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Genetic and biotechnological approaches for biofuel crop
improvement
Miguel E Vega-Sánchez1,2 and Pamela C Ronald1,2
Research and development efforts for biofuel production are

targeted at converting plant biomass into renewable liquid

fuels. Major obstacles for biofuel production include lack of

biofuel crop domestication, low oil yields from crop plants as

well as recalcitrance of lignocellulose to chemical and

enzymatic breakdown. Researchers are expanding the genetic

and genomic resources available for crop improvement,

elucidating lipid metabolism to facilitate manipulation of fatty

acid biosynthetic pathways and studying how plant cell walls

are synthesized and assembled. This knowledge will be used to

produce the next generation of biofuel crops by increasing fatty

acid content and by optimizing the hydrolysis of plant cell walls

to release fermentable sugars.
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Introduction
Biofuels are commonly defined as fuels derived from

renewable biological products and are often regarded as

an attractive, ‘green’ alternative to fossil sources of energy

due to their potential contribution to lowering carbon

dioxide emissions [1]. Globally, plants produce an esti-

mated 200 billion tones of biomass per year [2] in the form

of sugars, polysaccharides, oils and other biopolymers,

representing an unprecedented resource for biofuel pro-

duction. However, despite its abundance and potential

environmental benefits, the efficient and sustainable use

of plant biomass for energy purposes remains a challen-

ging endeavor, requiring major investments in science

and technology [3,4].

With the exception of sugar cane ethanol, biofuels are a

nascent industry in many parts of the world. A few of the
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commercialized products include bioethanol derived

from corn starch and biodiesel obtained from plants with

a high content in fatty acids such as soybean, canola and

sunflower (Figure 1). However, the status of corn and

soybean as major food crops, coupled to the fact that

yields of starch and plant oil are too modest to cover the

huge demand of transportation fuels has prompted the

development of alternative biofuel production based on

lignocellulosic biomass [4–6]. Lignocellulose, composed

of the polysaccharides cellulose and hemicellulose, and

lignin, a phenolic polymer, is the most abundant bioma-

terial on earth [2,7]. Most lignocellulosic feedstocks in

consideration are perennial, non-food grasses such as

switchgrass and Miscanthus, as well as woody plants such

as poplar (Table 1).

None of the current and potential crops has been dom-

esticated or bred for improved polysaccharide or oil

extraction for biofuel production. For this reason, biofuel

research is focused towards understanding the plant bio-

mass characteristics and traits that need to be modified to

optimize crops for biofuel production. The wealth of

genetic and genomic resources in model plants such as

rice, Arabidopsis and Brachypodium are being used to

answer fundamental scientific questions that cannot be

addressed directly using potential biofuel crops. This

review will discuss the recent advances in understanding

lignocellulosic biomass recalcitrance and lipid metab-

olism for increasing oil production, and the current strat-

egies for improving crops for biofuel production.

Biofuel crops
A list of plants and plant models for biofuel research and

development is presented in Table 1. Unlike the crops

currently used for commercial biofuel production, biofuel

crops have been chosen on the basis of high yield in low

input agricultural settings [8]. This approach is crucial

because it will reduce the amount of land needed to

produce the biofuel crops and at the same time avoid

the need to add fertilizers and pesticides to maximize

production as is common for food crops [6].

The molecular genetic, genomic and biotechnological

resources for candidate biofuel crops are limited at this

time, but are growing in number. Methods for reliable

genetic transformation using Agrobacterium have been

developed for switchgrass, Jatropha, poplar and Brachy-
podium [9–12], paving the way for genetic engineering

approaches to crop improvement. For example, the suc-

cessful engineering of a functional metabolic pathway for
www.sciencedirect.com
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Figure 1

Biofuel production from different crops. (A) Ethanol production from sugarcane. Stems are milled to extract cane juice, with bagasse as side product

that is used for burning to produce electricity to power the whole process. Sugars (molasses) are refined and used for yeast fermentation into ethanol.

(B) Ethanol production from corn starch. Corn grains are milled to produce flour, also known as meal, which is hydrated and pretreated at high

temperatures in cookers with thermostable alpha amylase to extract fermentable sugars. Saccharification into dextrose is further achieved by

enzymatic hydrolysis with glucoamylase for yeast fermentation into ethanol. A side product from the process, distilled dried grain with solubles (DDGS)

is used for animal feed. (C). Biofuel production from straw, stover, wood and other cellulosic materials. Biomass is milled to reduce particle size; a

whole array of chemical or physical pretreatments at high temperatures can be used to separate polysaccharides from lignin, including dilute acid or

base hydrolysis, ammonia fiber expansion (AFEX), and ionic liquids. Polysaccharides are further broken down into C5 and C6 sugars by enzymatic

saccharification with cellulases and hemicellulases, and used for fermentation into ethanol by yeast or engineered bacteria, such as E. coli. C5 sugar

conversion is less efficient than C6 fermentation, however, and the majority of fuel is produced from glucose (C6) conversion. Lignin byproducts can be

used to generate energy to power the processing plant. (D) Biodiesel production from plant oils. Oil is extracted from seeds and used for

transesterification using sodium hydroxide and methanol to produce fatty acid methyl esters (FAMEs). Glycerin, a side product of transesterification of

fatty acids is used to make soap or other value added products.
the production of polyhydroxybutyrate (PHB) in trans-

genic switchgrass has been recently reported, suggesting

that complex traits can be engineered in this dedicated

biofuel crop [13��]. Additionally, a protocol for generating

switchgrass protoplasts for use in transient gene expres-

sion experiments has been recently published [14],

potentially allowing for rapid testing of candidate genes

for functional analyses. Tissue culture techniques for the

propagation of Miscanthus and Jatropha explants have also

been developed [15–17]. The genomes of Brachypodium,

poplar, sorghum and maize have been recently sequenced

[18–21], while genome projects for switchgrass and

oil palm are in progress [22]. These resources will be
www.sciencedirect.com
instrumental in developing the tools for functional geno-

mic and proteomic assays, and will allow comparative

genomic approaches between model species and biofuel

crops to become a reality. These tools will greatly comp-

lement basic research currently aimed at understanding

plant biomass characteristics that can be targeted for the

design of better yielding and more efficiently processed

biofuel crops via metabolic engineering.

Targeting plant oil metabolism
Plant seed storage oils, in the form of triacylglycerols

(TAGs), are excellent sources for the generation of bio-

diesel due to their high chemical similarity to fossil oils
Current Opinion in Biotechnology 2010, 21:218–224
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Table 1

Biofuel crops and model species

Species Family Biomass type Genome statusa Reference

Strictly Models

Arabidopsis thaliana Brassicaceae Lignocellulose/fatty acids Complete [55]

Brachypodium distachyon Poaceae Lignocellulose Draft [18]

Models and potential crops

Oryza sativa (rice) Poaceae Lignocellulose Complete [56]

Zea mays (corn) Poaceae Lignocellulose/starch Draft [21]

Sorghum bicolor Poaceae Lignocellulose/sucrose Draft [20]

Glycine max (soybean) Fabaceae Fatty acids Draft [57]

Brassica napus (canola/oilseed rape) Brassicaceae Fatty acids Draftb Not applicable

Strictly crops

Panicum virgatum (switchgrass) Poaceae Lignocellulose In progress [22]

Miscanthus x giganteus Poaceae Lignocellulose Not available Not applicable

Populus trichocarpa (poplar) Salicaceae Lignocellulose Draft [19]

Eucalyptus globulus Myrtaceae Lignocellulose In progress [22]

Jatropha curcas Euphorbiaceae Fatty acids Not available Not applicable

Elaeis guineensis (oil palm) Arecaceae Fatty acids In progress [22]

Saccharum officinarum (sugarcane) Poaceae Sucrose Not available Not applicable

a Draft genome indicates that the genome sequence is available and published but is still in the early versions of the annotation process.
b The genome was sequenced in 2009 by Bayer Crop Science but is not publicly available.
[23,24��]. Biodiesel is produced by the transesterification

of plant TAGs with methanol in the presence of acid or

alkali to produce fatty acid methyl esters (FAMEs)

(Figure 1). Current biofuel crops, such as soybean and

Jatropha, have either low or unpredictable oil yields

[24��,25]. In addition, the quality of biodiesel produced

is highly dependent on both the type and abundance of

the fatty acids in seed storage organs. Thus, increasing oil

content in plants and redirecting the biosynthesis of fatty

acids for accumulation of specific types are needed to

achieve optimal biodiesel production.

Fatty acid metabolism involves the conversion of sucrose,

a product of photosynthesis, into TAGs. The pathway

starts in the plastid where fatty acid chains are elongated

while conjugated to acyl carrier proteins (ACP) and ends

in the endoplasmic reticulum (ER) where acyl CoAs are

converted to diacylgrycerol and subsequently to TAG by

the diacylglycerol acyltransferase (DGAT) enzyme [23].

Increase in oil content in seeds has been achieved by

manipulation of the expression levels of enzymes

involved in synthesis of TAG. Overexpression of a fungal

DAGT2 enzyme in soybean seeds led to a 1.5% increase

in oil content [26�]. A similar phenotype was observed by

overepxression of a DGAT cDNA in Arabidopsis [27]. An

alternative means to increase seed oil content in plants

has been recently achieved by activation of the fatty acid

biosynthetic pathway: overexpression of two soybean

transcription factors in Arabidopsis, Dof4 and Dof11,

increased total fatty acid and lipid seed content [28].

Dof4 and Dof11 seemed to activate lipid biosynthesis

in Arabidopsis by activating acetyl CoA carboxylase and

long-acyl-CoA synthase, respectively [28], both enzymes

involved in fatty acid biosynthesis.
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Altering the carbon flux to TAG biosynthesis by affecting

the supply of glycerol 3-phosphate, which is another TAG

substrate in addition to fatty acids in the ER, is an

alternative way of increasing oil accumulation in plant

seeds. Indeed, overexpression of the yeast glycerol 3-

phosphate dehydrogenase (ghpd1) gene in canola seeds

increased the lipid content by 40% [29].

Lowering the levels of both saturated and polyunsatu-

rated fatty acids while increasing the amount of mono-

unsaturated fatty acids, such as oleate (C18:1) or

palmitoleate (C16:1) are important targets for optimal

FAME production [24��]. This can also be achieved by

manipulation of TAG biosynthesis. In soybean, reduced

levels of the saturated fatty acid palmitate were obtained

by downreglation of FATB, an acyl-ACP thioesterase,

causing the accumulation of oleic acid up to 85% from

18% in the wild type [30]. A Jatropha cDNA encoding a

putative FATB homolog, JcFATB1, has been recently

cloned [31]. Downregulation of JcFATB1 in transgenic

Jatropha can be attempted to increase levels of oleic acid

in seeds, especially in highland accessions that have been

shown to accumulate higher amounts of polyunsaturated

linoleic acid [32].

An attractive approach to increase overall yield of oils for

biodiesel production is to engineer oil accumulation in

vegetative tissues, such as leaves. Slocombe et al. have

identified a mechanism for significant oil accumulation in

senescing leaves of Arabidopsis mutants compromised in

fatty acid breakdown (such as cts2) and by overexpression

of the seed development transcription factor LEC2 [33��].
Senescent leaves of cts2 accumulated significant amounts

of TAGs (up to 2% leaf dry weight) compared to wild
www.sciencedirect.com



Biofuel crop improvement Vega-Sánchez and Ronald 221
type, while senescent leaves overexpressing LEC2 accu-

mulated TAGs around 1% leaf dry weight [33��]. This

study raises the possibility of engineering biofuel crops

with senescence inducible promoters that either suppress

fatty acid breakdown or induce the seed development

program in leaves.

Finally, lipid metabolism research can be expanded to

better understand the plant wax biosynthetic machinery.

Plant waxes accumulate alkanes derived from fatty acids,

among other compounds, and a better understanding of

alkane biosynthesis can lead to the production of hydro-

carbons as a next generation of biofuels [34].

Targeting lignocellulosic biomass
One of the major hurdles to efficient lignocellulose con-

version to biofuels is the recalcitrant nature of this com-

plex mixture of polysaccharides and lignin [3,35�]. Plants

deposit cellulose, hemicellulose and lignin in their cell

walls. Recalcitrance is mainly due to the heterogeneity

and molecular structure of lignocellulose, where cellulose

is arranged into a network of tight, inter-chain hydrogen

bonds that form a crystalline core of microfibrils,

embedded in a matrix of hemicellulosic polysaccharides

that are covalently linked to lignin, a highly complex

polymer of aromatics [3,35�]. Since ultimately the goal is

to obtain cell wall sugars for conversion into liquid fuels,

the highly complex nature of lignocellulose requires

costly and harsh pre-treatments to gain access to mono-

saccharides (Figure 1). The study of how plant cell walls

are synthesized, modified and degraded is one of the main

areas of focus in biofuel research at the moment, with the

aim of designing future bioenergy crops with improved

lignocellulosic characteristics for easier and more efficient

breakdown.

Extensive studies on lignocellulose quality in the forage

and pulping industry have identified lignin as having a

major effect in cell wall recalcitrance [35�,36,37�]. A

recent study in transgenic alfalfa achieved a significant

improvement in fermentable sugar release from lignocel-

lulose by downregulating certain monolignol biosynthetic

enzymes. Notably, alfalfa lines silenced for cinnamate 4-

hydroxylase (C4H), hydroxycinnamoyl CoA:shikimate

hydroxycinnamoyl transferase (HCT) and coumaroyl shi-

kimate 3-hydroxylase (C3H) had lower lignin amounts

that correlated with enhanced cell wall enzymatic

hydrolysis [38]. However, increased saccharification came

at the expense of low biomass yield and severe plants

growth defects [38]. A related, and possibly favored,

approach looked at downregulation of enzymes acting

at later stages in monolignol biosynthesis, such as cinna-

moyl CoA reductase (CCR) and cinnamyl alcohol

dehydrogenase (CAD). Targeting CCR and CAD lead

to generation of alfalfa lines with up to 60% and 40%

improvements in enzymatic saccharification efficiency,

respectively, with little to no apparent developmental
www.sciencedirect.com
defects associated [39]. However, extensive metabolomic

and transcriptomic analyses have shown that silencing

CCR and CAD affects many more biochemical pathways

in tobacco and poplar than just lignin biosynthesis

[40��,41��], suggesting that additional genes can be tar-

geted for more efficient pathway engineering. A candi-

date CCR gene has been recently identified in switchgrass

[42] as well as other lignin biosynthetic genes by com-

parative genome analyses in currently available plant

genomes [43] that could serve as targets for pathway

engineering.

Studies on the coupling reactions acting in the chemical

polymerization of lignin have shown incorporation of

many more compounds than the typical monolignols

[44]. This plasticity can be exploited for engineering of

novel lignin compositions for improved lignin extraction

from biomass. For example, maize cell walls incorporating

coniferyl ferulate had improved enzymatic hydrolysis and

sugar release [45��]. Following this logic, lignin engin-

eering approaches are currently being pursued at the Joint

BioEnergy Institute to replace monolignols with com-

pounds containing easily cleavable chemical linkages

such as ester and amide bonds (Figure 2) (D. Loqué,

personal communication and unpublished results).

Monolignol replacement strategies could avoid the unde-

sirable developmental and structural phenotypes associ-

ated with the downregulation of lignin biosynthetic

enzymes in transgenic plants.

The contribution of hemicellulose to plant cell wall

recalcitrance is much less well understood. Reduction

of xyloglucan in poplar overexpressing an Aspergillus
xyloglucanase improved the saccharification of wood,

presumably by making cellulose more accessible to enzy-

matic hydrolysis [46�]. Recent findings have shown that

xylan content, the more abundant hemicellulosic poly-

saccharide present in the cell wall, affects pulping effi-

ciency and delignification in transgenic tobacco lines

downregulated for UDP-glucuronate decarboxylase, an

enzyme involved in UDP-xylose production [47]. In

poplar, silencing of PoGT47C, a glycosyltransferase hom-

ologous to Arabidopsis FRA8 and involved in glucuronox-

ylan synthesis, caused an increase in glucose yield

following enzymatic hydrolysis, indicating that reducing

xylan content leads to improved saccharification effi-

ciency [48]. In addition to contributing to cell wall recal-

citrance, the C5 sugars in arabinoxylan are not easily

converted to biofuels by current technologies [5]. Thus,

decreasing or replacing C5 sugar content in hemicellulose

could potentially lead to increased lignocellulosic biofuel

yields. However, a better understanding of xylan biosyn-

thesis is needed in order to identify efficient ways to

modify its structure for lignocellulose improvement. Pro-

gress has been made in the recent years by the identifi-

cation of several key enzymes involved in xylan synthesis

in Arabidopsis [49�,50�,51�], but much more research is
Current Opinion in Biotechnology 2010, 21:218–224



222 Plant biotechnology

Figure 2

Lignin engineering strategy. Replacement of monolignols with compounds harboring more easily cleavable bonds such as amide and ester linkages.

Compounds with ester bonds include rosmarinic acid, coniferyl ferulate, and 1,2 disinapylglucose; amide bond-containing molecules include tyramine

conjugates and avenanthramides.Figure courtesy of D. Loqué and P. Pradhan, Joint BioEnergy Institute.
needed in order to understand backbone assembly and

side chain additions. Insights into xylan biosynthesis have

proven it to be a very complex process, likely to differ

between monocots and dicots [51�].

Targeting cellulose biosynthesis is an alternative strategy

for lignocellulose improvement. Cellulose synthase com-

plexes and other proteins assisting in the process have

been identified in Arabidopsis and other higher plants

[52]. Recently, the discovery of a transcriptional regula-

tion mechanism via small RNAs showed that cellulose

synthase and several hemicellulosic biosynthetic genes

are coordinately downregulated during leaf development

[53��]. Fine-tuning of this small RNA-directed pathway

has great potential for metabolic engineering of the

cellulose biosynthetic machinery.

Concluding remarks
The improvement of plant biomass characteristics for

biofuel production is in the beginning stages. Biofuel

crops have been identified and are at various levels of

domestication and cultivar selection, while genetic and

genomic resources for these species, including draft gen-

ome sequences and transformation protocols, are cur-

rently being developed. Major breakthroughs on the

understanding of lipid metabolism and plant cell wall

biosynthesis and structure are still needed to overcome

low oil yields and the recalcitrance of lignocellulose,

respectively, for efficient and cost-competitive conver-

sion to biodiesel and other liquid fuels. Although a few
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promising targets for genetic engineering, such as over-

expression of DAGT2 or glycerol 3-phosphate in oily

seeds and monolignol replacement in cell walls, have

been identified, the overall effects of the manipulation

of these traits in dedicated biofuel crops is still lacking. It

is known, for example, that modifying lignin content or

structure can lead to severe developmental defects and to

enhanced susceptibility to plant pathogens, while other

plant cell wall modifications can actually increase resist-

ance to biotic factors [54]. It is thus necessary to evaluate

the impact of plant cell wall modifications on the overall

crop fitness to reduce or avoid the negative effects that

could be associated with such modifications. Important

advances have been made in understanding the factors

that contribute to lignocellulose recalcitrance, notably

lignin and xylan content/structure, and the list of genes

that can be manipulated for pathway engineering is

growing. Importantly, although plant biotechnology will

be key to the successful generation of energy crops, it

should go hand in hand with breeding efforts targeted at

maintaining or enhancing the important agronomic traits

that made these plants so attractive for biofuel production

to begin with, namely resistance to abiotic and biotic

factors, low fertilization requirements and perennial life

cycle.
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