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Improved renormalization group computation of likelihood functions for cosmological
data sets

Patrick McDonald1, ∗

1Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
(Dated: June 24, 2019)

Evaluation of likelihood functions for cosmological large scale structure data sets (including CMB,
galaxy redshift surveys, etc.) naturally involves marginalization, i.e., integration, over an unknown
underlying random signal field. Recently, I showed how a renormalization group method can be
used to carry out this integration efficiently by first integrating out the smallest scale structure, i.e.,
localized structure on the scale of differences between nearby data cells, then combining adjacent
cells in a coarse graining step, then repeating this process over and over until all scales have been
integrated. Here I extend the formulation in several ways in order to reduce the prefactor on the
method’s linear scaling with data set size. The key improvement is showing how to integrate out the
difference between specific adjacent cells before summing them in the coarse graining step, compared
to the original formulation in which small-scale fluctuations were integrated more generally. I suggest
some other improvements in details of the scheme, including showing how to perform the integration
around a maximum likelihood estimate for the underlying random field. In the end, an accurate
likelihood computation for a million-cell Gaussian test data set runs in two minutes on my laptop,
with room for further optimization and straightforward parallelization.

I. INTRODUCTION

[1] presented a new method to evaluate large scale structure likelihood functions, inspired by renormalization group
(RG) ideas from quantum field theory [e.g., 2, 3]. This paper is a followup to that one, so some of the pedagogical
discussion and derivations there will not be repeated here. To recap the basics: the fact that structure in the Universe
starts as an almost perfectly Gaussian random field and evolves in a computable way on the largest scales [e.g., 4–6]
suggests a statistically rigorous first-principles likelihood analysis can be used to extract information on cosmological
models from observational data sets [e.g., 7–11]. Generally, we have a data vector o, some relatively small number of
global cosmological parameters we want to measure, θ, and a random field we’d like to marginalize over, φ. (φ could
be a variety of different things, depending on the data set and theoretical setup, e.g., the underlying true temperature
field for CMB, the linear regime density and/or potential fields for a galaxy redshift survey modeled by traditional
perturbation theory, the evolving displacement field in the functional integral formulation of [6], etc.) Starting with
Bayes’ rule L(θ,φ|o)L(o) = L(o|θ,φ)L(φ,θ) = L(o|θ,φ)L(φ|θ)L(θ) we obtain

L(θ|o) =

∫
dφ L(θ,φ|o) =

∫
dφ L(o|θ,φ)L(φ|θ) , (1)

where I have dropped L(o) which has no parameter dependence and the prior L(θ) which plays no role in this
discussion because it can be pulled out of the integral. I have highlighted the usual cosmological form where some of
the cosmological parameters determine a prior on the signal field, L(φ|θ), and then there is some likelihood for the
observable given θ and φ, L(o|θ,φ). It is this φ integral that we need to carry out. Generally, we can take at least
part of L(φ|θ), LG(φ|θ), to be Gaussian, defined by its covariance, P(θ). In this case we have

L(θ|o) =

∫
dφ e−

1
2φ

tP−1φ− 1
2Tr ln(2πP)+lnLNG(φ|θ)+lnL(o|θ,φ) , (2)

where I have used ln det(P) = Tr ln(P) and defined lnLNG(φ|θ) ≡ lnL(φ|θ) − lnLG(φ|θ). (Even for what we call
non-Gaussian initial conditions [e.g., 12–17], the observable can often if not always be written as a function of an
underlying Gaussian random field, i.e., no LNG needed, and in other scenarios like [6] where the natural φ is not
Gaussian, there is still a natural Gaussian piece.) Less generally but still often usefully (e.g., for primary CMB
and large scale galaxy clustering ignoring primordial non-Gaussianity) we can take lnLNG = 0 and L(o|θ,φ) to be
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Gaussian by assuming o is linearly related to φ, i.e., o = µ + Rφ + ε where µ is the mean vector, R is a linear
response matrix, and ε is Gaussian observational noise with covariance matrix N. Then we have

LGaussian(θ|o) =

∫
dφ e−

1
2φ

tP−1φ− 1
2Tr ln(2πP)− 1

2 (o−µ−Rφ)tN−1(o−µ−Rφ)− 1
2Tr ln(2πN) (3)

= e−
1
2 (o−µ)tC−1(o−µ)− 1

2Tr ln(2πC)

where in the last line the integration has been carried out analytically, with C ≡ N + RPRt. Even this analytic
integration does not really solve the Gaussian problem, however, as the time to calculate C−1 and det(C) (or its
derivatives) by brute force numerical linear algebra routines scales like N3, where N is the size of the data set, which
becomes prohibitively slow for large data sets. The RG approach of [1] addresses the Gaussian scenario by doing the
φ integral in a different way that produces the result directly as a number instead of these matrix expressions, and
can also be applied to non-Gaussian scenarios. Note that, as discussed in [1], the approach can also be used to directly
compute derivatives of lnL(θ|o) with respect to θ, not just the value at one choice of θ, by passing the derivative
inside the φ integral to produce a new integral. Traditional power spectrum estimation can be done by taking θ to
parameterize P(θ) by amplitudes in k bands.

In spite of the fact that fairly fast methods to evaluate at least the Gaussian likelihood [Eq. (3)] have existed
for a long time [e.g., 18–22], more often in practice data analysts compute summary statistics not explicitly based
on likelihood functions [e.g., 23, 24], calibrating their parameter dependence and covariance by computing the same
statistics on mock data sets. It is not entirely clear why existing likelihood-based methods are not used more often,
and in [1] I was cautious about advocating immediate implementation of the RG approach. One question was if the
prefactor on the linear scaling of computation time with data set size for this method might be so large as to make
it significantly slower than others. This paper demonstrates that this is not a significant obstacle. At two minutes
to accurately compute the likelihood function for a million-cell Gaussian test data set, the method is as fast as any
that takes more than a few well-preconditioned conjugate gradient maximum likelihood solutions for the same data
set (i.e., as fast as any method I know of, barring the possibility that my Julia implementation of conjugate gradient
maximum likelihood is unfairly slow). The only reason not to implement this is if you believe the whole idea of
likelihood-based analysis is a distraction. That would not necessarily be an entirely unreasonable position. E.g., if
you believe that there is a lot of reliable cosmological constraining power to be gained from the deeply non-linear
regime, heuristic summary statistics/“machine learning,” combined with exhaustive mocks/simulations is probably
the only way to extract it. To me, however, the likelihood+RG approach proposed here seems like an appealing path
to large scale analysis, especially for incorporating weakly nonlinear information (e.g., without the need to explicitly
estimate a bispectrum and its covariance).

This paper lays out a series of essentially technical improvements to the basic approach presented in [1]. See that
paper for a derivation of the general RG equation and some more pedagogical discussion. Some of that basics are
explained in less detail here when they can be read there.

II. REVISED FORMULATION

A. Master RG equation

Consider the general functional integral over some field φ,

I ≡
∫
dφ e−S(φ) ≡

∫
dφ e−

1
2φ

tQ−1φ− 1
2Tr ln(2πQ)−SI(φ) . (4)

The connection to our cosmological likelihood functions, Eq. (2), is obvious, but not necessary for this subsection.
Suppose that Q → 0, i.e., Q−1 goes to infinity (all its eigenvalues). In that limit the Q part of I becomes a
representation of the delta function and it is clear that I(Q → 0) → exp[−SI(0)], i.e., the integral can be done
trivially. Generally, however, Q is not sufficiently small so if we want to do the integral this way we need to change Q
to take it to zero. But we can’t simply change Q because that will change the value of I, the integral we are trying to
perform. If we want to change Q while preserving I we need to simultaneously change SI . The renormalization group
equation tells us how to do this. Guided by, e.g., [3], [1] showed that we can preserve the value of I if the following
differential equation is satisfied:

S′I =
1

2

∂SI
∂φt

Q′
∂SI
∂φ
− 1

2
Tr

[
Q′

∂2SI
∂φ∂φt

]
, (5)
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where we parameterize the evolution by λ, i.e., Q = Q(λ), SI = SI(λ), and the prime means derivative with respect
to λ, where Q(λ = 0) and SI(λ = 0) represent the original elements of the integral. (Note that, relative to Eq. (7)
of [1], I have moved the normalization constant N into SI , after extracting Tr lnQ from it to keep the integral unit
normalized when SI = 0.) This formula is pure math, i.e., it assumes essentially nothing about Q, Q′, and SI(φ).
Typically λ will represent a length scale, where structure in Q has already been erased on smaller scales, and Q′ is
doing the job of erasing it on scale λ, but Eq. (5) applies to any infinitesimal change in Q.

B. Application to Gaussian cosmological data

As in [1], I will demonstrate the calculation for a purely Gaussian example, i.e., SI(φ) at most quadratic in φ. This
is a special case only—Eq. (5) applies for any SI(φ). The likelihood function will be Eq. (3), except for simplicity I
will set µ = 0, i.e., I take

L(θ|o) =

∫
dφ

e−
1
2φ

tP−1φ− 1
2 (o−Rφ)tN−1(o−Rφ)√

det(2πP) det(2πN)
. (6)

For the RG method to be efficient, the linear response matrix R and the observational noise N cannot be completely
arbitrary. Ideally R should be fairly short range, e.g., a CMB telescope beam convolution or redshift space cells
in which we have counted galaxies. Similarly, N should be short-range, e.g., diagonal for uncorrelated noise. The
general approach can be adapted for special kinds of deviations from short range R or N, but I will assume they are
short range here. I generally assume the problem can be formulated to make P translation invariant (i.e., diagonal
in Fourier space), although slow evolution in statistics can easily be accommodated. It is potentially useful to change
integration variables to δ ≡ φ − φ0, where φ0 is some constant field specified by hand. We plan to make φ0 the
maximum likelihood field, but do not need to assume that. Substituting this into Eq. (6) and comparing to Eq. (4),
understanding that φ in Eq. (4) is a dummy variable so we can just as well replace it with δ, we see that the general
integral I in Eq. (4) is equivalent to the the Gaussian cosmological L(θ|o) if we define

Q−1(0) ≡ P−1 + A? . (7)

and

SI(0) ≡ φt0P
−1δ +

1

2
φt0P

−1φ0 +
1

2
(o−Rφ0 −Rδ)tN−1(o−Rφ0 −Rδ) +

1

2
Tr ln (2πN) (8)

−1

2
δtA?δ +

1

2
Tr ln (I + A?P)

=
1

2
δt
(
RtN−1R−A?

)
δ −

[
(o−Rφ0)

t
N−1R− φt0P

−1
]
δ

+
1

2
φt0P

−1φ0 +
1

2
(o−Rφ0)

t
N−1 (o−Rφ0) +

1

2
Tr ln (2πN) +

1

2
Tr ln (I + A?P) .

The reason for subtracting 1
2δ

tA?δ from SI(0) and adding it to the Q−1 term (adding zero overall, with A? an as
yet unspecified matrix) will become clear below.

As in [1], the evolving Gaussian SI(λ) is represented numerically by the evolving coefficients A(λ), b(λ), and N (λ)
of the general form

SI(λ) ≡ 1

2
δt A(λ) δ − bt(λ) δ +N (λ) . (9)

Comparison to Eq. (8) for SI(0) sets the initial conditions for A, b, and N :

A(0) ≡ RtN−1R−A? (10)

b(0) ≡ RtN−1 (o−Rφ0)−P−1φ0 (11)

and

N (0) ≡ 1

2
φt0P

−1φ0 +
1

2
(o−Rφ0)

t
N−1 (o−Rφ0) +

1

2
Tr ln (2πN) +

1

2
Tr ln (I + A?P) . (12)
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Plugging Eq. (9) into Eq. (5) we find the flow equations for A, b, and N :

A′ = AQ′A (13)

b′ = AQ′b (14)

N ′ =
1

2
btQ′b− 1

2
Tr [AQ′] . (15)

Note that if φ0 is the maximum likelihood field (for given values of P, R, etc.), b = b(0) = 0. If the problem
happened to be statistically homogeneous (translation invariant), we could set A? = RtN−1R to make A = A(0) = 0.
In that case there would be no evolution—N (0) would simply be the answer. This is the point of A?, i.e., if we choose
it to be as close as possible to RtN−1R, we can reduce the RG evolution to be a minimal correction due to statistical
inhomogeneities. The limitation, i.e., why A? generally can only approximate RtN−1R, is that A? must maintain
the symmetries necessary to allow us to efficiently evaluate Tr ln (I + A?P) in Eq. (12), e.g., in Fourier space, to set
the initial value of N .

In terms of these definitions, the result of formal analytic integration is

L(θ|o) = e
1
2b

t(Q−1+A)
−1

b−N− 1
2Tr ln(I+AQ) . (16)

We can use this formula once the components have been coarse-grained sufficiently to allow brute force linear algebra.
To be clear: if we plug A(0), b(0), N (0), and Q(0) into this equation, it becomes precisely the analytic integration
result in Eq. (3) (with µ = 0). The difference is that as these quantities evolve and are coarse grained their dimensions
become smaller, with the result of the small-scale integration that has been performed stored in the simple number
N . See [1] for more discussion.

C. Integrating out the difference between adjacent cells

In [1] I used

Q−1(λ) = Q−1(0) + K(λ) (17)

where K(λ→∞)→∞ to suppress fluctuations. I mentioned the potentially cleaner possibility

Q(λ) = Q(0)W(λ) (18)

where W(λ→∞)→ 0, e.g., W (k, λ) ≡ e−k
2λ2

. Either of these was envisioned to suppress fluctuations in a smooth,
homogeneous way (i.e., with no explicit connection to the data cell structure), starting from small scales to large.
Once fluctuations were sufficiently suppressed on the scale of data cells, adjacent cells were combined, i.e., adjacent
elements in b and the corresponding 2 × 2 block in A were summed. This worked well enough, but the number of
elements that I needed to store in A, which determines the speed of computation, seemed surprisingly large.

Here I introduce a new possibility, to more explicitly integrate out the fluctuations between pairs of cells that we are
going to combine (see Appendix A for an alternative version of this idea). Given covariance matrix Q1 for some vector,
we know that the covariance for a new vector where each adjacent pair of elements is replaced by one element with its
average, Q2c, is simply given by the average of the appropriate 2×2 blocks of Q1, e.g., Q2c

11 = 1
4 (Q1

11+Q1
12+Q1

21+Q1
22),

Q2c
12 = 1

4 (Q1
13 +Q1

14 +Q1
23 +Q1

24), etc. This makes clear that if we define Q′ ∝ Q2 −Q1, where Q2 is the matrix of

equivalent dimension to Q1 but with the 2× 2 blocks that will be compressed to Q2c replaced by their average (e.g.,
Q2

11 = Q2
12 = Q2

21 = Q2
22 = Q2c

11), we can straightforwardly evolve Eq. (5) from a starting Q1 to ending Q2, followed
by a coarse graining combination of cells, and repeat. Formally, for each iteration what we are doing is defining
Q(λ) = Q1 + λ(Q2 −Q1) so that Q′ ≡ dQ/dλ = Q2 −Q1, and solving the differential equation (5) for λ running
from 0 [where Q(λ = 0) = Q1] to 1 [where Q(λ = 1) = Q2].

The obvious problem here is that generally Q2 −Q1 is a dense matrix, which we can’t have if the method is to be
fast. The key to the RG approach working is that elements of Q2 −Q1 will generally be small very far off-diagonal,
i.e., physically we do not expect the correlation at wide separations to change much when the separation is changed
by a small fractional amount. To put it another way, we do not expect to need to use small cells when measuring
correlations at wide separations. This allows us to drop most elements of Q2−Q1, keeping it, and A as influenced by
it, sparse. The closest thing to an exception to this “no fine structure at large separations” rule that comes to mind



5

is the BAO feature—a relatively narrow bump at wide separation. Considering such a thing, we observe that it is
only necessary for Q′ to remain sparse, not strictly near-diagonal, i.e., we can if necessary include a strip of elements
somewhere off-diagonal in Q′, propagate this into A, etc., as long as there are not too many of these elements.

Operationally, this program is surprisingly straightforward. I start by computing one full row of Q(0) =(
P−1 + A?

)−1
. This is basically just a standard computation of a correlation function given a power spectrum,

i.e., this matrix obeys translation invariance by construction, so its elements are a function only of separation, in-
verses can be done in Fourier space, and one row is all that is necessary to capture the full matrix. This Q(0) becomes
Q1 described above and I compute the first two rows of Q2 (the 2× 2 block-averaged matrix) directly from it. From
this I compute the full sparse Q′ including only elements above some threshold. I define the threshold to be some
fraction of the maximum absolute value of Q′, called εQ′ , i.e., I keep elements with |Q′ij | > εQ′max|Q′|. Note that
this makes no assumption about the structure of Q′, e.g., an off-diagonal stripe due to something like BAO will be
propagated if it passes the threshold.

After evolving A, b, and N through Eqs. (13)-(15), they, along with Q as represented by a single row, are coarse-
grained by factors of two (i.e., elements summed in the case of b and A and averaged in the case of Q) and the
next iteration proceeds exactly as before. All of the problem-specific details go into the construction of Q(0), A(0),
b(0), and N (0)—after that the algorithm proceeds essentially identically for any problem. After enough iterations
the effective data set becomes small enough to finish the calculation by brute force using the analytic integral formula,
Eq. (16).

Note that, while my test problems will be one dimensional, where factors of two coarse graining by combining
adjacent pixels is the obvious thing to do, there is no obvious reason not to do this as well in higher dimensions. On
a cartesian grid we can combine adjacent cells in one direction at a time. On a sphere, a hiearchical block of four
HEALPixels [25] can be combined in two steps of pair combinations. However, it should also be possible to generalize
the method to combine more than two cells at a time. Q2 as discussed above just needs to represent the appropriately
averaged covariance.

D. Sparsification

While the Q′ cut discussed above limits the range in A somewhat, in practice I find that the evolution of A produces
many small elements that do not need to be fully propagated for accuracy and slow down the calculation significantly.
In [1] I maintained the sparsity of A by computing elements only out to some maximum separation, taken to be a
multiple of the RG distance scale λ. Here I suggest a potentially more generally adaptive method, along the lines of
the element size cut discussed above involving εQ′ . The key equation numerically is Eq. (13), because the matrix
products there dominate the computation time. To control this, I introduce two more numerical parameters. When
evaluating AQ′A, I first trim A using another threshold parameter, εA, again basing the cut on the absolute value
of elements relative to the maximum absolute value. To be clear, I am not permanently dropping part of the stored,
evolving A, only the matrix used to compute AQ′A. I apply another similar cut defined by εA′ to A′ = AQ′A,
before using it to update A in each λ step. In practice, for simplicity, I only use one of these two cuts at a time,
finding the εA cut to be slightly more efficient in my test problems.

E. Numerical demonstration

For numerical tests I use one dimensional scenarios similar to [1]. I use signal power spectrum P (k) = A(k/kp)
γ exp(−k2)

with γ = 0 or −0.5, where k is measured in units of the data cell size. I add unit variance noise to each cell. I generate
mock data with A0 = 1 and calculate likelihoods as a function of A. I use pivot kp = 0.1 so that the γ = −0.5 case
has both signal and noise dominated ranges of scales. To be sure the test covers both fine structure and edges, I
create statistically inhomogeneous data sets where the rms noise level in every fourth cell is multiplied by a factor of
10, and the noise in the last quarter of the data vector is similarly multiplied.

It is more difficult to make a non-trivial test with the innovations in this paper, because if I assume periodic data
with homogeneous noise so that I can compute the exact likelihood to compare to using FFTs, the obvious choice of
A? sets A ≡ 0 so the RG evolution is almost trivial. If I also find the maximum likelihood field to use for φ0, so that
b ≡ 0, it is completely trivial. For this reason I only do tests with inhomogeneous data in this paper, first on data
sets small enough to compute the exact likelihood by brute force linear algebra, demonstrating that the RG method
works precisely in the appropriate limit of the numerical parameters, then with large data sets where the truth is
determined by using much better than necessary values for numerical parameters.

After some experimentation, my standard numerical parameter settings are as follows: A? is set to 0.47N−10 ,
where N0 is the noise power in the good part of the data—this sets the accumulated Tr[AQ′] term in Eq. (15) to
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approximately zero (the results are insensitive to the exact value of A?, as long as it is reasonable). I specify the
number of mid-point method λ steps per factor of two coarse graining by a numerical parameter NdQ′ . My standard
setting is NdQ′ = 8 (in an advanced version of the method, one could try to apply all the usual tricks for solving
differential equations numerically). I set εQ′ = 0.02, and εA = 0.0005.

1. Small problems

I first do some tests with N = 16384, where we can still pretty quickly compute the exact likelihood by brute force
linear algebra, shown in Fig. 1. The results are good, by construction of course. Both using a maximum likelihood

0.85 0.90 0.95 1.00 1.05 1.10 1.15
A

-10.0

-7.5

-5.0

-2.5

0.0

2
ln

L

N=16384
exact
exact fit
RG
RG fit
no max like
A = 0

FIG. 1. N = 16384 test. The exact likelihood is computed by brute force linear algebra at five representative values of A. To
guide the eye, I fit a quadratic polynomial to the points, using this to define the maximum. I use the RG method to compute the
likelihood at the same five points, and similarly plot a quadratic fit representation—the results are essentially indistinguishable
in this example. For the case with no maximum likelihood field, i.e., φ0 = 0, and the case with A? = 0, I plot only the fitted
quadratic, to reduce clutter.

φ0 and using A? to remove the mean effect of A from the evolution improve the accuracy at fixed parameter settings,
although for these settings (which were driven by larger data sets) the difference is not critical. This example has
γ = −0.5, which is generally a little more difficult for the algorithm than γ = 0.

2. Large problems

If we are convinced that the algorithm works in the sense of producing accurate results in the appropriate limit
of numerical parameters, we can do non-trivial large-scale tests by simply looking for convergence as the numerical
parameters are changed, i.e., we assume that if there is convergence it is to the correct result. Figure 2 shows an
N = 524288 test, for γ = −0.5 again. The results are again excellent. One might guess based on these figures that
my numerical parameter settings are too conservative, i.e., that I could loosen them to achieve better speed. This is
not actually true—there seems to be some cancelation of errors that makes the results in these particular examples
so perfect, and they go bad very quickly if the parameters are loosened.
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0.97 0.98 0.99 1.00 1.01 1.02 1.03
A

-10.0

-7.5

-5.0

-2.5

0.0

2
ln

L

N=524288
~exact
~exact fit
RG
RG fit
no max like
A = 0

FIG. 2. N = 524288 test similar to Fig. 1. The “exact” likelihood is not strictly exact, but computed for NdQ = 25,
εQ′ = 0.0005, and εA = 0.0002, which is perfectly converged at the level of differences in this figure.

I stop at N = 219 for these examples because careful testing on my laptop becomes tedious beyond this, especially
running with extremely conservative parameter settings to be certain of the exact result. I have run up to two million
cells with good looking results. A one million cell example runs in two minutes. At four million I start to exhaust the
memory on my laptop in my current Julia implementation, although it would be possible to go somewhat further with
more optimization. In any case, it is clear that billion cell data sets could be done comfortably on a supercomputer.

I tried evolving using Q(λ, k) = Q(0, k)e−k
2λ2

, more like in [1], but with a maximum likelihood φ0, A?, and element
size cuts as introduced in this paper, but was unable to come within a factor of ten of the performance of the pairwise
suppression approach of this paper.

III. DISCUSSION

To summarize, I have suggested the following improvements to the basic RG approach of [1]:

• Integrating out the difference between cells that are to be combined, rather than small-scale structure more
generally, by defining Q′ directly to be proportional to the difference between the current and target covariance.

• Shifting integration variables to integrate around a maximum likelihood signal field, if available, as φ0.

• Subtracting a statistically homogeneous approximation out of the numerically evolving matrix A, through the
definition of A?.

• Cuts on matrix element size, specified by εQ′ , εA, etc., instead of a simple range cut.

The first of these is by far the most important. In the end it is clear that the algorithm is fast and straightforward
enough for convenient practical data analysis.

It was surprising to me that the pair-oriented definition of Q′ made such a large (factor & 10) difference in speed.
While the the principle that if we know which cells we will combine we should focus on integrating out the difference
between them seems good enough to expect some improvement, I would have been happy with a factor of two. It
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may be that I do not have the best possible implementation of the smooth cutoff option. In any case though, it seems
like the pair-oriented approach is the way to go.

Of course it is only useful to integrate around a maximum likelihood field if that field can be found more quickly
than the RG analysis could be done without it. This was the case in my tests, where finding the maximum likelihood
field by conjugate gradient (CG) takes about 5% of the time in each likelihood computation. This might not always
be the ratio, as my CG solution was massively accelerated by being able to multiply by things like P in Fourier space,
including for preconditioning (e.g., without preconditioning finding a maximum likelihood field takes longer than the
RG integration without it). If, e.g., the CG had to be done using less efficient spherical harmonic transforms, it might
be faster not to use it. An interesting possibility is to use the RG method itself to find the maximum likelihood field.
[1] showed how to find the data-constrained mean of any function of φ, with 〈φ〉 itself being the simplest possible
version of this. For a Gaussian problem 〈φ〉 is the maximum likelihood field, while for a non-Gaussian problem it is
not but would probably be a better starting point than the maximum likelihood field in that case anyway. Finding
〈φ〉 can be piggybacked on a standard likelihood computation with minimal extra cost, but to get a speedup in
likelihood calculations you would need to feed the result back into a recalculation. This would only be effective if
a useful estimate of 〈φ〉 could be found with looser numerical settings than would be required to do the calculation
with φ0 = 0, which seems quite possible. When, e.g., computing derivatives with respect to parameters, we would
probably achieve most of the benefit by computing 〈φ〉 only for the central model (remember that accurate results
can be achieved for any φ0, it is just a question of how tight numerical settings need to be to do it).

Note that it may not always be beneficial to use A? 6= 0. There is no cost if all cells in a formal data vector have
measurements, i.e., there are no zeros on the diagonal of RtN−1R, but if a substantial number of cells represent large
holes in the data set or zero padding, so that these elements of A(0) can be dropped from sparse storage, setting
A? 6= 0 will remove this possibility. This must be considered on a problem-by-problem basis.

While my prototype code is already quite fast, at two minutes per likelihood evaluation per million cells, there
is clearly more room for optimization. Most obviously, I am not taking advantage of the fact that A and Q′ are
symmetric matrices at all, for no better reason than not knowing canned operations in Julia that will do this. Other
simple improvements could be tuning of things like the cuts I’ve parameterized by εQ′ , etc.. I kept these cuts constant
for all iterations but this could be wasteful if the required cut value is set by coarser levels of the calculation that
do not take much total time. A less obvious but I think promising optimization idea is the following: The effect of
evolving Eq. (13) is non-linear in the Q′ matrix as initial changes in A are multiplied back together to find the next
step, i.e., we get products of Q′ with itself. The required number of steps is surely set by the products of the largest
elements of Q′—the products of small elements are perturbatively much smaller. This suggests that Q′ could be split
into two or more pieces based on element size. The piece(s) with larger elements, which would be very short-range
(i.e., few elements, i.e., fast to multiply), could be evolved first, then longer-range the pieces with smaller elements
evolved with fewer steps, possibly even one, because their self-products are negligible. As long as our set of Q′ steps
integrates to Q2 −Q1, we are free to choose the details.

The next step is to implement this for realistic cosmological scenarios.
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Appendix A: Alternative approach to integrating out differences between cells

Before realizing I could define Q′ by simply differencing the current and target Qs, I worked out a method for
integrating out the difference between cells closer to the original approach in [1]. I include it here to promote broader
understanding of the possibilities.

The RG integration will be controlled by a parameter α which starts at zero and is taken to ∞. Q and SI become
functions of this parameter, i.e.,

Q−1(α) ≡ P−1 + αK , (A1)

with K a fixed matrix to be specified. Obviously we can suppress fluctuations between cells 1 and 2 by adding a term
to S(φ) proportional to (φ1 − φ2)2. Repeating this over and over (e.g., (φ3 − φ4)2, etc.) is equivalent to making K
the following block diagonal matrix:

K =

 k 0 ...
0 k ...
... ... ...

 , (A2)

where

k =

[
1 −1
−1 1

]
. (A3)

I.e., by dialing α from 0 to ∞ in Q−1 = P−1 + αK, we will have effectively integrated out the differences between
adjacent pairs of cells. We now have

Q′ = −QKQ = −
(
P−1 + αK

)−1
K
(
P−1 + αK

)−1
. (A4)

Unlike in [1], K is not exactly translation invariant, so we can’t simply compute
(
P−1 + αK

)−1
in Fourier space. The

structure of Q′ is the same everywhere, however, up to a distinction between odd and even cells, and it is limited
to short range, so we can compute it by brute force inversion for a limited representative stretch of cells and then
translate it everywhere.

This approach worked in preliminary tests, but not as efficiently as the one in the paper.
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