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ABSTRACT OF THE DISSERTATION

Percolation Transitions on Finite Transitive Hyperbolic Graphs

by

Michael Dean Woolls

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, December 2020

Dr. Leonid Pryadko, Chairperson

Edge percolation on finite transitive graphs is studied analytically and numerically. The

results are made rigorous by considering a sequence of finite graphs (Gt)t covered by

an infinite graph H, and weakly convergent to H. The covering maps are used to

classify 1-cycles on graphs Gt as homologically trivial or nontrivial, and to define several

thresholds associated with the rank of the first homology group on the open subgraphs.

The growth of the homological distance dt, the smallest size of a non-trivial cycle on Gt, is

identified as the main factor determining the location of homology changing thresholds.

In particular, the giant cycle erasure threshold p0
E (related to the conventional erasure

threshold for the corresponding sequence of generalized toric codes) coincides with the

edge percolation threshold pc(H) if the ratio dt/ lnnt diverges, where nt is the number

of edges of Gt, and evidence is given that p0
E < pc(H) in several cases where this ratio

remains bounded, which is necessarily the case if H is non-amenable.

Numerically, finite graphs are constructed with up to 105 edges from several

families of locally-planar graphs covered by infinite transitive planar graphs parame-

terized by Schläfli symbols {f, d} with fd/(f + d) ≥ 2, where d regular f -gonal faces
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meet in each vertex. Specifically, considered are the planar regular tiling {4, 4}, regular

hyperbolic tilings {3, 7}, {3, 8}, {4, 5}, {4, 6}, {5, 5}, and {5, 6}, their duals with f and

d interchanged, as well as random graphs of degree d = 5—this latter family converges

to an infinite tree of the same degree. Conventional and homological percolation are an-

alyzed in these graphs, and the accuracy of several finite-size scaling methods designed

calculate the cycle erasure threshold p0
E , the conventional percolation threshold pc(H),

and the giant cluster threshold pG compared. In particular, the cluster ratio method,

one of the most commonly used techniques to locate percolation thresholds, shows rather

poor convergence for hyperbolic graphs of this type.
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Chapter 1

Introduction

It is the threshold theorem [48, 52, 25, 17, 36, 33] that makes large-scale quan-

tum computation feasible, at least in theory. Related is the notion of quantum channel

capacity RQ, such that for any rational R < RQ, there exists a quantum error correcting

code (QECC) with rate R which can be used to suppress the logical error probability to

any chosen (arbitrarily small) level, but not for R > RQ. Here the code rate R ≡ k/n

is the ratio of the number k of the logical (encoded) qubits to the length n of the code.

The precise value of the capacity is not known for most quantum channels of interest,

except for the quantum erasure channel with qubit erasure probability p, in which case

RQ = min(0, 1− 2p), see Ref. [5].

In practice, it is often easier to deal with the threshold error probability for a

given family (infinite sequence) of QECCs with certain asymptotic code rate R. Depend-

ing on the nature of the quantum channel in question, the threshold error probability

may be related to the location of a thermodynamical phase transition in certain spin

model associated with the codes. In particular, for a family of qubit toric codes on
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transitive graphs locally isomorphic to a regular euclidean or hyperbolic tiling H under

independent Z Pauli errors, the decoding threshold is upper bounded by the position

of the multicritical point located at the Nishimori line of the Ising model on H, see

Refs. [17, 40, 32]. It is widely believed that the two thresholds coincide, at least for

the euclidean tilings like the infinite square lattice and square-lattice toric codes. With

a slightly more general model of independent X/Z Pauli errors, the threshold is the

minimum of the corresponding thresholds for each error type which can be computed

independently.

A special case is the relation between quantum erasure errors and percola-

tion [14, 15, 16]. An erasure is formed by rendering inoperable all qubits in a known

randomly selected set. Information loss happens when erasure covers a logical oper-

ator of the code. For certain code families, and for qubit erasure probability p suffi-

ciently small, p < pE , the probability to cover a codeword may go to zero as the code

length n is increased to infinity. The corresponding threshold value pE is called the

erasure threshold associated with the chosen code family or code sequence. With a

Calderbank-Shor-Steane (CSS) code [11, 51], one may consider the erasure thresholds

for X and Z logical operators separately, so that the conventional erasure threshold

becomes pE = min(pXE , p
Z
E).

The link between erasure and percolation thresholds is especially simple in the

case of toric/surface [35, 7, 22, 17, 13] and related quantum cycle codes [57] where qubits

are labeled by the edges of a graph and, by convention, Z logical operators are supported

on 1-chains in certain equivalence classes, e.g., those connecting two opposite boundaries

of a rectangular region, or wrapped around a torus. Then, the erasure threshold pZE
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coincides with the discrete version of the homological percolation transition[6] for 1-

chains. It is also known that for square-lattice toric code the erasure threshold pZE

coincides [50, 23] with the edge percolation threshold, pZE = pc(Z2) = 1/2. On the

other hand, for a family of hyperbolic surface codes based on a given infinite graph H, a

regular tiling on the hyperbolic plane, we only know that the erasure threshold is upper

bounded [14, 15, 16] by the percolation threshold on H, pE ≤ pc(H).

Surely, the erasure and the percolation thresholds cannot always coincide. In-

deed, percolation threshold is associated with the formation of an infinite cluster; it is

defined on an infinite graph, while quantum codes are finite. Further, erasure thresh-

old is not a bulk quantity, as it can be rendered zero by removing a vanishingly small

fraction of well-selected qubits. Similarly, many different finite graphs can be associated

with a given infinite graph H, and it is not at all clear that the erasure threshold should

remain the same independent of the details.

The goal of this work is to quantify the relation between edge percolation and

the stability of quantum cycle codes (QCCs) to erasure errors. Specifically, we consider

sequences of finite graphs Gt = (Vt, Et), t ∈ N, with a common infinite covering graph

H, and use the covering map ft : H → Gt to identify homologically non-trivial cycles

on Gt. The distance dt ≡ dZ,t of the corresponding quantum code (the smallest length

of a non-trivial cycle) necessarily diverges with t when the sequence converges weakly

to H. First, we show that it is the scaling of dt with the logarithm of the code block

length, nt ≡ |Et|, that determines the location of the Z-erasure threshold, or the 1-

chain lower erasure threshold pZE ≡ p0
E , the point above which the probability of an

open homologically non-trivial 1-cycle remains non-zero in the limit of arbitrarily large
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graphs Gt. Roughly, with sublogarithmic distance scaling, dt/ lnnt → 0 as t → ∞,

p0
E = 0. On the other hand, with superlogarithmic distance scaling, dt/ lnnt → ∞, p0

E

coincides with the edge percolation threshold pc(H), so that for p < pc(H), probability

to find an open homologically non-trivial 1-cycle be asymptotically zero. We also give

an example of a graph family with logarithmic distance scaling, where the inequality

in the upper bound is strict, p0
E < pc(H), and give numerical evidence that for some

regular tilings of the hyperbolic plane, erasure threshold is strictly below the percolation

threshold, p0
E < pc(H).

Second, the distance dt grows at most logarithmically with nt when H is non-

amenable, which is also a necessary requirement to have a finite asymptotic code rate

kt/nt → R > 0, where kt is the number of encoded qubits. For such a graph sequence, we

define a pair of thermodynamical homological transitions, p0
H and p1

H , which characterize

singularities in the erasure rate, asymptotic ratio of the expected homology rank of the

open subgraph and the number of edges nt. Namely, erasure rate is zero for p < p0
H , it

saturates at R for p > p1
H , and it takes intermediate values in the interval p0

H < p < p1
H

(subsequence construction may be needed in this regime to achieve convergence). We

prove that p1
H − p0

H > R, and, if H and its dual, H̃, is a pair of transitive planar

graphs, we show that p0
H = pc(H) and p1

H = 1 − pc(H̃); the latter point coincides

with the uniqueness threshold pu(H) on the original graph. We also conjecture that the

two homological transitions coincide with the percolation and the uniqueness thresholds,

respectively, for any non-amenable (quasi)transitive graph, p0
H = pc(H) and p1

H = pu(H).

In our numerical section we calculate three percolation thresholds: p0
E , pc

and pG. We compare our results with Ref. [45] and show their consistency with the
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presented theorems. Mainly, we show p0
E < pc for hyperbolic graphs, and that the

standard method which finds crossing point of the cluster ratio to calculate pc [21] fails

for hyperbolic graphs.

We find the percolation threshold on graphs whose cover is the {f, d} tiling of

the euclidean plane or hyper-plane. Mainly we use the following graphs types: {3, 7},

{7, 3}, {3, 8}, {8, 3}, {4, 5}, {5, 4}, {4, 6}, {6, 4}, {5, 5}, and {6, 5}, along with the planar

{4, 4} graph and a random graph with constant vertex degree of 5, {r, 5}.

The {r, 5} and {4, 4} graphs are included to show our numerical results are

consistent with known exact results. Also, hyperbolic graphs are closely related to

random graphs as they are both expander graphs and both have mean-field critical

scaling, and so share many of the same properties. This allows us to relate results

on the random graphs to hyperbolic graphs. However, we show that the cluster-ratio

method used to calculate pc works for random graphs, but not for the hyperbolic graphs.

The outline of this paper is as follows. In Sec. 2 we give the necessary notations.

We present our analytical results in Sec. 3 and numerical results and methods in Sec. 4.

In section 5 we give the conclusions and discuss some related open questions.
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Chapter 2

Background

2.1 Classical binary and quantum CSS codes

A linear binary code with parameters [n, k, d] is a vector space C ⊆ Fn2 of

length-n binary strings of dimension k, where the minimum distance d is the smallest

Hamming weight of a non-zero vector in C. Such a code C ≡ CG can be specified in terms

of a generator matrix G whose rows are the basis vectors, or in terms of a parity check

matrix H, C ≡ C⊥H = {c ∈ Fn2 : HcT = 0}, where C⊥H denotes the space dual (orthogonal)

to CH . A generator matrix and a parity check matrix of any length-n code satisfy

GHT = 0, rankG+ rankH = n; (2.1)

such matrices are called mutually dual.

If I ⊂ {1, . . . , n} is a set of bit indices, for any vector b ∈ Fn2 , we denote b[I]

the corresponding punctured vector with positions outside of I dropped. Similarly, G[I]

(with columns outside of I dropped) generates the code CG punctured to I, denoted

CG[I] ≡ CG[I]. A shortened code is formed similarly, except by puncturing only the
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vectors supported inside I,

C shortened to I = {c[I] : c ∈ C ∧ supp(c) ⊆ I} .

We use GI to denote a generating matrix of the code CG shortened to I. If G and H are

a pair of mutually dual binary matrices, see Eq. (2.1), then HI is a parity check matrix

of the punctured code CG[I] [41], and

rankG[I] + rankHI = |I|, (2.2)

i.e., matrices G[I] and HI are mutually dual. In addition, if I = {1, 2, . . . , n} \ I is the

complement of I, then

rankG[I] + rankGI = rankG. (2.3)

For the present purposes, it is sufficient that an n-qubit quantum CSS code

Q = CSS(GX , GZ) can be specified in terms of two n-column binary stabilizer generator

matrices with mutually orthogonal rows, GXG
T
Z = 0. It is isomorphic to a direct sum of

two quotient spaces, Q = QX⊕QZ , where QX = C⊥GZ
/CGX

and QZ = C⊥GX
/CGZ

. Vectors

in QX and QZ , respectively, are also called X- and Z-logical operators. Explicitly, QX

is formed by vectors in C⊥GZ
, with any two vectors that differ by an element of CGX

identified (notice that CGX
⊂ C⊥GZ

). Such a pair of vectors c′ = c + αGX that differ by

a linear combination of the rows of GX are called mutually degenerate; we write c′ ' c.

The second half of the code, QZ , is defined similarly, with the two generator matrices

interchanged. For such Z-like vectors, the degeneracy is defined in terms of the rows of

GZ .

The distances dX and dZ of a CSS code are the minimum weights of non-

trivial vectors in QX and QZ , respectively, e.g., dX = min{wgt c : c ∈ C⊥GZ
\ CGX

}. Any
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minimum-weight codeword is always irreducible, that is, it cannot be written as a sum of

two vectors with disjoint supports, one of them being a codeword [19]. The conventional

distance, the minimum weight of a logical operator in Q, is d = min(dX , dZ). The

dimension k of a CSS code is the dimension of the vector space QX (it is the same as

the dimension of QZ), the number of linearly independent and mutually non-degenerate

vectors that can be used to form a basis of QX . For a length-n code with stabilizer

generator matrices GX and GZ ,

k = n− rankGX − rankGZ . (2.4)

The parameters of a quantum CSS code are commonly written as [[n, k, (dX , dZ)]] or

just [[n, k, d]].

Any CSS code formed by matrices GX and GZ of respective dimensions rX×n

and rZ × n also defines a binary chain complex with three non-trivial vector spaces,

A : . . .← {0} ∂0← A0
∂1← A1

∂2← A2
∂3← {0} ← . . . , (2.5)

where the spaces Ai = Fai2 have dimensions a0 = rX , a1 = n, and a2 = rZ , and the

non-trivial boundary operators are expressed in terms of the generator matrices ∂1 =

GX , ∂2 = GTZ . This guarantees the defining property of a chain complex, ∂i∂i+1 = 0,

i ∈ Z. Then, the code QZ is defined identically to the first homology group H1(A) =

ker(∂1)/ im(∂2), where elements of im(∂2) called cycles are linear combinations of the

columns of ∂2 = GTZ , while elements of ker(∂1) called boundaries are vectors orthogonal

to the rows of ∂1 = GX . The other definitions also match. In particular, the dimension

k of the quantum code is the rank of the first homology group, k = rankH1(A), while

the definition of the homological distance d1(A) matches that of dZ . The other code,
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QX , corresponds to the co-homology group defined in the co-chain complex Ã formed

similarly but with the two matrices interchanged.

Let us now consider the structure of the homology group where the space A1 is

restricted so that only components with indices in the index set I ⊂ {1, 2, . . . , n} be non-

zero. Respectively, the spaces ker ∂1 = C⊥GX
and im ∂2 = CGZ

should be replaced with

the corresponding reduced spaces. The result is isomorphic to a chain complex A′I where

the two boundary operators are obtained by puncturing and shortening, respectively:

∂′1 = GX [I] and ∂′2 = (GZ)TI . The dimension of thus defined restricted homology group

is given by

k′I ≡ rankH1(A′I) = |I| − rankGX [I]− rank(GZ)I . (2.6)

Using Eq. (2.3), we also get [15]

k′I = |I| − rankGZ − rankGX [I] + rankGZ [I]. (2.7)

The corresponding result for the rank k̃′I of the restricted co-homology group can be

found by exchanging the matrices GX and GZ ; this gives the duality relation

k′I + k̃′
I

= k. (2.8)

2.2 Graphs, cycles, and cycle codes

We consider only simple graphs with no loops or multiple edges. A graph

G = (V, E) is specified by its sets of vertices V ≡ VG , also called sites, and edges E ≡ EG .

Each edge e ∈ E is a set of two vertices, e = {u, v}; it can also be denoted with a wave,

u ∼ v. For every vertex v ∈ V, its degree deg(v) is the number of edges that include

v. An infinite graph G is called quasi-transitive if there is a finite subset V0 ⊂ VG of its
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vertices, such that for every vertex v ∈ V there is an automorphism (symmetry) of G

mapping v to an element of V0. A transitive graph is a quasi-transitive graph where the

subset V0 of vertex classes contains only one element. All vertices in a transitive graph

have the same degree.

We say that vertices u and v are connected on G if there is a path P ≡ P (u0, u`)

between u ≡ u0 and v ≡ u`, a set of edges which can be ordered and oriented to form a

walk, a sequence of vertices starting with u and ending with v, with each directed edge

in P matching the corresponding pair of neighboring vertices in the sequence,

P (u0, u`) = {u0 ∼ u1, u1 ∼ u2, . . . , u`−1 ∼ u`} ⊆ E . (2.9)

We call such a path open if u0 6= u`, and closed otherwise. The path is called self-

avoiding (simple) if ui 6= uj for any 0 ≤ i < j ≤ `, except that u0 and u` coincide if the

path is closed. The length of the path is the number of edges in the set, ` = |P |. The

distance d(u, v) between vertices u and v is the smallest length of a path between them.

Given a vertex v ∈ V and a natural r ∈ N, a ball B(v, r;G) is the subgraph of G induced

by the vertices u ∈ V such that d(v, u) ≤ r.

The edge boundary ∂U of a set of vertices U ⊆ V is the set of edges connecting

U and its complement U ≡ V \U . Given an exponent α ≤ 1, we define the isoperimetric

constant of a graph,

bα = inf
∅6=U(V,|U|6=∞

|∂U|[
min

(
|U| ,

∣∣U∣∣)]α . (2.10)

For an infinite graph, or a set of finite graphs that includes graphs of arbitrarily large

size, particularly important is the largest α such that the corresponding bα > 0. Such

a graph (or graph family) is called an α-expander; when α < 1, the related parameter

δ ≡ (1 − α)−1 is called the isoperimetric dimension. Isoperimetric dimension of any
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regular D-dimensional lattice is δ = D. When α = 1, the isoperimetric constant b1 of

a graph G is called its Cheeger constant, h(G) = b1. An infinite graph with a non-zero

Cheeger constant is called non-amenable.

A set of edges C ⊆ E is called a cycle if the degree of each vertex in the

subgraph induced by C, G′ = (V, C), is even. The set of all cycles on a graph G, with

the symmetric difference defined as A⊕B ≡ (A\B)∪(B\A) used as the group operation,

forms an abelian group, the cycle group of G, denoted C(G). Clearly, a closed path is a

cycle. A simple cycle is a self-avoiding closed path.

A graph H is called a covering graph of G if there is a function f mapping VH

onto VG , such that an edge (u, v) ∈ EH is mapped to the edge
(
f(u), f(v)

)
∈ EG , with

an additional property that f be invertible in the vicinity of each vertex, i.e., for a given

vertex u′ ∈ VH and an edge (f(u′), v) ∈ EG , there must be a unique edge (u′, v′) ∈ EH

such that f(v′) = v. As a result, given a path P connecting vertices u and v on G and a

vertex u′ ∈ VH such that f(u′) = u, there is a unique path P ′ on H, the lift of P , such

that f maps the sequence of vertices u′0 ≡ u, u′1, u′2, . . . in P ′ to that in P . To simplify

the notations, we will in some cases write a covering map as a map between the graphs,

f : H → G.

A set of vertices u′ with the same covering map image u, f(u′) = u, is called

the fiber of u. A lift of a closed path starting and ending with u is either a closed path,

or an open path connecting two different vertices in the fiber of u. We call a simple

cycle on G homologically trivial if all its lifts are simple cycles (of the same length). A

cycle on G is trivial if it is a union of edge-disjoint homologically trivial simple cycles.

The set of trivial cycles on G, with “⊕” used for group operation, is a subgroup of
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the cycle group on G. We denote such a group C0(H; f). The corresponding group

quotient, H1(f) ≡ C(G)/C0(H; f), is the (first) homology group associated with the map

f ; its elements are equivalence classes formed by sets of cycles whose elements differ

by an addition of a trivial cycle. Namely, cycles C and C ′ are equivalent, C ′ ' C, if

C ′ = C ⊕ C0, with C0 ∈ C0(H; f).

The cycle space of a graph G = (V, E) with n = |E| edges can be defined

algebraically in terms of the vertex-edge incidence matrix J ≡ JG . Namely, it is iso-

morphic to the binary code C⊥J ⊂ Fn2 whose parity check matrix is the incidence matrix

J , C(G) ∼= C⊥J . On the other hand, the code CJ generated by the incidence matrix is

isomorphic to the cut space of the graph. Elements of the cut space are edge boundaries

∂U of different partitions defined by sets of vertices U ⊂ V.

In principle, any set C′ ⊂ C(G) of cycles on G can be used to construct a

binary matrix K with the rows orthogonal to J , JKT = 0; the code CK ⊂ Fn2 is

isomorphic to the subspace of the cycle space generated by elements of C′. In particular,

given the covering map f : H → G, such a matrix K can be constructed using a

basis set of homologically trivial cycles C0(H; f). Thus, such a covering map has a

chain complex (2.5) associated with it, where A0, A1, and A2 are spaces generated by

sets of vertices, edges, and homologically trivial cycles, respectively. In particular, the

support supp(a) of any vector a ∈ A1 corresponds to a set of edges. The boundary

operators are given by the constructed matrices ∂1 = J , ∂2 = KT . Equivalently, the

same matrices can be used to define a stabilizer code CSS(J,K) with generators GX = J

and GZ = K. We will denote such a quantum cycle code associated with the covering

map f : H → G as Q(H; f). The length of the code is n = |E|, the number of encoded
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qubits k = rankH1(A) is the rank of the first homology group associated with covering

map, and the distances dZ , dX , respectively, are the homological distances d1(A), d1(Ã)

associated with the chain complex A and the co-chain complex Ã.

Given a graphH = (V, E) and a subgroup Γ of its automorphism group Aut(H),

consider the partition of V induced by Γ, where a pair of vertices u, v are in the same

class iff there is an element g ∈ Γ such that g(u) = v. Then, the quotient graph G = H/Γ

has the vertex set given by the set of vertex classes, with an edge between any two classes

which contain a pair of vertices connected by an edge from E . A graph quotient H/Γ

is covered by H if no neighboring vertices fall into the same class. When H is infinite,

a finite quotient graph H/Γ is obtained if the subgroup Γ has a finite index; in such a

case H must be quasitransitive.

A graph, G, has a dual graph, G̃, iff it is locally planar. A locally planar graph

is any graph which can be embedded onto a two dimensional simple manifold. If the

manifold is the plane, then G is called planar. The trivial cycle space of locally planar

graph G, C0, is called the face space of G. If G is locally planar then all edges of G are

incident to exactly 2 basis cycles of C0. This allows us to define a dual graph.

Dual graphs G and G̃ have equivalent edge spaces, E = Ẽ , such that each edge

in E has a corresponding dual edge in Ẽ . If H is the cover of G, and H̃ is the dual of H,

then the image of H̃, with the same covering map, is the graph G̃, the dual of G, and

dual edges between H and H̃ map to dual edges on G and G̃. Also, the cycle space of H

is equivalent to the cut space of H̃,

C(H) = C⊥(H̃). (2.11)
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2.3 Percolation transitions

We only consider Bernoulli edge percolation, where each edge e ∈ E of a graph

H = (V, E) is independently labeled as open or closed, with probabilities p and 1 − p,

respectively. We are focusing on the subgraph [G]p remaining after removal of all closed

edges; connected components of [G]p are called clusters. For a given v ∈ V, the cluster

which contains v is denoted Kv ⊆ [G]p. If Kv is infinite, for some v, we say that

percolation occurs.

If two graphs, G and G̃, are mutually dual we can perform edge percolation on

both graphs at once, such that when an edge is open on G then it is closed on G̃ and

vice-versa. Fig. 2.1 shows a small example of this. Picking some p value and generating

the corresponding subgraphs [G]p and [G̃]p we have Euler’s formula on each subgraph,

rank C = n− |V|+ k, (2.12)

where k is the number of connected components, or clusters. The dual of each trivial

cycle on G is a cut on G̃, due to equation 2.11. Therefore, for each cluster on [G̃]p their

is an open trivial cycle on [G]p, and knowing there must always be at least one cluster,

we deduce

rank C0 = k̃ − 1, (2.13)

where k̃ is the number of clusters on [G̃]p. If we combine equations 2.13 and 2.12 we

conclude

rankH1 = k − k̃ + n− |V|+ 1, (2.14)

where we have used the fact

rank C = rank C0 + rankH1. (2.15)
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Figure 2.1: An example of two dual graphs, one black and the other red. The dashed
lines are closed edges, while the solid lines are open edges. Each red edge with only one
connected end all meet up at a single vertex not shown. Note: the red graph has 11
clusters and 1 cycle and the black graph has 2 clusters and 10 cycles which agrees with
equation 2.13.

Three observables are usually associated with percolation: the probability that

vertex v is in an infinite cluster,

θv ≡ θv(H, p) = Pp(|Kv| =∞), (2.16)

the connectivity function,

τu,v ≡ τu,v(H, p) = Pp
(
u ∈ Kv

)
, (2.17)

the probability that vertices u and v are in the same cluster, and the local cluster

susceptibility,

χv ≡ χv(H, p) = Ep(|Kv|), (2.18)

the expected size of the cluster connected to v. Equivalently, cluster susceptibility can

be defined as the sum of probabilities for individual vertices to be in the same cluster
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as v, i.e., as a sum of connectivities,

χv =
∑
u∈V

τv,u. (2.19)

The critical propability pc, the percolation threshold, is associated with the formation

of an infinite cluster, defined as

pc = inf{p : θ(p) > 0}. (2.20)

So, there is no percolation, θv = 0, for p < pc, but θv > 0 for p > pc. An equivalent

definition is based on the existence of an infinite cluster anywhere on [H]p; the probability

of finding such a cluster is zero at p < pc, and one at p > pc, see, e.g., Theorem (1.11)

in Ref. [26] (the same proof works for any infinite connected graph).

Similarly, the critical probability pT is associated with divergence of site sus-

ceptibilities: χv is finite for p < pT but not for p > pT . Again, in a connected graph,

this definition does not depend on the choice of v ∈ V. If percolation occurs (i.e., with

probability θv > 0, |Kv| =∞), then clearly χv =∞. This implies pc ≥ pT . The reverse

is known to be true for percolation on quasi-transitive graphs [43, 44]: χv =∞ can only

happen inside or on the boundary of the percolation phase. Thus, for a quasi-transitive

graph, pc = pT .

An important question is the number of infinite clusters on [H]p, in particular,

whether an infinite cluster is unique. For infinite quasi-transitive graphs, there are only

three possibilities: (a) almost surely there are no infinite clusters; (b) there are infinitely

many infinite clusters; and (c) there is only one infinite cluster [4, 27, 55]. A third critical

probability, pu, is associated with the number of infinite clusters. Most generally, we
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expect pT ≤ pc ≤ pu. For a quasi-transitive graph, one has [55]

0 < pT = pc ≤ pu. (2.21)

Here, pu is the uniqueness threshold, such that there can be only one infinite cluster for

p > pu, whereas for p < pu, the number of infinite clusters may be zero, or infinite. For

an amenable quasitransitive graph, pc = pu [1, 10, 34]; it was conjectured by Benjamini

and Schramm[4] that pc < pu for non-amenable quasi-transitive graphs. Among other

examples, the conjecture has been recently verified for a large class of Gromov-hyperbolic

graphs[31].

In order for the uniqueness threshold to be non-trivial, pu < 1, the graph H

has to have only one end. That is, it can not be separated into two or more infinite

components by removing a finite number of edges.

In addition to uniqueness of the infinite cluster, the same threshold pu can be

characterized in terms of the connectivity function [54]. Namely, infu,v∈V τu,v(p) > 0 for

p > pu and it is zero for p < pu. Further, for planar transitive graphs, the uniqueness

threshold is related to the percolation threshold on the dual graph,

pu(H) = 1− pc(H̃), (2.22)

see the proof of Theorem 7.1 in Ref. [27]. In the case of planar amenable graphs where

pc(H) = pu(H), the duality (2.22) is between the two percolation transitions [26].

For finite size graphs the giant cluster threshold, pG, is commonly used instead

of pc. For p > pG the largest sized cluster scales proportional to the size of the graph,

while for p < pG it does not. More precisely, given a finite graph sequence, (Gt)t, with

cover H, the covering map ft and injectivity radius rt, let s1(p;Gt) = S1(p;Gt)/|Vt| be
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the fractional size of the largest cluster. Then we define pG to be

pG = inf
p>0
{p : lim sup

t→∞
s1(p;Gt) > 0}. (2.23)

It is easy to see that in general pG ≥ pc(H). Moreover, on expander graphs, we have

pG = pc [Theorem 1.3 in [3]]. A similar statement is also true for a torus in ZD.
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Chapter 3

Homology-Changing Transitions

Consider a finite graph G = (VG , EG) covered by an infinite graph H = (V, E).

While the graph H need not be quasi-transitive, the set of vertex degrees of H is finite

and matches that of G; in particular, the two graphs have the same maximal degree

∆max. The covering map f : V → VG also defines a quantum cycle code Q(H; f)

with parameters [[n, k, (dX , dZ)]], where n = |EG | the number of edges in G, and k =

rankH1(f) the dimension of the first homology group associated with the map f . We

are particularly interested in the case where the graphs G and H look identical on some

scale. Formally, this is formulated in terms of the injectivity radius, defined as the

largest integer rf such that the map f is one-to-one in any ball B(v, rf ;H). Necessarily,

for any covering map f , the injectivity radius rf ≥ 1. We start by giving lower bounds

for the distances dX , dZ in terms of the injectivity radius.

First, an injectivity radius rf implies that no two vertices located at distance

rf or smaller from any vertex on H map to the same vertex on G. On the other hand,

any simple cycle C ⊂ G of length ` is for sure covered by a ball of radius r = d`/2e
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centered on a vertex in C. This gives:

Lemma 1 Consider a finite graph G covered by an infinite graph H, with the injectiv-

ity radius rf . Then the minimum weight dZ of a non-trivial cycle on G satisfies the

inequality 2rf + 1 ≤ dZ ≤ 2rf + 3.

Proof. Let C ⊂ EG be a non-trivial cycle of weight dZ , and v ∈ VG a vertex on

C. Let v′ ∈ V be a vertex from the fiber of v, then the ball B ≡ B(v′, rf ;H) is mapped

one-to-one by f . Since C is non-trivial, it must contain at least one edge outside of the

image of B. Since C is also a minimum-weight non-trivial cycle, it must be self-avoiding,

i.e., it should contain two edge-disjoint paths connecting v to the boundary of the image

of B. Necessarily, dZ > 2rf .

Conversely, consider a ball B1 of radius rf + 1 which covers a non-trivial cycle

C1 on G of weight w, the shortest cycle among those covered by B1. At most two vertices

of C1 are at the distance rf + 1 from u (otherwise a shorter cycle could be constructed),

which gives dZ ≤ w ≤ 2rf + 3.

Second, the minimum distance dX is the minimum size of a homologically non-

trivial co-cycle, a set of edges on G which has even overlap with any homologically trivial

cycle, but is not a cut of G. A lower bound for dX requires some additional assumptions:

Lemma 2 Consider a finite graph G covered by an infinite one-ended graph H, with the

injectivity radius rf . Assume that the cycle group of H can be generated by cycles of

weight not exceeding ω ≥ 3. Then, the minimum weight of a non-trivial co-cycle on G

satisfies the inequality dX > rf/ω.

Proof. The statement is trivial if rf < ω, since dX ≥ 1 by definition. Assume
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rf ≥ ω, so that any generator of the cycle group on H be mapped one-to-one. Thus, any

(finite) cycle on H is mapped to a homologically trivial cycle, where we assume that the

symmetric set difference “⊕” be used when an edge is encountered in the image more

than once. Consequently, a lift of a walk cycling around a simple non-trivial cycle C on

G cannot be closed; instead, it must be a portion of a semi-infinite self-avoiding path on

H. Respectively, for any edge e0 ∈ C and its lift e′0 ∈ E such that f(e′0) = e0, we denote

C ′ ≡ C ′(C, e′0) 3 e′0, the extended lift of C, the union of lifts of all walks on C starting

with e′0 and e0, respectively; C ′ is an infinite self-avoiding path.

Now, take a binary vector b with wgt(b) = dX such that B ≡ supp(b) ⊂ EG

be a minimum-weight non-trivial co-cycle on G. Then, it must be irreducible, which

implies that B must be cycle-connected, i.e., for any pair of edges ei 6= ef in B, it should

also contain a connecting edge sequence S = (e1 = ei, e2, . . . , em−1, em = ef) ⊆ B, with

any pair of neighboring edges sharing an image of a basis cycle on H. Given such a

sequence of length m, the conventional graph distance between any pair of vertices from

the union ei ∪ ef must be strictly smaller than ωm.

To prove the contrary, let us assume that dX ≤ rf/ω. Then, a minimum-

weight co-cycle B ⊂ EG must have a diameter strictly smaller than rf , i.e., there be

a ball Br ⊂ G of radius r ≤ rf such that B ⊂ Br. Indeed, with wgt(B) = dX , any

connecting sequence contains at most m = dX edges, which implies the conventional

distance between any pair of vertices on B smaller than dXω ≤ rf . This implies that

any lift B′ of B should be mapped one-to-one by f .

To finish the proof, let C ⊂ EG be an irreducible cycle conjugate to B, i.e.,

the corresponding binary vectors satisfy bcT = 1, which implies the existence of an edge
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e0 ∈ B ∩ C. Irreducibility of C implies that it must be a simple cycle on G. Given

e′0 such that f(e′0) = e0, let B′ 3 e′0 be a lift of B and C ′ = C ′(C, e′0) an extended

lift of C, an infinite self-avoiding path on H. Since B′ is mapped one-to-one by f , it

has odd-weigh intersection with C ′ and even-weight intersection with any basis cycle

on H. Respectively, B′ must have an odd-weight intersection with any deformation

C̄ ′ ≡ C ′ ⊕M of C ′, where M ⊂ CH is a finite cycle on H. Thus, B′ is a finite-size

cut splitting H into infinite portions, which can not be the case since H is assumed

one-ended.

In addition, it will be important that for any covering map f : H → G, the

vertices of G can be lifted in such a way that they induce a connected subgraph of H,

just as a square-lattice torus with periodic boundary conditions becomes a rectangular

piece of the square lattice after cutting two rows of edges.

Lemma 3 Let G be a finite connected graph, H its cover with the covering map f : V →

VG and the injectivity radius rf . For any v′ ∈ V let v ≡ f(v′) ∈ VG be its image. Then

there exists a set of vertices Vf ⊂ V which contains a unique representative from the

fiber of every vertex of VG, such that the subgraph Hf ⊂ H induced by Vf be connected

and contains the ball B(v′, rf ;H).

Proof. Consider a graph G′ obtained from G by removing the ball B ≡

B(v, rf ;G). Construct a connected graph G′′ from a union of B and spanning trees

of every connected component of G′, by sequentially adding bridge bonds connecting

individual components so that no new cycles are introduced. Such a subgraph contains

all vertices of G and can be lifted to H starting with v′; let Vf ⊂ VH be the corresponding

vertex set. By construction, f acts one-to-one on Vf . It is also easy to check that Hf ,
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the subgraph of H induced by Vf , be connected.

In the following, we consider not a single graph G, but a sequence (Gt)t∈N of

finite graphs Gt = (Vt, Et) sharing an infinite connected covering graph H = (V, E), with

the covering maps ft : V → Vt. If the corresponding sequence of injectivity radii rt ≡ rft

diverges, we say that the sequence (Gt)t weakly converges to H. Such a convergent

sequence can be constructed, e.g., as a sequence of finite quotients of the graph H

with respect to a sequence of subgroups of its symmetry group, which requires H to be

quasitransitive. We do not know whether quasitransitivity of H is necessary to have a

sequence of finite graphs covered by H and weakly convergent to H. By this reason, in

the following, we specify (quasi)transitivity only when necessary for the corresponding

proof.

Given a graph sequence with a common covering graph H, we use Qt to denote

the CSS code with parameters [[nt, kt, (dXt, dZt)]] associated with the covering map ft.

We also denote the “flattened” subgraphs from Lemma 3 as Ht ≡ Hft ⊂ H. When the

sequence (rt)t diverges, we can always construct a subsequence (ts)s, ts+1 > ts, such

that the corresponding sequence of graphs (Hts)s be increasing, Hts+1 ( Hts . To this

end, it is sufficient to take rts+1 > nts , regardless of the particular spanning trees used

in the construction of the graphs Ht.

3.1 Homology erasure thresholds

Coming back to percolation, let H1(ft, p) denote the first homology group

formed by classes of homologically non-trivial cycles on the open subgraph [Gt]p. We

will consider several observables that quantify the changes in homology in the open
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subgraphs at large t as the probability p is increased. The first two, defined by analogy

with corresponding quantities for 1-cycle proliferation in continuum percolation [6], are

designed to detect any changes in homology compared to the empty graphs at p = 0,

and the graphs with all edges present at p = 1. Respectively, we define the probability

that a homologically non-trivial cycle exists in the open subgraph,

PE(t, p) ≡ Pp
(
rankH1(ft, p) 6= 0

)
, (3.1)

and the probability that not all homologically non-trivial cycles are covered in the open

subgraph,

PA(t, p) ≡ Pp
(
rankH1(ft, p) 6= kt

)
. (3.2)

Equivalently, PA(t, p) is the probability that the open subgraph at p̄ = 1 − p covers a

homologically non-trivial co-cycle. In terms of the associated CSS code Qt, PE(t, p) and

PA(t, 1−p) are the erasure probabilities for a Z- and an X-type codeword, respectively.

These quantities do not necessarily characterize bulk phase(s), as they may be sensitive

to the state of a sublinear number of edges.

As p is increasing from 0 to 1, PE(t, p) is monotonously increasing from 0

to 1 while PA(t, p) is monotonously decreasing from 1 to 0. Thus, a version of the

subsequence construction can be used to ensure the existence of their t → ∞ limits

almost everywhere on the interval p ∈ [0, 1]. Instead, we define the (lower) cycle erasure

threshold for any given graph sequence,

p0
E = sup

{
p ∈ [0, 1] : lim

t→∞
PE(t, p) = 0

}
. (3.3)

Because of monotonicity of PE(t, p) as a function of p, a zero limit at some p = p0 > 0

ensures the limit exists and remains the same everywhere on the interval p ∈ [0, p0].
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Further, the absence of convergence of the sequence PE(t, p) at some p = p1 im-

plies that the superior and the inferior limits at t → ∞ must be different, which, in

turn, implies the existence of a subsequence convergent to the non-zero limit given by

lim supt→∞PE(t, p1) > 0.

Similarly, we define the upper cycle erasure threshold,

p1
E = inf

{
p ∈ [0, 1] : lim

t→∞
PA(t, p) = 0

}
, (3.4)

as the smallest p such that open subgraphs preserve the full-rank homology group with

probability approaching one in the limit of the sequence.

Existence of a homologically non-trivial cycle not covered by open edges im-

plies that closed edges must cover a conjugate codeword, a non-trivial co-cycle. The

related threshold on an infinite graph can be interpreted in terms of a transition dual

to percolation, proliferation of the boundaries at the complementary edge configuration,

with all closed edges replaced by open edges, and v.v., so that the open edge probability

becomes p̄ = 1−p. On a locally planar graph, like a tiling of a two-dimensional manifold,

the dual transition maps to the usual percolation on the dual graph.

We also notice that the usual erasure threshold pE for a family (or a sequence)

of quantum codes corresponds to a non-zero probability of an erasure, a configuration

where a codeword is covered by erased qubits. For a CSS code, this implies a non-

zero probability that either an X- or a Z-type codeword be covered. For codes Qt

associated with covering maps ft : H → Gt in the sequence (Gt)t∈N, the conventional

erasure threshold can be found in terms of the thresholds for cycles and co-cycles,

pE = min(p0
E , 1− p1

E). (3.5)

The following lower bound constructed using a Peierls-style counting argument
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is adapted from Ref. [19]:

Statement 4 Consider a sequence of finite graphs (Gt)t∈N with a common covering

graph H. Let ∆max be the maximum degree of H, and assume that for some t0 > 0,

the injectivity radius rt associated with the maps ft : H → Gt at t ≥ t0 scales at least

logarithmically with the number of edges nt, rt ≥ A lnnt, with some A > 0. The cycle

erasure threshold for the corresponding sequence of CSS codes (Qt)t∈N satisfies the lower

bound p0
E ≥ e−1/(2A)/(∆max − 1).

It follows from the fact that Qt = CSS(Jt,Kt), where Jt is the vertex-edge

incidence matrix of Gt, with row weights given by the vertex degrees, and Lemma 1.

We would like to ensure that the conventional erasure threshold (3.5) also

be non-trivial, which requires that p1
E < 1. To construct such an upper bound, which

becomes a lower bound in terms of p̄ = 1−p in the dual representation, it is sufficient [19]

that rows of the trivial-cycle–edge adjacency matrix Kt have bounded weights, and that

the distance dXt diverges logarithmically or faster with nt. Notice that here we do not

rely on Lemma 2 which gives a rather weak lower bound for the distance but, instead,

directly assume desired scaling of the minimum weight dXt of a non-trivial co-cycle with

nt. We have

Statement 5 Consider a sequence of finite graphs (Gt)t∈N with a common covering

graph H, with the cycle group C(H) generated by cycles of weight not exceeding ω > 1.

Further, assume that the minimum weight dXt ≡ dX(H; ft) of a non-trivial co-cycle

associated with the map ft : H → Gt grows at least logarithmically with the number

of edges nt, dXt ≥ A′ lnnt, for sufficiently large t ≥ t′0 and some A′ > 0. The upper

erasure threshold for the corresponding sequence of CSS codes (Qt)t∈N satisfies the bound
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1− p1
E ≥ e−1/A′

/(ω − 1).

Let us now relate the cycle erasure threshold p0
E with the bulk percolation

threshold. Most generally, it serves as an upper bound:

Theorem 6 Consider a sequence of finite graphs (Gt)t∈N covered by an infinite graph

H. Then, p0
E ≤ pc(H).

Proof. If pc(H) = 1, the statement of the theorem is trivial. In the following,

assume pc(H) < 1 and take p such that pc(H) < p < 1. For some t ∈ N, a chosen

v′ ∈ VH and v ≡ ft(v
′), we connect percolation on H and on Gt using a set-up similar

to invasion percolation [56]. Namely, we start with single-site zeroth generation clusters

K(0)
v = {v} ⊂ Vt and K(0)

v′ = {v′} ⊂ VH, with no edges labeled open or closed. Given

a generation-j cluster K(j)
v′ ⊂ VH, every previously unlabeled edge adjacent to a vertex

in K(j)
v′ is labeled open with independent probability p and otherwise closed. The next

generation cluster K(j+1)
v′ is formed by adding any vertices connected to those in K(j)

v′ by

newly open edges. Let us denote by Pj(p;H) the probability that the process reaches

set j and can be continued, i.e., there is one or more unlabeled edges incident on the

j-th generation cluster. Clearly, P0(p;H) = 1 and Pj(p;H) is strictly decreasing as a

function of j, with limj→∞ Pj(p;H) = θv′(p;H).

Let us now look at thus constructed percolation process on Gt. As long as the

image of no vertex connected to K(j)
v′ by a so far unlabeled edge coincides with the image

of a vertex in K(j)
v′ (we call such a cluster “flat”), we can use the map ft to make the

labels on Gt match those on H. Clearly, all clusters are flat for j < rt, the injectivity

radius; for such j the probabilities that the percolation process may be continued match

exactly on the two graphs, Pj(p;Gt) = Pj(p;H). On the other hand, Pj(p;Gt) = 0 for

27



j ≥ |Vt|. The percolation processes necessarily decouple whenever a cluster K(j)
v′ ceases

to be flat, i.e., there be an unlabeled edge on Gt connecting a pair of vertices in K(j)
v ⊂ Vt.

Given such a cluster, we can assign the remaining unlabeled edges on Gt all at once; the

resulting open subgraph of Gt contains a homologically non-trivial cycle with probability

greater than or equal to p. At the same time, the cluster K(j)
v′ ⊂ VH is removed from the

percolation process on H. Since it is not certain that a descendant of a given cluster be

infinite, we get the lower bound

P(Kv contains a non-trivial cycle) ≥ p θv′(p;H), (3.6)

which is positive for any p > pc, thus p0
E ≤ pc.

This includes the case where the sequence of the injectivity radii remains

bounded (no weak convergence to H), in which case, obviously, p0
E = 0. More pre-

cise results for p0
E are available with additional assumptions, including the scaling of the

injectivity radius with the logarithm of the graph size:

Theorem 7 Consider a sequence of finite transitive graphs (Gt)t∈N covered by an infi-

nite graph H. If the homological distance dZt scales sublogarithmically with graph size,

lim
t→∞

dZt

lnnt

= 0, then p0
E = 0.

Proof. To set up independent erasure events, cut Gt into non-overlapping

regions, images of non-overlapping balls on H of radius ρt ≡ 1 + bdZt/2c. Given the

maximum graph degree ∆max, we can cut out at least

Nt ≥ |Vt|/|B0(2ρt,Gt)| > |Vt|/∆2+dZt
max

such balls. By transitivity of Gt and Lemma 2, each ball contains a homologically

non-trivial cycle of length dZt, which is open with probability P1 ≥ pdZt . Now, the
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probability that a homology is covered in none of the Nt balls can be upper bounded as

Pnone = [1− P1]Nt ≤ [1− pdZt ]Nt ≤ exp(−Ntp
dZt)

< exp
(
−|Vt|/∆2

max e
−dZt(|ln p|+ln ∆max)

)
, (3.7)

which is guaranteed to converge to zero for any p > 0 since dZt scales sublogarithmically

with |Vt|. (Notice that |Vt| ≥ 2nt/∆max by a version of the hand-shaking lemma.)

Notice that the requirement of transitivity for the graphs GZt can be relaxed a

bit, namely, by assuming that the number of vertex classes [defined by distinct vertex

orbits connected by elements of Aut(Gt)] remains uniformly bounded for the graphs Gt.

In that case, the balls need to be taken of radius ρt = bdZt/2c + m, where m is the

maximum number of vertex classes. The proof is completed with the following lemma:

Lemma 8 Consider a connected graph H, with m ≥ 1 vertex classes. Any ball of radius

m contains representative(s) of all classes.

Proof. Consider a class connectivity graph G corresponding to H = (V, E),

with m vertices (one per class) and an edge between two vertices if H contains an edge

between a pair of vertices in these classes. Necessarily, G is connected. Further, given a

vertex v ∈ V, any spanning tree on G can be lifted to a tree on H that contains v; such a

tree contains a representative from every vertex class. Further, the diameter of the tree

cannot exceed m; such a tree is contained in a ball B(v,m;H). The proof is complete

since the choice of v is arbitrary.

Theorem 9 Consider a sequence of finite graphs (Gt)t∈N covered by an infinite quasi-

transitive graph H. If the injectivity radius scales superlogarithmically with the graph

size, lim
t→∞

rt
lnnt

=∞, then p0
E = pc.
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Proof. Only a cluster with s ≥ dZt > rt vertices can cover a homology.

For a graph G, let Mv(s;G) denote the probability that vertex v is in an open cluster

with exactly s vertices on [G]p. On the quasi-transitive graph H, this probability has an

exponential bound, Mv(s;H) < M(s) ≡ e−γ(p)s, for some γ(p) non-zero in the subcritical

region, γ(p) > 0 for p < pc [2]. Note also
∑

s≥1Mv(s;G) = 1 on any finite graph; below

percolation threshold this is also true for infinite graphs. Also, for any v ∈ Vt, finding

a cluster of size s ≤ rt attached to v on Gt has the same probability as that attached

to a vertex v′(v) from the fiber of v on H. Use the union bound for the probability of

finding a cluster of size rt + 1 or larger on Gt,

Pone ≤
∑
v∈Vt

∑
s>rt

s−1Mv(s;Gt)

<
∑
v∈Vt

∑
s>rt

Mv(s,Gt)

=
∑
v∈Vt

1−
∑

1≤s≤rt

Mv(s;Gt)


=

∑
v∈Vt

1−
∑

1≤s≤rt

Mv′(v)(s;H)


=

∑
v∈Vt

∑
s>rt

Mv′(v)(s;H)

< |Vt|
∑
s>rt

e−γ(p)s =
|Vt|e−γ(p)rt

eγ(p) − 1
, (3.8)

which goes to zero with t→∞ whenever γ(p) > 0 since rt is assumed to be superloga-

rithmic in nt ≥ |Vt| − 1. This proves p0
E ≥ pc; the statement of the Theorem is obtained

with the help of Theorem 6.

Information about the other threshold, p1
E , can be obtained in the planar case

with the help of duality:

30



Corollary 10 Let H and H̃ be a pair of mutually dual infinite quasitransitive planar

graphs. Consider a sequence of finite graphs (Gt)t∈N weakly convergent to H, a cover of

the graphs in the sequence. Then,

(i) p1
E ≥ 1− pc(H̃). In addition,

(ii) if the graphs Gt in the sequence are transitive, t ∈ N, and the injectivity radius

grows sublogarithmically with the graph size, then p1
E = 1;

(iii) if the injectivity radius grows superlogarithmically, then p1
E = 1− pc(H̃).

Proof. Since H̃ is quasitransitive, it has a finite maximum degree, which is

the maximum size of a face of H. Thus, with injectivity radius large enough, ft must

be invertible on the union of any face and its adjacent faces on H. This guarantees that

(with t sufficiently large, t > t0), Gt be locally planar, so that we can construct the locally

planar dual graph G̃t whose cover is H̃. Further, for any open edge configuration, the

ranks of the homology groups on the open subgraph of Gt and on the closed subgraph of

G̃t add to kt, the number of inequivalent homologically non-trivial cycles on Gt [Eq. (2.8)].

Thus, the two erasure thresholds are simply interchanged by duality, p̃1
E = 1 − p0

E and

p̃0
E = 1− p1

E , so the inequality p1
E ≥ 1− pc(H̃) follows immediately from Theorem 6.

The identities in (ii) and (iii) similarly follow from Theorems 7 and 9 with the

help of Lemmas 1 and 2 which guarantee that the injectivity radii on the sequence of

mutually dual graphs scale simultaneously in a sub-logarithmic, logarithmic, or super-

logarithmic fashion.

Notice that for a superlogarithmic scaling of the injectivity radius, the graph

must be amenable, in which case pu(H) = pc(H). We also believe that under conditions

of the Corollary, the duality gives pu(H) = 1 − pc(H̃), see Eq. (2.22), although we
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only found the proof for the case where the graph H is transitive [27]. Whenever

such a duality relation holds, the upper cycle erasure threshold is bounded below by

the uniqueness threshold, p1
E ≥ pu(H); with superlogarithmic scaling of the injectivity

radius, the sequence of thresholds collapses to a single point, p0
E = p1

E = pc(H) = pu(H).

These results leave out an important case of percolation with logarithmic dis-

tance scaling. It is easy to see that logarithmic distance scaling does not necessarily

imply that p0
E and pc(H) be equal:

Example 11 (Anisotropic square-lattice toric codes) Consider a sequence of tori

Gt = TLx(t),Ly(t) obtained from the infinite square lattice H by identifying the vertices

at distances Lx(t) and Ly(t) along the edges in x and y directions, respectively. For

some A > 0, consider the scaling Lx(t) = t, Ly(t) = et/A/(2t). This gives dZt = t and

nt = et/A, so that dZt = A lnnt. The cycle erasure threshold p0
E for this graph sequence

satisfies e−1/A/3 < p0
E ≤ e−1/A.

The upper bound follows from considering Ly(t) independent non-trivial cycles of length

t, while the lower bound is given by Statement 4. In comparison, for edge percolation

on infinite square lattice, pc = 1/2.

In addition to Example 11, in Sec. 4 we give numerical evidence that p0
E <

pc(H) for several families of hyperbolic codes based on regular {f, d} tilings of the

hyperbolic plane (here 2df > d + f ; these are known to have a finite asymptotic rate

R = 1− 2/d− 2/f).
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3.2 Erasure rate thresholds

Logarithmic scaling of the minimum distance dZt associated with the first ho-

mology group is the largest one may hope for in the important case when the covering

graph H is non-amenable. We specifically focus on the case of a graph sequence with

extensive homology rank scaling, i.e., where the associated codes have an asymptotically

finite rate, R ≡ limt→∞ kt/nt > 0. For such graph sequences, we also consider the

expected dimension of the erased subspace per edge, or the erasure rate,

RE(t, p) ≡ n−1
t Ep

(
rankH1(ft, p)

)
. (3.9)

An analogous quantity was analyzed in detail by Delfosse and Zémor [15]. Unlike the

probabilities PE and PA, the erasure rate RE is a bulk quantity which can be used to

define a thermodynamical transition in the usual sense. For any t ∈ N, the erasure rate

RE(t, p) is a monotonously increasing function of p ∈ [0, 1], bounded by the values at

the ends of the interval,

0 ≤ RE(t, p) ≤ Rt ≡ kt/nt ≤ 1. (3.10)

Let us now consider the thresholds associated with the erasure rate (3.9). We

define the lower p0
H and the upper p1

H critical points as the values of p where RE(t, p)

in the limit of large t starts to deviate from 0 and from R, respectively:

p0
H = sup{p ∈ [0, 1] : lim

t→∞
RE(t, p) = 0}, (3.11)

p1
H = inf{p ∈ [0, 1] : lim

t→∞
RE(t, p) = R}. (3.12)

We call these, respectively, the lower and the upper homological thresholds. Evidently,

p0
E ≤ p0

H ≤ p1
H ≤ p1

E . The critical point p0
H was discussed in Refs. [14, 15]. Our first
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result, an analogue of the corresponding inequality for the Ising model, Eq. (34) in

Ref. [32], gives a lower bound on the gap between the two homological thresholds:

Theorem 12 Consider a sequence of finite graphs (Gt)t∈N weakly convergent to an in-

finite graph H, a cover of the graphs in the sequence, with rate-R extensive homology

rank. Then there is a finite gap between the two homological thresholds,

p1
H − p0

H ≥ R. (3.13)

Proof. Let kt = rankH1(ft) be the number of non-trivial independent cycles

on Gt. Consider any open edge configuration on Gt, with homology rank k′t ≤ kt, and

another edge configuration obtained by removing some open edges, with homology rank

k′′t ≤ k′t. Such a change in homology requires removing at least ∆kt = k′t−k′′t open edges.

Considering these as random edge configurations at p′ > p1
H and p′′ < p0

H , averaging,

and dividing by the total number of edges nt, we obtain

p′ − p′′ ≥ RE(t, p′)−RE(t, p′′);

in the limit t → ∞ this becomes p′ − p′′ ≥ R. Taking infimum over p′ > p1
H and

supremum over p′′ < p0
H , we obtain the claimed inequality.

Second, we prove an “easy” inequality relating the lower homological threshold

with the percolation threshold on the covering graph:

Theorem 13 For a sequence of finite graphs (Gt)t∈N weakly convergent to an infinite

graph H, a cover of the graphs in the sequence with extensive homology rank, pc(H) ≤ p0
H .

Proof. Take p > p0
H , then the limit in Eq. (3.11) is either strictly positive or

does not exist. In either case, since terms in the sequence are bounded, RE(t, p) < 1,
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the superior limit fp ≡ lim supt→∞RE(t, p) exists and is strictly positive, fp > 0 at

p > p0
H . This implies the existence of a convergent subsequence, e.g., specified by an

increasing sequence of indices (tj)j∈N such that limj→∞RE(tj , p) = fp.

Because of the existence of the limit, whenever fp > 0, for any ε > 0 and a

sufficiently large j, clusters covering homologically non-trivial cycles are expected to

occupy at least (fp − ε)nt edges, where t ≡ tj . Thus, if we choose ε = fp/2, a cluster

Kv ⊂ [Gt]p connected to a randomly chosen vertex v ∈ Vt covers a homologically non-

trivial cycle with probability Pnon-triv ≥ fpnt/(2|Vt|). Using a map like that in the

proof of Theorem 6, at sufficiently large t, a cluster covering a non-trivial cycle on [Gt]p

corresponds to an infinite cluster on [H]p, which gives

θv(p) ≥ lim
j→∞

fpntj/(2|Vtj |) ≥ fp/2 > 0,

thus p > pc(H).

The remaining analytical result is obtained with the help of the usual duality

between locally planar graphs, and is therefore limited to planar graphs H:

Theorem 14 Let H and H̃ be a pair of infinite mutually dual transitive planar graphs.

Consider a sequence of finite graphs (Gt)t∈N weakly convergent to H, a cover of the

graphs in the sequence with extensive homology rank. Then,

(i) p0
H = pc(H), (ii) p1

H = 1− pc(H̃) = pu(H). (3.14)

This is an easy consequence of two previous results: the expression [15] for the

expected homology rate in terms of the average inverse cluster sizes on the graph and

its dual, and the exponential decay [2, 28] of the size of finite clusters away from the

percolation point on transitive graphs.
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Proof. As in the proof of Corollary 10, at sufficiently large t the graph Gt =

(Vt, Et) is necessarily locally planar, which implies the existence of the corresponding

dual graph G̃t = (Ṽt, Ẽt), with the dual-graph sequence weakly convergent to the dual

infinite graph H̃.

The proof relies on the relation [15] between the expected homology rank of

the open subgraph and the expected inverse cluster sizes on an open subgraph of H

and a closed subgraph of H̃. While the argument goes back to the work of Sykes and

Essam [53], we give a complete derivation here. Consider a configuration of open/closed

edges on [Gt]p with E′ ≤ nt ≡ |Et| open edges, K ′ clusters, and the cycle group of rank

C ′ = Ctriv + k′, where k′ is the number of non-trivial basis cycles. According to Euler’s

theorem, K ′ = |Vt| − E′ + C ′. On the other hand, duality matches any simple trivial

cycle on Gt to a cut on the dual graph G̃t, which gives Ctriv = K̃ ′ − 1, with K̃ ′ being

the number of clusters on the dual graph in the dual edge configuration, with open and

closed edges interchanged. This gives

k′ = K ′ − K̃ ′ + E′ − |Vt|+ 1.

Taking the average over the edge configurations on [Gt]p we obtain for k
(t)
p ≡ Ep

(
rankH1(ft, p)

)
,

k(t)
p =

∑
v∈Vt

κv(p;Gt)−
∑
v∈Ṽt

κv(p̄; G̃t) + pnt − |Vt|+ 1.

Here κv(p;Gt) ≡ Ep
(
|Kv|−1

)
is the expected inverse size of a cluster containing vertex v

on [Gt]p, and κv(p̄; G̃t) is the corresponding quantity on the dual graph, averaged over the

dual edge configurations, which is equivalent to p̄ = 1−p. Introducing the corresponding

vertex-average quantities, e.g., κ(p;Gt) ≡ |Vt|−1
∑

v∈Vt κv(p;Gt), we get

k(t)
p = |Vt|κ(p;Gt)− |Ṽt|κ(1− p; G̃t) + pnt − |Vt|+ 1.
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To obtain the asymptotic erasure rate (3.9) we divide the obtained result by nt and

notice that very large clusters give no contribution to the total while (at sufficiently

large t) any finite cluster on [H]p has the same probability as an equivalent cluster on

[Gt]p. Further, assuming the transitive graphs H and H̃ of degrees d and f , respectively,

the graphs Gt and G̃t respectively have the same degrees, and the hand-shaking lemma

gives |Vt| = 2nt/d, |Ṽt| = 2nt/f . This proves both the existence and the value of the

following limit at any p,

RE(p) ≡ lim
t→∞

RE(t, p)

=
2

d
κ(p;H)− 2

f
κ(p̄; H̃) + p− 2

d
. (3.15)

Finally, we notice that for non-amenable transitive graphs H and H̃, the quantities

κ(p;H) and κ(p̄; H̃) are analytic functions of p in the vicinity of any p ∈ (0, 1) such

that p 6= pc(H) and p̄ 6= pc(H̃), respectively [2, 28]. Thus, the r.h.s. of Eq. (3.15) is an

analytic function of p for

p ∈ (0, 1) \ {pc(H), 1− pc(H̃)},

where 1 − pc(H̃) = pu(H) > pc(H). On the other hand, RE(p) cannot be analytic in

the lower and upper homological thresholds 0 < p0
H < p1

H < 1, which gives the two

equalities.

Notice that in Theorem 14, the lower and the higher homological thresholds,

respectively, are actually associated with the percolation and the uniqueness thresholds

on the infinite graph H. We believe this is not a coincidence, and put forward

Conjecture 15 Consider a sequence of finite graphs (Gt)t∈N weakly convergent to a

quasitransitive infinite graph H, a cover of the graphs in the sequence with extensive
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homology rank. Then,

(i) p0
H = pc(H), (ii) p1

H = pu(H). (3.16)

Such a result makes sense, since neither the percolation nor the uniqueness thresholds

can be seen locally, by examining a finite subgraph of H. Similarly, the homological

transitions require changes in cycles of length exceeding the injectivity radius, which

diverges without a bound.
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Chapter 4

Numerical Results and Methods

In addition to analytical results, we also evaluated the erasure and the perco-

lation thresholds numerically for several families of locally planar hyperbolic codes, the

euclidean square lattice toric codes and random degree 5 graphs. Each family corre-

sponds to a particular infinite graph Hf,d, regular tiling of the hyperbolic or euclidean

plane, parameterized by the Schläfli symbol {f, d}, such that it follows the hyperbolic

or euclidean relations as follows,

1/f + 1/d


< 1/2 =⇒ hyperbolic

= 1/2 =⇒ euclidean

> 1/2 =⇒ spherical

. (4.1)

In such a graph, d identical f -gons meet at each vertex. The finite graphs are con-

structed [49, 47, 8] as finite quotients of the corresponding graph Hf,d with respect to

subgroups of the symmetry group.

39



4.1 Graph Construction

The parameters of the graphs used in the calculations are listed in Tab. 4.1,

where {f, d} is the Schläfli symbol of the corresponding tiling, n is the number of edges,

and dZ and dX , respectively, are the distances of the corresponding CSS codes. The

smaller graphs with n < 103 edges are from N. P. Breuckmann [9]. We generated

the remaining graphs with a custom GAP [24] program, which constructs coset tables

of freely presented groups obtained from the infinite van Dyck group D(d, f, 2) =

〈a, b|ad, bf , (ab)2〉 [here a and b are group generators, while the remaining arguments

are relators which correspond to imposed conditions, ad = bf = (ab)2 = 1] by adding

one more relator obtained as a pseudo random string of generators to obtain a suitable

finite group D, a quotient of the original infinite group D(d, f, 2). Then, the vertices,

edges, and faces are enumerated by the right cosets with respect to the subgroups 〈a〉,

〈ab〉, and 〈b〉, respectively. The vertex-edge and face-edge incidence matrices J and K

are obtained from the coset tables. Namely, non-zero matrix elements are in the po-

sitions where the corresponding pair of cosets share an element. Finally, the distance

dZ of the CSS code CSS(J,K) was computed using the covering set algorithm, which

has the advantage of being extremely fast when the distance is small [18, 20], and addi-

tionally verified by comparing the number of cycles through a given vertex on the finite

graph G and on a sufficiently large subgraph of the infinite covering graph Hf,d. The

distance dX is obtained by interchanging the CSS generator matrices J and K, which

is equivalent to considering the corresponding dual graph.

After creating each graph and calculating its distance, we needed to determine

which graphs are of the right type to calculate percolation transitions. This is because
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we needed a set of graphs which have the same, or nearly the same, finite size scaling

factor, the ratio d/ lnn of the distance to the logarithm of the number of edges. In order

to determine this, we took into account the number of edges, n, and its distance.

Each graph was labeled as either optimal or non-optimal. An optimal graph is

a graph such that no graph of a smaller size has a distance greater or equal to it. This

set is small since it is limited to one graph per distance, at best, and the difficulty in

finding optimal graphs grows exponentially with distance. We are also not sure if the

graphs we label as optimal are truly optimal, since there may be a smaller graph with

the same distance we just did not find.

Two different sets of graphs were kept. One set was used to calculate pc and

pG, the values which do not depend on the homological cycles. The second set was used

to calculate p0
E , which is dependent on the homological cycles. Both sets only contain

graphs with n larger than 500, dZ > f , and dX > d. This is because we want larger

graphs, which can also function as proper codes.

The first set is composed of the 20 largest graphs for each {f, d}, if we had

that many. The second set is composed of only the optimal graphs. This greatly limited

which families of codes we could analyze, since multiple families had less than three

optimal graphs. Looking at Tabs. 4.1, 4.2, 4.3 and 4.4 you can see graphs of the type

{4, 7} and {5, 6} had less than three optimal graphs and thus their thresholds were not

calculated.

To better understand the difference of hyperbolic codes, we also calculated the

percolation transitions for random graphs with constant degree. In particular we took

each vertex to have degree 5 and use the Schläfli symbol {r, 5} to denote such graphs.
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4.2 Percolation Methods

To simulate percolation, we used a version of the Newman–Ziff (NZ) Monte

Carlo algorithm [46]. This is a Monte Carlo type method which creates a canonical

ensemble of edges and randomly orders them. The graph is initialized to be empty, all

edges closed. A random edge is chosen to be opened. All statistics are then updated.

This is repeated until all edges are open. Adding a singe edge is computationally inex-

pensive, and so the computational complexity of adding all edges to the graph is of only

order n.

The original version of the algorithm is meant for a single graph. This would

make it very difficult to update the homology rank when a new edge is added. However,

if we adapt the algorithm to run on both the graph, G and its dual, G̃ we can use

equation 2.14 to keep track of the number of homologies.

This was done by closing an edge on [G̃]p when an edge is opened on [G]p.

Practically closing an edge then updating statistics is computationally hard. Instead,

we reversed the edge ensemble list and opened edges in [G̃]p in the reverse order of [G]p.

The cluster sizes of both graphs were saved, then once a sweep through both graphs is

completed the homology rank is updated for the entire set of points.

Another issue is our simulations calculate averages for a given number of open

edges (canonical ensemble), but we need averages for a given p value (grand-canonical

ensemble). This means we need to convert from one to the other. This can be done by

using the binomial distribution to calculate the corresponding grand-canonical quantity,
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Ap =

n∑
i=0

bi,pAi (4.2a)

bx,p =

(
n

x

)
px(1− p)n−x, (4.2b)

where Ap is the average over constant p and Ai is the average over constant open

edge count, for some observable A. In order to speed up calculations we ignored very

small bx,p values, cutting off any bx,p value which was over 100 standard deviations

away from the mean, |x − pn| < M
√
np(1− p), with M = 102. For each graph we

ran 106 runs, saving the grand-canonical averages of observables for 103 + 1 p values,

with intervals of ∆p = 10−3, and three data runs were performed, so each percolation

transition was calculated three separate times to obtain an independent estimate of the

errors. The averaged observables calculated, all implicit functions of p, are: k, S1, S2,

S2/S1, Pp(rankH1 > 0), rankH1, |K0| and the corresponding values squared, where k

is the number of clusters, Si is the size of the ith largest cluster, Pp(rankH1 > 0) is

the probability at least 1 homology is covered, the erasure probability, rankH1 is the

number of homologies covered, and |K0| is the size of the cluster connected to site 0.

4.2.1 Inflection Point Extrapolation

Inflection point extrapolation is a simple method we performed to find critical

p values for a given finite graph, which are then used to find the threshold value for an

infinite graph using finite size scaling methods described later. This method consists of

finding the inflection point near the percolation transition, then finding the tangent line

of this point. We then take the tangent line and extrapolate it to a particular y value,

like y = 0, y = 1 or the inflection point itself. An example of this method can be seen
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Figure 4.1: Example of an inflection point extrapolation fit. This plots the fractional
size of the largest cluster, s1, versus p. The red line is the tangent line to the inflection
point, which is shown in blue. The extrapolation point is the intersection of this line
with s1 = 0, which is shown in green. The green point is then taken to be our critical p
value for this finite graph.

in Fig. 4.1.

This method is justified in cases where the slope of the inflection point tends

to infinity, and it also moves towards the extrapolation point. If it moves away from

the extrapolation point we might have unexpected behavior. We use this method in 4

different cases: pG, p
(S)
c , p

(0)
E , p

(I)
E , and p

(1)
E , as explained in future sections.

4.2.2 Finite Size Scaling

Finite size scaling is one of the many techniques where the data calculated in a

finite-size system (a sequence of finite graphs in our case) is extrapolated to an infinite

size. We did this by taking a set of paired critical values (n, pn), where pn is the critical

p value found for the graph of size n. The method to determine the critical p value

depends on which threshold is being calculated. The critical p values, pn, for a finite
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graph were obtained using inflection point extrapolation, as explained above, or where

the p value such that the largest cluster is related to the graph size, S1 = |V|2/3, which

is explained in more detail later. These points are then extrapolated to the infinite size

limit giving us the threshold value (∞, pc). This extrapolation was done by performing

a fit of the form

p(x) =
a∑
i=0

Ci(
1

xγ
)i, (4.3)

where Ci are fit parameters, a and γ are constants and the infinite limit threshold value

is C0. The value for γ was kept at a constant 1/3 or 2/3, and a was chosen to minimize

the fit’s residue without over fitting.

The value for γ comes from the critical exponents for hyperbolic graphs. Hy-

perbolic graph families can be viewed as having infinite dimension, so they fall into the

mean field theory regime with dimension greater than 6. The corresponding finite-size

scaling can be conveniently recast to the system size, V , as an independent parameter.

Namely, we consider a D-dimensional lattice, with D > Dcritical = 6. This means near

the percolation threshold the correlation function, ξ, and system size, V , relate to each

other since the cut off for the correlation function is L. This gives us

V ∝ L6 ∼ ξ6 ∝ |p− pc|−6ν =⇒ |p− pc| ∝ V −1/3, (4.4)

where we have taken, the mean-field value for the correlation length exponent, ν = 1/2

in high dimension regime. The largest cluster size, S1, also relates to the correlation

function using the fractal dimension, df ,

S1 ∝ ξdf ∝ V df/6 ∝ V 2/3. (4.5)

These two relations justify our use for γ = 1/3 when performing finite size scaling, along
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with one of the finite size scaling methods described later. These relations also agree

with the form of critical scaling for random graph found in Ref. [29].

4.3 Percolation and Erasure Threshold Results

Tabs. 4.2 and 4.3 show summaries of the final calculated percolation thresholds

and 4.4 shows the erasure thresholds. We found three different transition points pc, pG

and p0
E ; pc was calculated using 2 different methods, labeled as p

(2/3)
c and p

(C)
c , and p0

E

was calculated using 5 different methods, labeled as p
(C)
E , p

(shift)
E , p

(1)
E , p

(I)
E , p

(0)
E . Later

sections will go more in depth about each calculation.

4.3.1 Results for pc

Percolation Threshold Transition p values

{f, d} p
(I)
c p

(2/3)
c n

(2/3)
c a

(2/3)
c p

(C)
c n

(C)
c a

(C)
c p

(shift)
c n

(shift)
c Bc

{3,7} 0.1993505(7) 0.200(1) 0.649 2 0.2039(2) 22.75 4 0.2039(2) 22.75 0.081(5)
{7,3} 0.5305246(7) 0.532(1) 1.48 2 0.5369(3) 21.25 2 0.5355(3) 16.58 0.087(2)
{3,8} 0.1601555(7) 0.160(3) -0.0518 3 0.16207(5) 38.29 9 0.16210(5) 38.89 0.26(1)
{8,3} 0.5136441(7) 0.514(2) 0.178 3 0.5187(2) 25.28 3 0.5188(2) 25.78 0.32(3)
{4,4} 0.5 0.4893(3) -35.67 3 0.500011(6) 1.22222 4 0.50010(2) 5. 0.003(1)
{4,5} 0.2689195(7) 0.2693(5) 0.761 2 0.27010(3) 39.348 6 0.27007(4) 28.762 0.306(8)
{5,4} 0.3512228(7) 0.3518(6) 0.962 2 0.35253(3) 43.571 6 0.35249(3) 42.238 0.18(9)
{4,6} 0.20714787(8) 0.2076(2) 2.261 1 0.2077(1) 5.521 4 0.2077(1) 5.521 -0.08(3)
{6,4} 0.3389049(7) 0.3396(1) 6.951 1 0.33971(9) 8.9455 3 0.33966(8) 9.4387 0.14(4)
{7,4} 0.33526580(8) 0.3359(6) 1.057 2 0.33680(8) 19.177 6 0.3361(4) 2.085 0.24(8)
{5,5} 0.25416087(8) 0.2545(7) 0.4845 2 0.25489(3) 24.304 6 0.25492(3) 25.304 0.88(6)
{6,5} 0.25109739(8) 0.251(1) -0.0974 2 0.25227(8) 14.658 4 0.25215(9) 11.696 0.053(5)
{r,5} 0.25 0.2500(2) 0. 2 0.25012(1) 12. 4 - - -

Table 4.2: Critical pc values found for graph families characterized by Schläfli symbols

{f, d}, where f = r stands for random graphs of degree d. Here p
(I)
c is the percolation

threshold (using invasion percolation data from Ref. [45], or exact values where known),

p
(2/3)
c and p

(C)
c are the traditional percolation thresholds using random-graph-like cluster

size scaling (see Fig. 4.3) and the cluster-ratio (see Figs. 4.4 and 4.5), respectively.
Numbers in the parenthesis indicate the standard deviation σ in the units of the last

significant digit, so that, e.g., 0.14(4) ≡ 0.14 ± 0.04. Values of nc ≡ (pc − p(I)
c )/σ give

the “number of sigmas” from the deviation of the corresponding critical value found
from the invasion percolation, or exact threshold value if available. Numbers in columns
labeled a give the degrees of the polynomials used to interpolate the data; polynomials

of the same degrees were used to obtain p
(C)
c and p

(shift)
c .
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We compute pc to verify our simulation results and we use different methods

and compare them to make sure these methods work well and agree with known values.

We have used several finite-size scaling techniques to extract the location of the perco-

lation thresholds which coincides with the giant-cluster threshold, see Theorem 1.3 in

Ref. [3]. All techniques, besides the cluster-size ratio technique [42, 12] in the case of

hyperbolic graphs and the giant-cluster threshold, give transition points in a reasonable

agreement with the values expected from invasion percolation simulations in Ref. [45].

For hyperbolic graphs, we found the most accurate values of pc are found using the

technique based on the expectation of cluster size scaling similar to that for random

graphs [38, 29], S1 ∝ n2/3 near pc, with the critical region of width |p−pc| ∼ n−1/3. Re-

spectively, when interpolated values of p such that the expected size of the largest cluster

satisfies S1(p) = ωn2/3 are plotted for ω ∈ {1/4, 1/2, 1} as a function of x ≡ n−1/3, the

data for graphs with different n fit nicely, and can be extrapolated to x = 0 (infinite

graph size) using polynomial fits, see Fig. 4.3. Notice that while this technique works

well for hyperbolic graphs and for random graphs, in our simulations it failed dramati-

cally for the euclidean {4, 4} graph family, as can be seen from the corresponding value

of p
(2/3)
c in Tab. 4.2.

The first method to calculate the percolation threshold is meant specifically

for random and hyperbolic graphs. We denoted this as p
(2/3)
c . The second method is the

cluster-ratio method. This method has been proved to work for metric graphs [42], and

is commonly used as a numerical method for other types of graphs. We denote this as

p
(C)
c . Additionally we introduce a shift into the cluster-ratio method to obtain a third

pc estimate labeled as p
(shift)
c

48



672
4914

17220

0.48 0.50 0.52 0.54 0.56 0.58

100

1000

900
4800

15360
29120

0.22 0.24 0.26 0.28 0.30

100

1000

800
1800
3200
5000

7200
9800
12800

0.46 0.48 0.50 0.52 0.54

1000

10000

6000
9000
12000
16000

19000
22000
25000

0.20 0.22 0.24 0.26 0.28 0.30

100

1000

Figure 4.2: The size of the largest cluster versus p as a log-linear plot. The dashed red

lines represents p
(I)
c , and the graphs are labeled by n. The error bars are too small to

see. These are for illustration purposes and samples of the data is used elsewhere.

The first method is taken from Ref. [29] and comes from equation 4.5. It has

been derived for the random and larger hypercubic graphs. Hyperbolic graphs have

similar properties to random graphs, specifically they are both expander graphs. In the

absence of uniqueness, there are multiple percolation clusters on an infinite graph. For

a finite graph these are connected, but in a random fashion, which explains the analogy

with the random graphs which asymptotically behave like trees.

This method uses finite size scaling on critical p values within the scaling

window for each graph, which is used to find the critical p value in the infinite graph

limit, p
(2/3)
c . The critical values are defined to be the p value such that S1 = ω|V|2/3,

where S1 is the size of the largest cluster. We show in Fig. 4.3 multiple values for ω to

show the stability of this method.
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Figure 4.3: Finite size scaling of the critical p values to find p
(2/3)
c , for {f, d} graph

families as indicated in the captions. The p values are solutions to the equation S1 =
ω|V|2/3, where S1 is the largest cluster for a given p value. The dashed red line is at

p
(I)
c . The lines intersect close to the expected percolation transition point, except for

the {4, 4} graph as expected, since this graph is not an expander graph.

The second method, the cluster-ratio method, is a more standard way to find

the percolation threshold [42, 12, 39]. This method has been proved for metric graphs,

and numerically shown to work for other graph families [42].

We achieved this by doing a simultaneous multi-plot fit of all the graphs of the

form yc +
∑a

i=1A
(i)
n (x − xc)

i where each A
(i)
n is different for each graph, but xc and yc

are kept the same across all the graphs. The polynomial degree a was chosen using the

same criteria as for the finite size scaling method previously described. Only data near

the crossing point was used. This gives the crossing point of the collection of graphs to

be (xc, yc), and therefore p
(C)
c = xc is the infinite graph critical value. Plots for S2/S1,

the ratio between the largest and second largest clusters, can be seen in Fig. 4.4, while
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Figure 4.4: Plots of S2/S1, ratio between the largest and second largest cluster sizes,

verses p. The red dashed is at p
(I)
c , the expected percolation threshold, and the graphs

use n, the edge count, as labels. The error bars are too small to see. Look at Fig. 4.5
for more details near the crossing point.

a zoomed in view at the crossing point can be seen in Fig. 4.5.

Looking at Fig. 4.5, a clear difference can be seen between the hyperbolic graphs

and the non-hyperbolic graphs. Numerically, there is a larger difference between the

expected result shown by the dashed red line and our calculated result. The convergence

near the crossing point is poor for the hyperbolic graphs, but it is much better for non-

hyperbolic graphs. We conclude that even though the method of finding the crossing

point of S2/S1 works in many cases, it fails for hyperbolic graphs and its use should

be limited to lattices in finite dimensions and to random graphs, as it was derived for

graphs where usual critical scaling works [42]. The difference between the expected result
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Figure 4.5: Plot of the crossing point of S2/S1, the ratio between the largest and second

largest cluster sizes, used to calculate p
(C)
c . The red point is the estimated crossing point

with error bars. The dashed red line is at p
(I)
c , the expected percolation threshold value,

and the labels are of n, the edge count. The lines are the fit lines used to find p
(C)
c .

It is clear the crossing point of the hyperbolic graphs {7, 3} and {5, 5} are significantly

farther away from p
(I)
c than the euclidean {4, 4} and random {r, 5} graphs.

and calculated result for the {r, 5} graph can easily be explained through the large gap

between p values. However, this same explanation is not true for the hyperbolic graphs.

When looking at the crossing points in Fig. 4.5, the hyperbolic graphs have

much larger deviations in the positions of their curves. This difference can be accounted

for due to their differences in the ratio lnn/d, where d is the distance of the graph. New

plots with a shift factor to account for this difference are shown in Fig. 4.6. This shift

was calculated through adding a term B lnn/d to the fit of S2/S1, where B is a fitting

parameter which is constant for all graphs. These B values are listed in Tab. 4.2, along

with the new critical percolation values of p
(shift)
c .
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Figure 4.6: Plot of the crossing point of S2/S1, the ratio between the largest and second

largest cluster sizes, with a finite size shift factor used to calculate p
(shift)
c , where d is

the distance of the graph. The red point is the estimated crossing point with error bars.

The dashed red line is at p
(I)
c , the expected percolation threshold value, and the labels

are of n, the edge count. The lines are the fit lines used to find p
(shift)
c . It is clear the

crossing point of the hyperbolic graphs {7, 3} and {5, 5} are significantly farther away

from p
(I)
c than the euclidean {4, 4} graph.

Overall, the final estimated percolation threshold value does not change. The

only graph which had a significant difference between p
(C)
c and p

(shift)
c is the {7, 4} graph

family. However, this is mainly due to the increased value in the error, not in a significant

shift in the crossing point. For the hyperbolic graphs, the shifted plots show a much

better convergence near the crossing point, but it is still many sigmas away from the

expected percolation threshold. Taking into account Figs. 4.5 and 4.6 along with the

results for p
(C)
c and p

(shift)
c shown in Tab. 4.2, we have strong numerical evidence the

cluster-ratio method does not give pc for hyperbolic graph families, with the exception

of random graphs which have substantially fewer short cycles.
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4.3.2 Results for pG

Giant Cluster Threshold Transition p value

{f, d} p
(I)
c pG nG aG

{3,7} 0.1993505(7) 0.2026(3) 10.83 2
{7,3} 0.5305246(7) 0.5350(4) 11.19 2
{3,8} 0.1601555(7) 0.162(2) 0.922 2
{8,3} 0.5136441(7) 0.515(2) 0.678 1
{4,4} 0.5 0.4919(2) -40.5 5
{4,5} 0.2689195(7) 0.2704(2) 7.402 2
{5,4} 0.3512228(7) 0.3533(4) 5.193 2
{4,6} 0.20714787(8) 0.2084(1) 12.52 1
{6,4} 0.3389049(7) 0.3401(3) 3.984 2
{7,4} 0.33526580(8) 0.3370(4) 4.335 3
{5,5} 0.25416087(8) 0.2553(6) 1.899 2
{6,5} 0.25109739(8) 0.253(1) 1.9 2
{r,5} 0.25 0.2514(1) 13.5 2

Table 4.3: Giant cluster threshold, pG, values found for graph families characterized by

Schläfli symbols {f, d}, where f = r stands for random graphs of degree d. Here p
(I)
c

is the percolation threshold (using invasion percolation data from Ref. [45], or exact
values where known), and pG is the giant cluster threshold (see Fig. 4.7). Numbers in
the parenthesis indicate the standard deviation σ in the units of the last significant digit,

so that, e.g., 0.14(4) ≡ 0.14 ± 0.04. Values of nG ≡ (pG − p(I)
c )/σ give the “number of

sigmas” from the deviation of the corresponding critical value found from the invasion
percolation, or exact threshold value if available. Numbers in columns labeled aG give
the degrees of the polynomials used to interpolate the data.

To find the giant cluster threshold, pG, we used finite size scaling, where the

pn values are found using inflection point extrapolation of the fractional size of the

largest cluster, s1 = S1/|V|, to s1 = 0. Unfortunately, this kind of extrapolation proved

unreliable for both hyperbolic and random graphs, see Fig. 4.7.

Indeed, for large graphs without a boundary, we expect this quantity to behave

similarly to θv(p), the probability that vertex v is in an infinite cluster. For hyperbolic

and random graphs, where the mean-field scaling θv(p) ∝ (p − pc)
β, with the order

parameter exponent β = 1 applies, the position of the inflection point is rather sensitive

to the graph size and other details.
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Figure 4.7: Finite size scaling fits to find the giant cluster threshold, pG. Each p value
is found by using inflection point extrapolation of s1, the fractional size of the largest
cluster. These values are scaled to an infinite size graph shown by the green point. The

dashed red line is at p
(I)
c , the expected percolation threshold value.

On the other hand, for the square-lattice tori of finite size, the plots of s1(p)

have positive curvature for p . pc, which changes over to negative curvature character-

istic of θv(p) with the critical exponent β < 1. The inflection point is indeed expected

to remain inside the critical region, whose width goes to zero with increasing dimension

L. Our results and scaling fits can be seen in Fig. 4.7 and Tab. 4.3.

4.3.3 Results for p0
E

A de-facto standard way for estimating the erasure threshold p0
E is the crossing

point method. The method is based on the expectation that the block error probability

is asymptotically zero for any p < p0
E and is equal to one for p > p0

E , with the crossover
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Erasure Threshold Transition p values

{f, d} p
(I)
c p

(C)
E n

(C)
E a

(C)
E p

(shift)
E n

(shift)
E BE p

(1)
E n

(1)
E a

(1)
E p

(I)
E n

(I)
E a

(I)
E p

(0)
E n

(0)
E a

(0)
E 1/m am

{3,7} 0.1993505(7) 0.1941(2) -26.25 6 0.19318(9) -68.56 0.081(5) 0.196(1) -3.35 1 0.200(2) 0.162 1 0.198(8) -0.169 1 -0.006(9) 1
{7,3} 0.5305246(7) 0.52109(8) -117.93 4 0.52042(5) -202.07 0.087(2) 0.5274(5) -6.249 1 0.52793(9) -13.123 1 0.5229(4) -19.06 1 0.0043(6) 1
{3,8} 0.1601555(7) 0.1519(4) -20.64 7 0.1524(1) -77.55 0.26(1) 0.1563(8) -4.819 1 0.1597(6) -1.155 1 0.156(2) -2.08 1 -0.001(2) 1
{8,3} 0.5136441(7) 0.5032(2) -52.22 6 0.5026(1) -110.4 0.32(3) 0.5122(7) -2.063 2 0.5107(1) -9.48 1 0.505(4) -2.16 2 0.006(3) 2
{4,4} 0.5 0.500004(6) 2. 6 0.499992(6) -1.33333 0.003(1) 0.4997(1) -3. 3 0.5006(1) 2. 3 0.5009(1) 9. 3 -0.0012(3) 3
{4,5} 0.2689195(7) 0.2581(2) -54.1 5 0.2547(2) -71.1 0.306(8) 0.2658(4) -7.799 1 0.2664(3) -4.199 1 0.261(2) -3.96 1 0.004(2) 1
{5,4} 0.3512228(7) 0.3415(4) -24.31 2 0.3412(4) -25.06 0.18(9) 0.3498(7) -2.033 2 0.3490(2) -5.557 1 0.343(4) -2.06 2 0.006(3) 2
{4,6} 0.20714787(8) 0.19564(4) -287.7 3 0.1949(3) -40.83 -0.08(3) 0.203(1) -4.15 1 0.20455(1) -37.541 1 0.19824(6) -148.46 1 0.0050(7) 1
{6,4} 0.3389049(7) 0.3272(4) -29.26 2 0.3275(3) -38.02 0.14(4) 0.336(1) -2.9 2 0.334(1) -2.45 2 0.333(4) -1.48 1 0.014(3) 2
{7,4} 0.33526580(8) 0.3200(2) -76.33 10 0.323(1) -12.3 0.24(8) 0.3338(5) -2.932 2 0.3321(4) -4.207 2 0.323(1) -12.3 2 0.011(1) 2
{5,5} 0.25416087(8) 0.2437(4) -26.15 5 0.2453(2) -44.3 0.88(6) 0.2507(6) -5.768 1 0.2515(1) -6.652 1 0.245(1) -9.16 1 0.005(1) 1
{6,5} 0.25109739(8) 0.2442(2) -34.49 4 0.2429(1) -81.97 0.053(5) 0.2478(6) -5.496 1 0.24969(7) -6.9869 1 0.2444(9) -7.442 1 0.0035(3) 1

Table 4.4: The lower erasure threshold, p0
E , values found for graph families characterized

by Schläfli symbols {f, d}, where f = r stands for random graphs of degree d. Here p
(I)
c

is the percolation threshold (using invasion percolation data from Ref. [45], or exact

values where known). p
(C)
E and p

(shift)
E are the crossing point of the erasure probability,

where the shift value has an extra shift of B lnn/d added to account for difference

in the code rates (see Figs. 4.10 and 4.11). p
(1)
E , p

(I)
E and p

(0)
E were found using the

tangent line of inflection point of the erasure probability; the intersection of this line
with the erasure probability at 1, the inflection point, and 0 gave the three results
respectively (see Fig. 4.12). The inverse slope, 1/m, is the inverse of the slope at the
inflection point of the erasure probability (see Fig. 4.13). Numbers in the parenthesis
indicate the standard deviation σ in the units of the last significant digit, so that, e.g.,

0.14(4) ≡ 0.14± 0.04. Values of nE ≡ (pE − p(I)
c )/σ give the “number of sigmas” from

the deviation of the corresponding critical value found from the invasion percolation,
or exact threshold value if available. Numbers in columns labeled aE give the degrees
of the polynomials used to interpolate the data; polynomials of the same degrees were

used to obtain p
(C)
E and p

(shift)
E .

region small for large codes. Respectively, when the erasure probability found numeri-

cally for several graphs is plotted as a function of p, the corresponding lines are expected

to cross in a single point, which is identified as the pseudothreshold.

This works well for codes with power-law distance scaling. An example is

shown in Fig. 4.10 of the {4, 4} graph, where the homological error probability (3.1) for

several square lattice toric codes with parameters [[2d2, 2, d]] and d ranging from 60 to

220 is plotted as a function of the open edge probability p. Visually, a beautiful crossing

point close to p0
E = 1/2 is observed. To find the corresponding erasure pseudothreshold,

the data was fitted collectively with polynomials of ξ ≡ p − p0. In the same way the

crossing point of S2/S1 is found above for the cluster-ratio method.

For the square-lattice graphs, using 6th degree polynomials, we obtained p0({4, 4}) =
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0.500004± 0.000002, very close to the square lattice percolation threshold pc({4, 4}) =

1/2, as expected from Refs. [50, 23] and Theorem 9. The corresponding linear terms

A1n (the derivative at the crossing point) have a power law A1n = bnα scaling (not

shown), with the exponent α = 0.375±0.003, consistent with the expectation of a sharp

threshold in the large-n limit.

We used a similar technique to process the homological error probability data

for hyperbolic graphs. A sample of the corresponding plots is also shown in the Fig. 4.10.

These plots have two significant differences with the {4, 4} graphs. First, the crossing

points are significantly below the percolation transitions indicated by the vertical dashed

lines. Second, despite smaller scales, the convergence near the crossing points does not

look as nice. Empirically, deviations in the position of the curves are associated with

the differences in the ratio lnn/d, cf. the bounds in Statements 4, 5 and Example 11.

To reduce the corresponding errors in the calculation of the erasure thresholds we only

used the optimal graphs, shown in Tab. 4.1 with the distance shown in bold.

Yet, using only the optimal graphs was not sufficient to completely eliminate

the finite-size variation. Much better crossing points are obtained by introducing a ver-

tical shift B lnn/d, where B is an additional global fit parameter (see plots in Fig. 4.11),

similar to how it was performed for the crossing point of S2/S1 in Fig. 4.6.

In comparison, the crossing point method does not work for measuring the

location of the homological transition p0
H , even though the variation between the graphs

is not expected to matter that much here. Main reason for the difference is that the

erasure rate (3.9) retains a finite slope in the infinite graph limit, which makes the

crossing point analysis unreliable.
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Figure 4.8: Homological distance d ≡ dZ associated with non-trivial cycles for optimal
graphs in {7, 3} and {5, 5} families vs. the graph size n (number of edges) with the
logarithmic scale. Numbers also indicate the graph sizes. Smaller relative distances
d/ lnn result in larger erasure probabilities in Figs. 4.10; this can be compensated to
some extend by using the correction term as in plots in Fig. 4.11.

Numerical data indicates, as seen in Tab. 4.4, the erasure (pseudo)threshold

is substantially below pc for hyperbolic graphs with logarithmic distance scaling, with

the variation of the ratio lnn/d having a significant effect on the quality of the crossing

point. In contrast, for graphs from the {4, 4} family where d ∝ n1/2, the cycle erasure

(pseudo)threshold is very close to the bulk percolation threshold, as generally expected

from Refs. [50, 23] and Theorem 9.

The next erasure threshold methods use the tangent line created from perform-

ing inflection point extrapolation, similar to how pG was calculated. We looked at our

erasure probability data and found the inflection point moved closer to Pp(rankH1 >

0) = 1 as n increases. For each graph, the position of the inflection point and the corre-

sponding slope were calculated from the polynomial fits to the data. Subsequently, we

extrapolated to three different points: down to Pp(rankH1 > 0) = 0, at the inflection

point itself and up to Pp(rankH1 > 0) = 1, each of which corresponds to p
(0)
E , p

(I)
E and
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Figure 4.9: Example plots of Pp(rankH1 > 0), the erasure probability, where the red

dashed line is at p
(I)
c , the expected percolation threshold, and the labels are using n, the

edge count. A zoomed in view near the crossing point can be seen in Fig. 4.10.

p
(1)
E respectively. The finite size scaling fits can be seen in Fig. 4.12. We also calculated

the slope at the inflection point and used finite size scaling to estimate the slope of the

infinite sized graph, which can be seen in Fig. 4.13. The final results can be seen in

Tab. 4.4.

These three p0
E values, along with the inverse slope, are not as good estimates

for p0
E as the crossing point method, p

(C)
E . However, they can be used to justify the

crossing point method and give further evidence p0
E < pc for the hyperbolic graphs.

Looking at the results for the inverse slope, 1/m, in Tab. 4.4 and Fig. 4.13, the square-

lattice, {3, 7} and {3, 8} graph families have an inverse slope which approaches 0. In

contrast to the other hyperbolic graphs, which the inverse slopes extrapolate to values
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Figure 4.10: Plots showing the crossing point of the erasure data. The green arrow
indicates the position of the crossing point found by the fit. The horizontal dashed line

is at p
(I)
c , the expected percolation threshold, and n, the edge count, is being used has

labels for each graph. The solid lines are the fitted lines for the data.

larger than 0.

Because of the slope being finite for hyperbolic graphs, we do not expect p
(1)
E or

p
(I)
E to equal p0

E . However, they do give a strong upper bound on p0
E . The critical value

p
(0)
E does give a better estimate for p0

E , but since the inflection point of Pp(rankH1 > 0)

moves upwards, this value is also an upper bound on p0
E . We can see in Fig. 4.12 for

the hyperbolic graphs {7, 3} and {5, 5}, p(1)
E and p

(I)
E agree with each other, while p

(0)
E

is significantly lower and all three are significantly lower than pc. In contrast, the non-

hyperbolic {4, 4} family, all three agree with each other and with pc. Looking at final

critical values in Tab. 4.4 for the hyperbolic graphs we have shown numerically,

p0
E ' p

(shift)
E . p

(0)
E < p

(I)
E ' p

(1)
E . pc, (4.6)
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Figure 4.11: Plots showing the crossing point of the erasure probability. The green
arrow indicates the position of the crossing point found by the fit. The red horizontal

dashed line is at p
(I)
c , the expected percolation threshold. The solid lines are the fitted

lines for the data. The plots for the hyperbolic graphs, as compared to those seen in
Fig. 4.10, have a much better convergence to the crossing point. This crossing point is
still significantly smaller than the expected pc value.

and for the euclidean {4, 4} family all erasure critical values are at pc. These results give

strong numerical evidence p0
E < pc for hyperbolic graphs, while p0

E = pc for euclidean

graphs, agreeing with Theorems 6 and 9 and Example 11.
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(1)
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(I)
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E . Each p value

is found by taking the tangent line of the inflection point, and then finding the p value
such that the erasure probability is 1, pinf or 0, where pinf is the inflection point itself.
These values are fitted and scaled to find the p value for an infinite graph. The dashed

red line is at p
(I)
c . For the hyperbolic graphs {7, 3} and {5, 5}, p(1)

E and pE(I) agree with

each other, while p
(0)
E is significantly lower and all three are significantly lower than pc,

but for the non-hyperbolic graph, {4, 4}, all three agree with each other and with pc.
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Figure 4.13: Shows the finite size scaling fits used to find the inverse slope at the
inflection point in the infinite graph limit. Each slope value is calculated for each graph
at the inflection point of the erasure probability. The inverse of this slope is taken and
they are scaled to find the inverse slope for an infinite graph which is shown by the green
point. The dashed red line is at 0, where we would expect the inverse of the slope to
equal if the slope approached infinity.
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Chapter 5

Conclusions

In this work we focused on critical points associated with homology-changing

percolation transitions in a sequence of finite graphs weakly convergent to an infinite

graph H, a covering graph of the graphs in the sequence. We presented numerical

evidence to support our stated theorems along with evidence for conjectures related to

graphs with logarithmic distance scaling. Mainly we show the erasure threshold is less

than the percolation threshold for graphs with logarithmic distance scaling, where the

lower erasure threshold is the largest p value such that no homology is covered and the

percolation threshold is the smallest p value such that an infinite cluster exists. We

also present multiple methods which attempt to find the percolation threshold, and we

comment on their reliability for hyberbolic graphs.

The position of the homological 1-cycle erasure threshold p0
E is governed by

the scaling of the homological distance d with lnn, where d is the size of a smallest non-

trivial cycle and n is the graph size (number of edges). Generally, p0
E ≤ pc(H), where

the equality is reached for superlogarithmic distance scaling, while p0
E = 0 is expected
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for sublogarithmic distance scaling. In the case of logarithmic distance scaling where

the quantity d/ lnn remains bounded away from 0 and from infinity, the cycle erasure

threshold p0
E remains strictly positive as long as H is a bounded-degree graph, and we

expect p0
E to be strictly below pc. A strict proof of this is not given, but numerical

evidence shows it to hold in the case of hyperbolic graphs.

For an amenable graph H with a finite isoperimetric dimension, an easy upper

bound on the distance can be constructed by considering a ball with the radius equal to

the injectivity radius, giving a power-law scaling of the distance with n. Generically, we

expect that a sequence of covering maps with superlogarithmic distance scaling can be

constructed when such a graph is quasitransitive, resulting in p0
E = pc(H). In particular,

this is the case for any periodic lattice in dimension D > 1, since covering maps can be

constructed by using periodic boundary conditions along each axis.

On the other hand, logarithmic scaling of the distance is the most one can ex-

pect whenH is non-amenable. For such a graph the uniqueness threshold is expected [27]

to be strictly higher than the percolation threshold, ∆p ≡ pu(H) − pc(H) > 0, which

gives a non-trivial upper bound for the asymptotic rate, R ≤ ∆p, where R > 0 corre-

sponds to an extensive scaling of the homology rank associated with non-trivial 1-cycles.

For any graph sequence with R > 0, we also introduced a pair of homological thresholds

p0
H and p1

H , associated with the points where asymptotic erasure rate (3.9) deviates from

the values at p = 0 and p = 1, respectively. Generally, p0
H ≥ pc; for planar transitive

graphs we proved p0
H = pc(H) and p1

H = pu(H). We conjecture this to be the case more

generally.

Numerically we verified our results and gave threshold results for the case of
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hyperbolic graphs, which have logarithmic distance scaling. First we calculated the pc

using two main methods. The first uses the crossing point of the cluster-ratio, which

has been proven to work for metric graph, and is generally accepted to work for most

finite size graph families. However, we show for hyperbolic graphs, this method works

poorly. We verify this method works for the toric and random graph families. However,

we also presented an alternative method to calculate pc which is reliable for hyperbolic

graphs, but it fails for the toric graphs. This method performs finite size scaling which

extrapolates the p value on the finite graph such that the largest cluster, S1 follows the

relation S1 = |V|2/3. This method gives good performance and agrees with the expected

pc value for hyperbolic graphs and random graphs since they are both expander graphs,

but does fail for the square-lattice graphs.

We also calculated a pseudo-erasure threshold p0
E . This was done by finding

the crossing point of the erasure probability. We also performned finite size scaling of

the inflection point tangent line. Our numerics showed strong evidence for hyperbolic

graphs p0
E < pc, but for the square-lattice and random graphs p0

E = pc. We have proofs

for the second result, but not for the first.

In order to obtain good numerics on hyperbolic graphs we needed to create

hyperbolic CSS codes and their corresponding graphs. These graphs are non-trival to

make. We found graphs of various hyperbolic graph families with graph sizes up to

∼ 105 edges.

A number of open questions remain. First, related to the sequences of finite

graphs both weakly convergent to an infinite graph H, and covered by H. What are the

properties of H necessary for such a sequence to exist, in particular, is it necessary that
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H be quasi-transitive? Second, is it true that with a logarithmic distance scaling, the

strict inequality holds p0
E < pc(H)? We have shown numerical evidence it is true, but

to what extent, as indicated by Example 11 and numerics?

An important open question is to what extent present results can be extended

to other models, in particular, Ising and, more generally, q-state Potts model on various

graphs. Indeed, successful decoding probability in qubit quantum LDPC codes can be

mapped to ratios of partition functions of associated random-bond Ising models [17, 37,

32]. In the clean (no-disorder) limit, these can be rewritten in terms of Fortuin-Kasteleyn

(FK) random-cluster models. For such a model with q ≥ 1, Hutchcroft [30] has recently

proved the exponential decay of cluster size distribution in the subscritical regime. In

particular, this could help fixing the location of the boundary of the decodable region

for certain families of graph-based quantum CSS codes in the weak-noise limit.

Finally, is there a numerical method to calculate pc (or pG) based on finite

graph data which works well for euclidean, hyperbolic and random graphs? The crossing

point of the cluster sizes gives good results for euclidean and random graphs, but not

hyperbolic graphs. The finite size scaling of the largest cluster size works well for

hyperbolic graphs and random graphs, but not euclidean graphs.
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Data Availability

The data that supports the findings of this study are available at GitHub at

https://github.com/QEC-pages/Homology-changing-percolation-transitions-on-finite-graphs.

The programs used to generate the data and associated scripts are available from the

corresponding author upon reasonable request.
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