and 1, as well as 0. These elements where the value is higher than 0.5, represent the region in

which the network believes the target object is located. The average of the locations of these

elements weighted by the confidence, which is the output of the sigmoid function σ(x,y), is used

to estimate the center location of the target object. The center (xc,yc) of the target location can be
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then estimated as follows:

xc =
∑

K
k=1 σ(xk)xk

∑
K
k=1 σ(xk)

, yc =
∑

K
k=1 σ(yk)yk

∑
K
k=1 σ(yk)

. (3.9)

K is the number of elements where the confidence σ(x,y) is higher than the threshold, and

σ(xk) = σ(yk) = σ(xk,yk). The weighted standard deviation of these elements’ locations is used

to estimate the width and height of the target object, and can be defined as follows for x:

σx =

√√√√∑
K
k=1 σ(xk)(xk− xc)2

(K−1)
K ∑

K
k=1 σ(xk)

, (3.10)

where σx is the standard deviation in the x direction. σy can be calculated using (3.10) by replacing

the corresponding variables. The width and height of the bounding box can then be calculated as:

width = βxσx and height = βyσy, where βx and βy are factors that are learned during the training

of the backbone network. The output of the classifier is then fed together with the output of the

backbone network to a decision logic such as an ”or” or ”and” to decide on the presence of the

target object in the scan. Choosing ”and” will increase precision at the expense of recall, and

vice versa. Controlling this decision logic together with the thresholds (σ(X)) for the backbone

network and classifier can be used in real-time by sonographers as simple methods to control the

rate of false positives versus false negatives.

3.3.2 Experiments and Results

Implementation and Setup

We conducted 3 experiments to test the performance and robustness of our framework.

The 1st experiment was designed to test the accuracy of the proposed method in detecting and

tracking the Vagus nerve on the 1st dataset (check section 3.2.1 for details on the datasets used for

evaluation). The 2nd experiment was designed to test the performance of the proposed method on
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the more challenging 2nd dataset and compare it to YOLOv4 and EfficientDet, two state-of-the-art

real-time object detectors. In both of these experiments, the datasets were divided into individual

scans and split into a 64:16:20 ratio for training, validation, and testing, respectively. The 3rd

experiment was designed to test and verify the robustness of the framework in accounting for

cross-subject variabilities as well as its ability to generalize to new subjects. Hence, in this

experiment, we divided our dataset by subject. The framework was trained on scans from 4

subjects and tested on the 5th subject. Throughout all three experiments, the scans were resized

to 256x256 for the 1st dataset, and to 192x192 for the 2nd dataset before being supplied to the

network in stage 2. The backbone network was optimized using stochastic gradient descent (SGD)

with a learning rate = 10−3, momentum = 0.9, weight decay of 10−3, batch size = 16, and trained

for 200 epochs.

Table 3.1: The proposed framework localization precision and recall. For experiments 1 and 2,
the threshold for a true positive is an IoU ≥ 0.5. For experiment 3, a true positive is a distance
error ≤ 2.5 mm from the nerve center. The model with the best performance is boldfaced.

Method Avg. Precision Avg. Recall

Experiment 1 - 1st Dataset

Ours - Single Frame 94.4% 97.2%

Experiment 2 - 2nd Dataset

Ours - Single Frame 90.89% 96.01%
Ours - Three Frames 92.67% 97.29%
YOLOv4 90.45% 97.24%
EfficientDet - d3 91.93% 96.35%

Experiment 3 - 2nd Dataset

Ours - Single Frame 93.5% 91.9%
Ours - Three Frames 95.1% 93.4%

Evaluation and Results

To evaluate the accuracy and robustness of the proposed framework, we used the average

precision and recall of localization, where a detection is considered a true positive when a certain
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Figure 3.4: Object localization precision and recall for the 2nd dataset (a) versus the number of
subjects used for training (testing on a separate subject), and (b) versus the number of training
images (3 subjects for training and 2 for testing. Images chosen randomly from training set).

localization threshold is met, otherwise that detection is considered a false positive. This is the

main metric used to evaluate object detection algorithms [133]. For the 1st and 2nd experiments,

the localization threshold is based on the intersection over union (IoU) metric. For the 3rd dataset,

the threshold is based on a physical distance of 2.5mm from the center of the nerve, which is

equal to the radius of a typical Vagus nerve.

Table 3.1 summarizes the performance of the proposed framework for all of the 3 experi-

ments. It can be seen that the proposed framework was able to identify and localize the Vagus

nerve in both datasets with a high precision and recall. For the more challenging 2nd dataset,

the results of the 2nd experiment show that the proposed method outperforms YOLOv4 and

EfficientDet - d3. For the 3rd experiment where the 2nd dataset was divided by subjects, 4 subjects

for training and 1 subject for testing, the proposed method was still able to generalize to subjects

that it did not see during training and achieved high localization precision and recall. This was

not the case for YOLOv4 and EffecientDet where the precision and recall dropped below 25%.

This loss of accuracy can mainly be attributed to these methods’ need for large training datasets

with rich visual features to train their backbone and detection networks [124, 64].
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To verify the robustness of the proposed framework, we conducted two additional ex-

periments to analyze the proposed framework performance on new subjects while being trained

on smaller subsets of the original dataset. The results of these two experiments are shown in

Fig. 3.4. In the first experiment, we trained the framework on 1, 2, 3, and 4 subjects then tested

on a 5th subject and repeated this analysis twice for two different test subjects. We then used

three subjects for training and two subjects for testing, randomly sampled scans from the training

set, and created training subsets of sizes 500, 800, 110, and 1400. As observed in Fig. 3.4, the

proposed framework has a high level of consistency and accuracy even when trained on smaller

training sets. The framework produces high localization precision where more than 95% of the

true positives predictions are located within 1.5 mm from the ground truth in both the lateral and

axial directions, which is shown in the heat map and histograms of the true positive detections

offset from the ground truth in Fig. 3.5.

Figure 3.5: Heatmap (left) and histograms (right) of the lateral and axial distance offset of the
true positive detections from the ground truth in millimeters.
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3.4 Segmentation and Optical Flow Framework

This framework uses 5 different stages, which are outlined in Fig. 3.6. The pre-processing,

backbone network, and classifier stages are adopted from the segmentation-based framework

discussed in section 3.3.1. In this section, we will discuss the optical flow stage of the framework

and the experiments we used to evaluate its performance together with the results of these

experiments.

Stage 4: Classifier
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Figure 3.6: Overview of the five stages of the proposed object detection and tracking framework.

3.4.1 The Framework and Its Structure

Stage 3: Object Tracking Using Optical Flow Estimation

To track the object detected in the 2nd stage as it moves from one frame to another, we

incorporated an optical flow estimation network into the design of the framework as the 3rd

stage. The network is based on the LiteFlowNet architecture [135]. The architecture has 5.4

million parameters. It takes two frames as inputs and generates an optical flow map representing

the movement of each element in frame 1 based on its location in frame 2. The flow map has

two components, representing the movement in the x and y directions, respectively [136]. In
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the feature extraction section of the network, there are six depth levels. In each level, there is

a series of convolutional layers followed by leaky ReLU. The number of layers in each level

is as follows: 1 layer in the first level, 3 in the second, 2 in each of the third and fourth, and

1 in the fifth and sixth layers. The weights of the feature extraction section are tied for both

frames, so, the feature maps at each level will be similar for both frames while differences will

be mainly attributed to spatial movements. In the flow map estimation section of the network,

feature maps of the second frame (F2) are warped to the ones of the first frame (F1) at each level.

After warping, displacement-based correlation is calculated between the two feature maps: F1

and F̃2 (the warped F2). Warping allows the displacements to span a smaller range since the

feature maps have been warped, speeding up inference times. This correlation can be defined as:

Fc(x,y,k) = F1(x,y) · F̃2(x+dx,y+dy)

∀ dx,dy ∈ [−d,d], d ∈ Z
(3.11)

In (3.11), d represents the maximum displacement used to calculate correlation, and k goes from

1 to (2d +1)2, which is the total number of displacements; assuming we are using a stride of 1.

The output flow-map generated from stage 3 is represented by a tensor of size H×W ×2, where

at any location (x,y) in the flow map, 2 numbers represent the movement in the x and y directions.

The output of this stage is used to track the object as it moves from one frame to another, by

averaging the movement that is estimated within the predicted bounding box estimated from the

segmentation map output.

3.4.2 Experiments and Results

Implementation and Setup

We conducted 2 experiments to test the performance and robustness of our framework.

The 1st experiment was designed to test the accuracy of the proposed framework in detecting and
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localizing the Vagus nerve. It was conducted on the 1st dataset (check section 3.2.1 for details

on the datasets used for evaluation). The dataset was divided into individual scans and split

into a 64:16:20 ratio for training, validation, and testing, respectively (the scans were resized to

256x256). The backbone network in stage 2 was optimized using stochastic gradient descent

(SGD) with a learning rate = 10−3, momentum = 0.9, weight decay of 10−3, batch size = 16, and

trained for 200 epochs. The optical flow network in stage 3 was trained stage-wise [135] on the

Chairs dataset [136], then on the Things3D dataset [137]. The training used the Adam optimizer

and learning rates 1e-4, 5e-5, and 4e-5. The 2nd experiment was designed to test the framework’s

ability to use the optical flow network in stage 3 effectively to track the movement of the Vagus

nerve accurately.

Table 3.2: Mean and standard deviation of tracking error in mm for the different ultrasound
tracking methods. Autonomous detection of objects and real-time capabilities are highlighted.

Method Mean σ Detection? Real-Time?

Shepard [138] 0.72 1.25 No No
Williamson [139] 0.74 1.03 No Semi (8 fps)
Gomariz [140] 1.34 2.57 No Yes (105 fps)
Makhinya [141] 1.44 2.8 No Yes (20 fps)

Proposed 0.73 1.23 Yes Yes (30 fps)

Evaluation and Results

To evaluate the detection and localization accuracy of the proposed framework, we used

the average precision and recall of localization. This evaluation metric considers a detection as

true positive when a certain localization threshold is met, otherwise that detection is considered

a false positive. This is the main metric used to evaluate object detection algorithms [124, 64].

The localization threshold is based on the intersection over union (IoU) metric. The proposed

framework achieved an average precision of 94.4% and average recall of 97.2% for an IoU

threshold of 0.5. This surpasses the average precision and recall performance of both YOLOv4
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and EfficientDet - d3. For YOLOv4, the average precision was 93.2% and the average recall was

97.2%, while for EfficientDet - d3 the average precision was 94.1% and the average recall was

96.8%. For tracking, the framework achieved a mean error of less than 0.75 mm at real-time

speeds of 30 fps when tracking the Vagus nerve across frames. Tracking results are summarized

in Table 3.2, where the performance of the proposed framework is presented together with several

prominent tracking algorithms. These algorithms were designed and trained to track objects in

ultrasound and their performance was tested on the Liver Ultrasound Tracking (CLUST) challenge

[142]. Finally, the framework achieves high localization precision where more than 95% of the

true positive detections are within 1.5 mm from the ground truth in both the lateral and axial

directions. Predicted location offset from the ground truth is shown as a heatmap in Fig. 3.7 for

both the object detection and tracking predictions. To contextualize the framework localization

effectiveness, it is worth noting that the axis span in Fig. 3.7 is smaller than the sides of the

bounding boxes enclosing the object of interest.

Figure 3.7: The lateral and axial distance offset of the true positive detections from the ground
truth in millimeters. Left: Tracking heatmap of offsets. Right: Detection heatmap of offsets.

3.5 Multi-Path Decoder UNet (MD UNet)

To increase the accuracy of object detection of the backbone network while maintaining

computational efficiency, we designed an improved UNet network that utilizes a multi-path
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decoder (MD UNet) for deep supervision and early attention (at deeper layers) to the anatomical

structure of interest. We designed the model with multi-level-supervision and multi-level spatial

attention from the training labels. We weakly trained the network on detecting and localizing

anatomical structures of interest using bounding box labels without the need for expensive-to-

generate pixel-wise annotations. We tested the performance of the proposed network on two

public ultrasound datasets, the breast ultrasound tumor dataset [125], and fetal head dataset

[126]. We also tested its performance on our own internally developed Vagus nerve dataset [34].

The proposed network outperforms UNet in detecting and localizing anatomical structures of

interest in different ultrasound datasets. Its performance is on par with, or slightly better than,

the more computationally expensive UNet++ (Table 3.4). The design of the network improves

the localization performance by up to 7% while only increasing the number of parameters of the

network by 0.75%. On the other hand, UNet++ [70] requires 20% more parameters and twice

the inference time than UNet, and the proposed network (Table 3.3). Furthermore, the proposed

architecture detects and localizes key anatomical structures with greater consistency and accuracy

across different subjects and scans when compared to both UNet and UNet++ as well as Faster

R-CNN and YOLOv5 (Fig. 3.10).

Table 3.3: Computational complexity of the proposed model (MD UNet), UNet and UNet++.
Inference time analysis was performed on Nvidia Tesla T4 GPU. In the table, Mul-Add stands
for multiplication-addition, M for Millions, G for billions, and ms stands for millisecond.

Model Number of Parameters Mul-Add Operations Inference Time

UNet 7.86 M 14.0 G 8.1 ms
UNet++ 9.16 M 34.5 G 19.3 ms
MD UNet 7.91 M 14.2 G 8.7 ms

3.5.1 The Encoder-Multi-Path-Decoder Architecture

The proposed architecture is composed of an encoder, a main decoder and a multi-path

decoder. The encoder path of the proposed model contains four convolutional blocks, with one
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block at each depth level. In each of the convolutional blocks, which are shown in Fig. 3.8 (b),

there are two convolution layers followed by batch normalization, and ReLU activation. The

output of these two layers is then taken as input to two different locations of the model. The first

location is the next depth level convolutional block where it first passes through a maxpooling

layer to reduce the size of feature map by two in the spatial space. The second location is the

convolutional upsampling block that is at the same level through the skip connection. Finally, the

bridge block connects the encoder and decoder paths in the network. The design of the bridge is

the same as the convolutional blocks. The feature maps have 32, 64, 128, 256, and 512 feature

channels at depth levels 1, 2, 3, 4, and the bridge. The number of feature channels is reduced by

half when compared to the original UNet encoder.

In the main decoder path of the network there are four convolutional upsampling blocks.

These convolutional upsampling blocks start with concatenating feature maps from the skip

connection and the previous convolutional upsampling block, or the bridge for the first convolu-

tional upsampling block. The concatenated input is then fed to two consecutive sequences of a

convolutional layer followed by batch normalization and ReLU activation. Finally, the output is

upsampled in the spatial space by 2 and used as the input to the next convolutional upsampling

block. The output of the bridge and the first two convolutional upsampling blocks are used as

the inputs to the multi-path decoders. Each of these outputs passes through a sequence of the

multi-path convolutional upsampling blocks shown in Fig. 3.8 (d). The number of these blocks

in the sequence are 3, 2, and 1 for the outputs from the bridge, first, and second convolutional

upsampling blocks, respectively. Our proposed multi-path convolutional upsampling blocks serve

two purposes: First, they enable more direct propagation of the loss from feature maps to deeper

layers and the encoder, when compared to the main decoder path. Second, they facilitate the

spatial upsampling of feature maps to preserve high-resolution information by propagating the

loss from the same mask map used in the main decoder path.
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(a) Multi-path decoder UNet network
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Figure 3.8: The proposed model structure (a) with the different building blocks outlined: The
convolutional block in the encoder path (b), the convolutional upsampling block in the main
decoder (c), and the multi-path convolutional upsampling block (d).

3.5.2 Experiments and Results

Implementation and Setup

For each of the three datasets described in section 3.2.1, we trained the proposed model

from randomly initiated weights. We chose to follow this approach to evaluate the robustness

of the proposed architecture and its generalization ability without any pre-training on any prior

datasets. For each of the datasets, the scans were split into 80% for training and validation,

and 20% for testing. The scans were resized to 256× 256 pixels. We compared the model

performance to two encoder-decoder networks; UNet as a baseline benchmark and to UNet++
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as the current state-of-the-art segmentation fully convolutional network. We also compared the

proposed model to two benchmark object detection networks; Faster R-CNN and YOLO v5. All

models, have been trained and fine-tuned on the three datasets. The breast and fetal head datasets

have segmentation maps as ground truth. For these two datasets, we calculate the bounding box

based on the span of the segmentation map for each target object. For the Vagus nerve dataset,

the dataset is already labeled using bounding box information. Two examples from the breast

dataset with mask maps and corresponding bounding boxes are shown in Fig. 3.9.

Figure 3.9: Two ultrasound scans from the breast dataset. The mask maps are highlighted
in green and the bounding box computed from the mask map in red for a benign (left) and
malignant (right) lesion.

Evaluation and Results

To evaluate the performance of our proposed architecture, we use the intersection over

union (IoU) metric between the predicted bounding box and the ground truth one. The IoU

metric, which is also known as the Jaccard index, is the benchmark metric used to evaluate object

detection, segmentation, and localization methods [91]. This metric is calculated as follows:

IoU(Ŷ ,Y ) =
∑(Ŷ ⊙Y )

∑
H,W
i, j=1(ŷi j |yi j)

, (3.12)

where ⊙ is element-wise multiplication, | is the element-wise or logical operator, ŷi j is the

predicted mask map, and yi j is the ground truth at location (i, j). Using the IoU value to evaluate
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(a) (b) (c) (d)

Figure 3.10: Boxplots of the proposed architecture’s detection performance (in terms of IoU)
compared to the four baseline models on the (a) breast benign lesion, (b) breast malignant lesion,
(c) fetal head, and (d) Vagus nerve datasets. For each model, the IoU of each sample from the
test set is also overlaid on top of the boxplot.

whether a detection is considered a proper detection or not, we compute the average precision and

recall based on a certain IoU threshold. That means if that detection has an IoU value higher than

the threshold, it will be considered a true positive, otherwise, it is a false positive. The average

precision is defined as T P/(T P+FP), while the average recall as T P/(T P+FN) where T P

stands for true positives, FP for false positives, and FN for false negatives.

The performance of the proposed multi-decoder architecture using these metrics is sum-

marized in Table 3.4, and is compared to the other 4 benchmark models. For the challenging

breast lesions dataset, we also added the multi-decoder architecture to the UNet++ model to

showcase its added value in improving detection and localization. The proposed architecture

constantly outperformed UNet, and was either on par, or outperformed, UNet++ with an inference

time that is less than half of what the UNet++ architecture needs, which is essential for real-time

guided therapeutic applications. The performance of the proposed architecture was evaluated by

conducting a statistical test on its IoU scores using the bootstrapped one-sided Mann-Whitney

U test. The test determines whether the distribution of IoU scores of the proposed architecture

is significantly greater than the distributions of the other architectures it was compared against.

Table 3.4 presents the p-values obtained from these tests. The results show that the multi-decoder

architecture significantly improves the object detection performance of UNet in ultrasound scans,

with only a minimal increase in computational complexity.
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Table 3.4: Detection and localization performance results of the proposed model compared to
the other four models we used as a benchmark. In the table, (MD) stands for multi-decoder,
and (Avg.) stands for average, Std. Dev. stands for standard deviation, and IoU stands for
intersection over union.

Dataset Avg. IoU Precision Recall Precision Recall
Method (± Std. Dev.) @IoU = 0.5 @IoU = 0.5 @IoU = 0.75 @IoU = 0.75

@ max recall @ max precision @ max recall @ max precision

Breast Dataset - Benign Lesion

Faster R-CNN 65.4% (±35.6) 94.5% 77.5% 86.3% 75.9%
YOLO v5 67.2% (±42.2) 93.7% 73.5% 86.3% 71.8%
UNet 66.9% (±28.3) 82.1% 90.1% 70.5% 87.7%
UNet++ 69.7% (±27.1) 92.5% 90% 71.4% 87.3%
Ours - MD UNet 70.6% (±27.3) 92.1% 90.1% 78.9% 87%
Ours - MD UNet++ 72.6% (±26.1) 93.51% 90.1% 78.9% 87.7%

Breast Dataset - Malignant Lesion

Faster R-CNN 61.6% (±28.7) 72.3% 68% < 60% < 60%
YOLO v5 59.3% (±42.5) 89.7% 67.9% < 60% < 60%
UNet 64.8% (±23.0) 73.7% 77.4% < 60% < 60%
UNet++ 66.9% (±20.2) 82.5% 94.3% < 60% < 60%
Ours - MD UNet 67.1% (±18.3) 85.4% 97.2% < 60% < 60%
Ours - MD UNet++ 70.1% (±18.7) 87.3% 97.5% < 60% < 60%

Fetal Head Dataset

Faster R-CNN 92.2% (±10.6) 98.5% 98.5% 97.5% 97.5%
YOLO v5 95.8% (±6.9) 100% 99.5% 100% 99.5%
UNet 95.2% (±3.5) 100% 100% 99.5% 100%
UNet++ 95.5% (±3.3) 100% 100% 99.5% 100%
Ours - MD UNet 95.4% (±3.4) 100% 100% 99.5% 100%

Vagus Nerve Dataset

Faster R-CNN 81.5% (±13.4) 100% 98.5% 83.3% 89.2%
YOLO v5 85.9% (±8.6) 99.5% 100% 91.5% 95.3%
UNet 86.4% (±8) 100% 100% 92% 95.8%
UNet++ 86.9% (±7.6) 100% 100% 91% 95.8%
Ours - MD UNet 86.9% (±7.7) 100% 100% 95.8% 100%

To test the performance of the proposed model across variable scans, we analyzed its

performance distribution and compared that to the four benchmark models as shown in Fig. 3.10.

We observe that the performance of the proposed architecture is more consistent across scans. For

the Vagus nerve and fetal head datasets, the IoU score difference among the five models is minimal

due to performance saturation from training the networks on the full training set. Nevertheless,

performance variability for the proposed architecture is still lower than the other models for the
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Vagus nerve dataset as shown in Fig. 3.10 (d).We conducted an analysis to assess the proposed

architecture’s robustness to data variability and compared it against four benchmark models. The

analysis involved setting two IoU thresholds and computing the percentage of detections below

these thresholds for each model. We repeated this process to evaluate each model’s performance

on all the datasets, except the fetal head dataset due to performance saturation for this dataset.

The first threshold was set to an IoU of 0.5, which is the standard threshold for false positives

in most object detection applications. The second threshold was set to the 25th percentile of all

detections from all models for the corresponding dataset. A lower percentage of detections below

these thresholds indicates higher model robustness, as it implies a smaller number of inaccurate

detections. The results of this analysis are presented in Table 3.5.

Table 3.5: The Percentage of detections below two predetermined thresholds of the proposed
model and the four benchmark models for the benign and malignant breast datasets, as well
as the Vagus nerve dataset. A lower percentage of detections below the threshold indicates a
greater degree of model robustness to data variability. The model with the best performance is
boldfaced.

Dataset

Threshold Model Breast Benign Breast Malignant Vagus

IoU =
0.5

Faster R-CNN 25.8% 33.3% 1.5%
YOLO v5 29.9% 33.3% 0.5%
UNet 24.7% 31.0% 0.0%
UNet++ 15.3% 21.4% 0.0%
MD UNet 17.6% 16.7% 0.0%

25th

Percentile

Faster R-CNN 25.8% 31.4% 39.8%
YOLO v5 32.7% 33.3% 23.5%
UNet 27.1% 23.8% 22.6%
UNet++ 18.8% 19.0% 19.6%
MD UNet 18.8% 14.3% 19.6%

Ablation Studies

We performed two ablations studies to test the ability of the network to perform under

more challenging conditions, as well as another study to examine the effect of the number of

decoder paths on performance. The first ablation study focused on dataset size, while the second
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focused on architecture size. For the first study, we reduced the size of the training set multiple

times for each of the datasets and tested the performance of the proposed architecture on the same

testing set. We observe from Fig. 3.11, that the performance of the network is reliable even when

trained on datasets of only 150 to 200 examples. The detection and localization performance,

when trained on half the size of the original dataset, stayed within a 10% tolerance from the

original performance (when trained on the complete dataset) across all three datasets.

Figure 3.11: The proposed model IoU performance versus the number of training examples for
each dataset. Each dataset’s last data point is for the model trained on the whole training set
(vertical axis does not start from 0).

For the second ablation study, we reduced the number of feature channels by half then by

one fourth, and tested the performance of the architectures on detecting the benign and malignant

lesions, which are the two most challenging tasks out of all the datasets. Table 3.6 shows the

results of this study. As the size of the network is reduced, the performance is also reduced.

However, even with one quarter the original number of feature channels, the proposed architecture

performance was still within a 4% tolerance of the original architecture performance.

In the third ablation study, we wanted to analyze the effect of the number of decoders

on the model performance. We tested different variations of the proposed model with a single

(UNet), two, three, and four (MD UNet) decoders. Table 3.7 shows the results of this study. We

can see clearly that as we increase the number of decoders, the model’s ability to detect and

localize benign and malignant lesions in breast scans improves. This is a further indication that
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Table 3.6: IoU performance of the proposed architecture and UNet++ on the benign and
malignant lesion datasets as the size of the architectures is reduced in terms of feature channels.
The model with the best performance is boldfaced.

Dataset

Size Model Benign Malignant

Original UNet++ (Baseline) 69.7% 66.9%
MD UNet (Proposed) 70.6% 67.1%

Half UNet++ (Baseline) 67.2% 65.5%
MD UNet (Proposed) 68.2% 65.4%

Quarter UNet++ (Baseline) 66.2% 64.7%
MD UNet (Proposed) 66.7% 64.8%

using multi decoders for object detection and localization produces significantly better results

than single decoders with just a minimal increase in computation complexity.

Table 3.7: IoU performance of the proposed architecture on the benign and malignant lesion
dataset as the number of decoders changes. In the table, Mul-Add stands for multiplication-
addition, M stands for Millions, and G for billions.

Number of
Decoders

Number of
Parameters

Mul-Add
Operations

Dataset

Benign Malignant

1 (UNet) 7.86 M 13.97 G 66.9% 64.8%
2 7.91 M 14 G 67.4% 65.3%
3 7.91 M 14.07 G 69.1% 65.9%
4 (MD UNet) 7.91 M 14.18 G 70.6% 67.1%

3.6 Limitations and Future Prospective

The multi-decoder architecture we propose in this thesis together with the two multi-stage

frameworks are for object detection and localization in ultrasound scans. The proposed approaches

are limited in the sense that they have not been tested on other medical imaging modalities, and

have not been tested on segmentation tasks, which are closely related to object detection and

localization in medical imaging. Therefore, a logical future extension for the proposed work in

this chapter is to train and test the approaches we discussed on detecting anatomical structures of
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interest from other medical imaging modalities. Another limitation we observed is that precise

localization performance of the proposed architecture at an IoU higher than 0.75 degrades for

extremely small datasets such as the malignant lesion dataset; this, however, is a limitation of all

the models we tested as shown in Table 3.4.

3.7 Conclusion

In this work, we proposed two frameworks for accurate real-time object detection and

tracking in ultrasound scans that do not require large training sets, and although they use a

segmentation model as their backbone architecture, they do not require pixel-wise annotations

for training as they are trained using bounding box labels. We also proposed a weakly trained

multi-path decoder segmentation-based architecture for real-time object detection and localization

in ultrasound scans. The proposed architecture enables the loss and optimization algorithm

to influence deeper layers more prominently through the multiple decoder paths improving

the network’s overall detection and localization performance. To evaluate the architecture’s

effectiveness, we tested it on three different ultrasound scans, focusing on the detection and

localization of different objects of interest. The proposed architecture outperformed UNet while

having only 0.75% more parameters. Its performance is on par with UNet++, a state-of-the-art

architecture, which contains 20% more parameters than the original UNet and requires more than

twice as much time for inference when compared to both the proposed architecture and UNet.

Thus, the proposed architecture offers a more computationally efficient and accurate alternative

for real-time object detection and localization in ultrasound scans.

Chapter 3 is, in full, based on the materials as they appear in the publication of “A

CNN segmentation-based approach to object detection and tracking in ultrasound scans with

application to the Vagus nerve detection”, Abdullah F. Al-Battal; Yan Gong; Lu Xu; Timothy

Morton; Chen Du; Yifeng Bu; Imanuel R Lerman; Radhika Madhavan; Truong Q. Nguyen In
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Proceedings of International Conference of the IEEE Engineering in Medicine & Biology Society

(EMBC), 2021, and “Object detection and tracking in ultrasound scans using an optical flow

and semantic segmentation framework based on convolutional neural networks”, Abdullah F.

Al-Battal; Imanuel R Lerman; Truong Q. Nguyen In Proceedings of the IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022, as well as the material

as it appears in “Multi-path decoder U-Net: a weakly trained real-time segmentation network

for object detection and localization in ultrasound scans”, Abdullah F. Al-Battal; Imanuel R

Lerman; Truong Q. Nguyen, In Computerized Medical Imaging and Graphics journal, 2023. The

dissertation author was the primary investigator and author of these papers.
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Chapter 4

Efficient In-Training Adaptive Compound

Loss Function Contribution Control for

Medical Image Segmentation

4.1 Introduction

Medical image segmentation is essential in many clinical applications. Segmentation is

used to detect anatomical structures of interest as well as anomalies in the scanned body such as

lesions for cancer detection, staging, and treatment planning [143]. Deep learning models are

currently state-of-the-art in medical image segmentation. These models are trained by minimizing

a loss function representative of the segmentation objective. One of the major challenges that these

models encounter is class imbalance, where the target object is significantly underrepresented in

many applications, including lesion segmentation. The compound loss function that uses binary

cross-entropy (BCE), and Dice loss is one of the most significant approaches to address this issue.

However, determining the contribution of each the BCE and Dice loss to the overall compound

loss function is a tedious process. It requires multiple iterations of training for hyper-parameter
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fine-tuning, which is highly inefficient in terms of time and energy consumption. To address this

issue, we propose an approach that adaptively controls the contribution of each of these individual

loss functions during training. This eliminates the need for multiple fine-tuning iterations to

achieve the desired precision and recall for segmentation models.

For medical images, the current state-of-the-art deep learning segmentation models are

based on the UNet encoder-decoder architecture with skip connections [111, 114, 144, 145]. Skip

connections between the encoder and decoder improve the performance of segmentation models

by propagating high-resolution details to the predicted segmentation masks. These deep learning

models are trained on the target segmentation task using an iterative optimization approach, where

the model weights are updated based on the gradient descent of the loss between the predicted

and ground-truth segmentation masks [146]. The cross-entropy loss is the most widely used loss

function in image classification tasks [15, 112] and early segmentation models [111]. In addition

to the cross-entropy loss, the Dice loss is currently used to promote region-based optimization

and improve localization [147]. A compound loss of the Dice and cross-entropy losses is used by

state-of-the-art models to combat some of the inherent issues found in medical imaging datasets

such as the large imbalance in classes, which is the case for lesion segmentation, where the lesions

are severely underrepresented [119, 148].

Without selecting the proper loss functions and their hyper-parameters, such as the

contribution factor for compound loss, the large imbalance in the dataset can cause significant

deviations in the model predictions in terms of false positive and false negative rates, leading to

large differences between precision and recall. Having balanced precision and recall is essential

to optimize the model’s ability to identify all positive cases while minimizing false positives and

false negatives. This balance holds particular significance in medical image segmentation, where

both over-diagnosis (resulting from false positives) and under-diagnosis (resulting from false

negatives) can produce inappropriate treatment plans, potentially jeopardizing patient health and

well-being. Manual selection of the individual loss contributions to the overall loss function [34]
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and randomized grid search for hyper-parameter optimization [149] can be employed to balance

the model precision and recall performance. Both of these approaches, however, require multiple

training repetitions to find the most suitable hyper-parameters, rendering them highly inefficient

in terms of time and energy consumption. Alternatively, weighting the loss function due to class

imbalance, as is the case in weighted binary cross-entropy (WBCE) and Tversky loss [150], lacks

real-time model performance monitoring and adjustment capabilities [147]; also necessitating

repeated training iterations to identify the optimal weights.

(a) LiTS (b) KiTS (c) 3-Phase

(d) Breast Benign (e) Breast Malignant (f) Class Distribution

Figure 4.1: An example slice from each of the five datasets we test the proposed approach on
(a)-(e). In (a)-(c), the boundaries of the organ of interest are in yellow, while the boundaries
of lesions are in red (a)-(e), overlaid on the slices. The class distribution within each dataset is
represented as a percentage of the overall distribution, with the positive and negative classes
corresponding to lesions and healthy tissue, respectively (f).

Therefore, we propose an approach that adaptively controls the contribution of the binary

cross-entropy and Dice loss functions to the overall compound loss function during the training

of segmentation models. The proposed approach eliminates the need for repeatedly training the

model to find the optimal hyper-parameters. It continuously adjusts the contribution factor for the
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BCE and Dice loss during training to balance the precision and recall performance of the model.

We test the proposed approach on five lesion segmentation datasets. Three computed tomography

(CT) datasets of the liver and kidney, and two ultrasound datasets of the breast. An example

slice from each of these datasets is shown in Fig. 4.1 as well as the class distribution within

each dataset. We also compare the proposed approach performance to manual hyper-parameter

selection, randomized grid search, weighted binary cross-entropy, and Tversky loss approaches

for the task of 2D lesion segmentation. Using significantly fewer training iterations, the proposed

approach effectively balances precision and recall across the five datasets while either matching

or surpassing the F1 scores of other methods.

4.2 Background

The compound loss function is composed of the weighted sum of the binary cross-entropy

(BCE) loss and the Dice loss:

Lcomp(Ŷ ,Y ) = αLbce(Ŷ ,Y )+βLDc(Ŷ ,Y ), (4.1)

where α and β are the coefficients that control the contribution of BCE loss (Lbce) and Dice loss

(LDc), respectively, to the overall loss function. Ŷ and Y represent the predicted and target (ground

truth) segmentation masks. For each element (pixel) of the predicted mask with a value ŷ and

ground truth value y at location (i, j), where i = 1,2, ...,H and j = 1,2, ...,W , for a given image

width, W and height, H, the BCE loss function can be computed for each training example as:

Lbce(Ŷ ,Y ) =−
1

HW

H

∑
i=1

W

∑
j=1

ℓ
(
ŷi, j,yi, j

)
, (4.2)
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where ℓ
(
ŷi, j,yi, j

)
is the loss computed element-wise between the ground truth and predictions,

and is defined as:

ℓ(x,y) = w1y logσ(x)+w0(1− y) logσ(x). (4.3)

In (4.3), σ(x) is the sigmoid function that defines ŷ and is defined as ŷ = σ(x) = 1/(1+exp(−x)).

σ(x) maps the predicted elements into a probability space of predictions where σ(x) represents

an object if larger than or equal to 0.5, and background otherwise. w1 and w0 are the class

weights. They are both 1 for the binary cross-entropy loss and are varied for the weighted binary

cross-entropy loss. The Dice loss is based on the Dice coefficient between the predicted and

ground truth mask. The Dice coefficient (Dc) is defined as [100]:

Dc(Ŷ ,Y ) =
2∑(Ŷ ⊙Y )

∑ ŷi, j +∑yi, j
, (4.4)

where ⊙ represents the element-wise multiplication. The Dice loss can be defined to penalize

lower Dc values, which yields a lower segmentation performance, as:

LDc(X ,Y ) = 1−Dc(Ŷ ,Y ). (4.5)

The Dice loss promotes recall more than precision because if the model fails to predict

a region that is present in the ground truth (leading to a low recall), the term in the numerator

of the Dice score would be small. Thus, a decrease in the numerator of the Dice Coefficient

would significantly increase the Dice loss. Conversely, if the model over-predicts regions not

in the ground truth (affecting precision more than recall), the increase in the denominator due

to the ∑ ŷi, j term would not be as penalizing as missing out a region entirely, which affects

both the numerator and the denominator. While the BCE loss penalizes both false positives and

false negatives, in many practical scenarios, especially with imbalanced data, the model tries to

maximize the class with more data (often the negative or background class). This means that the
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model might end up predicting fewer positives to avoid the heavy penalty of being wrong on the

negative (which would reduce its precision). Thus, the BCE loss, in such scenarios, promotes

precision. Hence, increasing α in (4.1) relative to β increases the precision compared to the recall

and vice versa. The precision and recall can be defined as:

Precision =
T P

T P+FP
, Recall =

T P
T P+FN

, (4.6)

where TP, TN, FP and FN denote true positives, true negatives, false positives and false negatives,

respectively. Thus, maximizing precision and recall would minimize the false positive (FPR) and

false negative rates (FNR), and minimizing the trade-off between the two metrics would minimize

the trade-off between the FPR and FNR. Using TP, FP, and FN, the Tversky loss can be defined

as:

LT v = 1− T P
T P+αt ·FP+βt ·FN

(4.7)

In (4.7), increasing αt relative to βt increases the precision compared to recall, and vice

versa.

4.3 Method

4.3.1 Adaptive Loss Contribution Control

Our approach computes the precision and recall for each training batch and calculates the

overall precision and recall by taking the average of each over all the batches. At the end of each

training epoch, the average precision and recall are used to either increase or decrease the α and

β hyper-parameters used in the overall compound loss defined in (4.1). If the recall is higher than

the precision, the approach increases α and decreases β, but if precision is higher, it decreases α
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and increases β. The approach is summarized in Algorithm 4.1.

Algorithm 4.1 Adaptive Loss Contribution Control
1: procedure AT END OF TRAINING EPOCH

2: if Recall < Precision then
3: β← β+∆

4: α← α−∆

5: end if
6: if Recall > Precision then
7: α← α+∆

8: β← β−∆

9: end if
10: α←max(0.1,min(5.0,α))
11: β←max(0.1,min(5.0,β))
12: return α,β
13: end procedure

In Algorithm 4.1, ∆ = 0.05. We chose this value as it ensures that the hyper-parameters

can adapt within a few tens of epochs. If the adjustment was too small (e.g., 0.001), it would take

hundreds to thousands of epochs to see a significant change in the hyper-parameters. Conversely,

if the adjustment was too large (e.g., 0.5), it might lead to unstable training as the hyper-parameters

would change too abruptly from one epoch to the next. Setting the maximum and minimum

bounds prevents suppression by ensuring that neither α nor β becomes overwhelmingly large

compared to the other. Without these bounds, over several epochs, one of the hyper-parameters

could grow or reduce significantly, thereby suppressing the effect of the other. The range of [0.1,

5.0] is wide enough to allow the model to prioritize either precision or recall as required by the

task, but not too wide that it causes suppression. Therefore, the choice of ∆ and the bounds [0.1,

5.0] are designed to ensure that the algorithm can adapt the hyper-parameters to their target values

efficiently, without causing instability in the training process. They also help in maintaining a

balance between α and β, ensuring one does not completely overshadow the other.
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4.3.2 Damped Adaptive Loss Contribution Control

We also introduce a damping factor based on the difference between precision and recall.

This rate is then applied to modify how aggressively α and β are adjusted. This approach is

summarized in Algorithm 4.2. It provides smoother adjustments to potentially prevent rapid oscil-

lations or over-adjustments, but is relatively slower to adapt than the first approach summarized in

Algorithm 4.1. Given the damping mechanism, the rate of 0.05 from the previous algorithm is not

sufficient in scenarios where the difference is small. Therefore, to ensure a reasonable adjustment

even for small imbalances, the rate is increased to 0.2 (γ). Essentially, the larger rate compensates

for potential reductions due to the damping effect, ensuring the adjustments remain impactful.

Algorithm 4.2 Damped Adaptive Loss Contribution Control
1: procedure AT END OF TRAINING EPOCH

2: diff← |Recall - Precision|
3: if Recall < Precision then
4: β← β+ γ×diff
5: α← α− γ×diff
6: end if
7: if Recall > Precision then
8: α← α+ γ×diff
9: β← β− γ×diff

10: end if
11: α←max(0.1,min(5.0,α))
12: β←max(0.1,min(5.0,β))
13: return α,β
14: end procedure

4.4 Experiments and Results

4.4.1 Datasets

We evaluated the proposed approach on five different medical image segmentation datasets.

The first dataset is the Liver Tumor segmentation Benchmark (LiTS) dataset [119]. This dataset

contains CT scans of the liver from 131 subjects for the purpose of lesion segmentation. The
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second is the Kidney Tumor Segmentation Challenge (KiTS) dataset [148], which contains CT

scans of the kidney from 489 subjects. The third is an internal dataset that was created by

researchers at VinBrain, JSC and the University Medical Center at Ho Chi Minh City. This dataset

contains contrast-enhanced 3-phase (arterial, delayed, and venous [151]) CT scans of the liver

from 354 subjects. The fourth and fifth datasets are breast ultrasound datasets [125] with benign

and malignant lesions from 437 and 210 scans, respectively. For each of the CT datasets the

organ of interest (the liver and kidneys) was isolated through segmentation from the surrounding

anatomical structures and axial 2D slices containing lesions were extracted. The Hounsfield unit

range was clipped to [-200, 200], to enhance the contrast of anatomical structures in the abdomen.

The slices from all the datasets were resized to 256×256 pixels.

4.4.2 Implementation and Setup

We used a 2D UNet [111] segmentation model with a ResNet-101 [112] as its backbone

network to evaluate the performance of our approach on the five datasets. We compared the ability

of the proposed approach to balance the precision and recall for segmentation models with manual

α and β selection based on prior domain knowledge and the literature [34, 152, 71]. We also

compared it to a randomized grid search for hyper-parameter tuning that uses the Tree-structured

Parzen Estimator (TSPE) algorithm [153]. For both algorithms in our approach, we initiated α

and β with a value of 1. For the TSPE grid search approach, we used the same α and β limits of

0.1 and 5 that we used in our approach. We trained the model for 100 epochs using our approach

and the manual selection approach. For the randomized grid search, we conducted 20 trials with

20 epochs each to find the optimum α and β hyper-parameters that would balance the precision

and recall, then trained the model for 100 epochs using these hyper-parameters. We tested four

different weight ratios for each of WBCE and Tversky losses by training the model for 50 epochs,

then used the best weight ratios to train the model for 100 epochs. A common practice when

training models on imbalanced datasets is to use weights that are inversely proportional to class
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frequency distribution [154, 155], which we refer to in our analysis as WBCE (CDW). Although

widely used [155], it is not effective for highly imbalanced datasets as it equates the probability of

making an error in both classes. This leads to a significantly higher recall than precision for cases

where the positive class is severely underrepresented as shown in Table 4.1. In our experiments,

we trained the segmentation models using the AdamW optimizer [156] and Reduce on Plateue

scheduler with a patience period of 10 and a reduction factor of 0.5. Our initial learning rate used

for training is 10−4 and the minimum learning rate the scheduler can use is 10−6.

4.4.3 Evaluation and Results

To evaluate the performance of the proposed approach we used the average precision and

recall balance, the amount of time and energy (computational power consumption over the training

period), and the F1 score. We refrained from using the receiver operating characteristic (ROC)

curve or the area under the ROC curve (AUC ROC) score as they are both unreliable metrics for

imbalanced datasets [157]. Fig. 4.2 shows the results of the precision-recall balancing of the

proposed approach for the five datasets as the model progresses during training. The proposed

approach achieved a precision-recall balance with a difference of less than 0.6% consistently

across the five datasets as shown in Table 4.1. It was also able to achieve this in a fifth of the

time that is needed for the TSPE grid search and a third of the time needed for the WBCE and

Tversky losses allowing for loss function contribution tuning during training. Since the proposed

approach requires either two additions for Algorithm 4.1 or two additions and multiplications

for Algorithm 4.2 per epoch, its computational complexity is negligible compared to a training

iteration of the UNet model, which requires billions of multiplication-addition operations per

image. Furthermore, the proposed approach achieved higher F1 scores across the five datasets

improving the ability of the model to reduce both, the FPR and FNR.

During Inference, the recall and precision can be controlled and balanced by modifying

the threshold value after the model’s final nonlinearity (the sigmoid function in binary cases). This,
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(a) (b)

Figure 4.2: The result of recall and precision balancing for the five datasets using the proposed
Algorithm 4.1 (a) and Algorithm 4.2 (b).

however, is challenging in imbalanced datasets as shown in Fig. 4.3, and in severely imbalanced

datasets might not even be possible unless the model was trained using an approach that balances

these two metrics, which can be observed in Fig. 4.3 (a) and (b). This ability to control and

trade-off recall and precision is important for clinicians and practitioners as it allows them to

investigate the regions within a scan with respect to the model’s predictive confidence.

(a) LiTS (UNet++) (b) LiTS (DeepLabV3+) (c) KiTS (UNet++) (d) KiTS (DeepLabV3+)

Figure 4.3: The effect of varying the segmentation mask threshold value from 0.05 to 0.95
(after applying the model’s final nonlinearity) on the precision and recall. The results are for the
UNet++ and DeepLabV3+ models when trained on the LiTS dataset (a) and (b), and the KiTS
dataset (c) and (d).
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4.4.4 Extension to Other Segmentation Models

In addition to testing our proposed approach on the UNet model, we incorporated it into

training three other segmentation models that are used for medical image segmentation, which

are the UNet++ [114], DeepLabV3+ [158, 159] and Attention UNet models [71]. The proposed

approach was able to achieve a precision-recall balance with a difference of less than 0.4% for

all the three models on both the LiTS and KiTS datasets as shown in Table 4.2. In addition

to balancing the precision and recall, the proposed approach achieved higher F1 scores when

compared to the baseline models trained using the WBCE loss with the inverse class distributions

as weights.

Table 4.2: The proposed framework precision and recall balancing performance when used
with the UNet++, DeepLabV3+, and Attention UNet models on the LiTS and KiTS datasets. Pr.
stands for precision, Rc. for recall, and Diff. for the absolute difference between the two.

LiTS KiTS

Model (Approach) Pr. Rc. Diff. Pr. Rc. Diff.

UNet++ (Ours) 93.9 94.0 0.1 95.1 95.1 0.0
UNet++ (WBCE) 77.9 99.1 21.2 90.3 97.4 7.1

DeepLabV3+ (Ours) 92.6 92.5 0.1 94.7 94.7 0.0
DeepLabV3+ (WBCE) 71.2 99.0 27.8 89.6 97.4 7.9

Att. UNet (Ours) 92.3 91.9 0.4 93.4 93.7 0.3
Att. UNet (WBCE) 66.5 99.2 32.7 87.1 96.2 9.1

4.4.5 Sensitivity Analysis

We conducted a sensitivity analysis on the adjustment rate (∆) effect on the proposed

approach’s ability to balance the recall and precision, which is summarized in Table 4.3. We

varied the value of ∆ outlined in Algorithm 4.1 from 0.01 to 0.1 and measured the number of

epochs the proposed approach needs to achieve a recall-precision balance with a difference of less

than 0.5%. Although the initial choice of ∆ = 0.05 followed logical reasoning, which is explained

in Sec. 4.3, we show that even deviations that span an order of magnitude are acceptable and

would still achieve the desired outcome.
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Table 4.3: The effect of the adjustment rate (∆) on the number of epochs required to reach a
recall-precision balance with a difference of less than 0.5% and the overall F1 score after using
the respective adjustment rate.

Adjustment Rate (∆)

Dataset 0.01 0.02 0.04 0.06 0.08 0.1

LiTS Epochs 77 51 43 21 11 13
F1 Score 91.1 91.2 91.4 91.5 91.1 91.1

KiTs Epochs 73 43 36 18 16 15
F1 Score 93.2 93.3 93.2 93.1 93.1 93.1

The sensitivity of model performance to ∆ is significantly less than the sensitivity to the α

and β parameters that control the BCE and Dice loss contribution to the overall loss, which need

to be fine-tuned and selected carefully to achieve reasonable segmentation results. The model’s

effectiveness hinges on appropriately selecting these parameters, as they dictate the relative impact

of each loss function throughout the training process. In contrast, our proposed approach involves

an adaptive adjustment of the α and β parameters during training. This adaptive adjustment

is designed to optimize these parameters’ values to enhance the model’s overall segmentation

performance, even if the rate at which α and β are adjusted varies.

4.4.6 Beyond Balancing The Precision and Recall

The WBCE, Tversky, and randomized grid search approaches can, in principle, perform

better than the proposed approach if the hyper-parameter fine-tuning iterations were extended.

However, under the time constraints, and limited availability of resources inherent in real-world

scenarios, this excessive use of resources is generally undesirable.

In certain applications, prioritizing either recall or precision may be more critical, and

thus, striving for a balance between these two metrics might not always yield the most desired

outcome. Therefore, a direct extension to the approach we presented, is to include a margin that

aims at maintaining a higher recall, or a higher precision, in both Algorithms 4.1 and 4.2. We

conducted two preliminary experiments on the LiTS dataset where we conditioned the change in
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the α and β parameters on a margin of 10% between the recall and precision. For the experiment

aiming at maintaining higher recall, the recall and precision were 92.9% and 84.3%, while for

the experiment aiming at maintaining higher precision, they were 87.3% and 95.1%.

In addition, we extend the proposed approach by using the exponential moving average

of recall and precision to modify the contribution of the loss functions; an extention of the

damped approach outlined in Algorithm 4.2. This extension is particularly useful in scenarios

with significant variations in training data, such as patch-wise sampling in 3D medical image

segmentation in Chapter 7.

4.5 Conclusion

In this chapter, we presented an approach that adaptively controls the contribution of

the BCE and Dice loss to the overall compound loss without the need for multiple fine-tuning

iterations to achieve the desired precision and recall for segmentation models. The proposed

approach was able to balance the precision and recall for five different segmentation tasks during

training. It achieved comparable F1 scores to fine-tuning using randomized grid search while

only requiring a fifth of the training time and computational resources to achieve these results.

Chapter 4 is, in full, based on the materials as they appear in the publication of “Efficient

in-training adaptive compound loss function contribution control for medical image segmentation”,

Abdullah F. Al-Battal; Soan T. M. Duong; Chanh D. Tr. Nguyen; Steven Q. H. Truong; Chien

Phan; Truong Q. Nguyen; Cheolhong An In International Conference of the IEEE Engineering in

Medicine & Biology Society (EMBC), 2024. The dissertation author was the primary investigator

and author of this paper.
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Chapter 5

Multi-Phase CT Scan Registration

5.1 Introduction

Image registration, also known as image fusion, matching, or warping, is the process of

aligning one or more images to the space of a fixed (reference) image [160]. In medical imaging,

registration is a critical process in several diagnostic and therapeutic procedures, where images

from multiple scans contain useful, but different information about the anatomical structure of

interest [160, 161]. By aligning multiple medical images acquired at different times or ones that

were acquired using different modalities, information from different images can be integrated,

improving diagnostic accuracy. Consequently, image registration is an active research area within

the medical image analysis field [162].

Image registration techniques can be categorized as rigid, affine, or deformable depending

on the spatial transformation degrees of freedom and the scope at which the transformation varies

spatially. Rigid and affine registration transformations are parameterized using a set of parameters

that defines the rotation and translation operations for rigid registration in addition to scaling

and shearing for affine registration. Deformable registration, on the other hand, is defined by a

non-parametric dense correspondence, or the shifts in all directions for each pixel in a 2D image,
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or voxel in 3D volumes, which is usually called the deformation or registration field (φ). This

allows the alignment of different anatomical structures using a more realistic local representation

of their movement beyond the constrained global rigid and affine transformations [92]. Regardless

of their classification, registration methods seek to solve the problem defined as:

T̂ = argmin
T

S(I f ,T (Im)), (5.1)

where T represents the registration transformation, S , the similarity measure, which is correlated

with the level of alignment between the image being transformed (Im), usually referred to as the

moving image, and the reference image (I f ), referred to as the fixed image.

In addition to aligning scans from different imaging modalities and across time, image

registration is used extensively for the registration of CT scans from different phases. Multi-phase

CT scans are used to highlight different anatomical structures and abnormalities within the body

due to the progress of contrast agents that is injected into the body. These agents are radioactive

and depending on the time the CT scan is acquired after these agents are injected, different

anatomical structures appear brighter in the scan [163]. The arterial phase CT scan is acquired

right after the injection of the contrast agent within a few seconds, and hence arteries in the

images appear brighter than usual. For the purpose of lesion detection, this phase can highlight

blood flow through the arteries to lesions. The venous phase CT scan is acquired around a minute

after the injection of the contrast agent and highlights veins’ interaction with tissues as well as

liver parenchyma. Finally, the delayed phase is acquired several minutes after the injection of

the contrast agent and is usually used to highlight various types of lesions, especially in the liver

as well as fibrosis. Fig. 5.1 shows two example slices from an arterial phase scan and a delayed

phase scan to demonstrate the different anatomical structures these scans highlight. These three

phases are of great importance specifically for the analysis of lesions within the liver. Using

scans from these three phases improves the ability of clinicians to detect liver lesions. However,

due to the need for them to be acquired at different times, these scans are usually not aligned
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spatially, and differences in positions of key anatomical structures such as the liver can be off by

as much as several centimeters1. This misalignment can degrade clinicians’ ability to detect and

identify lesions within the liver, and is certainly a significant issue when designing detection or

segmentation algorithms due to the misplacement of spatial features from one scan to the other.

Therefore the registration of these CT scans, which we refer to as volumes too, is an essential

step in the process of using multi-phase CT scans for lesion detection and segmentation.

Figure 5.1: A CT scan slice from an arterial phase scan (A) and a delayed phase scan (B).
Yellow arrows point to the bright arteries in the arterial scan and the lesion boundary in the
delayed scan.

Several methods have been proposed to register medical images and align them spatially.

We discussed the major methods that have been developed in Section 2.4. In our approach, we

employed multiple stages to align the scans with the purpose of aligning the liver for lesion

detection and segmentation. The approach produced accurate registration where the Dice score

of liver masks after registration reached an average of 95.28% (±2.04). We also proposed a

learning-free approach to correct abnormal registration deformations and reduces maximum

registration deformation errors by up to 6.1% when used on registration models that are based on

deep convolutional networks.

1These measurements are based on the analysis of an internal multi-phase dataset of the liver.
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5.2 Method

5.2.1 Overview of Approach

Since our goal of registration is to align the liver across scans, our approach relies on first

isolating the slices that contain the liver within the CT volume and then expanding the field of

view to ensure the liver is present within the new spatially constrained volume before and after

registration. Using pair-wise registration, we then perform rigid alignment of the center mass of

the liver. This is achieved by segmenting the liver and computing the center location of all the

voxels that belong to the liver mask. Once the center location of both the liver masks (the liver

mask of the moving and fixed volume) is known, the moving volume is shifted in space so that

the center location of the liver masks is aligned. After alignment, the volumes are registered using

the deformable registration model, Voxelmorph [105]. The pipeline of this approach is shown in

Fig. 5.2.

Figure 5.2: The Multi-Phase CT scan registration pipeline is outlined with its three stages for
the purpose of liver registration.

We retrained the Voxelmoph model for abdominal CT registration using a semi-supervised

approach. Our training scheme used randomized pairing of CT volumes from the Liver Tumor

Segmentation Challenge (LiTS) dataset [45]. At each iteration, two pairs from the dataset are

randomly selected and the model is trained to estimate the deformation field that would map the

moving volume to the fixed volume.
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5.2.2 Deformable Registration Architecture and Loss Function

The model was trained using a loss function composed of three terms as follows:

L(φ) = LNCC(If, Im,φ)+β ·LDice(If, Im,φ)+α ·Lreg(φ), (5.2)

where LNCC represents the similarity loss between the transformed moving volume and fixed

volume and is based on the normalized cross correlation, LDice, the Dice loss between the

segmentation map of the transformed moving volume and fixed volume, Lreg the smoothness

regularizing loss, and φ the estimated deformation field. If represents the fixed volume, Im the

moving volume, and α and β are parameters that control the contribution of the loss functions to

the overall loss function. These three loss functions are defined as:

LNCC(If, Im,φ) =−
∑x (If(x)−µf)(Im(φ(x))−µm)√

∑x (If(x)−µf)
2

∑x (Im(φ(x))−µm)
2

(5.3)

LDice(Sf,Sm,φ) = 1− 2∑x Sf(x)Sm(φ(x))
∑x Sf(x)+∑x Sm(φ(x))

(5.4)

Lreg(φ) = ∑
x
∥∇φ(x)∥2, (5.5)

where µf and µm are the mean intensity of the fixed and moving volumes respectively. Sf and Sm

are the segmentation map of the fixed and moving volumes respectively, x the spatial coordinates,

and ∇ the gradient operator. The model architecture is shown in Fig. 5.3. The model takes the

two volumes as inputs, they together pass through a series of convolutional blocks that follows the

encoder-decoder architecture of UNet. The encoder-decoder architecture predicts a deformation

field that is used to apply a spatial transformation on the moving volume to register it onto

the fixed volume. The similarity loss is computed between these two volumes. The spatial

transformation is applied on the segmentation map (if it is used to train the model) and the Dice

loss is then computed between the moved segmentation map and the fixed one.
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Figure 5.3: The deformable registration model architecture and framework. The model takes
two CT volumes as inputs and predicts a deformation field that spatially transform the moving
volume onto the fixed volume to register them. The model can be trained in an unsupervised
or semi-supervised manner by using the segmentation map alignment as an additional form of
supervision through the Dice loss function.

5.3 Experiment and Results

To achieve our goal of registering the liver from two different CT volumes we conducted

a series of experiments to train and test the proposed approach on registering CT volumes for

the purpose of liver registration. We started by using a pre-trained Voxelmorph model that was

trained on the Open Access Series of Imaging Studies (OASIS) dataset [164] and an unsupervised

rigid registration model [165] for pre-alignment based on keypoints detection using Superpoint

[166], keypoint matching to estimate the transformation affine matrix by using two-way-nearest-

neighborhood (TWNN) and random sample consensus (RANSAC) [167]. We observed that this

approach can be unstable for certain CT volumes by producing affine transformation matrices

that do not align the volumes. So, instead of using the pre-alignment model described earlier,

we proposed the approach based on liver mask alignment that works on aligning the volumes

within a reasonably close margin for the deformable registration model to converge. In addition

to that, we retrained the deformable registration model to improve its registration performance

and reduce volumes’ misalignments.
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5.3.1 Dataset and Data Preparation

For training the slice classifier, liver segmentation model, and deformable registration

model, we used the LiTS dataset [45]. This dataset is originally intended for liver and liver

tumor segmentation tasks, however, due to the limited number of datasets that are available

for liver segmentation, we modified the dataset usage to train a registration model. For the

liver deformable registration network, we trained and implemented the model on the dataset by

creating 2,162 different volume combinations for training and used the segmentation map of the

liver as guidance for the semi-supervised optimization of Voxelmorph. The CT volumes were

resized to be on a unified physical sampling grid of 1mm in all 3 directions. The volumes were

then padded with zeros to be of 512×512×256 voxels. The volumes were then resized to be

256×256×128 voxels for computational purposes before being used as inputs to the model. The

volumes’ intensity values (Hounsfield units) were clipped to the range [-250, 250]. The intensity

values of the scans were then normalized before feeding them to the network.

Slice Classifier Data Preparation and Model

For the slice classifier, we used the ResNet-50 model [112]. We tested a set of models and

compared their performance on the task and the ResNet-50 model performed best. We trained the

model on slices from the LiTS dataset that were resized to 224×224 pixels of varying physical

resolutions. Physical resolutions of the slices in the LiTS dataset vary in range from 0.5 mm to

approximately 1 mm. The slices’ intensity values were clipped to the range [-250, 250]. The

intensity values of the scans were then normalized to a range of 0 to 255, and then normalized

again before feeding them to the network.

Liver Segmentation Data Preparation and Model

For the liver segmentation network, we trained and implemented the 3D ResUNet, which

is a modified version of the 3D UNet model with residual connections in the convolutional blocks.
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We trained the model on volumes from the LiTS dataset that were resized to 256× 256×D,

where D is the dimension of the volume across the z-axis and is varying depending on the span of

the liver. The slices’ intensity values were clipped to the range [-250, 250]. The intensity values

of the scans were then normalized before feeding them to the network.

Target Dataset for Testing

The target dataset we tested the performance of our approach on is an internal dataset

and is not publicly available2. The dataset contains scans from 13 subjects. Each subject has

scans from the arterial, venous, and delayed phases together with liver and lesion masks that

were manually generated by specialized clinicians. Example slices from the dataset and from two

different phases are shown in Fig. 5.1.

5.3.2 Evaluation Metrics

To evaluate the accuracy of the proposed approach, we use different evaluation metrics

for the different stages within the registration framework. We use accuracy, precision, and recall

for the slice classifier to evaluate its performance. These metrics are defined as follows:

Accuracy =
T P+T N

T P+T N +FP+FN
, Precision =

T P
T P+FP

, Recall =
T P

T P+FN
, (5.6)

where T P stands for the number of true positives, T N the number of true negatives, FP the

number of false positives, and FN for the number of false negatives. For the segmentation and

registration models, we use the liver masks Dice score (Dc), which is defined as:

Dc(Ŷ ,Y ) =
2∑(Ŷ ⊙Y )

∑
M
m=1 ŷm +∑

M
m=1 ym

(5.7)

2The dataset is provided by VinBrain JSC. as part of a collaborative project for liver lesion detection and
segmentation in multi-phase CT scans.
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where ⊙ represents the element-wise multiplication, Ŷ the predicted or transformed mask, and Y

the ground truth or fixed mask, and M the number of elements in the mask. In addition to the

Dice score, we use the Hausdorff distance, which measures the maximum distance of all the

closest distances among points from two sets. The sets in our case are the boundaries of the liver

segmentation mask after registration.

Table 5.1: The liver slice classifiers’ performance on the LiTS dataset.

Model Accuracy Precision Recall

ResNet-18 97.38% 97.37% 93.38%

ResNet-50 97.73% 97.37% 94.66%

EfficientNet-B5 96.83% 95.17% 93.75%

EfficientNet-B7 96.43% 95.54% 91.80%

ResNet-50 (with post-processing) 97.8% 97.62% 94.74%

5.3.3 Slice Classifier Training and Results

We used the slice classifier to detect the slices that contain liver in a CT volume. We

split the dataset by volume where we used 101 volumes (subjects) for training and 30 volumes

for testing. We trained the ResNet-50 model by starting our training from the pre-trained model

available through the Pytorch [168] model zoo. We used a stochastic gradient descent as an

optimizer with a learning rate of 0.001 and a momentum of 0.9. We also used a step-based

scheduler where the learning rate is reduced by a factor of 0.2 every 5 iterations. The batch

size was set to 32 and the model was trained for 100 epochs. Furthermore, we used the known

anatomical structure of the liver and its continuity to post-process the classifier output by assuming

that the liver is continuous and that if there are slices classified as not containing a liver within a

series of slices classified as containing a liver, we know that this is a false negative and we change

the classification. In addition to ResNet-50, we also trained and tested other models including

ResNet-18, EfficientNet-B5 [169] and EfficientNet-B7. The performance of these models on the
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test set from the LiTS dataset is summarized in Table 5.1 while the performance of the best model

(ResNet-50) on the internal registration dataset is summarized in Table 5.2.

Table 5.2: The best slice classifier model (ResNet-50) performance on the CT multi-phase
registration dataset.

Phase Accuracy Precision Recall

Arterial 94.22% 95.29% 96.51%

Delayed 94.47% 95.26% 96.6%

Venous 97.3% 96.1% 96.6%

5.3.4 Liver Segmentation Training and Results

We trained and tested multiple segmentation models to identify, localize and estimate the

boundary of the liver within a CT scan volume. We used two approaches. The first one is using

2D segmentation networks on a randomly split dataset by slices rather than volumes. The 2nd

approach is using 3D segmentation models on a dataset split by volume. 3D models for liver

segmentation performed better than their 2D counterparts. For the 3D segmentation model, the

best-performing model that we trained on the LiTS dataset is the 3D ResUNet. For this model,

the CT volumes were split into 80% training and 20% testing, and the model was trained using a

learning rate of 0.0001 for 200 epochs with an early stop threshold of 30 epochs if results did

not improve. The volumes were resized to 256×256, and 48 consecutive slices were selected at

a time for each volume loaded as input to the model. Overall the model archived a Dice Score

performance of 93.7%.

5.3.5 Deformable Registration

After aligning the volumes using the center location of segmentation maps, we performed

deformable registration on the moving volume to align it with the fixed volume. We started by
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testing the performance of the pre-trained Voxelmorph model. The results using this model are

summarized in Table 5.3. The table shows the Dice score (Dc) and the Hausdorff distance (HD)

thresholded at the 95th percentile by slice. From the table, we can observe the importance of the

alignment process using the liver segmentation map to ensure close correspondence of the two

volumes spatially before deformable registration. Although not shown here, deep learning-based

deformable registration would fail without close proximity between the two volumes [105].

Table 5.3: The proposed registration approach performance using the pre-trained deformable
registration model across the different phases within the test set. Dc stands for the Dice score
(higher is better), and HD stands for the Hausdorff distance at the 95th percentile by slice (lower
is better).

Fixed
Volume

Moving
Volume

Before Alignment After Alignment After Registration

Dc (%) HD (mm) Dc (%) HD (mm) Dc (%) HD (mm)

Arterial Delayed 77.8 - 90.6 - 94.8 -
Arterial Venous 1.4 - 89.8 - 94.24 -

Delayed Arterial 77.8 - 90.6 - 94.7 -
Delayed Venous 1.17 - 86.7 - 93.6 -

Venous Arterial 1.4 - 89.8 - 95.1 -
Venous Delayed 1.17 - 86.7 - 93.2 -

Overall 25.2 38.6 89.1 10.4 94.4 7.7

We also tested the performance of the pre-trained Voxelmorph model under different

conditions of slice resolution, field of view, and initial alignment. However, this pre-trained model

did not perform as well as required and lacked consistency across subjects and across phases. The

performance of the pre-trained model is outlined in Table 5.4 under three different conditions.

The first is for a CT volume that has the slices containing the liver with additional 10 slices before

and after, the second with additional 20 slices before and after, and the third with additional 30

slices before and after the liver.

To improve the performance and consistency of the model, we trained it on the LiTS

dataset in a semi-supervised manner where we used the segmentation mask of the liver as guidance

for the network. This is done by incorporating the Dice loss, which is computed as the negative
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Table 5.4: The pre-trained Voxelmorph model performance on the test set under different field
of view conditions. Hausdorff distance is thresholded at the 95th percentile by slice.

Condition Dice Score Hausdorff Distance (mm)

1 (10 slices margin) 94.4% (±3.5) 7.7 (±7.2)

2 (20 slices margin) 94.5% (±3.4) 7.1 (±7.6)

3 (30 slices margin) 94.5% (±3.4) 7.5 (±6.7)

of the Dice score between the warped segmentation map and the fixed segmentation map, into the

overall loss function of the model defined in (5.2). All three losses in the overall loss are weighted

by a factor and then summed to form the overall semi-supervised registration loss function. In

our training approach, we kept exploring the effect of increasing the Dice loss contribution to the

overall loss function. As we increased the Dice loss contribution, the performance of the model

in its ability to align the livers improved. Table 5.5 outlines the performance improvement of the

model as we increase the contribution of the Dice loss to the overall loss function by a factor of 2,

3, and 5 when compared to the original contribution.

Table 5.5: Performance of the model as we increase the contribution of the Dice loss to the
overall loss function by a factor of 2, 3, and 5 when compared to the original contribution.
Hausdorff distance is thresholded at the 95th percentile by slice.

Dice Loss Contribution Factor Dice Score Hausdorff Distance (mm)

2 94.1% (±3.6) 7.6 (±4.3)

3 94.8% (±2.7) 6.7 (±7.6)

5 95.28% (±2.04) 5.6 (±2.8)

To train this model, the volumes were all resized to a new unified size which is 1×1×1

mm. The volumes are then padded with zeros to reach a size of 512×512×256. They are then

resized to 256×256×128 to not exceed GPU memory capacity during training. The target is to

train the model for 1,500 epochs where in each epoch 100 random combinations of the volumes

are used for training.
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Finally, when the Hausdorff distance is thresholded by slice, the results are more restrictive

and represent a closer distance to the maximum Hausdorff distance. If the distance is thresholded

over the whole volume, it would be more representative of the true distance as we allow the points

to be matched across the 3D volume and not by slice, and we allow the thresholding to occur over

the whole volume as well. When we compute the Hausdorff distance using this approach, the

distances are as follows: 13.52 (±5.98), 6.02 (±3.47), and 3.42 (±1.62) mm for the maximum,

99th percentile, and 95th percentile, respectively. Example axial slices before and after registration

can be found in Fig. 5.4.

Figure 5.4: Example slices from four different subjects with chessboard overlay to demonstrate
registration alignment across phases. In these slices, the fixed volume is from the arterial phase,
and the moving volume is from the delayed phase. Top row before registration. Bottom row
after registration.

5.4 Abnormal Registration Deformations Reduction

Regardless of their accuracy and ability to register images among different modalities,

phases, or across time, deformable registration models still induce deformation errors and may
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(a) LiTS dataset (b) OASIS dataset

Figure 5.5: The distribution of the deformation error span for the predicted deformations using
VoxelMorph and after correction using the proposed method.

cause artifacts in the images they transform, causing apparent abnormalities in these images or

obscuring important elements that might be needed for diagnostic purposes. To help mitigate the

effect of these abnormal deformations, we proposed a learning-free statistical framework based on

randomized variation injection into inputs and model weights at inference to identify and reduce

distortions. Fig. 5.5 shows the distribution of deformation error span with and without using our

proposed approach on two different datasets. Our approach was tested on the VoxelMorph [105],

SynthMorph [106], and cLapIRN [107] models, as well as two datasets: a computed tomography

(CT) abdomen dataset [45] (LiTS dataset) and an MRI brain dataset [164] (OASIS dataset). Our

main contributions are:

1. A learning-free framework to identify large distortions at inference for deformable registra-

tion deep-learning models.

2. A post-processing method for selective correction of deformations based on the identified

large distortions locations.

3. A method that is model agnostic as it can be used with CNN deformable registration models

in general, which we tested on three different models.
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5.4.1 Method

The proposed approach aims to identify abnormal distortions in medical image registration

and minimize their effect by injecting randomized variations into both the input images and model

weights repeatedly. Algorithm 5.1 outlines the proposed framework. First, a set of variations

is chosen randomly to be applied to the input intensity values and the model weights. Next,

the registration model is used to estimate the deformation field. These two steps are repeated

multiple times, and the estimated deformation field at each repetition is stored. The sample

standard deviation is used to calculate the spread of estimated deformations at each voxel, and

deformations with the largest spread are replaced with interpolated deformations using third-order

b-spline interpolation.

Deformation Abnormalities Estimation and Correction

During inference, we apply the deformable registration model several times on the two

image volumes. Each time we inject a randomized set of variations into the input, the model

weights, or both as outlined in Algorithm 5.1. For the input volumes, the first of these variations

is noise, where we add Gaussian noise with mean 0 and a standard deviation equal to 5% of the

maximum volume intensity value (the volume intensity values are normalized to the range [0, 1]).

The second is gamma correction, which is used to vary the contrast and luminance of different

parts of the volume to simulate the use of contrast agents in CT scans. We randomly varied the

gamma coefficient at each iteration between 0.95 and 1.05. The third input variation that we

incorporated is the zeroing of intensity values at random. We randomly selected a number of

voxels between 2.5% and 7.5% and replaced their intensity values with zero.

For model weights, the variations injected are noise and weights zeroing. For the first,

we added Gaussian random noise with a standard deviation equal to 0.5% of the weight we are

adding noise to. As for zeroing the model weights, we randomly selected a subset of weights

ranging in size from 2.5% to 7.5% of the total set of weights at each convolutional layer. The
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Algorithm 5.1 Abnormal deformation estimation & correction
Input: Fixed image volume, moving image volume, synthetic ground truth deformation field,
trained deformable registration model, N
Output: Deformation field spread (standard deviation) and corrected deformation field

1: Align volumes using rigid transformation
2: for n = 0 to N do
3: Initialize copy of input volumes
4: for each input variation in set of input variations do

// Set of input variations: {random noise, gamma transformation,
random zeroing of intensity values}

5: if random number ≥ 0.5 then
// Random numbers in the range [0, 1]

6: Apply input variation to the copy of the input volumes
7: end if
8: end for
9: for each model variation in set of model variations do

// Set of model variations are: {random noise, random zeroing of
weights (dropout at inference)}

10: if random number ≥ 0.5 then
// Random numbers in the range [0, 1]

11: Apply model variation to the model weights
12: end if
13: end for
14: Compute deformation field (φn) using modified input volumes and modified model
15: end for
16: Compute the standard deviation of φn at each voxel
17: Replace the deformations with the largest set of standard deviations with interpolated defor-

mations using third order B-spline interpolation
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generated deformation fields from each iteration are then aggregated, and the standard deviation

of the deformation at each voxel is computed. This is the metric we use to estimate the possibility

a deformation is abnormal and not accurate. An average correlation coefficient of 0.61 is found to

be present between the standard deviation and deformation error in the experiments we conducted.

Once the aggregate deformation fields are generated, and the standard deviation of the

deformations at each voxel is computed, we use them to correct for abnormal deformations.

At locations with high standard deviations, we replace the deformations with the interpolated

deformation using third-order b-spline interpolation. The deformations selected for replacement

are based on the distribution of standard deviations for that specific volume and are selected

based on experimental testing of performance. We found that replacing the deformations with a

standard deviation higher than the 75th percentile works best. This approach provides selective

regularization on the value of deformation, smoothing the deformation field at specific locations

rather than globally.

5.4.2 Experiment and Setup

Dataset and Implementation

We tested the proposed approach using 3D CT scans from the Liver Tumor Segmentation

(LiTS) dataset [45] and 3D MRI brain scans from the Open Access Series of Imaging Studies

(OASIS) dataset [164]. The LiTS dataset contains scans of the abdomen from 131 subjects. The

goal of this dataset is to benchmark liver and liver lesion segmentation models, and we adapted

it to our registration work due to the extensive complexities present in abdominal scans of the

body. We trained the VoxelMorph model on this dataset using 47 subjects, and we randomly

selected pairs from these subjects as inputs to the model in training; there are 2,162 such pairs.

The 3D CT volumes were resized so that each voxel size is 1×1×1 mm. They are then resized

to 256×256×128 voxels as inputs to the model. For the OASIS dataset, we used pre-trained
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models that were made available by the authors of the three registration models we evaluated

(VoxelMorph, SynthMorph and cLapIRN) on the original scan size of 176×208×176 voxels.

For both datasets, we generated ground truth deformations and applied these deformations

to image volumes. We then used the registration models to predict the deformation field. Using

these ground truth deformations allows us to calculate the exact difference between the predicted

and actual deformation fields in spatial units, which is millimeters in our analysis. It also allows

us to quantify our approach’s ability to estimate and reduce abnormal deformations. For the LiTS

dataset, we used fifteen subjects, while for the OASIS dataset, we used twenty five subjects to

evaluate our approach’s performance. For each of the subjects, the predicted deformation field

using the registration model and the corrected one using our approach are compared to the ground

truth deformation field; using the absolute error in millimeters as the evaluation metric.

5.4.3 Evaluation and Results

We evaluated the proposed approach from two perspectives. The first is its ability to

estimate where the predicted deformation fields would be abnormal and cause distortions by

deviating significantly from the ground truth. The second is its ability to use this information

to mitigate and correct these rogue deformations. Using these two perspectives, we tested the

approach’s ability to estimate abnormal deformations based on a single form of variation injection

first. However, we observed that using multiple types of randomized variations improved the

correlation coefficient between the deformations’ standard deviation and deformation error by

approximately 20% from 0.5 to 0.61. Using multiple types of randomized variations, our approach

outlined in Algorithm 5.1 reduced the maximum deformation error by up to 6.1% as shown in

Table 5.6. Our approach was also consistent in reducing the maximum deformation error and the

abnormal deformation errors at the 99th percentile across the different datasets and models. Fig.

5.6 provides a qualitative representation of the proposed approach’s ability to reduce deformation

error on the LiTS dataset and Fig. 5.8 on the OASIS dataset.
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(a) (b) (c) (d) (e)

Figure 5.6: Qualitative results of the proposed error reduction approach on six example slices
from the LiTS dataset. (a) The example slices from the LiTS dataset, (b) the ground truth
registration deformation field, (c) the predicted deformation field error using VoxelMorph, (d)
the corrected deformation field error using our approach, and (e) the error difference between
the corrected and predicted deformation error. Deformation fields and errors colormap is in
millimeters. The colormap scale for the deformations and errors is different for each image, and
depends on the maximum value within that image.
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Table 5.6: Deformation error reduction performance of the proposed approach. The maximum
deformation error and the 99th percentile error are outlined in millimeters (averaged across
subjects). The improvement in reducing each of these errors is also outlined as a percentage of
the original error.

Dataset Approach Avg. Max.
Error

Avg. Error @
99th Perc.

Improvement (%)

Max. Err. 99th% Err.

LiTS VoxelMorph 22.2 6.8 - -
Proposed 20.8 6.6 6.1% 2.5%

OASIS

VoxelMorph 3.1 0.82 - -
Proposed 2.95 0.8 4.6% 2.3%

SynthMorph 2.08 0.81 - -
Proposed 1.98 0.8 4.9% 1.2%

cLapIRN 1.75 0.76 - -
Proposed 1.64 0.76 5.7% 0.3%

As the number of repetitions increases, the performance of the proposed approach tends

to saturate (see Fig. 5.7). 12 to 15 repetitions were sufficient in our tests to achieve the results

outlined in Table 5.6. Although the proposed approach is successful at consistently reducing

the predicted deformation error without the need for training, there are still future prospects

for improvement as the deformation error extends beyond 20 mm for some volumes, even after

correction.

(a) LiTS dataset (b) OASIS dataset

Figure 5.7: The number of repetitions effect (of model and input variation injection) on the
correction algorithm performance.
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(a) (b) (c) (d) (e)

Figure 5.8: Qualitative results of the proposed error reduction approach on three example slices
from the OASIS dataset. (a) The example slices from the OASIS dataset, (b) the ground truth
registration deformation field, (c) the predicted deformation field error using VoxelMorph, (d)
the corrected deformation field error using our approach, and (e) the error difference between
the corrected and predicted deformation error. Deformation fields and errors are in millimeters.

5.5 Limitations and Future Prospective

The registration framework proposed in this chapter focuses on solving the problem of

liver registration in multi-phase CT scans. Our tests demonstrate that the framework can accurately

and robustly register and align relatively small anatomical structures with respect to the image

volume field of view, such as the liver in CT scans. However, the framework might not provide

significant improvements when applied to the registration of larger anatomical structures with

respect to the image volume field of view, such as brain scans. Although the proposed abnormal

deformations reduction approach consistently reduces the predicted deformation error without the

need for training, there are still opportunities for future improvements. The logical next step is to

address and overcome the saturation of error reduction performance as the number of repetitions
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increases. This can be achieved by modifying or expanding the types of variations injected into

the input images and model weights. Another possible extension is to examine the effect of

other variations on the correction performance. We observed that intensity-based variations, such

as contrast modifications, produced better results than noise-based corrections, such as adding

noise or randomly zeroing intensity values. We expect that these possible extensions can further

enhance the capabilities of our proposed approach in mitigating large deformation errors.

5.6 Conclusion

In this work, we designed, implemented, and tested a framework for accurate registration

of multi-phase CT scans of the abdomen with the goal of aligning the liver. The proposed

approach was both accurate and robust across scans from different phases and allowed for pre-

alignment before deformable registration to promote the success of these models as they need

close spatial correspondence for them to accurately register the anatomical structures of interest.

Furthermore, we proposed a learning-free statistical-based framework to estimate and correct

abnormal deformations for deformable image registration models. We tested the framework

by estimating and mitigating abnormal deformations generated by three different deformable

registration models for 3D abdominal CT and 3D brain MRI scan registration. With its initial

success in mitigating abnormal deformations, we hope that the proposed framework would

encourage more research in this area of learning-free registration evaluation and correction.

Chapter 5 is, in part, based on the materials as they appear in “A Learning-Free Approach

to Mitigate Abnormal Deformations in Medical Image Registration”, Abdullah F. Al-Battal; Soan

T. M. Duong; Chanh D. Tr. Nguyen; Steven Q. H. Truong; Chien Phan; Truong Q. Nguyen;

Cheolhong An, submitted to the Workshop on Biomedical Image Registration of the International

Conference on Medical Image Computing and Computed Assisted Intervention (MICCAI), 2024.

The dissertation author was the primary investigator and author of this paper.
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Chapter 6

Multi-Target and Multi-Stage Liver Lesion

Segmentation and Detection in Multi-Phase

CT Scans

6.1 Introduction

Multi-phase computed tomography (CT) scans use contrast agents to highlight different

anatomical structures within the body to enhance their visibility. Clinicians use these multi-phase

scans to improve the chances of identifying and detecting anatomical structures of interest and

abnormalities such as liver lesions. Detecting and identifying lesions within the liver is a crucial

step in the diagnosis, staging, and treatment planning of liver cancer, a highly fatal form of cancer,

as it is the second most common cause of premature death from cancer [170]. Nevertheless,

detecting and segmenting these lesions is still a challenging task due to a multitude of reasons.

They vary significantly in their size, shape, texture, and contrast with respect to surrounding

tissue. Therefore, radiologists need to have extensive experience to be able to identify and detect

these lesions. Yet, even radiologists with over five years of experience are still challenged by
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this task, where the recall rate for liver lesions can be as low as 72% for lesions ranging in size

from 10-20 mm and 16% for lesions smaller than 10 mm [171, 172]. Segmentation-based neural

networks can assist radiologists with this task.

Convolutional neural networks (CNNs) are the best-performing models for medical

image segmentation, especially when objects of interest are small in size such as lesions [48,

71, 111, 114]. CNNs utilize convolutional kernels within the encoder to extract features and

spatially contextualize these features in the decoder. Besides CNNs, transformers have also

shown significant promise in medical image segmentation by processing images on a patch-wise

basis in the encoder instead of relying on convolutional kernels [115, 116]. Both CNNs and

transformers have their own advantages and disadvantages. CNNs excel at capturing spatial

hierarchies and local features within images, making them particularly suited for detailed and

texture-rich medical images, but they struggle with long-range dependencies. On the other hand,

transformers handle global context well while less capable of capturing local features without

excessively large datasets and higher computational resources [173, 174].

Current state-of-the-art lesion segmentation networks use the encoder-decoder with skip

connections design paradigm based on the UNet [111] architecture. In these networks, the

multi-phase CT scans are fed to the network as a multi-channel input [48, 117]. Although this

approach utilizes information from all the phases and outperforms single-phase segmentation

networks, we demonstrate that their performance is not optimal and can be further improved by

incorporating the learning from models trained on each single-phase individually. Our approach

comprises three stages. The first stage identifies the regions within the liver where there might be

lesions at three coarse scales (4, 8, and 16 mm). The second stage includes the main segmentation

model trained using all the phases as well as a segmentation model trained on each of the phases

individually. The third stage uses the multi-phase CT volumes together with the predictions

from each of the segmentation models to generate the final segmentation map. We test our

approach’s segmentation and detection performance on a clinical three-phase CT dataset. The
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(a) Arterial Phase (b) Delayed Phase (c) Venous Phase

Figure 6.1: Three slices from different subjects in the liver lesion dataset (a)-(c). Each slice
is acquired at a different phase and cropped to the liver region. The lesion region of interest is
highlighted in a yellow bounding box. Within each of the cropped regions, the boundary of the
lesion is outlined in yellow.

dataset contains scans from 354 subjects annotated with liver lesion segmentation labels. Each

subject has 3 contrast-enhanced scans at three different phases, which are the arterial, delayed,

and venous phases. Example scans from this dataset showing slices from each of the phases are

shown in Fig. 6.1. Overall, our approach improves relative liver lesion segmentation performance

by 1.6% while reducing performance variability across subjects by 8% when compared to the

current state-of-the-art models. Overall, the major contributions of our work are:

1. A multi-stage multi-target segmentation framework for liver lesions in multi-phase CT

scans that use fully convolutional neural networks; improving liver lesion segmentation

and detection.

2. A segmentation strategy that incorporates features learned from individual phases in both

the encoder and decoder in addition to the multi-phase segmentation model for improved

feature extraction and spatial contextualization.

3. A feature fusion and attention (FF&A) module in the skip connections of the main seg-

mentation model to integrate and emphasize relevant features from both the encoder and

decoder paths for an enhanced segmentation spatial focus.
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6.2 Background

Many deep learning methods aimed to solve the challenging problem of liver lesion

segmentation. These models perform better when trained on 3D image volumes rather than

2D image slices or 2.5D multi-slice images [119]. Fully convolutional networks (FCN) based

on the UNet architecture are the most successful at this problem so far [111, 119]. The UNet

architecture uses a symmetric structure with a contracting path (the encoder) to capture context

and extract features coupled with an expanding path to localize features (the decoder) with skip

connections between the encoder and decoder to combine features at different stages of the

network. Several developments have been proposed to the UNet architecture to improve its

segmentation and efficiency performance. These developments targeted different components of

the network. Notably, these improvements included modifications to the convolutional block, such

as the integration of residual or bottleneck blocks, which aid in mitigating the vanishing gradient

problem and improving feature representation without substantially increasing computational

complexity [112, 113]. Additionally, advancements have been made in the architecture’s skip

connections, with the introduction of nested and multi-stage connections that facilitate the

model’s ability to capture and integrate multi-scale contextual information more effectively

[114]. Moreover, the incorporation of attention mechanisms within the skip connections further

refines the model’s focus on relevant features, enhancing segmentation precision by selectively

emphasizing important spatial features while suppressing less relevant information [71].

Among the improvements that focused on redesigning the skip connections of the UNet

architecture, UNet++ [114], Attention UNet [71], and MultiResUNet made large strides in

improving the overall segmentation capabilities of the UNet architecture across different medical

image segmentation tasks. UNet++ uses a nested architecture that refines skip connections

using multiple interconnected convolutional networks at different depths, enabling an increased

mixture of features across the network. Attention UNet incorporates attention gates within
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its skip connections, focusing the model spatially on relevant image regions by selectively

emphasizing important features while suppressing less relevant information. Other models such

as the ResUNet, UNetR [115], SwinUNetR [116], and MedNext [117] improved on the UNet

architecture by modifying the design of the convolutional block or replacing it with a transformer-

based block. The ResUNet architecture replaces the convolutional blocks within the encoder and

decoder with residual convolutional blocks while the MedNext model uses a residual bottleneck

convolutional block, which is a 3D version of the ConvNext block proposed by [118]. The UNetR

and SwinUNetR models replaced the encoder with a transformer-based encoder using the VIT-B

model and the Swin Transformer, respectively. The MultiResUNet, on the other hand, included

modifications to both the convolutional block as well as the skip connections, by incorporating

multi-residual paths inspired by DenseNet in the first and successive residual blocks in the second.

Transformer encoders, in general, however, struggle with smaller objects and extracting localized

dense representations as they encode features using a patch-based manner. The Swin Transformer

aimed to mitigate this problem with shifted windows, but it still lags behind in its ability to

recover small objects, such as lesions, in their early stages.

Deep learning models based on the UNet architecture are the most widely used and best

performing for the task of liver lesion segmentation in single-phase CT scans [119]. These models

include the current state-of-the-art model, nnUNet [48]. The nnUNet model uses the original UNet

architecture and incorporates a self-configuration approach that modifies the network’s depth,

width, and under-sampling stages, among others, based on the dataset footprint in terms of the

target anatomical structure intensity and spatial characteristics. The Model Genesis [120] UNet

model, which uses self-supervised learning as a pre-training approach to learn transferable image

representations, also performs comparably to the nnUNet model. Transformer models, in general,

do not perform on par with CNN models due to the relatively small size of lesions to the overall

scan. However, the SwinUNetR model can achieve comparable results due to the use of shifted

windows, which improves local and small feature extraction for dense segmentation predictions.
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chen et al. [175] proposed OctopusNet, which is a CNN-based architecture that uses separate

encoder branches and a single decoder branch for multi-phase medical image segmentation. In

their tests, they found that this approach improves performance when compared to using the

different phases as input channels [175]. Nevertheless, current state-of-the-art approaches use the

latter network design where the different phases are used as input channels.

Although these models were tested on multi-phase and multi-contrast datasets such as

the Brain tumor dataset (BraTS), they were not tested on lesion segmentation in multi-phase CT

scans prior to the work we present in this chapter. At the time of this chapter writing, there are

currently no publicly available multi-phase liver lesion segmentation datasets. Therefore in our

approach we use an internally created three-phase dataset that was annotated and rated by two

different radiologists for 354 subjects with primary and secondary liver tumors. Each subject

was scanned at the arterial, delayed, and venous phases of contrast injection. Multi-phase and

multi-contrast models use each of the phases or contrast images as a separate input channel to

the overall model while maintaining the same structure of the overall segmentation model. For

example, a model trained on segmenting a three-phase CT scan will have a single input of three

channels, each channel representing each of the phases individually. Although this approach

incorporates information from all of the phases, we demonstrate in our work that this is not

optimal and that incorporating models trained on each of the phases individually enhances the

segmentation performance significantly.

6.3 Proposed Method

Effective identification and segmentation of lesions in the liver benefits significantly from

imaging at different phases post contrast injection as the response of these tumors to the contrast

agent at different times allow them to be more distinguishable from surrounding tissue. Hence, it

is important to be able to extract features from these scans in a matter that allows the segmentation
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Figure 6.2: The proposed framework structure with its different stages. The three outputs of
stage 1 are converted to a heatmap that weights the input to stage 2. The outputs of stage 2 are
concatenated with the CT image volume from each phase and then fed to stage 3. The structure
of the models in stage 2 and model 2 in stage 3, as well as the structure of the Stem, Output, 3D
ConvNext, and 3D DownConvNext blocks are outlined in Fig. 6.3.

model to segment them accurately. Therefore, we design our framework, which is composed of

three stages as shown in Fig. 6.2, to incorporate a segmentation model trained using all the phases

as multi-channel input as well as a segmentation model trained on each of the phases individually.

The outcomes of these models together with the CT volumes are fed into the third stage, which is

a segmentation correction and refinement stage, to generate the final segmentation map. Prior

to these two stages we feed the CT volume to the first stage, which identifies the areas within

the liver where there might be lesions at three different scales (4, 8, and 16 mm). In the main

segmentation model we design a feature fusion and attention (FF&A) module that improves the

ability of the model to combine features from the decoder and encoder in the skip connections. In

this section, we explain our approach in detail, starting with the augmentation and pre-processing

techniques that are used during training to promote generalization and robustness.
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(a) (b)

Figure 6.3: The architecture and structure of the proposed main segmentation model in stage 2
of the framework (a) with the different building blocks outlined (b): The convolutional block in
the encoder and decoder, the up-sampling convolutional block, the attention and feature fusion
block, the stem and output blocks. The spatial dimension and number of feature channels at
the output of each of these blocks are outlined in (a). The structure of model 2 in stage 3 of
the framework is the same as the main model in (a), but uses only 3 stages in the encoder and
decoder (stages 1, 2, and 3) in addition to the bottleneck bridge instead of 4 stages.

6.3.1 Pre-Processing and Augmentation

Pre-processing and augmentation while training neural networks is an essential step

to promote robustness and generalization. We use them in our proposed approach to induce

variabilities into the training set stemming from the variabilities inherent in scans that would be

present when the model is deployed. The proposed augmentation methods can be categorized

into three main categories: a) intensity-based to account for different imaging devices and

b) geometrically rigid and c) elastic transformations to account for variations in anatomical

structures’ shape, size and elasticity. Prior to augmentation, we pre-process the CT volume

images and prepare them for our segmentation framework by clipping and normalizing their

intensity values and randomly selecting a patch of size 128×128×128 voxels, which are the

dimensions of the model input image. All the CT volumes are resampled to an isotropic spatial

spacing of 1×1×1 mm.
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For intensity-based augmentation, we randomly choose a set of options to change the

visual properties of CT scans during training. We adjust properties like brightness, contrast, and

noise levels. These changes teach the model to identify important features even when scans are

created using different CT devices or reconstruction settings. Additionally, we simulate how a

patient might be positioned slightly differently for each scan. We do this by rotating, shifting,

cropping, resizing, and flipping the images. This helps the model become more reliable, ensuring

it can accurately analyze scans even when there are variations in how the patient was situated

during the imaging process. Additionally, we use affine transformations that include shearing

and scaling to mimic the way soft tissues might stretch or compress. We also introduce elastic

deformations that simulate the natural variations in shape and position of internal organs. These

variations can be caused by factors like breathing, differences in patient body size, or even the

presence of tumors or other abnormalities. By simulating these tissue variabilities, we make the

model more robust in recognizing important anatomical features despite the inevitable differences

between individual patients.

6.3.2 The Liver Lesion Segmentation Framework

Stage 1: Lesion localization and Patch Flagging Model

This stage is tasked with identifying the areas within the liver that might contain lesions

at three different scales (4, 8, and 16 mm). This stage’s model is outlined in Fig. 6.2. The first

component of the model is a stem that expands the input patch feature width from 3 (a channel

for each phase) to 32 channels. The model uses five convolutional blocks. Each convolutional

block contains two 3D ConvNext blocks followed by a 3D down-sampling ConvNext block, apart

from the last convolutional block, which does not use a down-sampling block. The outputs from

the third (prior to down-sampling), fourth (also, prior to down-sampling), and fifth convolutional

blocks are then fed to an output convolutional layer to generate a segmentation map at each of
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the scales, namely 4, 8, and 16 mm. These segmentation maps work as an area or patch flagging

mechanism where patches at each of the scales are either flagged (containing lesion) or not. The

patches are then combined to form a compound heatmap that highlight areas within the liver

where the model believes there are lesions.

Stage 2: Lesion Segmentation Model

In this stage we train the encoder-decoder segmentation models outlined in Fig. 6.3. We

train a main model that takes all the phases as input channels as well as a model for each of

the phases individually. The first component of this model is also a stem that expands the input

patch feature width from 3 (a channel for each phase) to 32 channels. The model uses four

convolutional blocks in the encoder and four convolutional blocks in the decoder with a bridge

bottleneck after the last encoder block to connect the encoder with decoder. Each convolutional

block contains two 3D ConvNext blocks followed by a 3D down-sampling ConvNext block while

the bridge bottleneck contains only two 3D ConvNext blocks. The structure of the ConvNext and

down-sampling ConvNext blocks are outlined in Fig. 6.3 (b). ConvNeXt blocks improve upon

prior convolutional blocks design by offering greater efficiency through depth-wise separable

convolutions, and incorporating transformer-inspired design paradigms such as the inverted

bottleneck design. This enables ConvNext-based models to perform on par with transformer-

based models on coarse computer vision tasks such as classification while outperforming them on

dense prediction tasks such as segmentation, especially for small objects. To train the model, we

incorporate deep supervision where the output of each convolutional block in the decoder at each

depth level (N) is fed to an output linear projection layer that contracts the channel space from

2(N−1)C to 2, which represents the number of classes (background versus lesion).

To improve feature mixing in the skip connection between the encoder and decoder, we

incorporate a Coarse+Fine Feature Fusion & Attention Module (C+F FFA). This module includes

two feature fusion and attention mechanisms; the first is Axial Projected Coarse Attention (APCA)
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while the second is Gated Fine Attention (GFA), to refine feature maps by emphasizing spatially

relevant information. The APCA mechanism processes features from the encoder (X f ) and

decoder (Xg) layers, using 1×1×1 convolutions and group normalization to create a compact

representations in the feature space. These are mixed and then projected across each of the three

spatial dimensions using adaptive average pooling, concatenation, and further feature extraction

using convolutional layers to generate coarse and smooth attention maps that is less susceptible

to noise due to axial based projection and averaging. These maps are used to spatially weight the

feature map from the encoder (X f ), to enhance relevant features. The GFA module, in parallel,

processes the same feature sets with 1×1×1 convolutions and group normalization, combining

them without axial projection to maintain fine details of representations within the feature map. A

subsequent convolution produces a spatial attention map, modulating (X f ) to focus on important

spatial regions. Together, these mechanisms enable focusing on salient features of interest, which

enhances the segmentation accuracy by acknowledging spatial relationships within the image.

The detailed structure of both modules is outlined in Fig. 6.4.

Figure 6.4: The structure of the Axial Projected Coarse Attention (APCA) module and the
Gated Fine Attention module (GFA), which are the two components of the Coarse+Fine Feature
Fusion & Attention Module.

Stage 3: Segmentation Correction and Refinement

This stage is composed of two individual models. The first model incorporates the

segmentation probability map from the models trained in stage 2 as well as the CT volume from
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each of the phases as inputs. This model is trained on patches of the same size as the patches used

in stage 2. The model has three individual encoder branches for each of the three phases followed

by feature fusion through concatenation and a convolutional block, which is then followed by a

single decoder branch to generate the overall segmentation map. Each of the encoder branches

has two input channels. The first channel is the CT volume patch from one of the phases. The

second input channel is the mean of the segmentation probability map output of the model trained

on the same phase and the model trained on all phases from stage 2. This model structure is

shown in Fig. 6.2.

The second model works on refining the segmentation map by lesion. For each of the

lesions predicted by the first model in stage 3, this model uses an encoder-decoder structure

shown in Fig. 6.3 to refine the segmentation for that lesion. To identify and separate lesions, we

use morphological connectivity to identify each of the lesions, then create a bounding box around

this lesion with a margin of 20% as input to this model. The segmentation map is then updated

based on the segmentation output for each of the lesions individually to create the overall final

segmentation map.

6.3.3 Model Training and Segmentation Refinement

All models in the different stages of the proposed framework are trained using a compound

loss function of two loss functions. The first is the binary cross-entropy (BCE) loss function,

which promotes matching the predicted mask map with the ground truth on a voxel by voxel

basis globally over the whole mask without explicit consideration for overlap or object-based

penalization. For a predicted mask (X) and ground truth mask (Y ), both of of size H×W ×D,

the loss is defined for each training example as:

Lbce(X ,Y ) =− 1
H×W ×D

H

∑
i=1

W

∑
j=1

D

∑
k=1

ℓ
(
xi jk,yi jk

)
, (6.1)
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where the predicted mask x and ground truth y at location (i, j,k) are used to calculate the loss

ℓ
(
xi jk,yi jk

)
at each of the voxels:

ℓ
(
xi jk,yi jk

)
= wcyi jk logσ(xi jk)+(1− yi jk) logσ(xi jk). (6.2)

In (6.2), σ(x) is the sigmoid function defined as σ(x) = 1/(1+ exp(−x)), and i = 1,2, ...,H,

j = 1,2, ...,W , and k = 1,2, ...,D. σ(x) maps the predicted voxels onto a probability space of

predictions; its value indicates an object if it is larger than or equal to a threshold, and background

otherwise (this threshold is usually set to 0.5, the median between 0 and 1). The second loss

function is the Dice loss, which uses the Dice coefficient between the predicted and ground truth

mask. The Dice coefficient promotes overlap matching and provides an explicit localized and

object-based penalization. The Dice coefficient (Dc) is defined as [100]:

Dc(Ŷ ,Y ) =
2∑(Ŷ ⊙Y )

∑
H,W,D
i, j,k=1 ŷi jk +∑

H,W,K
i, j,k=1 yi jk

, (6.3)

where ⊙ is element-wise multiplication and ŷi jk = σ(xi jk). The loss based on the Dice coefficient

(Dc) promotes higher Dc values while countering lower ones. It is defined as:

LDc(X ,Y ) = 1−Dc(Ŷ ,Y ). (6.4)

The total compund loss function is defined as the weighted sum of the two losses:

Lob j(X ,Y ) = αbLbce(X ,Y )+αdLDc(X ,Y ), (6.5)

where the coefficients αb and αd control the contribution of each loss to the total loss function. In

our implementation we chose αb = αd = 1.
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Stage 3 Model Training

In stage 3, the first model processes inputs from the three phases of CT scans and the

segmentation probability maps to generate an initial segmentation map. Each encoder branch

takes a CT volume patch and the averaged segmentation probability maps as input. For each

phase p ∈ {A,D,V}, where A stands for arterial, D for delayed, and V for venous. The input to

the model is formed as follows:

Ip = CC(Vp,
1
2
(Xp +X3p)), (6.6)

where Cc represents channel-wise concatenation, Vp the CT volume patch from each of the phases,

and Xp and X3p are the segmentation probability maps from the models trained on this phase and

three phases in stage 2, respectively. Each of the encoders generates a feature map (Ep) from

each of the phases individually, which we define as Ep = FE(Ip) where FE represents the encoder

feature extraction operations outlined in Fig. 6.2. The overall output segmentation map from this

model is then computed as follows:

XR = FDCC(EA,ED,EV ). (6.7)

In (6.7), FD represents the decoder operations, and Cc channel-wise concatenation. EA,

ED and EV are the encoder feature outputs of the arterial, delayed, and venous phases. For the

second model in stage 3, the input to the model is formed by isolating each of the lesions in XR

using morphological connectivity and identifying the width, height, and depth of the lesion. We

then crop a bounding box that is 20% larger than the lesion span in each of these dimensions from

the CT volume V . Finally we iteratively update XR with the refined segmentation map of each of

the lesions as follows:

XR =
L

∑
l=1

FM2(Vl), (6.8)
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where FM2 represents the second model operations and Vl the cropped region from the three-phase

CT volume for each of the lesions l = 1,2, ...,L.

6.4 Experiments And Results

6.4.1 Datasets

We evaluated our model on 2 different datasets. The first dataset is the main dataset

we used to test our approach. It is a clinical dataset that was developed by researchers and

clinicians at VinBrain, JSC and the University Medical Center at Ho Chi Minh City. This dataset

contains contrast-enhanced 3-phase (arterial, delayed, and venous) CT scans of the liver from

354 subjects. The dataset was annotated and rated by two radiologists with extensive experience

in liver oncology. Each of the axial scans in the dataset has a resolution of 512× 512 pixels

at a physical spacing that ranges from 0.5 mm to 0.84 mm with an average of 0.66mm. Slice

thickness in the dataset ranges from 0.5mm to 1mm with an average of 0.9 mm. The average

number of lesions in each of the scans is 2.2 while the maximum is 11 and the minimum is 1.

Lesions are of significantly varying sizes with lesions as large as 129 mm and as small as 2.7

mm in diameter present within the dataset scans. Masks of these lesions and their boundaries

overlaid using their largest axial slice are shown in Fig. 6.5 to demonstrate the variability in

lesion sizes and boundaries within the dataset. The scans from the arterial phase and delayed

phase were registered on the venous phase for each of the subjects. This dataset have lesions with

varying shapes, sizes, and semantics with respect to healthy liver tissue, which forms a reasonable

challenge to test the performance of the proposed framework.

In addition to the main dataset, we test our approach on the BraTS19 [176, 177] dataset

to evaluate its ability to extend its performance improvements to other multi-phase and multi-

contrast datasets beyond liver lesion segmentation. The BraTS19 dataset contains MRI scans of

the brain from 484 subjects for the purpose of brain tumor segmentation. For each subject, the
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(a) (b) (c)

(d) (e) (f)

Figure 6.5: The largest axial slice of each liver lesion in the whole dataset (a), the training set
(b), and the test set (c) overlaid onto one image at a scale of 1 mm. The boundary of these
lesions in the same axial slice for the whole dataset (d), training set (e), and test set (f).

dataset contains 4 multi-contrast scans, which are: a) native T1, b) post-contrast T1-weighted, c)

T2-weighted, and d) T2 Fluid Attenuated Inversion Recovery (FLAIR). The dataset was annotated

by 1 to 4 raters and these annotations were approved by experienced neuroradiologists. All

the scans are distributed after they have been pre-processed through co-registration to the same

anatomical template atlas, interpolated to the same spatial resolution of 1 mm, and skull-stripped.

6.4.2 Experimental Setup and Data Preperation

For each of the datasets, we trained the models in the proposed framework from randomly

initiated weights. For the liver lesion dataset the scans were split into 200 for training and 154 for

testing while for the BraTS dataset the split was 387 for training and 97 for testing. For the liver

lesion dataset, the liver was segmented using a model trained on the LiTS dataset and scans with

only the liver region were used for the training and testing of the proposed lesion segmentation
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approach. The BraTS dataset is already pre-processed with the organ of interest (brain) isolated.

We used a spatial resolution of 1 mm3 for both datasets and patches of size 128× 128× 128

voxels for the models in stage 2 and 3, and patches of size 64×64×64 voxels for the model in

stage 1. The CT scans intensity values which are represented by the Hounsfield units were clipped

to the range [-200, 200] before normalization. We compared the proposed approach performance

to four 3D segmentation networks, which are the current leading models across different medical

segmentation tasks. These models are the SwinUnetR [116], Model Genesis [120], nnUNet [48],

and MedNext [117]. We also compared our approach to OctopusNet [175], which is specifically

designed for multi-phase and multi-contrast medical images. Furthermore, we incorporate the

two best performing models out of these five, which are the nnUNet and MedNext models, as

the stage 2 models in our framework to demonstrate the ability of the overall framework we

propose to improve the segmentation output of these models. The models were trained for 800

to 1200 epochs depending on the learning rate that is suitable for the model, which ranged from

1e−4 to 1e−2. All the models were trained using the AdamW [156] optimizer and loss function

defined in (6.5), except for the nnUNet and Model Genesis models, which are trained using the

stochastic gradient descent optimizer as it is the recommended optimizer for both models. At

each iteration within an epoch, we select two patches randomly from the image volume using a

weighted sampling scheme that gives a 50% higher weight to the probability of sampling a patch

containing a lesion. The second model in stage 3 was trained using a single patch at a time as the

patches were of varying size depending on the lesion size.

6.4.3 Evaluation and Results

Evaluation Metrics

To evaluate the performance of our proposed architecture, we use multiple segmentation,

detection and localization metrics. For segmentation, we use the Dice score and the intersection
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over union (IoU) metrics. Both metrics are considered the benchmark metric used to evaluate

detection, and segmentation methods [91]. The Dice score is defined in (6.3) while the IoU metric

is calculated as follows:

IoU(Ŷ ,Y ) =
∑(Ŷ ⊙Y )

∑(Ŷ |Y )
, (6.9)

where ⊙ is element-wise multiplication, | is the element-wise or logical operator, Ŷ is the

predicted mask map, and Y is the ground truth. For the Dice score, we measure it globally by

aggregating true positives (TP), false positives (FP), and false negatives (FN) over all subjects

and then computing the Dice score as follows:

Dc =
2T P

2T P+FP+FN
(6.10)

We also measure the Dice score by subject to capture the variability in model performance

across subjects. Furthermore, we evaluate the segmentation recall (T P/(T P+FN)) and precision

(T P/(T P+FP)) by subject as well as the surface Dice score at a tolerance of 1.5mm.

Overall Segmentation Performance

The segmentation performance of the proposed approach is summarized in Table 6.1,

and is compared to the other 5 benchmark models. In section I of Table 6.1 we compare the

performance of segmentation models only (stage 2 for our framework) without the use of the whole

framework. In these models, the input is either a single channel 3D image patch for individual

phases or a 3-channel 3D image patch for the 3-phase case. In section II of the table we summarize

the performance of the whole framework. The proposed approach constantly outperformed the 5

benchmark models, and was able to improve the feature extraction and segmentation of lesions

from the different phases leading to a 1.6% relative Dice score improvement (76.3% versus

75.1%) when compared to the best performing benchmark model. This performance improvement

translates to better segmentation maps of lesions with better detection and boundaries as shown
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Table 6.1: The proposed framework liver lesion segmentation performance on the multi-phase
CT dataset. Section I outlines the results of just the segmentation model (stage 2 for our
framework). For each of the arterial, delayed, and venous phases, the input number of channels
is 1 while for 3-Phase, input channels are 3 (arterial, delayed and venous stacked). Section II
outlines the performance of the overall proposed framework with our proposed segmentation
model in stage 2 as well as the nnUNet and MedNext models. Best and 2nd best results are
boldfaced for each category in Section I while only the best is boldfaced in Section II. All
metrics are in the range 0 to 100. Values in parentheses represent the standard deviation across
subjects.

Global By Subject Surface

Phase Model Dice Dice IoU Recall Precision Dice

Section I: Segmentation Model Results

Arterial

SwinUNetR 71.5 60.3 (± 28.5) 48.6 (± 26.8) 62.4 (± 30.3) 68.6 (± 30.3) 43.8
Model Gnesis 75.8 63.1 (± 26.1) 50.8 (± 25.0) 72.4 (± 26.0) 63.2 (± 28.0) 45.5
nnUNet 77.2 65.7 (± 26.5) 54.0 (± 25.9) 65.1 (± 29.0) 76.7 (± 25.8) 51.1
MedNext 80.7 69.5 (± 23.7) 57.6 (± 24.2) 75.9 (± 23.0) 71.6 (± 26.7) 54.0
Ours 80.8 69.8 (± 24.0) 58.0 (± 24.2) 75.7 (± 23.4) 72.1 (± 26.8) 54.3

Delayed

SwinUNetR 79.5 61.6 (± 28.6) 50.0 (± 26.8) 66.5 (± 30.8) 66.6 (± 30.4) 44.1
Model Genesis 78.5 62.4 (± 28.2) 50.8 (± 26.7) 67.6 (± 29.4) 66.4 (± 30.2) 45.7
nnUNet 81.8 64.3 (± 29.5) 53.3 (± 27.6) 64.4 (± 31.4) 73.2 (± 29.1) 48.8
MedNext 82.7 67.3 (± 27.1) 56.0 (± 26.1) 66.7 (± 28.6) 76.8 (± 25.6) 52.6
Ours 83.0 67.4 (± 27.0) 56.1 (± 26.1) 66.9 (± 28.8) 76.8 (± 25.5) 52.8

Venous

SwinUNetR 80.0 63.6 (± 26.6) 51.6 (± 25.7) 66.3 (± 28.3) 69.9 (± 29.0) 47.5
Model Genesis 79.4 63.3 (± 29.7) 52.3 (± 27.8) 68.0 (± 30.8) 67.4 (± 30.7) 47.8
nnUNet 82.9 65.5 (± 29.2) 54.6 (± 27.8) 65.0 (± 30.8) 73.6 (± 29.6) 51.5
MedNext 82.1 67.8 (± 26.5) 56.3 (± 26.2) 69.9 (± 27.6) 73.4 (± 28.2) 54.0
Ours 82.2 67.8 (± 26.4) 56.5 (± 26.1) 69.8 (± 27.4) 73.5 (± 28.0) 54.1

3-Phase

SwinUNetR 81.6 68.2 (± 23.2) 55.8 (± 23.5) 68.1 (± 25.0) 78.0 (± 23.6) 53.1
Model Genesis 80.8 70.7 (± 22.4) 58.7 (± 22.8) 73.4 (± 23.5) 76.6 (± 23.2) 57.6
OctopusNet 75.5 67.2 (± 22.7) 54.4 (± 22.5) 64.2 (± 24.3) 81.2 (± 23.5) 52.4
nnUNet 83.7 73.4 (± 22.4) 62.0 (± 23.0) 74.8 (± 24.2) 79.4 (± 22.0) 61.8
MedNext 83.9 75.1 (± 20.1) 63.6 (± 21.1) 76.8 (± 22.6) 80.3 (± 19.1) 64.1
Ours 84.1 75.5 (± 19.8) 63.9 (± 20.8) 76.8 (± 22.1) 80.9 (± 18.9) 64.4

Section II: Overall Framework Results

Overall
Ours (nnUNet) 84.2 74.1 (± 22.1) 62.8 (± 22.7) 77.7 (± 22.8) 77.3 (± 22.2) 62.7
Ours (MedNext) 84.6 75.8 (± 18.9) 63.8 (± 20.9) 79.1 (± 19.5) 78.6 (± 20.8) 64.5
Ours (Ours) 85.1 76.3 (± 18.5) 64.6 (± 20.3) 79.1 (± 20.0) 80.0 (± 19.4) 65.0

in Fig. 6.6, Fig. 6.7 and Fig. 6.8. In Fig. 6.6, lesions with different characteristics from multiple

subjects are shown together with the ground truth and predicted segmentation boundaries from

our proposed framework and other baseline models. In Fig. 6.8, we demonstrate the ability
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of the proposed framework to improve lesions’ segmentation when compared to the 3-Phase

segmentation model. The 3D surface of predicted segmentation masks using our proposed

framework overlaid on the surface of ground truth masks for lesions of different sizes are outlined

in Fig. 6.7, demonstrating the ability of the proposed framework to segment lesions accurately.

This improvement in performance is attributed to all the stages of the framework, where the

first stage improves the segmentation model Dice score performance across subjects by 0.1%

while the third stage improves the overall performance by 0.7%. The overall framework can also

integrate with other segmentation models that can be used instead of our proposed model in stage

2 of the framework. We conducted two experiments with the best two benchmark models. A

relative Dice score performance improvements of 1% were observed for both the nnUNet and

MedNext models as shown in Section II of Table 6.1.

Extension to The BraTS Dataset

On the BraTS dataset, we evaluated the ability of the proposed approach to improve

the segmentation of brain tumors when tested on a different imaging modality and a different

anatomical structure of interest. We can observe from Table 6.2 that the proposed approach

outperforms the current state-of-the-art model and further reduces segmentation variability across

subjects. The performance improvement on the BraTS dataset is not as significant when compared

to the liver lesion dataset due to the proximity in performance between models trained on each of

the individual contrast images and the model trained using all four contrast images together as a

4-channel input. Nevertheless, The proposed framework reduced the relative Dice score variability

across subjects, which is represented by the standard deviation, by 5.2% when compared to the

benchmark model.
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Figure 6.6: Qualitative comparison of the proposed approach to the other four baseline models.
The figure presents a side-by-side assessment of the different approaches’ segmentation perfor-
mance on lesions of different sizes, shapes and intensity characteristics. The first column shows
the original CT image slices cropped to the liver region with the region of interest highlighted in
a yellow bounding box. The subsequent columns show the cropped bounding box region with
the outline of segmentation results from the different approaches (in red) and the ground truth
segmentation outline (in yellow). The Dice score for each of the predictions outlined is listed
below each image.
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Figure 6.7: The 3D surface of predicted segmentation masks using our proposed approach (red)
and ground truth masks (yellow) of lesions of different sizes and shapes. Each row visualizes
the masks from 6 different perspectives. The lesion span in all three dimensions is outlined in
the first two visualizations. The Dice score for each of the predictions is listed below each row.
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Figure 6.8: Qualitative demonstration of the proposed framework ability to improve the seg-
mentation outcome versus 3-Phase segmentation models by incorporating leanings from each of
the phases individually. The figure presents a side-by-side comparison of the overall framework
to the different models trained on each of the phases individually (arterial, delayed, and venous)
as well as the 3-Phase model. The first column shows the original CT image slices cropped to
the liver region with the region of interest highlighted in a yellow bounding box. The subsequent
columns show the cropped bounding box region with the outline of segmentation predictions (in
red) and the ground truth segmentation outline (in yellow). For each of the models trained on
individual phases, the ground truth and predictions are shown on a cropped box region from the
corresponding phase slice. The Dice score for each of the predictions outlined is listed below
each image.
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Table 6.2: The proposed framework brain tumor segmentation performance on the BraTS
dataset by subject. Similar to Table 6.1, Section I outlines the results of just the segmentation
model while Section II outlines the performance of the overall proposed framework. All metrics
are in the range 0 to 100. Values in parentheses represent the standard deviation across subjects.
Best results are boldfaced.

Phase Model Dice IoU Recall Precision

Section I: Segmentation Model Results

T1 MedNext 86.6 (± 8.0) 77.1 (± 11.2) 86.4 (± 10.4) 88.0 (± 9.5)
Ours 86.7 (± 7.9) 77.1 (± 11.2) 86.6 (± 10.4) 87.9 (± 9.4)

T2 MedNext 88.7 (± 7.8) 80.4 (± 10.9) 87.8 (± 9.7) 90.6 (± 9.2)
Ours 88.7 (± 7.5) 80.5 (± 10.8) 88.1 (± 9.5) 90.4 (± 9.3)

T1Gd MedNext 86.5 (± 7.8) 77.0 (± 11.3) 85.7 (± 10.3) 88.6 (± 9.4)
Ours 86.6 (± 7.9) 77.1 (± 11.5) 85.7 (± 10.5) 88.7 (± 9.2)

FLAIR MedNext 89.6 (± 6.9) 81.9 (± 10.0) 87.8 (± 10.5) 92.7 (± 6.7)
Ours 89.8 (± 6.6) 82.1 (± 10.0) 88.4 (± 10.0) 92.3 (± 6.8)

4-Phase MedNext 90.8 (± 5.8) 83.7 (± 9.1) 89.6 (± 8.7) 92.8 (± 6.8)
Ours 90.9 (± 5.8) 83.8 (± 9.0) 90.0 (± 8.4) 92.7 (± 6.9)

Section II: Overall Framework Results

Overall Ours 91.1 (± 5.5) 84.0 (± 8.7) 90.3 (± 7.9) 92.7 (± 6.8)

Performance Variability Across Subjects

Performance consistency when it comes to lesion segmentation and detection is crucial to

maintain similar levels of patient care and reduce bias. We designed our framework to improve

the recovery and segmentation of lesions by incorporating learning from individual phase models.

This also reduces performance variability across subjects as shown in Table 6.1. The proposed

framework reduced the relative Dice score variability across subjects, which is represented by

the standard deviation, by 8% when compared to the best performing benchmark model (18.5%

versus 20.1%).

This consistency is also demonstrated in Fig. 6.9 and Fig. 6.10. In Fig. 6.9, the distribution

of the Dice score across subjects using box plots is shown. The interquartile region of the proposed

model and framework is consistently lower demonstrating a reduction in variability and increased

consistency. Furthermore, the proposed approach reduces the number of subjects with low quality
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(a) (b) (c) (d) (e)

Figure 6.9: Boxplots of the proposed segmentation model performance by subject (in terms of
Dice score) compared to the other four baseline models when trained on the arterial (a), delayed
(b) and venous (c) phases individually, and when trained using the three phases as 3-channel
inputs (d). The performance of the overall framework is in (e). For each model as well as the
overall framework, the Dice score of each sample from the test set is overlaid on top of the
boxplot as a red circle at the vertical location of the corresponding Dice score. Model names
keys: OS = Ours, MN = MedNext, NN = nnUNet, MG = Model Genesis, and SW = SwinUNetR.

segmentation by 50%, 28.5%, 33.3%, 28.5%, and 12.5% for low quality segmentation with Dice

score thresholds of 0.1, 0.2, 0.3, 0.4, and 0.5 respectively as shown in Fig. 6.10. On the other

hand, the proposed approach increases the number of subjects with high quality segmentation by

1.4%, 3.1%, and 1.7% for high quality segmentation with Dice score thresholds of 0.5, 0.6, and

0.7.

To evaluate the proposed approach’s performance from each subject’s perspective, we

compared its segmentation results to the other models on a subject-by-subject basis. Specifically,

we counted the number of instances where the proposed approach performed better than the

average performance of models for each subject versus the number of instances it performed

worse than the average as shown in Fig. 6.11. In 141 subjects out of a total of 154, the proposed

approach performed better (highest among all models), and in only 13 subjects it performed

worse (lowest among all models). In Fig. 6.11, we also show the relative performance by subject

when the top and bottom quantiles are considered. The proposed approach was in the top quantile

more than any other model and was never in the bottom quantile (lowest among all models).
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Figure 6.10: Distribution of segmentation performance by subject across multiple Dice score
thresholds. The upper panel (a higher count is better) shows the performance at higher Dice
score thresholds (≥ 0.5), indicating the number of subjects for each model achieving a better
segmentation score than the threshold at the top of the graph. The lower panel (a lower count
is better) shows the performance at lower Dice coefficient thresholds (< 0.5), indicating the
number of subjects for each model achieving a lower segmentation score than the threshold at
the top of the graph. For the upper panel, higher counts are better while for the lower panel,
lower counts are better. This provides insight into the reliability and consistency of each model
in clinical settings. Higher bars at the upper panel suggest superior segmentation capabilities,
while lower bars at the lower panel suggest reduced failure rates.

Detection and Localization By Lesion

To evaluate the proposed approach lesion detection performance, we computed the preci-

sion, recall, and F1 score at different Dice score thresholds (0.1 to 0.9) and calculated the average

precision, recall, and F1 scores across all the thresholds as shown in Fig. 6.12 (a). Overall, the

average F1 score by lesion of the proposed approach is 62.8% versus 61.3% and 62.0% for the

MedNext and nnUNet models. In terms of localization, we used the average Euclidean distance

between the center of ground truth and predicted segmentation by lesion. The difference in local-

ization performance of our proposed approach with respect to the best performing benchmark
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Figure 6.11: Relative segmentation performance of models for each subject. The figure outlines
the number of instances a model was above versus below average as well as in the top 5 versus
bottom 5 when compared to the other models for each subject. Model names keys: OS = Ours,
MN = MedNext, NN = nnUNet, MG = Model Genesis, and SW = SwinUNetR.

model was relatively small with an average localization error for detected lesions of 3.44 mm

versus 3.50 mm and a standard deviation of 5.40 mm versus 5.45 mm.

6.4.4 Limitations and Future Prospective

The proposed framework is designed to improve the recovery and segmentation of lesions

from multi-phase CT scans of the liver when compared to multi-channel segmentation models,

which are the current state-of-the-art as shown in Table 6.1. Nevertheless, a major challenge

we observed in our proposed framework, as well as other models, is recovering and segmenting

small lesions from the image volume, which remains an open and challenging problem for lesion

segmentation approaches, as shown in Fig. 6.12 (b). To address this challenge, we propose a

lesion mask selection approach from the predictions of multi-specialized models’ in the next

chapter, which improves the recovery and detection of lesions, including small ones.

6.5 Conclusion

We proposed a multi-stage segmentation framework for liver lesions in multi-phase CT

scans. The proposed framework improves feature extraction from each of the phases when
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(a) (b)

Figure 6.12: The lesion detection F1 score by Dice score cutoff (a). The average precision (AP),
recall (AR), and F1 scores (AF1) across the Dice score cutoff range of 0.1 to 0.9 (a). Model
names keys: OS = Ours, MN = MedNext, and NN = nnUNet. The Dice score by lesion versus
lesion volume (b).

compared to the current state-of-the-art segmentation models. This enables the framework to

improve the overall segmentation performance by 1.6% while reducing performance variability

across subjects by 8%. As the backbone segmentation model of the framework, we proposed

a UNet-like architecture that uses the ConvNext convolutional block in both the encoder and

the decoder. In the skip connections, we proposed the Coarse+Fine Feature Fusion & Attention

Module (C+F FFA) to enhance feature fusion and attention between the encoder and decoder,

which improved segmentation accuracy by 0.4% and reduced performance variability across

subjects by 1.5% when compared to the current-state-of-the-art model.

Chapter 6 is, in part, based on the materials as they appear in “Multi-target and multi-stage

liver lesion segmentation and detection in multi-phase computed tomography scans”, Abdullah F.

Al-Battal; Soan T. M. Duong; Van Ha Tang; Quang Duc Tran; Steven Q. H. Truong; Chien Phan;

Truong Q. Nguyen; Cheolhong An, submitted to the Medical Image Analysis journal, 2024. The

dissertation author was the primary investigator and author of this paper.
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Chapter 7

Enhancing Lesion Detection and

Segmentation Via Lesion Mask Selection

from Multi-Specialized Model Predictions

in CT Scans

7.1 Introduction

Automated segmentation and detection of tumors in CT scans have a significant potential

to assist clinicians with cancer diagnosis and treatment planning. However, current approaches,

including state-of-the-art deep learning ones, still face many challenges. Many tumors are not

detected by these approaches when tested on public datasets for tumor detection and segmentation

such the Kidney Tumor Segmentation Challenge (KiTS) [148, 178, 179] and the Liver Tumor

Segmentation Challenge (LiTS) [119]. False negative rates by lesion as high as 50% are commonly

observed, and this rate is even higher for smaller lesions as they exhibit a high degree of variability

(heterogeneity) among themselves. Additionally, in numerous instances, these lesions share
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similarities (homogeneity) in intensity, size, and shape with other anatomical structures as well as

blurriness and blending with surrounding tissue. This task is even challenging for experienced

radiologists where in the liver, accurate detection of tumors can be as low as 72% for 10-20 mm

lesions, and 16% for lesions smaller than 10 mm [171, 172]. In the kidney, a similar detection

accuracy of 79% has been reported in the literature for lesions in general [180], where small

lesions are often more challenging to detect [181, 182].

To improve the detection and segmentation accuracy of lesions in CT scans, we propose

a lesion mask selection approach that uses the predictions of two models to select the best

possible mask for lesions. Both models are based on the UNet architecture and use the ConvNext

convolutional block in both the encoder and decoder. The first model is trained on lesion

segmentation regardless of size, while the second is designed and fine-tuned to segment and

detect small lesions. Once the segmentation mask is predicted from both models, we extract

intensity-based features from within the lesion, contrast them with features from surrounding

tissue, and select the mask that maximizes features’ separation between the two. We test our

approach on three different datasets for lesion segmentation in CT scans of the kidney and liver.

The first dataset is a clinical three-phase CT dataset. The dataset contains scans from 354 subjects

annotated with liver lesion segmentation labels. Each subject has 3 contrast-enhanced scans

at three different phases, which are the arterial, delayed, and venous phases. This is the same

dataset we used to test our segmentation approach in Chapter 6. We also test the proposed

approach on two publicly available datasets for liver and kidney lesions, which are the Liver

Tumor Segmentation Challenge (LiTS) [119] and the Kidney Tumor Segmentation Challenge

(KiTS) [148, 178, 179]. The LiTS dataset contains CT scans of the liver from 131 subjects

with segmentation annotations of both the liver and lesions. For the KiTS dataset, we use the

most recent version of the dataset (KiTS23), which contains 489 scans annotated with masks for

both the kidneys and lesions. We compare the proposed approach to the current state-of-the-art

segmentation models, which are the MedNext [117], nnUnet [48], SwinUNetR [116], and Model
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Genesis [120] models as well as soft voting ensembling (SVE) and hard voting ensembling

(HVE). The proposed approach improved the segmentation and detection performance in a global,

by-subject, and by-lesion manner, improving the overall segmentation accuracy as well as the

detection and segmentation of small lesions. Overall, the major contributions of the proposed

approach are:

1. A selection approach that combines the predictions of two models and selects the best

prediction based on lesion feature separation with respect to surrounding tissue; improving

the overall and small lesion segmentation and detection.

2. A segmentation model that is specifically designed to improve small lesion segmentation

by incorporating an increased number of high resolution features at different model stages.

3. A feature extraction and comparison approach that provides a measure of separation

between intensity-based features of lesions and surrounding tissue.

4. A high resolution feature fusion (HR-FF) module that integrate features from high resolution

stages into the skip connections of deeper stages of the model designed for small lesion

segmentation.

7.2 Background

Segmentation models that performs best on liver and kidney lesion segmentation such

as the MedNext [117], nnUNet [48], and Model Genesis [120] models incorporate the spatially

contracting design paradigm of the UNet architecture. These models use the spatially contracting

encoder and spatially expanding decoder architecture with skip connections. This allows the

architecture to encode spatial information in an image into a high dimensional (feature-wise) latent

space then contextualize these features spatially to generate a mask map where each pixel, or voxel

for 3D images, is represented individually based on the class it belongs to [69]. Skip connections
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transfer features from the encoder layers to the decoder at each depth level, which improves the

overall performance of these architectures significantly [111]. These skip-connections transfer

the feature map at each level and either concatenate it with or add it to the feature map in the

decoder, which defines the UNet architecture [111]. Several modifications have been proposed to

the UNet architecture that improved its overall segmentation performance. The most significant

ones focused primarily on the design of convolutional blocks within the encoder and decoder

[183, 113], skip connections [114, 71] or self-configurability of the network depth and width [48].

Other improvements targeted network training using deep supervision, [114, 184], and were able

to improve the segmentation performance of UNet on medical images.

Although this spatially contracting design paradigm has demonstrated superior perfor-

mance in segmentation tasks [111, 48], the reduced spatial dimensions in the later stages of the

encoder and early stages of the decoder reduce the ability of the model to achieve the same

accuracy for small lesions as it does for larger ones. On the other hand, this spatial dimension

reduction is important for extending the receptive field of the model to improve the learning of

long-range dependencies [185]. This spatial reduction also allows the model to incorporate a

higher number of features in deeper layers without exceeding the available memory capacity

on a GPU. Therefore, we propose an approach that trains two models to counter and balance

these limitations. The first model uses a complete contracting encoder and expanding decoder for

general lesion segmentation. This model works best for large lesions and is, on average, worse for

small lesions than the second model. The second model removes the spatial reduction step in the

last stage of the model and incorporates high resolution features in each of the skip connections

that occur after down-sampling; promoting an increased incorporation of high resolution features.

We then use the predictions from both models to select the best possible mask for each predicted

lesion. For overlapping lesions, we contrastively compare intensity features between the lesion

and surrounding tissue in both predictions. We then select the prediction that maximizes the

difference in intensity features between the lesion and its surrounding tissue. The proposed
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approach improves the overall lesion segmentation and detection performance as well as enhances

the discovery and segmentation of small lesions within CT scans.

7.3 Proposed Method

Effective identification and segmentation of small lesions is challenging for current

segmentation models. Modifying the model architecture or training parameters and approaches

such as loss function weighting to enhance small lesion segmentation and detection reduces the

overall performance of the model on larger lesions. Therefore, our approach, which is composed

of two models as shown in Fig. 7.1, aims to mitigate this issue by combining the predictions of

both models by comparing lesion intensity features with surrounding tissue in both predictions

and selecting the prediction that maximizes the difference between the two sets of features.

In our approach, both models are based on the UNet architecture with a spatially contracting

encoder and a spatially expanding decoder. The first model uses a complete contracting encoder

and expanding decoder with four down-sampling and up-sampling stages for general lesion

segmentation. This model works best for large lesions and is on average worse for small lesions

than the second model. The second model removes the spatial reduction step in the last stage of

the model and incorporates high resolution features in each of the skip connections that occur

after down-sampling to incorporate more high resolution features at each stage. Both models’

structures are outlined in Fig. 7.2 (a) and (b), respectively, and labeled as the ”Main Segmentation

Model” and ”Small Lesion Focused Model 1”, respectively. In this section, we explain our

approach in detail, starting with the augmentation and pre-possessing approaches to promote

generalization and robustness.
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Figure 7.1: The proposed prediction selection approach. The 3D image patch is fed to both
models where each generates a segmentation prediction map. Corresponding lesion pairs are
selected from Y1 and Y2 based on a Dice score overlap of 0.5. For corresponding lesions in each
model prediction, intensity-based features, which are described in Section 7.3.4, are extracted
from the region of the lesions (Fo) and surrounding tissue (Fb) in addition to intensity distribution
divergence metrics (DD). The prediction with the highest count of largest differences is selected.
The detailed structure of both models is shown in Fig. 7.2.

7.3.1 Pre-Processing and Augmentation

Proper pre-processing and data augmentation is essential while training neural networks

to promote robustness and allow the network to generalize well beyond the training set. Our

proposed models use a set of randomized augmentation operations to introduce variabilies into the

training dataset to simulate the variability present in actual scans during the model’s deployment.

The augmentation methods are categorized into three main categories: a) intensity-based to

account for different imaging devices, b) geometrically rigid, and c) elastic transformations to

account for variations in anatomical structures’ shape, size and elasticity. Prior to augmentation

in training and inference in testing, we pre-process the CT 3D images and prepare them for our

segmentation framework by clipping and normalizing their intensity values. Then, we randomly

select a patch of size 128×128×128 voxels for the clinical liver lesion dataset and 96×96×96

for the LiTS and KiTS datasets, which are the dimensions of the model input image. The patch

size for the clinical dataset is larger in scale due to the presence of large lesions in the dataset that

exceed 96 mm in diameter. All the CT volumes are resampled to an isotropic spatial spacing of

1×1×1 mm.
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For intensity-based augmentation, we use a random set of options in each training iteration

to induce variations in the scans’ color (intensity) space. These transformations change brightness,

contrast, and noise levels to improve the model’s ability to account for different imaging devices

and image reconstruction settings. To account for different positional and spatial varibilities, we

incorporated rigid geometrical transformations in the form of rotations, translations, flipping,

cropping, and resizing as part of the augmentation pipeline. We also incorporate affine transfor-

mations that include shearing and scaling as well as elastic deformations to simulate soft tissue

stretching and compression and the natural variations in the shape and position of internal organs.

These variations can be caused by factors such as breathing, differences in patient body size, or

even the presence of tumors and other abnormalities.

7.3.2 The Main Segmentation Model

The first stage of this model is a stem that expands the input patch feature space to 32

channels. The model uses four stages in the encoder and four stages in the decoder with a bridge

bottleneck after the last encoder stage to connect the encoder with the decoder. Each stage

contains two 3D ConvNext blocks and a 3D down-sampling ConvNext block, which expands the

number of features and reduces the spatial dimension by 2. The bridge bottleneck contains only

two 3D ConvNext blocks. In the decoder, each stage contains two 3D ConvNext blocks and a 3D

up-sampling ConvNext block that contracts the number of features by 2 and expands the spatial

dimension by 2. The structure of the model, ConvNext and down-sampling ConvNext blocks

are outlined in Fig. 7.2 (a) and (c). ConvNeXt blocks improve upon prior convolutional blocks

design by offering greater efficiency through depth-wise separable convolutions and the inverted

bottleneck design. To train the model, we incorporate deep supervision where the output of each

convolutional block in the decoder at each depth level (N) is fed to an output linear projection

layer that contracts the channel space from 2(N−1)C to 2, which represents the number of classes

(background versus lesion).
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(a) (b) (c)

Figure 7.2: The structure of the models used in the overall approach outlined in Fig. 7.1. In
(a), the structure of the main segmentation model is outlined. In (b), the structures of the small
lesion focused models. The small lesion focused model 1 is the main small lesion focused model
in our approach and experiments in Section 7.4. The small lesions focused model 2 is a proof
of concept model that we tested on the clinical dataset to evaluate the ability of its architecture
with primarily high resolution features to detect and segment small lesions. The structure of
the modules and blocks for all models is in (c) as well as the diagram glossary of abbreviations.
The diagrams in (a) and (b) are annotated with the spatial dimension and the number of feature
channels at the output of each stage.

In the skip connection between the encoder and decoder, we use a Coarse+Fine Feature

Fusion & Attention Module (C+F FFA) that we proposed in Chapter 6. This module integrates

two mechanisms for feature fusion and attention: Axial Projected Coarse Attention (APCA)

and Gated Fine Attention (GFA). The APCA module refines feature maps by highlighting

important information spatially using mixtures of the encoder and decoder features (X f and

Xg) to modulate X f . It uses 1×1×1 convolutions and group normalization to create a compact

representation in the feature space, which are mixed and then projected across each of the three

spatial dimensions using adaptive average pooling to create a coarse and smoothed attention map
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that is less susceptible to noise due to axial based projection and averaging. The GFA module, in

parallel, processes the same feature sets (X f and Xg) with 1×1×1 convolutions, combining them

without axial projection to maintain spatially fine details of representations within the feature

map. A subsequent convolution layer produces a spatial attention map, modulating (X f ). The

detailed structure of both modules is outlined in Fig. 7.2 (c).

7.3.3 The Small Lesion Focused Model

We designed two models to function as agents to improve small lesion segmentation.

The first model labeled as ”Small Lesion Segmentation Model 1” in Fig. 7.2 (b) is the main

small lesions focused model in our proposed approach. The second model is a proof of concept

model that we tested to evaluate the validity of models that do not follow the spatially contracting

encoder and expanding decoder design paradigm. The second model in initial preliminary tests

on the clinical dataset demonstrated promising performance, approaching the performance of the

first model with a limited number of parameters. However, due to the use of multiple stages at

full spatial resolution, scaling in the feature space beyond 128 feature channels is currently not

possible due to GPU memory constraints.

Model 1

The first stage of this model is a stem that expands the input patch feature space to 32

channels. The model uses four stages in the encoder and four stages in the decoder with a bridge

bottleneck after the last encoder stage to connect the encoder with the decoder. Stages 1, 2, and

3 in the encoder contain two 3D ConvNext blocks and a 3D down-sampling ConvNext block,

which expands the number of features by 2 and reduces the spatial dimension by 2. Stage 4, on

the other hand, uses a 3D down-sampling ConvNext with a stride of 1 that maintains the spatial

resolution while expanding the number of features by 2. This design choice is to maintain a

higher resolution in the bridge, which contains the largest number of feature channels. The bridge
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bottleneck contains only two 3D ConvNext blocks. In the decoder, each stage contains two 3D

ConvNext blocks and a 3D up-sampling ConvNext block that contracts the number of features

by 2 and expands the spatial dimension by 2 except for the stage after the bridge, which does

not expand the spatial dimension. The structure of the model, ConvNext and down-sampling

ConvNext blocks are outlined in Fig. 7.2 (b) and (c). In the skip connection between the encoder

and decoder, we use the Coarse+Fine Feature Fusion & Attention Module (C+F FFA). We also use

a High Resolution Feature Fusion (HR-FF) module that incorporates features from the encoder’s

previous stage, which is at a higher resolution, into the skip connection of stages 2, 3, and 4.

The HR-FF module is outlined in Fig. 7.2 (c). To train this model, we also incorporate deep

supervision as we did for the main segmentation model.

Model 2

In this model, we use 5 stages at full spatial resolution (level 1), 3 stages at half the

resolution (level 2), and 1 stage at a quarter of the resolution (level 3). Before the features are

fed to the stages in level 2 and 3, we use the 3D down-sampling ConvNext block. At the end of

each of levels 2 and 3, the features are passed through a 3D up-sampling ConvNext block and

added to the features from the second to last stage in the previous level before being passed to the

last stage in the previous level as shown in Fig. 7.2 (b). To train this model, we also incorporate

deep supervision where the output of each level (N) is fed to an output linear projection layer that

contracts the channel space from 2(N−1)C to 2.

7.3.4 The Intensity-Based Features Used for Prediction Comparison

To compare the predictions of the two models, we use a set of intensity-based features

that are computed from within the lesion region and surrounding tissue for each of the two

predicted masks. These features are the mean, standard deviation, median, 5th and 95th percentiles,

skewness, kurtosis, and Shannon entropy of the distribution of intensity values. For the Shannon
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entropy, we use the following definition [186]:

HR =−∑
i

p(i) log2 p(i), (7.1)

where R represents the region of interest (either inside the lesion or surrounding tissue), i the

intensity values, and p(i) the intensity value probability, which is computed from the normal-

ized histogram distribution. In addition to these features, we use three symmetric distribution

divergence metrics to evaluate the dissimilarity between the intensity values distribution within

the lesion and surrounding tissue. The first metric is the absolute Standardized Mean Difference

(ASMD), which is a symmetric modified version of the Cohen’s coefficient [187]:

ASMD =
|µL−µST|√

σ2
L+σ2

ST
2

, (7.2)

where µ and σ refer to the mean and standard deviation of intensity values, respectively. The L

and ST subscripts in (7.2) refer to the lesion (L) and surrounding tissue (ST). In addition to the

ASMD, which is a parametric measure, we use the Kolmogorov-Smirnov statistic (KS) [188, 189]

and Jensen-Shannon divergence (JSD) [190]; both are non-parametric measures that evaluate

the divergence of intensity values distribution. KS, which quantifies the maximum discrepancy

between the cumulative distribution functions (F) is defined as:

KS = sup
i
|FL(i)−FST(i)|. (7.3)

The JSD, which measures the distance between two probability distribution functions (PDF) is

defined as:

JSD(L,ST ) =
1
2

DKL(pL||pM)+
1
2

DKL(pST ||pM), (7.4)

where DKL(p||q) is the Kullback-Leibler divergence between two distributions p and q, and is
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defined as:

DKL(p||q) = ∑
i

p(i) log
p(i)
q(i)

, (7.5)

and pM = 1
2(pL + pST ) is the average of the two PDFs.

7.3.5 Segmentation Mask Prediction

Once the features outlined in Section 7.3.4 are extracted from the lesion region and

surrounding tissue, we follow the algorithm shown in Fig. 7.1 and outlined in details in Algorithm

7.1 to select the prediction mask that maximizes intensity features’ separation between the lesion

region and surrounding tissue. From the predicted mask of both models (Seg1 and Seg2) we

identify corresponding lesion pairs based on a Dice score overlap threshold of 0.5. For each of the

corresponding pairs, we compare the eight intensity-based features (|Fo1−Fb1| and |Fo2−Fb2|),

and the three distribution divergence metrics (DD1 and DD2) from within the lesion region

and surrounding tissue for both predictions as well as the average of the two; selecting the

prediction with the majority of greater separations across metrics. In regions where there are no

correspondences, we use the average of the two predicted probability maps (Y1 from the main

segmentation model and Y2 from the small lesion focused model).
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Algorithm 7.1 Lesion Segmentation Map Selection
1: input: Image Volume (I)
2: output: Final Segmentation Mask (SegF)
3: procedure AFTER GENERATING THE PROBABILITY MAP AND SEGMENTATION MASK FROM

THE MAIN SEGMENTATION MODEL (Y1 AND SEG1) AND SMALL LESION FOCUSED MODEL
(Y2 AND SEG2).

4: Initiate SegF: SegF = [0]W×H×D
5: Identify corresponding lesion pairs from Seg1 and Seg2 based on Dice

score overlap
6: SPL← set of lesion pairs.
7: for each lesion pair in SPL do
8: Create a bounding box (BBox) with a margin around both lesions
9: Fo1 ← Seg1 lesion intensity features: Fo1 ∈ R8

10: Fo2 ← Seg2 lesion intensity features: Fo2 ∈ R8

11: Fb1 ← Seg1 surrounding region features ∈ BBox: Fb1 ∈ R8

12: Fb2 ← Seg2 surrounding region features ∈ BBox: Fb2 ∈ R8

13: DD1 ← Seg1 distribution divergence metrics: DD1 ∈ R3

14: DD2 ← Seg2 distribution divergence metrics: DD2 ∈ R3

15: D1 ← [|Fo1−Fb1|,DD1] : D1 = [d11,d12, ...,d1N ] ∈ R11

16: D2 ← [|Fo2−Fb2|,DD2] : D2 = [d21,d22, ...,d2N ] ∈ R11

17: choose
Segc =

{
Lesion mask from Seg1 if ∑

N
i=1 sgn(d1i−d2i)> 0,

Lesion mask from Seg2 otherwise.
18: SegF = SegF +Segc
19: end for
20: SIL ← set of individual lesions from Seg1 and Seg2 /∈ SPL.
21: Initiate Yavg: Yavg = [0]W×H×D
22: Yavg← 1

2 (Y1 +Y2)∀ Yavg(i, j,k) ∈ SIL : i, j,k = 1,2, ...W,H,D
23: Yavg(i, j,k)← 1∀ Yavg(i, j,k)≥ 0.5
24: SegF = SegF +Yavg
25: return Final Segmentation Mask (SegF)
26: end procedure

7.3.6 Training And Loss Function

To train both models, we used a compound loss of two loss functions. The compound loss

is composed of the weighted sum of the binary cross-entropy (BCE) loss and the Dice loss:

Lcomp(Ŷ ,Y ) = αLbce(Ŷ ,Y )+βLDc(Ŷ ,Y ), (7.6)

where α and β are the coefficients that control the contribution of BCE loss (Lbce) and Dice loss

(LDc), respectively. Ŷ and Y represent the predicted and target (ground truth) segmentation masks.
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For each element (voxel) of the predicted mask with a value ŷ and ground truth value y at location

(i, j,k), where i = 1,2, ...,W , j = 1,2, ...,H, and k = 1,2, ...,D for a given segmentation mask

with width =W , height = H, and depth = D, the BCE loss function is defined as:

Lbce(Ŷ ,Y ) =−
1

WHD

W,H,D

∑
i, j,k=1

ℓ
(
ŷi, j,k,yi, j,k

)
, (7.7)

where ℓ
(
ŷi, j,k,yi, j,k

)
is the loss computed element-wise between the ground truth and predicted

mask, and is defined as:

ℓ(x,y) = w1y logσ(x)+w0(1− y) logσ(x). (7.8)

In (7.8), σ(x) is the sigmoid function that defines ŷ and is defined as ŷ = σ(x) = 1/(1+exp(−x)).

σ(x) converts the predicted output of the model into a probability space with values between 0 and

1. The parameters w1 and w0 are weights assigned to each class. For the binary cross-entropy loss,

they are both 1 while for the weighted binary cross-entropy loss they are adjusted to increase the

loss function attention to one class versus the other. The Dice loss is based on the Dice coefficient

between the predicted and ground truth mask. The Dice coefficient (Dc) is defined as [100]:

Dc(Ŷ ,Y ) =
2∑(Ŷ ⊙Y )

∑ ŷi, j,k +∑yi, j,k
, (7.9)

where ⊙ represents the element-wise multiplication. The Dice loss can be defined to penalize

lower Dc values, which yields a lower segmentation performance, as:

LDc(X ,Y ) =−Dc(Ŷ ,Y ). (7.10)

When training the Small Lesion Focused Model, we incorporated an adaptive weighting

of the BCE loss function to ensure a recall value that is at least 5% higher than precision in order

to recover small lesions effectively due to the large class imbalance, especially for small lesions.
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This adaptive algorithm is an extension of the approach we proposed in Chapter 4, where we

proposed an algorithm to balance the recall and precision adaptively during training without

the need of multiple hyperparameter finetuning iterations for 2D medical image segmentation.

The algorithm monitors the exponential moving average (EMA) of the recall and precision over

epochs and adjusts the weights w1 and w0 in the BCE loss function after each epoch to either

increase recall versus precision (increasing w1 and lowering w0), or vice versa. This process is

outlined in detail in Algorithm 7.2. At the beginning of training, we initiate both weights with 1

and adjust them by 2% (∆ of 0.02) at the end of each epoch when needed. Finally, we limit the

maximum and minimum possible values of w1 and w0 to be between 0.1 and 5 to ensure stability

during training.

Algorithm 7.2 Adaptive BCE Loss Weights Control
1: procedure AT END OF TRAINING EPOCH
2: if Recall EMA < (Precision EMA×1.05) then
3: w1← w1× (1+∆)
4: w0← w0× (1−∆)
5: else
6: w1← w1× (1−∆)
7: w0← w0× (1+∆)
8: end if
9: w1←max(0.1,min(5.0,w1))

10: w0←max(0.1,min(5.0,w0))
11: return w0,w1
12: end procedure

7.4 Experiments and Results

7.4.1 Datasets

We evaluated the segmentation and detection performance of our approach on three

datasets. The first dataset is a clinical three-phase CT dataset, which contains scans from 354

subjects annotated with liver lesion segmentation labels. Each subject has 3 contrast-enhanced

scans at three different phases, which are the arterial, delayed, and venous phases. It is the same

dataset we used to test our segmentation approach in Chapter 6. It was developed by researchers
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and clinicians at VinBrain, JSC and the University Medical Center at Ho Chi Minh City. The

dataset was annotated and rated by two radiologists who are experienced in liver oncology. The

axial slice resolution of the dataset is 512×512 pixels with physical spacing in the range 0.5 mm

to 0.84 mm, and an average of 0.66 mm. The average slice thickness is 0.9 mm and ranges from

0.5 mm to 1 mm. The average number of lesions per scan is 2.2 with a maximum of 11 and a

minimum of 1. Lesions in the scans cover a wide range of sizes with lesions as large as 129 mm

and as small as 2.7 mm in diameter. Masks of these lesions and their boundaries overlaid on the

largest axial slice are shown in Fig. 6.5 to demonstrate the variability in lesion sizes and shapes

within the dataset. We also test the proposed approach on two publicly available CT datasets for

liver and kideny lesions, which are the Liver tumor segmentation challenge (LiTS) [119] and the

Kidney Tumor Segmentation Challenge (KiTS) [148, 178, 179]. The LiTS dataset contains CT

scans of the liver from 131 subjects with segmentation annotations of both the liver and lesions.

For the KiTS dataset, we use the most recent version of the dataset (KiTS23), which contains 489

scans annotated with masks for both the kidneys and lesions.

7.4.2 Experimental Setup and Data Preperation

For all three datasets, we trained both models in the proposed approach from randomly

initiated weights. For the clinical dataset, the scans were split into 200 for training and 154

for testing while for the LiTS dataset the split was 100 for training and 31 for testing. For

the KiTS dataset, it was 380 for training and 109 for testing. For the clinical dataset, the liver

was segmented using a model trained on the LiTS dataset and scans with only the liver region

were used for the training and testing of the proposed lesion segmentation approach. The same

approach was followed for the LiTS and KiTS dataset where scans with only the liver and kidney

region were used for the training and testing of the proposed approach. For all the datasets,

we used a spatial resolution of 1 mm3, and patches of size 128×128×128 voxels for clinical

dataset and 96× 96× 96 voxels for the LiTS and KiTS datasets as outlined in Section 7.3.1.

135



The CT scans Hounsfield units were clipped to the range [-200, 200] before normalization. We

compared the proposed approach segmentation performance to four 3D segmentation networks,

which are the current leading models across different medical segmentation tasks. These models

are the SwinUnetR [116], Model Genesis [120], nnUNet [48], and MedNext [117]. We also

compared the proposed selection approach to soft voting ensembling (SVE) and hard voting

ensembling (HVE). For hard voting ensembling, since it requires majority voting, we incorporate

the predictions from the best performing segmentation model in addition to the predictions of the

proposed two models. The models were trained for 800 to 1200 epochs depending on the learning

rate that is suitable for the model, which ranged from 1e−4 to 1e−2. All the models were trained

using the AdamW [156] optimizer and the loss function defined in (7.6), except for the nnUNet

and Model Genesis models, which are trained using the stochastic gradient descent optimizer as it

is the recommended optimizer for both models. At each iteration within an epoch, we randomly

select two patches from the 3D image using a weighted sampling approach; giving a 50% higher

probability weight to selecting a patch containing a lesion.

7.4.3 Evaluation and Results

Evaluation Metrics

To evaluate the performance of our proposed architecture, we use multiple segmentation

and detection metrics. For segmentation, we use the Dice score and the intersection over union

(IoU) metrics, which are the benchmark metrics used to evaluate detection, and segmentation

methods [91]. We defined the Dice score in (7.9), and the IoU score is defined as:

IoU(Ŷ ,Y ) =
∑(Ŷ ⊙Y )

∑(Ŷ |Y )
, (7.11)

where ⊙ is element-wise multiplication, | is the element-wise or logical operator, Ŷ is the

predicted mask map, and Y is the ground truth mask. For the Dice and IoU scores, we evaluate
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them by subject to highlight how the performance of each model differs across subjects. We also

evaluate the recall (T P/(T P+FN)) and precision (T P/(T P+FP)) by subject. Furthermore, we

evaluate the Dice score globally by accumulating true positives (TP), false positives (FP), and

false negatives (FN) over all subjects and then computing the Dice score as follows:

Dc =
2T P

2T P+FP+FN
(7.12)

For detection, we evaluate the precision, recall, and F1 scores at different Dice score thresholds

of detection ranging from 0.1 to 0.9. For each threshold, detections that have a higher Dice score

than the threshold are considered true positives, while detections with lower Dice scores than

the threshold are considered false positives. Lesions with no predicted segmentation maps (Dice

score of 0) are considered false negatives. We also evaluate the average precision, recall, and F1

scores across the range of Dice score thresholds (0.1 to 0.9).

Overall Segmentation Performance

The segmentation performance of the proposed approach and each of the two models

comprising the approach is summarized in Table 7.1, and is compared to the other 4 benchmark

models. The results outlined in Table 7.1 are achieved using model 1 shown in Fig. 7.2 (b) and

explained in Section 7.3.3 as the small lesion focused model in our approach. The small lesion

focused model 2 is a proof of concept model that we tested on the clinical dataset to evaluate

the validity of models that do not use the spatially contracting encoder and expanding decoder

architecture. This model achieved a 73.1% Dice score by subject and an average F1 score for

lesion detection that is 1.6% lower than model 1. This was achieved with only 128 feature

channels in its deepest layers, which is a fourth of the number of feature channels in the main

segmentation model and small lesion focused model 1. However, due to the use of multiple stages

at full spatial resolution, scaling in the feature space beyond 128 feature channels is currently

not possible due to GPU memory constrains. This initial test of the model demonstrates that
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with future memory expansions in GPUs, this model architecture has the potential to improve the

detection and segmentation of small lesions due to its increased usage of high resolution features.

In Table 7.1, we also compare the selection method of our proposed approach (Ours-

SE) to soft voting ensembling (SVE) and hard voting ensembling (HVE) for all three datasets.

The proposed approach constantly outperformed the 4 benchmark models on the three datasets

improving the overall relative segmentation performance by 0.9%, 2.9%, and 1.8% for the clinical,

LiTS, and KiTS datasets, respectively. This performance improvement results in improved

segmentation maps of lesions with better detection and boundaries as shown in Fig. 7.3 and Fig.

7.4. In Fig. 7.3, different lesions from multiple subjects within each of the three datasets are

shown together with the ground truth and predicted segmentation boundaries from our proposed

approach as well as the 4 benchmark models. In Fig. 7.4, we demonstrate the ability of the

proposed selection approach to improve segmentation accuracy when compared to the main

segmentation model as well as SVE and HVE predictions.

Our approach also reduces performance variability across subjects where the standard

deviation of Dice scores across subjects are reduced by 1.5%, 7.9%, and 2.2% for the clinical,

LiTS, and KiTS datasets, respectively. Performance improvements for the LiTS dataset are more

prevalent than the other two, which is further validation of the proposed approach ability to

improve detection rates and segmentation performance for small lesions as the LiTS dataset

contains a large number of small lesions when compared to the other two datasets. The Small

Lesion Focused model constantly achieves the best recall while maintaining high precision,

demonstrating its ability to achieve the overall objective, which is to improve the recovery

and detection of lesions, especially small ones. Finally, the overall design paradigm of using

two models-one of which is a general segmentation model while the other is focused on small

lesions-and combining their predictions whether through our proposed selection approach or

other ensembling approaches results in an improved segmentation and detection performance,

especially for applications where small lesions are more prevalent.
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Table 7.1: The proposed approach segmentation performance on the three CT datasets. We
compare the performance of the two models in our approach: The main segmentation model
(Ours) and the small lesion focused model (Ours-HR) to the four benchmark models. We also
compare the proposed selection approach (Ours-SE) to soft voting (SVE) and hard voting (HVE)
ensembling. Best results are boldfaced while 2nd best are underlined for each dataset in the
single model sections. Only the best is boldfaced in the ensemble sections. All metrics are in
the range 0 to 100. Values in parentheses represent the standard deviation across subjects.

Global By Subject

Dataset Approach Model Dice Dice IoU Recall Precision

Clinical

Single
Model

SwinUNetR 81.6 68.2 (23.2) 55.8 (23.5) 68.1 (25.0) 78.0 (23.6)
Model Genesis 80.8 70.7 (22.4) 58.7 (22.8) 73.4 (23.5) 76.6 (23.2)
nnUNet 83.7 73.4 (22.4) 62.0 (23.0) 74.8 (24.2) 79.4 (22.0)
MedNext 83.9 75.1 (20.1) 63.6 (21.1) 76.8 (22.6) 80.3 (19.1)
Ours 84.1 75.5 (19.8) 63.9 (20.8) 76.8 (22.2) 80.9 (18.9)
Ours-HR 82.4 74.7 (20.9) 63.2 (21.6) 77.7 (21.8) 79.0 (20.5)

Ensemble
HVE 84.0 75.3 (20.2) 63.7 (21.1) 76.9 (22.6) 81.0 (18.2)
SVE 83.7 75.0 (20.4) 63.4 (21.4) 77.4 (22.3) 79.8 (19.5)
Ours-SE 84.5 75.8 (19.8) 64.4 (20.7) 78.4 (21.7) 80.1 (18.9)

LiTS

Single
Model

SwinUNetR 79.7 68.4 (28.3) 58.1 (29.5) 60.0 (28.9) 81.4 (18.7)
Model Genesis 83.1 73.1 (28.0) 63.4 (27.4) 71.4 (28.6) 75.8 (16.3)
nnUNet 83.5 74.3 (27.6) 63.8 (28.2) 71.4 (30.2) 78.1 (15.7)
MedNext 82.5 73.5 (27.2) 63.8 (27.3) 74.4 (30.8) 72.2 (18.7)
Ours 83.7 74.4 (27.1) 64.3 (27.0) 77.2 (27.2) 74.9 (19.2)
Ours-HR 81.3 74.5 (25.8) 64.3 (26.7) 79.7 (27.6) 70.2 (16.6)

Ensemble
HVE 82.5 73.4 (27.3) 63.8 (27.3) 74.5 (30.8) 72.2 (18.7)
SVE 83.3 74.9 (26.1) 64.5 (26.8) 77.7 (29.6) 73.5 (14.4)
Ours-SE 83.6 75.6 (24.8) 64.9 (25.6) 79.1 (27.2) 73.8 (14.4)

KiTS23

Single
Model

SwinUNetR 89.5 73.3 (33.1) 66.4 (33.4) 76.9 (27.8) 71.7 (33.9)
Model Genesis 88.1 73.9 (33.2) 67.2 (33.1) 77.6 (26.0) 74.2 (33.8)
nnUNet 87.9 73.1 (33.5) 66.2 (33.3) 77.4 (26.1) 73.5 (33.8)
MedNext 87.7 75.5 (31.9) 68.7 (32.0) 74.9 (24.9) 78.5 (32.3)
Ours 87.9 76.3 (30.7) 69.9 (31.0) 76.0 (23.3) 78.9 (32.2)
Ours-HR 87.1 75.4 (32.3) 68.8 (32.7) 78.7 (22.9) 76.2 (33.5)

Ensemble
HVE 87.6 75.5 (32.0) 68.7 (31.9) 74.9 (24.9) 78.5 (32.3)
SVE 87.9 76.6 (31.2) 70.0 (31.6) 76.7 (23.1) 78.6 (32.7)
Ours-SE 88.4 76.9 (31.2) 70.4 (31.6) 77.8 (23.0) 77.9 (32.6)
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Figure 7.3: Qualitative comparison of the proposed approach to the other four benchmark
models. For each of the three datasets, two examples are shown. The figure presents a side-
by-side assessment of the segmentation performance on lesions of different sizes, shapes and
intensity characteristics. The first column shows the original CT image slices cropped to the
organ region with the region of interest highlighted in a red bounding box. The subsequent
columns show the cropped bounding box region with the outline of segmentation results from
the different approaches (in red) and the ground truth segmentation outline (in yellow). The
Dice score is listed below each image.
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Figure 7.4: Qualitative demonstration of the proposed approach ability to improve the seg-
mentation outcome of the predictions from both models. The figure presents a side-by-side
comparison of the overall approach to the main segmentation model as well as the SVE and
HVE results. A slice from each of the three datasets is shown. The first column shows the
original CT image slices cropped to the organ region with the region of interest highlighted
in a red bounding box. The subsequent columns show the cropped bounding box region with
the outline of segmentation predictions (in red) and the ground truth segmentation outline (in
yellow). The Dice score is listed below each image.

7.4.4 Detection Performance

To evaluate the proposed approach lesion detection performance, we computed the preci-

sion, recall, and F1 score at different Dice score thresholds (0.1 to 0.9) and calculated the average

precision, recall, and F1 scores across all the thresholds as shown in Fig. 7.5. In our analysis we

evaluated the performance for lesions of 4 mm in diameter or larger. Lesions with a diameter

less than 5 mm are not conclusively investigated using CT scans in clinical settings. We also

investigate the precision, recall, and F1 score at Dice score thresholds of 0.25, 0.5, and 0.75,

which is summarized in Table 7.2. Overall the proposed approach improves the detection of
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Table 7.2: The proposed approach lesion detection performance on the three datasets. The
precision (Pr.), recall (Rc.) and F1 score are shown for three Dice score thresholds. The average
precision (AP), recall (AR), and F1 score (AF1) across the Dice score threshold range of 0.1 to
0.9 are included. Best results are boldfaced while 2nd best are underlined for each dataset. All
metrics are in the range 0 to 100.

Dice Score Thr. = 0.25 0.5 0.75 0.1 - 0.9

Dataset Approach Rc. Pr. F1 Rc. Pr. F1 Rc. Pr. F1 AR AP AF1

Clinical
HVE 78.6 75.1 76.8 74.4 71.1 72.7 56.4 54.0 55.2 65.6 62.8 64.2
SVE 79.8 68.3 73.6 75.6 62.2 69.7 55.7 47.6 51.3 66.4 56.8 61.2
Ours-SE 80.5 75.6 78.0 76.0 70.0 73.8 56.1 52.8 54.4 67.4 63.5 65.4

LiTS
HVE 79.3 74.7 77.2 74.3 69.5 71.9 46.7 43.6 45.1 62.5 58.7 60.5
SVE 78.5 72.7 75.9 72.4 67.0 69.6 50.5 46.0 48.2 63.0 58.0 60.4
Ours-SE 80.5 75.5 77.9 75.4 70.0 73.1 50.9 47.2 48.9 65.2 60.9 63.0

KiTS23

HVE 83.2 73.9 78.3 79.9 71.0 75.1 68.7 61.0 64.6 73.7 65.5 69.3
SVE 86.1 76.1 80.8 83.5 73.8 78.3 71.6 63.3 67.2 77.3 68.3 72.5
Ours-SE 86.1 76.3 80.9 83.6 74.0 78.5 72.9 64.6 68.5 77.7 68.8 73.0

lesions significantly across the three datasets. For small lesions of diameters 4 to 10 mm, the

proposed approach significantly improved lesion detection across different Dice score thresholds,

which is demonstrated in Fig. 7.5 (d)-(f). The relative improvement in the average F1 score for

all lesions in the clinical dataset is 1.8% while for the LiTS and KiTS datasets, the improvement

is 4.1% and 0.7%. The improvement in detection performance is also more prevalent in the LiTS

dataset similar to the segmentation performance due to the larger ratio of small lesions in the

dataset.

7.4.5 Ablation Studies

We performed two ablations studies to test the effect of the different design components

of our proposed approach. The first ablation study tested the effect of the Dice score threshold

and bounding box margin size when evaluating correspondences between lesion segmentation

maps in Algorithm 7.1. We observed that the choice of both has a minimal impact on the overall

performance of the proposed approach. A Dice score of 0.5 between lesions, which is a logical

correspondence threshold, seems to work best when compared to thresholds of 0.6 and 0.7 as
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(a) All Lesions - Clinical Dataset (b) All Lesions - LiTS Dataset (c) All Lesions - KiTS Dataset

(d) Small Lesions - Clinical Dataset (e) Small Lesions - LiTS Dataset (f) Small Lesions - KiTS Dataset

Figure 7.5: The detection F1 score of the proposed approach (SE) compared to SVE and HVE
across different Dice score thresholds. The average precision (AP), recall (AR), and F1 score
(AF1) across the whole range of Dice score thresholds (0.1 to 0.9) is annotated on each of the
plots.

shown in Table 7.3. As we increase the threshold, a reduced number of correspondences are

created and the proposed selection approach is applied on a smaller number of lesions. Bounding

box margins of 10% and 15% work well when creating a region surrounding the lesion to extract

features from the surrounding tissue. On average a margin of 15% works slightly better as

it allows better sampling for surrounding tissue. As we expand the margin beyond 20%, we

observed performance reductions that indicate the importance of localized comparison rather than

comparing the lesion to large segments of surrounding tissues.

In the second ablation study, we investigated the effect of reducing the patch size from 96

to 64 voxels, and the impact of the adaptive loss function outlined in Algorithm 7.2 on the LiTS

dataset when training and testing the Small Lesion Focused Model. We conducted this study on

the LiTS dataset as it contains a large number of small lesions compared to the other two datasets.

As shown in Table 7.4, the adaptive loss function improves the segmentation performance of the
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Table 7.3: The Dice score performance of the proposed approach as the size of the bounding
box margin changes for feature extraction of surrounding tissue, and as the Dice score threshold
for correspondence changes for lesion predictions pairing in Algorithm 7.1.

Dataset
BBox Dice Thr.

Margin 0.5 0.6 0.7

Clinical
10% 75.89 75.82 75.80
15% 75.85 75.77 75.75

LiTS
10% 75.54 75.51 75.52
15% 75.58 75.56 75.53

KiTS23
10% 76.89 76.89 76.78
15% 76.91 76.91 76.85

model for both patch sizes. On the other hand, reducing the patch size to 64 from 96 with the

aim of increasing the relative size of small lesions within the field of view of the input patch,

did not improve the model performance, but rather degraded it significantly. We believe this can

be attributed to one of two reasons, or both. The first reason is the importance of contextual

information when segmenting lesions. The second is that the extensively small spatial resolution

at the deeper stages of the model when using a small patch size reduces the effectiveness of

convolutional kernels to extract and contextualize features spatially for segmentation purposes.

Table 7.4: The effect of varying the patch size and using the adaptive loss outlined in Algorithm
7.2 on the small lesion focused model segmentation performance for the LiTS dataset.

Patch Size Loss Configuration
Dice Score

64 96 Static Adaptive
✓ ✓ 72.91
✓ ✓ 73.14

✓ ✓ 73.61
✓ ✓ 74.52
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7.5 Extending The Prediction Selection Approach to Multiple

Models

To extend the proposed two-model selection approach to accommodate multiple models,

we reformulate the correspondence and prediction selection process to handle multiple models

simultaneously. The initial approach used the predictions from two models (Seg1 and Seg2)

for each correspondence in the set of lesion correspondences, from which a decision was made

based on the vector of separation features (D1 and D2). When extending the approach to M

models, the correspondence of lesions can be challenging as each lesion could be part of multiple

correspondences. To overcome this challenge, we designed the lesion correspondence selection

approach outlined in Section 7.5.1. Once the set of lesion correspondences is identified for M

models, the segmentation mask (Seg1, Seg2, . . . , SegM) produced by each of the M models is

used for each lesion in the correspondence. The prediction selection approach, which is outlined

in Fig. 7.6, uses the separation features vectors (D1, D2, . . . , DM) to identify the best prediction

mask for each of these lesions. D1, D2, . . . , DM are generated by concatenating the lesion versus

surrounding tissue separation features |Foi−Fbi| and the distribution divergence metrics DDi for

i = 1,2, . . . ,M such that Di = [|Foi−Fbi|,DDi] : Di = [d11,d12, ...,d1N ]. The feature matrix (FM)

containing these vectors is then created as follows:

FMN×M =



d11 d21 · · · dM1

d12 d22 · · · dM2

...
... . . . ...

d1N d2N · · · dMN


, (7.13)

where N is the number of features and M is the number of models. Once the feature matrix FM

is generated, the selection process follows based on the count of features with the largest values

across all models. For each feature j (where j = 1,2, . . . ,N) in the FM matrix, we determine
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Figure 7.6: The extended prediction selection approach for multiple models. The 3D image
patch is fed to all models where each generates a segmentation prediction map. Corresponding
lesion sets are selected from Y1, Y2, and YM based on a Dice score overlap of 0.5. For correspond-
ing lesions in each model prediction, intensity-based features, which are described in Section
7.3.4, are extracted from the region of the lesions (Fo) and surrounding tissue (Fb) in addition
to intensity distribution divergence metrics (DD) to form the lesion versus surrounding tissue
separation feature vector (D). These vectors are stacked as columns of the feature matrix (FM)
where the prediction with the highest count of largest separations is chosen.

which model i has the maximum value:

ij,max = argmax
i

FM ji,∀ j ∈ 1,2, . . . ,N (7.14)

The model i with the maximum count across all features is selected as the best-performing

model for the correspondence set, and its predicted mask is selected for the lesion. Once the mask

for each correspondence set is selected, the final segmentation map is generated following the

algorithm outlined in Algorithm 7.1. We evaluate the extended selection approach on the clinical

multi-phase liver lesion dataset we used to test our segmentation approach in Chapter 6 and in

this chapter using five models. The dataset details are outlined in section 7.4.1 while the models’

details are in section 7.5.2.
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7.5.1 Multi-Model Corresponding Lesions Selection Algorithm

To identify the sets of corresponding lesions across segmentation masks produced by mul-

tiple models, we designed the lesion correspondence set creation algorithm defined in Algorithm

7.3. The most significant challenge encountered when identifying these correspondences is the

possibility of a lesion belonging to multiple correspondences depending on the model prediction

perspective used to initiate the correspondence set. This is demonstrated in Fig. 7.7. To overcome

this challenge, we start the algorithm by initializing an empty set SLC to store the final lesion

correspondence sets, and an empty collection C to keep track of intermediate correspondence sets.

The algorithm iterates over the segmentation masks of each model (denoted as Seg1, Seg2, . . . ,

SegM), considering the lesions within them. For each model Segm, it counts the number of lesions,

denoted as Im. Then, for each lesion lm
i where i ∈ {1, . . . , Im}, it initializes a set C[m, i] with the

tuple (m, i), representing the model index m and lesion index i. The algorithm then proceeds to

find corresponding lesions in other models by comparing the current lesion lm
i against each lesion

l j
k in other segmentation maps Seg j (where j ∈ {1, . . . ,M} and j ̸= m). The number of lesions

in each model is counted as K j. The similarity between lesions lm
i and l j

k is measured using the

Dice score (Dc). If Dc(lm
i , l

j
k)≥ 0.5, the algorithm considers these lesions to be corresponding

and adds ( j,k) to the set C[m, i].

Figure 7.7: The correspondence selection approach demonstrated on a simulated example
of lesion predictions from 3 models. The correspondence set from the perspective of each
model prediction is shown together with the selected correspondence out of the 3 possible
correspondences.

After the correspondence sets are identified, the algorithm resolves any duplicate corre-
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spondences by sorting C in descending order based on the size (number of lesions) of correspon-

dence sets within it (Csorted). For each correspondence set (Cn), it iterates over the pairs (i, j)

and checks if any of these pairs are present in subsequent sets that are smaller in size Ck (where

k ∈ {i+ 1, . . . ,N} and N is the number of correspondence sets in C). If so, these smaller sets

are removed from C, ensuring no duplicate correspondences exist from the perspective of each

lesion. Finally, the algorithm assigns SLC to the filtered set C and returns it as the final set of

correspondence sets.
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Algorithm 7.3 Lesion Correspondence Set Creation
1: require: Segmentation masks from M models: Seg1,Seg2, . . . ,SegM
2: output: Final set of lesion correspondences sets SLC
3: SLC←{}
4: C←{} / empty collection of correspondences sets

// Identify corresponding lesions across the segmentation masks
Seg1,Seg2, . . . ,SegM

5: for each model segmentation map Segm in Seg1,Seg2, . . . ,SegM do
6: Im← number of lesions in Segm
7: for each lesion lm

i in Segm where i ∈ {1, . . . , Im} do
8: C[m, i]←{(m, i)} / (m,i) are the model and lesion indices
9: for Seg j where j ∈ {1, . . . ,M} and j ̸= m do

10: K j← number of lesions in Seg j

11: for each lesion l j
k in Seg j where k ∈ {1, . . . ,K j} do

12: if Dc(lm
i , l

j
k)

† ≥ 0.5 then
13: C[m, i]←C[m, i]∪{( j,k)}
14: end if
15: end for
16: end for
17: end for
18: end for

// Discard duplicate correspondence sets with a smaller number of
lesions for each lesion belonging to a correspondence set with
a larger number of lesions

19: Csorted = {C1,C2, . . . ,CN}: N = |C| and |Cn| ≥ |Cn+1| ∀ n = 1,2, . . . ,N−1
20: for Cn where n ∈ {1, . . . ,N} do
21: for (i, j) in Cn do / (i,j) are the model and lesion indices in Cn
22: if (i, j) ∈Ck ∀ k ∈ {i+1, . . . ,N} then
23: C =C \Ck / remove Ck from C
24: end if
25: end for
26: end for
27: SLC←C
28: return: SLC

†Dc refers to the Dice score.
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7.5.2 Enhancing The Recall of Small Lesions Via Size-Based Loss Weight-

ing

Segmenting lesions is a highly imbalanced task where the lesion class is severely under-

represented compared to other tissue, which is considered the background class. When training

models on imbalanced datasets, a standard approach assigns loss weights inversely proportional

to the class frequency distribution [154, 155]. Although widely used [155], it is ineffective for

highly imbalanced datasets because it equates the probability of making an error in both classes.

This results in a substantially higher recall than precision when the positive class is significantly

underrepresented. We demonstrated this issue in Chapter 4. Another issue with this approach is

that it does not address size imbalance within the target class itself. For example, the sizes of liver

lesions can differ by up to four orders of magnitude. This leads segmentation models to perform

better on larger lesions than smaller ones due to their increased representation in the loss function

during training.

To overcome this challenge, we design a size-based loss weighting approach that weights

both the BCE and Dice losses in the overall loss function defined in (7.6) for each lesion

individually. These weights are chosen to increase as the size of the lesion decreases. In addition

to varying the weights based on lesion size, we incorporate a weight decay near the borders of

lesions to minimize the impact of annotation and registration errors, as the lesions’ borders would

be the most impacted by such errors. This decay, which we name the Lesion Border Weight

Decay (LBWD), is defined as follows:

LBWD =


1− e−cidi if Seggt ≥ 0.5

1− e−codo otherwise,
(7.15)

where ci and co are coefficients controlling the rate at which the exponential function approaches

1 for voxels inside and outside lesions, respectively. di and do are the normalized distances
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from the lesion border inside and outside lesions, respectively. Seggt refers to the ground truth

segmentation map. This weight decay weighs the loss at each voxel inside and outside lesions

with respect to that voxel’s distance from the lesion border. If ci and co are chosen universally

across lesions, the loss weights within the lesion will vary significantly based on the lesion shape

and size as shown in Fig. 7.8 (c). Therefore, we individually choose the coefficient for each lesion

to ensure that at least 80% of the lesion volume is higher than 0.8 (the maximum LBWD value

is 1). This is achieved iteratively, where for each lesion, the coefficient ci is increased until the

condition is met. Higher thresholds than 80% can cause excessively steep decays at the borders

for small lesions. To allow the LBWD to recover from the lesion border decay in regions between

lesions that are close to each other, we identify the boundaries in the background that separate

each of the lesions as shown in Fig. 7.8 (b). The coefficient co is then iteratively chosen to reach a

value of 1 at the point on the border closest to the lesion, which is implemented for all the regions

surrounding each lesion.

(a) (b) (c) (d) (e)

Figure 7.8: Synthetically generated segmentation map with three lesions (a). The boundaries in
the background that separate the lesions’ regions (b). The LBWD map for universally chosen
decay coefficients (c), and for individually chosen coefficients by lesion (d). In (e) we show an
example of the LBWD map for a slice from the multi-phase liver lesion dataset. The lesions’
borders are represented by white contours in (c) and (d).

The final weight map is generated by multiplying the LBWD map by the lesion size-based

weight map. This final combined weight map is used to weight the loss function voxel-wise as it

is defined spatially rather than by class. For the lesion size-based weight map, we found that a

weighting factor that linearly decays from 20 for lesions with a span of 4 mm to 1 for lesions with

a span of 45 mm performs well in its ability to maintain a reasonable balance between precision
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and recall. The weight remains constant for lesions smaller than 4 mm in diameter and lesions

larger than 45 mm in diameter. The maximum span was set to 45 mm as lesions larger than 45

mm are never missed, with the majority of false negatives laying in the range of 4 to 10 mm. To

identify these weight ranges, we trained the main segmentation model outlined in Fig. 7.2 (a) for

50 epochs and observed the precision and recall across lesions of all sizes in the dataset; starting

with a maximum weight of 100 and reducing the weight by 10 at each trial.

Using this loss weighting approach together with the training setup described in sections

7.3.6 and 7.4.2, we trained three models based on the architecture in Fig. 7.2 (a) in addition

to the two models we used in the original two-model selection approach we proposed (refer

to section 7.3). For the first and second models, we used the adaptive loss control algorithm

outlined in Algorithm 7.2 to maintain a recall higher than precision by 10% and 15% respectively.

This allows for an increased recovery of lesions while preserving precision. For the third model,

we fine-tuned the main segmentation model from the two-model selection approach using the

size-based loss weighting to improve its performance in segmenting small lesions.

7.5.3 Experiments and Results

We evaluated the proposed extended selection approach using five models on the clinical

multi-phase liver lesion dataset. Once the segmentation map for each subject is predicted from

each model, we generate the set of correspondences. We limit the minimum number of lesions

for correspondences to 3, which is the midpoint for the possible number of predictions using

5 models. The segmentation performance of the proposed approach is summarized in Table

7.5, and is compared to the selection approach using two models. The proposed approach was

able to improve the segmentation performance by subject (Dice score) and recall while reducing

performance variability across subjects, demonstrating the ability of the proposed selection

approach to extend beyond two models. In Table 7.5, we also compare the proposed approach

segmentation performance to the main segmentation model as we vary the threshold of the
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probability map used to generate the segmentation map. This threshold is usually set at 0.5 (the

probability map output’s midpoint between 0 and 1). Reducing this threshold increases recall

and vice versa. At a threshold of 0.125, the main segmentation model was able to match the

recall of the proposed approach. However, the Dice score and precision were both lower by 1%

and 1.2%, respectively. This increased recall from reducing the threshold of the model is also

attributed to lesions already detected by the model, as we can observe from the large gap in

detection performance outlined in Fig. 7.9 between the selection approach and the segmentation

model.

Table 7.5: The extended selection approach (Extended SE) segmentation performance on the
clinical multi-phase liver lesion dataset. The performance of the main segmentation model
(MSM) used in the 2-model selection approach (SE) is outlined as the threshold of the probability
map is varied at inference. The model at the threshold that matches the recall of the Extended
SE approach is highlighted in gray. The best results by subject are boldfaced. All metrics are in
the range 0 to 100. Values in parentheses represent the standard deviation across subjects.

Global By Subject

Approach Dice Dice IoU Recall Precision

SE - 2 Models 84.5 75.8 (19.8) 64.4 (20.7) 78.4 (21.7) 80.1 (18.9)
Extended SE - 5 Models 84.0 76.0 (19.4) 64.4 (20.6) 82.9 (18.6) 75.5 (21.5)

MSM - Thr. = 0.1 84.4 74.5 (19.6) 62.5 (20.8) 83.8 (19.9) 72.1 (20.9)
MSM - Thr. = 0.125 84.5 75.0 (19.5) 63.2 (20.7) 83.0 (20.3) 74.3 (19.9)
MSM - Thr. = 0.15 84.6 75.2 (19.5) 63.4 (20.7) 82.4 (20.6) 75.2 (19.7)
MSM - Thr. = 0.175 84.7 75.3 (19.5) 63.6 (20.7) 82.0 (20.6) 75.7 (19.7)
MSM - Thr. = 0.2 84.7 75.4 (19.5) 63.7 (20.7) 81.6 (20.7) 76.2 (19.6)
MSM - Thr. = 0.3 84.6 75.5 (19.7) 63.9 (20.7) 80.0 (21.2) 78.2 (19.0)

As one of the major challenges the extended selection approach aims to overcome is the

detection and recovery of lesions, especially small ones, we evaluated its ability to do so by

calculating the precision, recall, and F1 score at different Dice score thresholds (0.1 to 0.9). We

then computed the average precision, recall, and F1 scores across all the thresholds as shown in

Fig. 7.9. We evaluated the performance for lesions of 4 mm in diameter or larger. Lesions with a

diameter less than 5 mm are not conclusively investigated using CT scans in clinical settings. We

compared the proposed extended selection approach to the 2-model selection approach as well as
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the main segmentation model (at probability map thresholds that allow it to achieve comparable

recall by subject). The results in Fig. 7.9 (c) and (d) show that even though modifying this

threshold to increase recall improves the recall by subject, it does not improve the detection recall

of lesions. Overall, the proposed approach improves the detection recall of lesions significantly

while maintaining a higher precision performance when compared to the main segmentation

model that matches its recall by subject performance (at a threshold = 0.125). For small lesions of

diameters 4 to 10 mm, the proposed approach also significantly improved lesion detection across

different Dice score thresholds, which is demonstrated in Fig. 7.9 (b) and (d).

(a) Extended SE & SE - All Lesions (b) Extended SE & SE - Small Lesions

(c) MSM - All Lesions (d) MSM - Small Lesions

Figure 7.9: The lesion detection F1 score and recall of the selection (SE - 2 Models) as well as
the extended selection (SE - 5 Models) approaches across different Dice score thresholds for all
lesions (a) and for small lesions (b). The lesion detection performance of the main segmentation
model (MSM) at different probability map thresholds for all lesions (c) and for small lesions (d).
The average precision (AP), recall (AR), and F1 score (AF1) across the whole range of Dice
score thresholds (0.1 to 0.9) is annotated on each of the plots.
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7.6 Limitations and Future Prospective

The proposed approach improves the recovery and segmentation of lesions overall in CT

scans of the liver and kidney when compared to the current state-of-the-art models as shown in

Table 7.1 with a focus on improving small lesions detection and segmentation. The proposed

extended selection approach further improves the performance of the selection approach on a

by-subject basis as well as lesion-wise, especially for small lesions, as shown in Table 7.5 and

Fig. 7.9. However, there are still several instances of small lesions where the proposed approach,

and the state-of-the-art models we compare it to, are not able to recover and identify. Hence, the

task of detecting and segmenting small lesions can still be further improved and remains an open

and challenging task. Based on our analysis of predictions, we observed that some lesions are

correctly predicted by some models while missed by other models. Therefore, a logical extension

of the work presented in this chapter is developing and investigating a selection approach that

can identify predictions from different models to increase the detection and recovery of lesions.

Future research could also explore the development of a configurable attention mechanism that

adapts to the specific purpose of the segmentation model. This configurable attention mechanism

could be designed to aggregate features on different spatial scales using feature extraction kernels

of different sizes depending on whether the model aims to segment large or small lesions. By

introducing configurable purpose-driven attention modules, the model’s ability to capture and

delineate objects of various sizes could be enhanced.

7.7 Conclusion

We proposed a prediction selection approach for lesion segmentation and detection in CT

scans of the liver and kidney that uses the predictions from two models. The first model is a general

lesion segmentation model that is designed and trained to segment lesions regardless of their

size. The second model is a small lesion focused model that is designed and trained to improve
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the segmentation and detection of small lesions while maintaining comparable performance for

larger lesions. The selection approach extracts intensity-based features from the lesion region

and surrounding tissue, and estimates the best of the two predictions by comparing the lesion and

surrounding tissue features’ divergence of both predictions. We tested the proposed approach on

three different datasets, a clinical dataset of liver lesions and two public datasets, which are the

LiTS and KiTS datasets. Our proposed approach was able to improve the detection of lesions

by 1.8%, 4.1% and 0.7% for the clinical, LiTS and KiTS datasets, respectively. Segmentation

performance by subject was also improved where the proposed approach achieved a segmentation

Dice score improvement of 0.9%, 2.9%, and 1.8% for the clinical, LiTS and KiTS datasets,

respectively. We also extended the proposed selection approach to apply to multiple models.

We tested it on the clinical liver lesion dataset, focusing on improving the detection of lesions,

especially small ones. The extended approach improved the segmentation performance by subject

and increased the detection rate of all lesions by 4.3% and of small lesions by 15.5% when

compared to the 2-model selection approach. Our results demonstrate the approach’s ability to

improve the detection and segmentation of lesions, both large and small, when compared to the

current state-of-the-art segmentation models.

Chapter 7 is, in part, based on the materials as they appear in “Enhancing lesion detection

and segmentation via lesion mask selection from multi-specialized model predictions in CT

scans of the liver and kidney”, Abdullah F. Al-Battal; Van Ha Tang; Quang Duc Tran; Steven

Q. H. Truong; Chien Phan; Truong Q. Nguyen; Cheolhong An, submitted to the Computers in

Biology and Medicine journal, 2024 as well as the material as it may appear in the currently being

prepared submission to the Machine Learning in Medical Imaging workshop of the International

Conference on Medical Image Computing and Computed Assisted Intervention (MICCAI), 2024.

The dissertation author was the primary investigator and author of these papers.
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