Reactive Oxygen Species Formed by Secondary Organic Aerosols in Water and Surrogate Lung Fluid

Haijie Tong, Pascale S. J. Lakey, Andrea M. Arangio, Joanna Socorro, Fangxia Shen, Kurt Lucas, William H. Brune, Ulrich Pöschl, and Manabu Shiraiwa

Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
Department of Chemistry, University of California, Irvine, California 92697-2025, United States
Department of Meteorology, Pennsylvania State University, University Park, Pennsylvania 16802, United States

Supporting Information

ABSTRACT: Reactive oxygen species (ROS) play a central role in adverse health effects of air pollutants. Respiratory deposition of fine air particulate matter can lead to the formation of ROS in epithelial lining fluid, potentially causing oxidative stress and inflammation. Secondary organic aerosols (SOA) account for a large fraction of fine particulate matter, but their role in adverse health effects is unclear. Here, we quantify and compare the ROS yields and oxidative potential of isoprene, β-pinene, and naphthalene SOA in water and surrogate lung fluid (SLF). In pure water, isoprene and β-pinene SOA were found to produce mainly OH and organic radicals, whereas naphthalene SOA produced mainly H$_2$O$_2$ and O$_2^\cdot$'. The total molar yields of ROS of isoprene and β-pinene SOA were 11.8% and 8.2% in water and decreased to 8.5% and 5.2% in SLF, which can be attributed to ROS removal by lung antioxidants. A positive correlation between the total peroxide concentration and ROS yield suggests that organic (hydro)peroxides may play an important role in ROS formation from biogenic SOA. The total molar ROS yields of naphthalene SOA was 1.7% in water and increased to 11.3% in SLF. This strong increase is likely due to redox reaction cycles involving environmentally persistent free radicals (EPFR) or semiquinones, antioxidants, and oxygen, which may promote the formation of H$_2$O$_2$ and the adverse health effects of anthropogenic SOA from aromatic precursors.

INTRODUCTION

Secondary organic aerosols (SOA) are a major component of tropospheric aerosols, affecting climate, air quality, and public health. SOA are formed through the oxidation of biogenic and anthropogenic volatile organic compounds, followed by the nucleation or partitioning of semi-volatile, low-volatile, or extremely low-volatile organic products from the gas phase to the particle phase. Particle-phase chemistry and cloud processing are also efficient SOA formation pathways. Despite recent progress in the understanding of the molecular composition of SOA, their role in adverse aerosol health effects is still largely unknown.

Reactive oxygen species (ROS) play a central role in physiological processes by mediating metabolism and causing oxidative stress. ROS, which are mostly formed by the reduction of oxygen, include singlet oxygen, OH radicals, superoxide radicals (O$_2^\cdot$'), organic radicals, and hydrogen peroxide (H$_2$O$_2$). It has been shown that ROS can be formed by particulate matter containing reductively-active components such as transition metals and humic-like substances. Particle-bound ROS can be detected using techniques such as electron paramagnetic resonance (EPR) spectroscopy, mass spectrometry, and fluorescence probes. In addition, assays based on dithiothreitol (DTT), macrophage cells, and ascorbate, as well as online microfluidic electrochemical sensors have been used to evaluate the oxidative potential and redox activity of atmospheric aerosols. The DTT assay has been used widely to evaluate the oxidative potential of transition metals, quinones, organic peroxides, and SOA. Furthermore, it has also been found that oxidative potential of atmospheric particulate matter depends on their sizes, compositions, emission sources, and formation and aging processes. Finally, oxidative potential has also been linked to oxidative stress and asthma caused by atmospheric particle matter. Despite recent progress, the connections between ROS formation yields and redox activity of atmospheric particulate matter are not yet fully established.

Recent studies have shown that decomposition of organic hydroperoxides in SOA can lead to the formation of OH radicals in the aqueous phase under dark and irradiated conditions. Atmospheric fine particles contain environmentally...
persistent free radicals (EPFR) such as semiquinone radicals, which can be formed via combustion or pyrolysis of organic matter11–33 as well as heterogeneous reactions of ozone with polycyclic aromatic hydrocarbons.4,35 EPFR can undergo redox-active reactions generating ROS, which may contribute to cellular oxidative stress and cytotoxicity.12,36 Therefore, the detection and quantification of different ROS species is required for better understanding of SOA health effects. In this study, we applied EPR spectroscopy in combination with a spin-trapping technique and DTT assay to investigate reactions of SOA components in liquid water or surrogate lung fluid, quantifying the total ROS yield as well as the yield of each radical species formed by SOA. A kinetic model was applied for data analysis and interpretation to better understand the ROS formation mechanism by different types of SOA.36

\section*{Experimental Section}

\textbf{SOA Formation, Characterization, and Collection.} A schematic drawing on the experimental procedure used in this study is shown in Figure 1. SOA were produced in a 19 L potential aerosol mass (PAM) chamber through ozonolysis of β-pinene or gas phase photooxidation of isoprene and naphthalene with OH radicals.37 Briefly, 2–3 mL isoprene (99\%, Sigma-Aldrich) was placed in an amber glass vial, and a \sim500 μm hole was drilled into its cap to enable precursor evaporation. The vial containing the isoprene liquid was kept in another 250 mL Duran bottle. A 1 bar and 250 ccm N$_2$ (99.999\%, Westfalen AG) flow was passed through the Duran bottle and carried the gas phase isoprene into the PAM chamber for SOA formation via photochemical oxidation with OH radicals. β-Pinene (99\%, Sigma-Aldrich) was placed in a 1.5 mL amber glass vial (VWR International GmbH), and 5–10 g of naphthalene crystals (99.6\%, Alfa Aesar GmbH & Co KG) were put in a 100 mL glass bottle (DURAN Group GmbH) as SOA precursor sources. Flows of 1 bar and 50–150 ccm N$_2$ (99.999\%, Westfalen AG) were used as a carrier gas to introduce β-pinene and naphthalene vapors into the 19 L PAM chamber for a reaction with oxidants (O$_3$ or OH radicals) for \sim5 min. Ozone concentrations in the PAM chamber were \sim1 ± 0.2 ppm for naphthalene SOA formation and 10 ± 5 ppm for isoprene and β-pinene SOA formation, as measured with an ozone monitor (model 49i, Thermo Fisher Scientific Inc.). The relative humidity was 0–5\% for β-pinene SOA and 30–40\% for formation of isoprene and naphthalene SOA to have higher OH concentrations in the chamber. On the basis of the exposure estimation equations by Peng et al.,38 the gas phase OH radical concentrations are estimated to be \sim5 \times 1014 cm$^{-3}$, which is much higher than ambient concentrations. It is worth noting that SOA generated by the PAM chamber have been shown to be a good surrogate for chamber-generated SOA in terms of their oxidation state, chemical composition, and hygroscopicity.39,40

For EPR and other supporting analysis, a substantial amount of SOA mass (about 0.1–5 mg) is necessary, and the PAM chamber is a robust instrument to generate such high mass in relatively short time. Nevertheless, relevance and limitations of PAM-generated SOA need to be investigated and SOA formed in ambient-relevant conditions would need to be tested in future studies.

SOA was collected on 47 mm Omnifit Teflon filters (100 nm pore size, Merck Chemicals GmbH). The sampling time varied from several minutes to several hours depending on the required aerosol mass. Filtered SOA particles were normally analyzed immediately. A scanning mobility particle sizer (SMPS, Grimm Aerosol Technik GmbH & Co. KG) was used to characterize the size and mass concentrations of the generated SOA particles. The typical size of the SOA ranged from 50 to 600 nm, and the typical mass concentration range was from 100 to 1500 μg m$^{-3}$ (a density of 1.4 g cm$^{-3}$ was used3). A flow rate of \sim3 L min$^{-1}$ was controlled using a common diaphragm vacuum pump (0–3 L min$^{-1}$), which was connected after the aerosol samplers. Blank tests confirmed that blank filters produced no radicals, and the condensation of water vapor on a filter during SOA collection was negligible for the relative humidities applied in this study. SOA particles on Teflon filters were extracted into a 1 mL water solution containing spin trapping agents (10 mM) with a vortex shaker (Heidolph Reax 1) for 10 min at 2500 rpm. Each of the glass vials (VWR International GmbH) was rinsed for 5–10 times with 5 mL fresh Milli-Q water and dried under ultrapure dry nitrogen gas (99.999\%, Westfalen AG) before SOA extraction. Measurements with water blanks confirmed little anthropogenic interferences such as laboratory dust contamination.10 Vials were used only once to avoid contamination from residues. The final SOA concentration depends on the aerosol mass load and extraction time. An average molar mass of 200 g mol$^{-1}$ for SOA was used for calculating SOA concentrations. The pH of SOA solutions here was in the range of 3.5–6.5 (Figure S4). SOA extracts were mixed with surrogate lung fluid (SLF),11 which contain 114 mM NaCl, 10 mM phosphate-buffered saline (2.2 mM KH$_2$PO$_4$ and 7.8 mM Na$_2$HPO$_4$), 200 μM ascorbic acid sodium salt, 300 μM citric acid, 100 μM reduced L-glutathione, and 100 μM uric acid sodium salt.

\textbf{CW-EPR Measurement.} A continuous wave electron paramagnetic resonance (CW-EPR) spectrometer (EMXplus-10/12, Bruker, Germany) was applied for detecting radicals. The parameter set for EPR measurements in this study was a modulation frequency of 100 kHz, a microwave frequency of 9.84 GHz, a microwave power of 2.15 mW (20 dB), a modulation amplitude of 1.0 G, a sweep width of 60.0 G, a sweep time of 10.49 s, a receiver gain of 40 dB, a time constant of 0.32 ms, a conversion time of 10.24 ms, and a scan number of 10–50 (Figure 2). A spin trapping technique was applied by mixing particle extracts with 5-tert-butoxy carbonyl-5-methyl-1-pyrroline-N-oxide (BMPO, high purity, Enzo Life Sciences...
BMPO reacts with radical types of ROS (e.g., OH, O$_2$**, organic radicals) to form stable radical adducts that can be detected by EPR, so that concentrations of different radical-adducts can be quantified. The relative yields of each adduct were obtained using the Matlab-based computational package Easyspin. In addition, a spin probing technique with the use of 1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidine (TEMPONE-H, Enzo Life Sciences GmbH) was applied to quantify total concentrations of radical types of ROS. In contrast to the adducting mechanism of BMPO, TEMPO-H (which is a closed-shell molecule) can be converted to radicals via deprotonation with reactions with radicals. It has been found that TEMPO-H has significantly higher sensitivity in the detection of superoxide radicals than BMPO with reported rate coefficients of 1.2 \times 10$^{-11}$ M$^{-1}$ s$^{-1}$ for TEMPO-H and 77 M$^{-1}$ s$^{-1}$ for BMPO. Therefore, we speculate that the sensitivity of TEMPO-H and BMPO for detecting organic radicals may also be different. Thus, BMPO was used to distinguish different types of radicals, while TEMPO-H has a higher radical detection efficiency relative to BMPO and was used to quantify the total radicals (OH, O$_2$**, organic radicals).

A spin counting method was applied for radical quantification. This method is based on double integration allowing the peak area of a spectrum to be obtained. In the area is positively correlated with the radical concentrations. A calibration curve for the stable radical TEMPO-L enabled the exact radical concentration of SOA extracts to be obtained. The calibration curve also confirmed the reliability of the spin counting method. The error bars in Figure 3 (panels a and b), Figure 4 (panels a and b), and Figure 6 included the uncertainties in the SOA mass measurements and the estimated deviations from the TEMPO-L calibration curve. Superoxide dismutase (SOD) enzymes were used to confirm the existence of HO$_2$/O$_2$** (Figure S3). The black spectrum in Figure S3 is for the BMPO adducts in isoprene SOA water extracts. The green dashed line highlights the typical signal of HO$_2$/O$_2$**. When the SOD was present, the typical peaks of HO$_2$/O$_2$** diminished significantly, indicating that SOD scavenged HO$_2$/O$_2$** effectively. This also confirmed the formation of HO$_2$/O$_2$** in isoprene SOA water extracts.

LC–MS/MS. The solutions were analyzed using a 1260 Infinity Bioinert Quaternary LC system with a quaternary pump (G5411A), a HiP sampler (G5667A), and an electro-spray ionization (ESI) source interfaced to a Q-TOF mass spectrometer (6540 UHD Accurate-Mass Q-TOF, Agilent). MassHunter software (B.06.01, Agilent) controlled all modules. The LC column was a Zorbax Extend-C18 Rapid resolution HT (2.1 \times 50 mm, 1.8 μm) with a column temperature at 30 °C. The mobile phases used were 3% (v/v) acetonitrile (HPLC Gradient grade, Fisher Chemical) in water with formic acid (0.1% v/v, LC–MS Chromasolv, Sigma-Aldrich) (eluent A) and 3% water in acetonitrile (eluent B). The injection volume was 95 μL. The flow rate was 0.2 mL min$^{-1}$ with a gradient program that started with 3% B for 3 min followed by a 36 min step that raised eluent B to 60%. Further, eluent B was increased to 80% at 40 min and returned to the initial conditions within 0.1 min, followed by column re-equilibration for 9.9 min before the next run.

The ESI-Q-TOF instrument was operated in the positive ionization mode (ESI+) with a 325 °C gas temperature, 20 psig nebulizer, 4000 V capillary voltage, and 90 V fragmentor voltage. During the full spectrum MS mode, no collision energy was used to collect species as their molecular ions. During MS/MS analysis that was employed for the structure determination, the fragmentation of protonated ions was conducted using the method.
target MS/MS mode with a 10 V collision energy. Spectra were recorded over the mass range of m/z 70–500. Data analysis was performed using qualitative data analysis software (B.O6.00, Agilent).

Blank solutions were also prepared with three blank filters, and background signals were subtracted on the spectrum MS for identification. The radicals trapped by BMPO within different types of SOA are listed in Table S1. LC–MS/MS spectra and a fragmentation mechanism of [BMPO + C5H9O+ + H]+ forming from isoprene SOA, [BMPO + C9H15O2 + H]+ from β-pinene SOA, and [BMPO + OOH + H]+ from naphthalene SOA are shown in Figure S1. A C5H4 fragment was observed for all of the identified radical adducts, indicating a uniform fragmentation pathway.

DTT Assay. The dithiothreitol (DTT) assay was used to assess the oxidation potential of isoprene, β-pinene, and naphthalene SOA. The details of this method can be found in previous studies. Briefly 0.1 mol potassium phosphate monobasic-sodium hydroxide (KH2PO4) and 0.4 mol disodium hydrogen phosphate (Na2HPO4) were dissolved into 1 L DI water (TraceSELECT Ultra ACS reagent water, Sigma-Aldrich) to form a 0.5 M buffer solution. The 0.5 M buffer solution was diluted 10 times to form a 0.05 M buffer solution (pH = 7.4). A 0.5 M ethylenediaminetetraacetic acid (EDTA) stock solution was made and diluted 500 times with the above 0.05 M buffer, which was used as a working buffer. DTT (>98%, Sigma-Aldrich) was dissolved in 10 mL of the working buffer and diluted to form a 0.5 mM working solution. DTNB was dissolved in working buffer and diluted to form a 1 mM working solution.

A mixture of 1.5 mL working buffer, 75 μL of 0.5 mM DTT, and 300 μL of SOA extract was incubated at 37 °C and measured for 35 min. After 7 min intervals, 300 μL of the mixture was mixed with 16 μL of 1 mM DTNB solution and the mixture’s UV absorption at 412 nm was measured. The decay rate of DTT during the incubation process was used to characterize the oxidative potential of SOA. A plate reader (Synergy NEO, BioTek Instruments, Inc.) was used for the absorption measurement. At least 3 replicates were measured for each data point. A calibration curve for DTT is shown in Figure S2a. The absorbance intensity of DTT at 412 nm has a positive and linear relationship with its concentration. The absorbance intensity increased from ~0.06 to ~0.52 as the DTT amount increased from 0 to 37.5 nmol. The consumption rate of DTT by 1,2 NQN is around 15181 pmol min⁻¹ μg⁻¹, which is consistent with a previous study. The consumption rates of DTT by SOA water extracts are shown in Figure S2b. In water extracts, the naphthalene SOA showed the highest DTT consumption rate of ~0.51 nM min⁻¹, followed by isoprene and β-pinene SOA with rates of ~0.11 and ~0.03 nM min⁻¹.

Total Peroxides and H2O2 Quantification. A modified iodometric-spectrophotometric method was used for quantifying the total peroxides in SOA. First, isoprene, β-pinene, and naphthalene SOA were extracted into ethyl acetate, and their concentrations were adjusted to be 0.4 or 0.5 mM. Second, 2 mL of the extract was mixed with 3 mL of an acetic acid-chloroform-water (v:v 0.53:0.27:0.20) solution and purged with a flow of 15 ccm N2 for 2 min to exclude dissolved oxygen. Third, 50 mg potassium iodide was added into the solution, and the vial was capped and sealed with parafilm immediately. The solution was allowed to stand for 1 h. Finally, 300 μL of this solution was transferred to a 96 well plate and the absorbance at 470 nm was measured with a microplate reader. This absorbance intensity was used to calculate the peroxide abundance in SOA, and a calibration curve for benzoyl peroxide was used as shown in Figure S5. The absorbance intensity of benzoyl peroxide at 470 nm has a linear relationship with its concentration in the range of 0–1 mM.

We used a Fluorimetric Hydrogen Peroxide Assay Kit (MAK165, Sigma) to measure the H2O2 yield of SOA. First, aliquots of assay buffer, horseradish peroxidase, and infrared peroxidase substrate stock were prepared and kept in a dark and cold (0 °C) environment. Second, 0 to 100 μM hydrogen peroxide solutions were made by diluting the 30% solution from Sigma (95321, Sigma-Aldrich). Third, 50 μL H2O2 standards and 50 μL detection reagent were mixed and transferred to a 96 well black wall plate (655090, Greiner Bio-One International GmbH). Afterward, the samples were incubated for 15–30 min, and the fluorescence was measured with the microplate reader (same as before, excitation: 540 nm; emission: 590 nm). Calibration curves for H2O2 in liquid water and SLF were obtained and shown in Figure S6. The concentration of SOA used for the H2O2 yield test was 100 μM for all the samples. We also measured 0.5–22 μM cumene hydroperoxides and tert-butyl hydroperoxide with the H2O2 assay kit, which generated no fluorescence, confirming the high selectivity of the assay toward H2O2 rather than organic hydroperoxides.

Kinetic Modeling. The production rates of radicals shown in Figure S (panels a and b) were modeled using the mechanism and reactions shown in Table S2. The reactions in the model included the decomposition of ROOH, the reaction of semiquinones with oxygen, HO2 chemistry, reactions of antioxidants with reactive oxygen species, reactions of TEMPO–H with reactive oxygen species, and the self-reaction of the TEMPO radical. Literature rate constants were used for the majority of these reactions, but when they were unknown or
Table 1. \(\text{H}_2\text{O}_2 \) Yields by Ambient Particles and Laboratory Generated SOA

<table>
<thead>
<tr>
<th>type of samples</th>
<th>(\text{H}_2\text{O}_2) yield in (\text{H}_2\text{O}) (molar yield (%))</th>
<th>(\text{H}_2\text{O}_2) yield in SLF (molar yield (%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Fine, UCLA, 2005–2006</td>
<td>0.25 ± 0.18</td>
<td>0.42 ± 0.30</td>
</tr>
<tr>
<td>Ambient Fine, Downtown LA, 2005–2006</td>
<td>0.34 ± 0.18</td>
<td>0.58 ± 0.31</td>
</tr>
<tr>
<td>Ambient Fine, Riverside, UCR</td>
<td>0.56 ± 0.41</td>
<td>0.95 ± 0.69</td>
</tr>
<tr>
<td>Ambient Fine, Riverside, CRCAES</td>
<td>0.29 ± 0.32</td>
<td>0.49 ± 0.55</td>
</tr>
<tr>
<td>Ambient Fine, UCLA, 2009–2010</td>
<td>0.06 ± 0.04</td>
<td>0.11 ± 0.07</td>
</tr>
<tr>
<td>Diesel Idle</td>
<td>0.11 ± 0.15</td>
<td>0.19 ± 0.26</td>
</tr>
<tr>
<td>Diesel Load</td>
<td>0.035 ± 0.05</td>
<td>0.06 ± 0.08</td>
</tr>
<tr>
<td>Biodiesel Idle</td>
<td>0.28 ± 0.1</td>
<td>0.48 ± 0.17</td>
</tr>
<tr>
<td>Biodiesel Load</td>
<td>0.19 ± 0.09</td>
<td>0.33 ± 0.16</td>
</tr>
<tr>
<td>(\alpha)-pinene SOA</td>
<td>0.55 ± 0.21</td>
<td>0.93 ± 0.36</td>
</tr>
<tr>
<td>(\beta)-pinene SOA</td>
<td>1.25 ± 0.87</td>
<td>2.12 ± 1.48</td>
</tr>
<tr>
<td>Isoprene SOA</td>
<td>7.98 ± 0.75</td>
<td>13.56 ± 1.27</td>
</tr>
<tr>
<td>(\beta)-pinene SOA</td>
<td>3.22 ± 0.73</td>
<td>5.47 ± 1.24</td>
</tr>
<tr>
<td>Naphthalene SOA</td>
<td>0.67 ± 0.66</td>
<td>1.91 ± 0.33</td>
</tr>
</tbody>
</table>

certain, the rate constants were determined using the Monte Carlo genetic algorithm \(^2\) and sensitivity tests. In addition to the chemistry shown in Table S2, a \(\text{H}_2\text{O}_2 \) production rate was included in the model. These production rates were based upon the molar \(\text{H}_2\text{O}_2 \) yields that had been measured of 2.66%, 1.21%, and 9.58% for isoprene, \(\beta \)-pinene, and naphthalene SOA in SLF, respectively, and 7.98%, 3.22%, and 0.67% for isoprene, \(\beta \)-pinene, and naphthalene SOA in water as shown in Table 1.

RESULTS AND DISCUSSION

EPFR and ROS Formation in Water. Direct EPR measurements of SOA particles collected on Teflon filters (without extraction) are shown with green lines in Figure 2. They indicate that isoprene (spectrum A) and \(\beta \)-pinene (spectrum D) SOA do not contain any stable radicals. Naphthalene SOA (spectrum G) contain stable radicals with a g-factor of 2.0045, which is consistent with EPFR with a chemical identity of semiquinone radicals.\(^{2,23}\) The total number of spins in naphthalene SOA that was collected at 30% RH \((N_{s,5})\) was quantified as a function of naphthalene SOA mass as shown in Figure 3a. The \(N_{s,5} \) increases linearly at higher naphthalene SOA mass, and the average EPFR concentration is 1.36 \((±0.18) \times 10^{11}\) spins \(\mu \)g\(^{-1}\), which is the same order of magnitude as the EPFR in field particles.\(^{17}\) This indicates that oxidation of PAH with OH may be one of the efficient pathways of producing EPFR. Previous studies have shown that heterogeneous ozonolysis of polycyclic aromatic hydrocarbons can lead to the formation of long-lived reactive oxygen intermediates or EPFR.\(^{34,35}\)

Decay of EPFR was measured at two different temperatures of 295 and 241 K. The chemical half-life of semiquinone radicals in naphthalene SOA was found to be 2 h at both 295 (30% RH) and 241 K (52% RH) (Figure 3b). This lifetime is on the same order of magnitude as the semiquinone-type radicals formed on metal oxide surfaces\(^{26}\) but is shorter than amphetamine particles, which have a longer lifetime of 1 day to weeks.\(^{2,23}\) Furthermore, the peak area and intensity of the EPR spectra associated with these EPFR decreased rapidly over 5 min upon exposure to a humidified nitrogen flow at a RH 52% as shown in Figure 3c. This indicates that EPFR have a longer lifetime under dry conditions, and they may decompose upon interaction with water. This result is consistent with the study by Jia et al.,\(^{33}\) which showed a fast decay of anthracene source EPFR even under 8% RH.

Figure 2 also includes EPR measurements with a spin-trapping technique for SOA water extracts mixed with BMPO (pink lines). For better evaluation of different types of radicals and radical adducts, we used the spin fitting module in Xenon software to obtain the deconvolution of EPR spectra and showed the simulated spectra for ascorbate radicals, BMPO-OH, BMPO-OOH, BMPO-OR, and BMPO-R in Figure 2d. On the basis of these simulated spectra, we assigned the spectra peaks in panels a to c to different types of radical or radical adduct species, which were labeled with dashed lines. Figure 2 (panels a and b) shows that isoprene (spectrum B) and \(\beta \)-pinene SOA (spectrum E) generated OH, \(\text{O}_2^-\), and organic radicals, whereas naphthalene SOA (spectrum H) yielded \(\text{O}_2^-\) and organic radicals but not OH radicals. The presence of these radicals was also confirmed by LC–MS/MS analysis (see Table S1 and Figure S1).

To explore the correlation of peroxide contents with ROS formation, the total peroxides in SOA were determined by a iodometric-spectrophotometric method.\(^{30}\) It was found that organic peroxides in isoprene, \(\beta \)-pinene, and naphthalene SOA accounted for approximately 95(±28)%, 42(±24)%, and 19(±7)% of the total mass of the SOA, respectively (Figure 4a), which are on the same order with previous studies,\(^{16,50,53,56}\) even though the measured abundance of total peroxides in SOA by different studies varies due to different formation conditions and also different freshness of collected particles.

The molar yields of total radicals (OH, \(\text{O}_2^-\), organic radicals) and relative yield of each adduct are shown in Figure 4b and Figure 5, respectively. Figure 4b shows that the total radical yields by isoprene, \(\beta \)-pinene, and naphthalene SOA were around 3.8%, 5.2%, and 1.1%, respectively. It also indicates that the radical production rates of SOA in water appears to be related with the abundance of total peroxides in SOA (Figure 4a), implying that the generation of OH and organic radicals by isoprene, \(\beta \)-pinene, and naphthalene SOA may be induced by the decomposition of organic hydroperoxides. Figure 5 indicates that OH accounts for 70% and 66% of generated radicals for isoprene and \(\beta \)-pinene SOA, respectively. \(\text{O}_2^-\) is the dominant product with yields of 83% for naphthalene SOA. \(\text{O}_2^-\) is most likely generated by redox reactions of semiquinones contained in naphthalene SOA (\(\text{SQ}^+ + \text{O}_2 \rightleftharpoons \text{Q} + \text{O}_2^-\)).\(^{37}\)
Peroxidase.58 composed of dichloro yield of β of 8%, and naphthalene SOA of 2%. The total ROS yield of β and b), indicating the plausible role of organic hydroperoxides and recombination of OH radicals (OH + OH → H2O2, R5) or protonation of superoxide radicals (HO2 + HO2 → H2O2 + O2, R7). The strong ability of antioxidants to scavenge OH and superoxide radicals (Figure 2) and the decreased radical and H2O2 yields of isoprene SOA and β-pinene in SLF (Table 1, Figure 4 (panels b and c), and Figure 5) are consistent with this hypothesis. Interestingly, naphthalene SOA generated more H2O2 in SLF (9.6%) than that in liquid water (0.7%, Figure 4c). This may be explained by the relatively high concentration of reoxy-active quinones and the formation of H2O2 from their interaction with antioxidants.61 The low BMPO-OOH but high molar H2O2 yield of naphthalene SOA in SLF (Figure 5) may be related to the increased stabilization of semiquinones induced by a prohibited protonation and reduction at pH = 7.4,68 which may lead to higher concentrations of semiquinones and thus higher yields of H2O2. On the other hand, the increased radical concentrations may cause BMPO-O2** adducts to decay by radical reactions,62 decreasing the detectability of BMPO-OOH.69

ROS Yield versus Oxidative Potential of SOA. We measured the DTT consumption rates by isoprene, β-pinene, and naphthalene SOA (Table S3), which are...
considered as a proxy for redox activity and oxidative potential. Naphthalene SOA showed the highest DTT decay rates of 104.4 (±7.6) pmol min$^{-1}$ μg$^{-1}$, which are very similar to previously reported values. In contrast, isoprene and β-pinene SOA showed lower DTT decay rates with values of 48.3 (±7.9) and 36.4 (±3.1) pmol min$^{-1}$ μg$^{-1}$, respectively, which is similar to values for ambient organic particles. The DTT consumption rate by isoprene SOA formed in the PAM chamber in this study was measured to be higher than isoprene SOA formed in a smog chamber (Tuet et al., 2017) and ambient isoprene-derived OA (8.8 (±21) pmol min$^{-1}$ μg$^{-1}$) as estimated by a positive matrix factorization analysis. This difference may be due to a difference in reaction conditions such as different UV light sources, oxidant, and relative humidity, and oxidant and precursor concentrations in our study are much higher than chamber or ambient conditions.

The order of DTT decay rates of naphthalene > isoprene > β-pinene does not match the order of ROS yield in water but matches with H$_2$O$_2$ and total ROS yield in SLF (Figure S7). This indicates that H$_2$O$_2$ yield is closely related with the redox activity of SOA, which is in agreement with previous studies. The high oxidative potential of naphthalene SOA indicate that EPFR and quinones may play a role in generating superoxide and carbon-cantered radicals in water. In this study, we did not observe clear relations of DTT decay rates with the yields of radical adducts including OH, superoxide, and organic radicals. Interactions and coupling of redox-active compounds, ROS, and antioxidants/DTT are complex and further experiments are warranted in future studies.

ROS Generation Rates by SOA and Kinetic Modeling.

Figure 6 (panels a and b) shows the ROS production rates as a function of SOA concentration in water. Isoprene SOA shows the largest ROS production rate (~179 nM s$^{-1}$ mM$^{-1}$ SOA), followed by β-pinene (~102 nM s$^{-1}$ mM$^{-1}$ SOA) and naphthalene (~38 nM s$^{-1}$ mM$^{-1}$ SOA) in water. In order to obtain a better understanding of the mechanism of ROS formation by SOA upon reactions in liquid water, we developed a kinetic box model to simulate reactions, including the decomposition of ROOH (ROOH → RO* + *OH), redox-cycling between quinones and semiquinones (e.g., AscH$^+$ → SQ* + Asc$^-$ and SQ* + O$_2$ → Q + O$_2$), and HO$_2$ chemistry (Table S2 and Supporting Information). Within the model we assumed that 15% of the total isoprene and β-pinene SOA consisted of ROOH that would decompose to form radicals, while we assumed that 10% of the naphthalene SOA consisted of semiquinones that would produce ROS. The experimental results were modeled as shown by the lines that fit the experimental data very well. Model simulations confirm that the dominant radical formation process should be ROOH decomposition for isoprene and β-pinene SOA, while semiquinone reactions with oxygen (see Table S2 or the Experimental Section for the detailed mechanism) are the main source of radicals for naphthalene SOA.

The experimental and modeled ROS production rates of isoprene, β-pinene, and naphthalene SOA in SLF are shown in Figure 6 (panels c and d). Figure 6c indicates that isoprene SOA shows the largest production rate (~65 nM s$^{-1}$ mM$^{-1}$ SOA), followed by β-pinene (~35 nM s$^{-1}$ mM$^{-1}$ SOA) and naphthalene (~11 nM s$^{-1}$ mM$^{-1}$ SOA). Figure 6d shows the production rates of total ROS by SOA in SLF, which are also in agreement with the modeled data, showing a positive relationship of total ROS production rates with SOA concentrations. Overall Figure 6 indicates that ROS production by SOA in water and SLF are quite different, and modeled results are in agreement with the experimental observations for the production of trapped radicals with TEMPO-H as the spin trap. In liquid water, the aqueous phase chemistry of isoprene and β-pinene SOA is dominated by the decomposition of ROOH (R1) and the decomposition of other species which form H$_2$O$_2$ (see the Supporting Information), leading to the formation of substantial amounts of H$_2$O$_2$, OH, and organic radicals. Whereas naphthalene SOA contains less organic peroxides but relatively high concentrations of quinone and semiquinone compounds, which may react with dissolved O$_2$ to form O$_2$* and H$_2$O$_2$. Note that these fractions of ROOH and semiquinones within the SOA were codependent with the rate coefficients of reactions R1 (ROOH → RO* + *OH) and R30 (SQ* + O$_2$ → Q + O$_2$*), e.g., the measurements could still be reproduced if the fraction of ROOH within the SOA was increased if the rate constant k_1 was decreased). In SLF, antioxidants scavenge OH, O$_2$*, and organic radicals. However, naphthalene SOA shows a substantial increase in ROS production, especially the H$_2$O$_2$ production rate, due to sustained redox reactions between semiquinones and antioxidants (R30). Interestingly, the production rates of radicals by SOA within the SLF were generally higher than that in water, suggesting that the decomposition of ROOH was pH-dependent and that TEMPO-H trapped radicals efficiently before radicals were reacted away by antioxidants.

These results indicate that SOA derived from both biogenic and anthropologic volatile compounds can form substantial amounts of radicals and H$_2$O$_2$ in lung lining fluid, especially naphthalene SOA can release substantial amounts of O$_2$* and H$_2$O$_2$. It is known that excess amounts of ROS can cause oxidative stress to the human lung and induce a broad range of toxicological effects. Previous studies have indicated that typical H$_2$O$_2$ concentrations of exhaled breath condensate from patients with different respiratory tract diseases are in the
range of 100–200 nM. Therefore, an increase in the molar H$_2$O$_2$ and ROS yield from increased SOA concentrations has the potential to increase ROS concentrations in the SLF to harmful levels in many of the more polluted cities. Thus, inhalation of fresh SOA particles, which have the potential to release high levels of H$_2$O$_2$ and ROS, may have significant adverse health effects, especially in polluted indoor air or urban megacities with high SOA concentrations. A very recent study has shown that aged SOA may have higher toxicological effects than fresh SOA, which may warrant further studies on ROS formation by aged SOA particles.

REFERENCES

