
UCLA
UCLA Previously Published Works

Title
Decoding of human identity by computer vision and neuronal vision

Permalink
https://escholarship.org/uc/item/2t57n27p

Journal
Scientific Reports, 13(1)

ISSN
2045-2322

Authors
Zhang, Yipeng
Aghajan, Zahra M
Ison, Matias
et al.

Publication Date
2023

DOI
10.1038/s41598-022-26946-w

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2t57n27p
https://escholarship.org/uc/item/2t57n27p#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


1

Vol.:(0123456789)

Scientific Reports |          (2023) 13:651  | https://doi.org/10.1038/s41598-022-26946-w

www.nature.com/scientificreports

Decoding of human identity 
by computer vision and neuronal 
vision
Yipeng Zhang 1,8, Zahra M. Aghajan 2,8, Matias Ison 3,8, Qiujing Lu 1, Hanlin Tang 4, 
Guldamla Kalender 2, Tonmoy Monsoor 1, Jie Zheng 4, Gabriel Kreiman 4,5, 
Vwani Roychowdhury 1 & Itzhak Fried 2,6,7*

Extracting meaning from a dynamic and variable flow of incoming information is a major goal of 
both natural and artificial intelligence. Computer vision (CV) guided by deep learning (DL) has made 
significant strides in recognizing a specific identity despite highly variable attributes. This is the 
same challenge faced by the nervous system and partially addressed by the concept cells—neurons 
exhibiting selective firing in response to specific persons/places, described in the human medial 
temporal lobe (MTL) . Yet, access to neurons representing a particular concept is limited due to these 
neurons’ sparse coding. It is conceivable, however, that the information required for such decoding 
is present in relatively small neuronal populations. To evaluate how well neuronal populations 
encode identity information in natural settings, we recorded neuronal activity from multiple brain 
regions of nine neurosurgical epilepsy patients implanted with depth electrodes, while the subjects 
watched an episode of the TV series “24”. First, we devised a minimally supervised CV algorithm (with 
comparable performance against manually-labeled data) to detect the most prevalent characters 
(above 1% overall appearance) in each frame. Next, we implemented DL models that used the time-
varying population neural data as inputs and decoded the visual presence of the four main characters 
throughout the episode. This methodology allowed us to compare “computer vision” with “neuronal 
vision”—footprints associated with each character present in the activity of a subset of neurons—and 
identify the brain regions that contributed to this decoding process. We then tested the DL models 
during a recognition memory task following movie viewing where subjects were asked to recognize 
clip segments from the presented episode. DL model activations were not only modulated by the 
presence of the corresponding characters but also by participants’ subjective memory of whether they 
had seen the clip segment, and by the associative strengths of the characters in the narrative plot. 
The described approach can offer novel ways to probe the representation of concepts in time-evolving 
dynamic behavioral tasks. Further, the results suggest that the information required to robustly 
decode concepts is present in the population activity of only tens of neurons even in brain regions 
beyond MTL.

Results
We sought to utilize advances in computer vision (CV) and deep learning (DL), and move from single concepts 
cells to the level of neuronal populations for identifying  characters1–7. Nine neurosurgical patients (Supplemen-
tary Table 1) watched a 42 min movie (first episode, season six of “24” TV series). Following the movie viewing, 
participants were tested for recognition memory by showing them multiple short clips of targets (taken from 
the same episode) and foils (taken from another episode of the same TV series) and were instructed to mark 
whether they had seen the clip (Fig. 1a; Methods). These participants were implanted with multiple depth 
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electrodes as part of the clinical procedure for seizure monitoring and possible resection of the epileptogenic 
tissue. We recorded single unit activity from 385 neurons from multiple brain regions (Methods; Supplementary 
Tables 2, 3)3,8–10 .

We first examined whether it is possible to decode the presence or absence of individual characters throughout 
the movie from the neuronal population responses despite the highly variable physical appearance and context. 
As a first step towards generating training and test sets for the decoding task, we developed a semi-supervised 
algorithm that labeled the presence or absence of nine important characters (defined as characters that appeared 
for at least 1% of the episode) in each frame (Fig. 1b, c; Supplementary Fig. 1; Methods). Briefly, the associ-
ated pipeline involved: (1) extraction of humans in each frame using a pre-trained YOLO-V3  network11 , (2) 
spatio-temporal tracking of detected humans to form clusters of image crops belonging to the same character, 
(3) grouping of these spatio-temporal image clusters into nine important character identities, based on facial 
features; (this is the only part that required manual intervention), and (4) training a ten-label Convolutional 
Neural Network (CNN) with the automatically learned examples to identify the presence or absence of each of the 
nine characters in each frame (the tenth label corresponded to “other”). Of the nine character identities created 
by our algorithm, we picked the four most prominent characters to be decoded using neural data; henceforth, 
to be referred to as C.1, C.2, C.3, and C.4 (This allowed us to have sufficient data points for training and testing 
in the later steps; see Methods; Supplementary Fig. 2; Supplementary Table 4). Prior  work7  had segmented the 
same movie into a set of shots (or cuts, defined as consecutive frames between sharp transitions), and manually 
labeled each shot (as opposed to the individual frames in our case) with the names of the characters in it. By 

Figure 1.  Schematic of the task and the pipeline for semi-supervised character extraction. (a.) The task 
consisted of viewing an episode of the 24 TV series followed by a recognition memory test. During the memory 
test, participants were shown short clips and were asked whether they had previously seen the clip or not. (b.) 
A brief overview of the algorithm used for character extraction. For a more detailed version, see Supplementary 
Fig. 1) (c.) Example outputs of the character extraction algorithm at different steps: Left) output of stage 1 
(extracting humans in each frame); Right) output of stage 4 (sample different appearances for each of the four 
main characters C.1 through C.4) (d.) To test the performance of our character extraction algorithm, we used 
character labels that were manually created in an independent  study7. Shown are the normalized confusion 
matrices of individual characters (right) as well as the overall confusion matrix (left). Yp and Np correspond to 
predicted yes and predicted no respectively. Note the darker colors along the diagonal showing large percentages 
of true positives and true negatives indicative of high performance.
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aggregating frame level labels over each shot, we benchmarked the performance of the automated method against 
the manual labels (results are shown in Fig. 1d).

Having established continuous (as opposed to a cut-level human annotation) labels for the visual presence 
of characters in each frame (using our semi-supervised method), we asked whether it is possible to find neural 
footprints for each of the four main characters in our electrophysiological data for each participant in our study. 
A footprint of a character is a discriminative pattern in neural data responding to the presence of the character, 
such that the pattern appears if and only if the character is present, and hence a decoder can be trained. Further-
more, these footprints are participant-specific, given that each participant had a unique set of recording sites. To 
build such a decoder, for any given frame with a character in it, we created a candidate footprint feature vector 
comprising the firing rates of all active neurons from all regions during a two-second interval around the frame 
(one second before and one second after for each target frame; see Methods). The exact number of neurons and 
regions for each participant can be found in Supplementary Tables 2, 3.

To implement the decoder, we first used, and optimized, a two-layer Long Short Term Memory (LSTM) 
 network12  (Fig. 2a, Methods; Supplementary Table 5). The final layer outputs the probabilities of the four main 
characters in each frame, which during evaluation were further binarized into presence (“yes” label) or absence 
(“no” label) predictions (Fig. 2a). We used a 5-fold cross-validation method, with 70% of the data used for train-
ing, 10% for validation, and 20% for testing (frames were randomized and were independent in each set). It is 
worth noting that the true data labels were highly unbalanced and the characters were at most visually present 
in only around 20% of the frames, (Supplementary Table 4). As such, without using higher weights for the loss 
function corresponding to “yes” labels, one would expect that the performance would converge to a mislead-
ingly high accuracy of 80% but would yield 0% for character detection. However, we obtained good decoding 
performance both in terms of accuracy and character detection, thus indicating significant latent character 
information in the neural data (Methods).

For each participant, the performance of the decoder was first visualized by comparing the frame level 
predictions for each character against the corresponding true labels (Fig. 2b), and was further quantified by a 
normalized confusion matrix (Fig. 2c). Performance of the LSTM decoder, as quantified by the F1-scores—a 
measure that is more appropriate for unbalanced datasets—was on average 7-times better than that of a distri-
bution-based decoder (such as Naive Bayes (Methods); Supplementary Table 6). This suggests the presence of 
strong and unique discriminative character footprints in the neural data. The distribution of the entries of the 
normalized confusion matrix (Fig. 2d), the plots of the Accuracy (Fig. 2e) and F1-scores (Fig. 2f) across all nine 
participants, as well as the table of Recall, Precision, F1-scores, and Accuracy (Supplementary Table 7) showed 
consistently good results. Lastly, to further ensure that our results could not arise by chance, we performed 
a shuffling procedure in which the character labels were randomized with respect to the neural data and the 
participant-specific models were retrained and re-evaluated. Here, too, the performance of the true model was 
far above the performance of the chance model (Figs. 2e,f; shaded region). Next, we addressed the effect of 
faulty labels in the output of the semi-supervised computer vision algorithm on the performance of the neural 
decoder (“neuronal vision”). We used the cut-level human annotations as the ground truth. Although the neural 
decoder was trained and tested using the computer vision (CV) labels, which albeit close to the ground truth 
(manually-labeled data) contained a small number of faulty labels (Fig. 1c), we found that in the case of recall 
(i.e. true positive rate), neural vision outperformed the computer vision results (p = 5.05 ×  10−3, Signrank test).

Since Neural Network (NN) architectures, such as the LSTM, have high representational capabilities, several 
different converged models (corresponding to different minima for the same training data) could give compa-
rable end-to-end performance but could produce dramatically different results when the models are used to 
determine functional properties of the underlying physical systems. In our case, for example, we intended to 
use the learned models to determine the regions and subregions carrying the most relevant information in the 
decoding of different characters. Therefore, we used an entirely different NN architecture, namely a convolu-
tional neural network (CNN) model, where the time series training data around each frame was converted into 
an image (Methods; Supplementary Table 8). The exact same tasks were replicated for both LSTM and CNN 
networks. Indeed, the CNN model reached comparable high performance to that of the LSTM model in decod-
ing characters (Supplementary Fig. 3; Supplementary Table 6) and yielded similar results to the LSTM pipeline 
in the subsequent analyses detailed below. The consistency of results between the two NN models (LSTM and 
CNN) is critical, especially when assessing the importance of different brain regions in the decoding process, 
since it ensures that the results are not merely an artifact of model optimizations. Lastly, the observation that 
both NN models performed significantly better than the other classifiers we tried (e.g., linear SVM; Methods) 
suggests that the nonlinear dynamics between the input features are a critical aspect of the decoding process 
that are not captured by traditional machine learning methods (Supplementary Table 6). It is possible, however, 
that if the recorded neurons were sampled from the relevant regions (e.g. face areas) or the degree of invariance 
in the presented stimuli was reduced (e.g. repeated still images of the characters under a few conditions), the 
traditional machine learning methods would perform satisfactorily as well.

Thus far, we used the activity of all of the recorded units within each participant as the input to the NN 
models. Next, we used a knockout analysis to determine the brain regions that were more critical than others 
in the decoding process. This knockout analysis is analogous to the analysis tool named Occlusion  Sensitivity13  
for inspecting NN image classifiers. Specifically, we evaluated the performance of our model (that was trained 
on units from all regions; base results) on data in which the activity of units from individual regions was elimi-
nated one at a time (region knockout results). We used the change in the Kullback–Leibler divergence (KLD) 
loss due to the knockout, normalized by the number of neurons, as a proxy for how worse (or better) the model 
performs without units recorded from a specific region (Methods). The KLD loss was used because it is a more 
granular metric compared to other metrics, such as accuracy, in investigating the model’s response to such 
knockout perturbations.” We found that knockouts of different regions led to different changes in KLD loss, 
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and we determined important regions to be those which, when knocked out, led to higher normalized KLD loss 
(Fig. 3a). Of the eleven regions, knocking out five of them resulted in the most notable (normalized) losses in 
decoding performance (occipital, entorhinal cortex, parahippocampal, anterior cingulate, and superior tempo-
ral)(Fig. 3b). For each participant, we additionally verified this finding by re-training two independent NNs on 
neural data from important and less important regions and by comparing their performance. The two separate 
models, one trained only using the units from regions that were deemed important, and another one trained 
only using the remainder of the units (Methods), showed a significant difference in their decoding performance 
(p = 0.01, Wilcoxon ranksum test comparing the F1-scores of the two re-trained models).

We asked whether the co-activation pattern among the neurons within each region was contributing to the 
decoding performance. We defined the incremental information content of a neuron as the increase of the KLD 
loss on removing the neuron’s activity while preserving the rest of the system. We observed that the information 
content of a set of neurons, that is, the increase in the KLD loss by removing all the neurons in the set, is larger 
than the one obtained by summing up the incremental information contents of the individual neurons. This was 
shown by applying the same knockout analysis, where we knocked out the activity of all the neurons recorded on 
individual electrodes (microwires; 8 per region; electrode knockout results) one at a time and evaluated the KLD 
loss (Fig. 3c). Our analysis showed that the resulting increase in the KLD loss from region knockout (i.e., when 
all the units in a given region were knocked out together) was greater compared to when the increases in KLD 
losses from electrode knockout within a region were added together (Fig. 3d) in most regions (Fig. 3e; P < 0.05 
for eight out of eleven regions, Wilcoxon signed-rank test). These results were replicated using the CNN network 
as well (Supplementary Fig. 4). This finding of “the whole is greater than the sum of its parts” may indicate that 
the neurons’ dynamics and inter-relations across a region may also contribute to the decoding performance.

After quantifying the model performance during movie viewing, we examined how the model fared during 
the memory test following the movie (Fig. 1a; Methods). It should be borne in mind that because of the nature 
of the recognition task—where participants have to decide whether they have seen the clip or not—participants 
would most likely remember parts of the movie plot beyond those displayed during the clips. Thus, any well-
trained decoder may predict the presence of characters not necessarily visually present in the clip itself. As such, 
when any such decoder is evaluated by whether it predicts the characters in the clips, it might lead to more false 
positives (FPs) compared to the movie viewing time, therefore lowering the accuracy. Indeed, as reported in 
the following, we observed that our decoder led to an increased number of FPs and, as expected, the accuracy 
of our model was lower during the memory task compared with the movie (~ 67% compared to ~ 95%). We dis-
covered, however, that the accuracy of the model was positively correlated with both the percentage of the time 
the character was present in the clip, as well as, the size of the character in the frames (Fig. 4a), which might be 
expected given that both are measures of how prominent the character is.

Our NN models output a confidence level for each character in the range [0,1] at any given time; this con-
fidence level is henceforth referred to as model activation. So far, while reporting metrics such as accuracy and 
F1-score, we followed the standard technique of binarizing this model activation: 1 if it is greater than 0.5 and 0 
otherwise. However, model activation can provide more granular information and was, therefore, used to analyze 
the decoder performance during the memory task. We evaluated the NN model activations for each character 
as a function of time and, specifically, with respect to the clip onset time (Fig. 4b). We noted that the model 
activations, in addition to the visual presence or absence of the characters, were also related to participants’ sub-
jective memory. Model activation during clip viewing was highest when the characters were in the clip and the 

Figure 2.  Decoding visual presence of the four main movie characters using neural recordings as inputs. (a) 
The structure of the LSTM network used for classification. Here, input data was the firing sequence (colormap; 
brighter shades indicate higher firing) of all neurons (x-axis) from a participant within a two-second window 
around each frame (y-axis: time; in this case 6 seconds are shown with data 1-3 being example representatives 
of 2 seconds around each frame with 60 time-steps). Firing rate maps were sequentially passed through two 
LSTM layers followed by two fully connected (FC) layers to output a probability distribution over the four main 
characters in that frame of the movie. Note that the predictions occur on a frame by frame basis. (b) Frame-
by-Frame comparison of character labels generated by CV and neuronal vision (LSTM classifier): The labels 
generated by the computer vision algorithm (green vertical lines; each row is a different character) and the 
LSTM (blue dots: true positive, TP; red dots: false positive, FP) for each movie frame are plotted as a function 
of time. The significant overlap between the two labels (i.e., green lines and blue circles, large number of true 
positives) illustrates the goodness of the decoding algorithm. (c) In an example participant, the normalized 
confusion matrices for the binary classification task for all the four characters are shown. Each row indicates 
the true labels (Y: character present in the frame; N: character not in the frame) and each column indicates the 
predicted labels by the classifier. The large numbers on the diagonals (high true positive rate (TPR) and true 
negative rate (TNR)) of all the four matrices shows that the LSTMs achieve high accuracy in decoding all the 
four characters. (d) The distribution of the entries of the confusion matrix over all participants is shown as a 
bar plot (mean) with error bars (std) for all four characters. The high mean and low standard deviation for the 
TPR and TNR values in all the four matrices show that the LSTM achieves high accuracy in decoding all the 
four characters across participants. (e-f.) Accuracy (e) and F1-scores (f) for decoding each character are shown 
with each colored dot indicating different participants (Pt1 through Pt9). The consistently high accuracy and 
F1-scores across participants indicate that the LSTM generalizes well in this decoding task. The lines and shaded 
areas (mean ± STD) indicate the performance of the chance model (obtained from shuffling labels) across all 
participants. Note that the chance level for accuracy is at 80% due to the unbalanced nature of the data. For 
instance, given that a character is present only in 20% of the frames, predicting a “N” for all frames would yield 
80% correct predictions.

◂
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participants later marked the clip as “seen before” during the response time. Conversely, model activation was 
lowest when the character was not in the clip and the participant marked the clip as “not seen before” (Fig. 4c).

To quantify this at the population level, we used a Generalized Linear Model (GLM) where we modeled 
character activations as a function of (1) the presence or absence of the character in the clip; (2) whether the clip 
was marked as seen or not; and (3) whether the clip belonged to the target or not (Methods), all as main terms. 
We found that both the presence of the character as well as the participants’ response to whether they had seen 
the clip were significant contributing factors in model activation (Fig. 4d; Character in: estimated coeff. = 0.39, 
p = 8.02 ×  10−6; Clip marked as seen: estimated coeff. = 0.24, p = 0.001; GLM estimates). The effect of participants’ 
subjective memory of the clips on the model activation during memory was surprising given that the NN model 

Figure 3.  Identification of important regions in decoding characters: “The Whole Is Greater Than the Sum of 
its Parts.” (a) The change of KLD loss for each character (row) after knocking out a given region (column) for 
one participant is shown (Region Knockout). The value is normalized by the number of neurons in that region 
and demonstrates how the model performance deteriorated when excluding the units recorded from that region. 
Important regions are those with higher KLD loss values. L and R correspond to the left and right hemisphere, 
respectively. A: Amygdala, AC: Anterior Cingulate, EC: Entorhinal Cortex, MH: Middle Hippocampus, 
VMPFC: Ventro- medial Prefrontal Cortex. (b) The changes in KLD loss after knocking out regions are shown 
across participants. Different colored dots correspond to the changes in KLD loss for different characters. Bars 
indicate the median value of the change in KLD loss after region knockout. The following regions resulted 
in the most notable losses in decoding performance: anterior cingulate (36.11, [20.82, 53.78]%), entorhinal 
cortex (42.50, [27.04, 59.11]%), occipital (65.00, [40.78, 84.61]%), parahippocampal (37.50, [8.52, 75.51]%), 
and superior temporal (33.33, [9.92, 65.11]%). Reported are the percentage of losses above 0.5 (as well as the 
binomial fit confidence intervals).(Nparticipants = 9). (c) The change in KLD loss for each character (row) after 
knocking out a given electrode (column) at a time is shown (Electrode Knockout) for an example participant 
(same as in a). Similar to the region knockout results in (a), the loss value is normalized by the number of units 
recorded on each electrode. (d) The sum of the changes in KLD loss following electrode knockout (all electrodes 
within a region) was subtracted from the change in KLD loss following region knockout. Shown are these 
values for the four different characters (rows) from an example participant (same as in a and c). Positive values 
indicate that knocking out a whole region deteriorates the model performance to a greater extent. (e). When 
considering all regions from all participants, in most regions, the region knockout loss was greater than the sum 
of electrode knockout loss (each column, and its associated colormap, is the distribution of this measure and the 
red horizontal line indicates the median of the distribution for those that were significantly different from zero) 
as quantified by Wilcoxon signed-rank tests (*:p < 0.05; **: p < 0.01; ***: p < 0.001).
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Figure 4.  Properties of the NN model trained for decoding characters in the movie during the memory test. 
(a) The accuracy of the NN model (trained during movie viewing) in decoding the visual presence of the 
characters in the clips during the memory test improved as a function of both the “size” of the character in the 
clips (defined as the percentage of the pixels that the character occupied in a given frame; reference: half frame) 
as well as the prevalence of the character in the clip (defined as the percentage of the clip time during which 
the character was present). Shown are the mean ± SEM of the model accuracy at different thresholds across 
participants. (b) Model activation as a function of time (averaged across five folds) was separated for the clips 
during which the character was present (character in; left) and all other clips without the character (character 
out; right; a random subset of the clips are shown in the panel). Note that during the clips that contained 
the character the model activation appeared higher. The example shown is from participant 6, activation for 
character 1. (c) Model activation as a function of time (with respect to the clip onset), was divided into a 2 × 2 
matrix: clips with/without the characters x participants’s subjective memory of the clip (yes-seen/no-have 
not seen). Shown are the mean ± SEM of the model activation for each of the four groups of clips. (d) To test 
whether both the presence of characters and participants’ subjective memory influenced the model activation at 
the population level (for all participants and clips), we used a GLM method. We modeled the overall activation 
(during a two-second interval after clip onset) as a function of (1) whether the character was in the clip or not 
(estimated coeff. = 0.39, p = 8.02 ×  10–6); and (2) whether the participant marked the clip as previously seen or 
not (coeff. = 0.24, p = 0.001). Both were significant factors in the model activation and the height of the bars and 
error bars correspond to the mean overall activation and the standard error across clips (from all participants) 
respectively. (e) Left) Character associations as quantified by the conditional probabilities of their cooccurrences 
during the movie. For example, row 1, column 4 represents P(character 4 | character 1. Right) Conditional 
probabilities of model activations for the characters. The structure follows the same pattern as in (left). (f) 
Conditional probabilities of model activations during clip viewing (e-Right) were significantly correlated with 
character associations (e-Left) in an example participant (Spearman correlation r = 0.67, p = 4.73 ×  10–3). Please 
note that the values from the diagonals are excluded in this analysis. (g) Conditional probabilities of the model 
activation for characters were higher during response time compared to clip viewing (p = 0.016; sign-rank test).
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was only trained to distinguish the visual presence or absence of the characters. In a separate GLM, we included 
the interaction term between character presence and participants’ subjective memory as an additional variable, 
which (to our surprise) was not a significant predictor of NN model activations. Can the model activation be 
influenced by how often the characters were seen before? When we included the characters’ appearance frequency 
(a proxy for how often each character was seen during the episode) as a variable to the GLM model, we did not 
find it to be a significant factor. Although by the end of the episode the participants may be too familiar with the 
main characters, it would be interesting to investigate this factor within the initial phases of learning.

We then performed the knockout analysis (described in the previous sections) and evaluated the model 
activations after knocking out the activity of all MTL neurons. Once again, we modeled NN activations as a 
function of participants’ subjective memory (i.e., whether they marked the clips as seen or not) as well as the 
characters’ presence in the clip. Here, subjective memory was no longer a significant predictor of the activations, 
i.e., only the character presence remained a significant factor (GLM estimated coeff. = 0.50, p = 9.50 ×  10–9), which 
is consistent with the role of the MTL in the formation of  memories14–16 .

It has been shown previously that the formation of new associations are reflected in the firing pattern of single 
 neurons9. Accordingly, we hypothesized that if two characters, for example characters 1 and 4, became associated 
during the movie plot, the activation of the NN model for both characters should be high (regardless of character 
presence or not). To test this, we used two measures: (a) Character associations within the plot: We computed 
the conditional probabilities of the characters, for example the probability of character 1 appearing given that 
character 4 appears in a given scene (a meaningful segmentation of the episode provided by an independent 
 study7; Methods). Character associations, i.e., their conditional probabilities are summarized in Fig. 4e (left); (b) 
NN model coactivations: To compute whether model activations for the different characters overlapped (e.g., 
when the model activation was high for character 1, there was a higher activation for character 4 as well even 
in the absence of character (4), we used a similar approach to (a). We calculated the conditional probabilities 
for the characters predicted by our model in the clips (e.g., the probability of model activation being above 0.5 
for character 1 given the model activation is above 0.5 for character 4)(Methods). NN model coactivations, i.e. 
model conditional probabilities for a given participant are shown in Fig. 4e (right). We found that the NN model 
coactivations for characters during clip viewing were positively correlated with character associations in the 
movie (example: Fig. 4f; for all participants: p < 0.05, Spearman correlation).

Lastly, we inspected the model activation during the response time (following the end of the clip and prior 
to the participants making a choice) when no visual information was provided to the participants, and noted 
that conditional probabilities of model activation for the different characters were significantly higher compared 
to those during clip viewing (p = 0.016; sign-rank test; Fig. 4g), which might suggest higher-order associations 
among the characters rather than first-order associations as observed during clip viewing, may be invoked dur-
ing the response time.

Discussion
We report on an integrated methodology that allowed us to perform neuronal decoding of individual characters, 
each with highly variable sensory and contextual depiction viewed throughout a 42 min audiovisual sequence, 
and to compare it to the ability of computer vision with minimal human supervision to recognize these characters’ 
identities. On the one hand, we proposed a semi-supervised algorithm to extract the characters in each movie 
frame to achieve continuous labeling of data for further analysis. On the other hand, we implemented a DL-based 
framework to decode the visual presence of characters using neuronal data. Our NN model further allowed us 
to extract and follow the characters’ footprints in time and investigate how they interact during memory tests.

Our semi-automated method served two purposes: first, its performance was comparable to that of human 
labeling, and thus it could be used as a general tool for future research in this field without the need for time-
consuming and expensive use of Mechanical Turk resources; second, it showcased what state-of-the-art computer 
vision technology stack can achieve (along with minimal human intervention) if it were to watch the movie itself 
instead of a human. In particular, whether it could accurately create visual models of different character identi-
ties, and then recognize them in every frame. The full power of CV tools provided an interesting contrast to the 
information contained in the firing patterns recorded from only a few tens of neurons.

Our ability to decode the visual presence of the characters using the neural data, even in the absence of direct 
access to concept neurons explicitly representing these  characters3,6 , suggests that there is indeed sufficient 
information in relatively small populations of neurons, even in regions beyond the MTL, to detect the character 
footprints. Given that we obtained similar results—in both decoding of the characters as well as identifying the 
important regions contributing to the decoding process—using two different neural networks, it is unlikely that 
our results are merely artifacts of the trained networks. Of note, the sensory and association regions—such as 
the occipital and superior temporal—contributed most to the decoding  process14–16 . In addition to highlighting 
the brain regions that may be recruited in the representations of the characters, this approach suggested that the 
correlations amongst the neurons within a region may be conducive to the decoding process. This observation 
perhaps resembles the information theoretic phenomenon of  synergy17  where the aggregation of knowledge 
from multiple sources results in more information than the sum of the sources. Whether this synergistic effect 
is related to the amount of recurrent information flow within a given region remains to be examined.

Despite having trained the NN models to only decode characters during movie viewing, the model performed 
well during the memory test. Although, admittedly, the model performance during the memory test was slightly 
lower compared to movie viewing. This lower NN model performance could be potentially explained by the 
changes in neural representations due to the change in context (viewing versus remembering) or the formation 
of composite representations due to forming associations with time. The model activation during the memory 
test seemed to corroborate previous hypotheses on memory reinstatement given that the participants’ subjective 
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memory was, in addition to the presence of characters, a significant predictor of the NN model activations. This 
may suggest that the patterns of neural activity during movie viewing might be  reinstated18–22  differently in 
accordance with participants’ memory of whether they had previously seen the clip or not, which consequently 
affects our NN model predictions—an effect that was eliminated when the activity of MTL neurons were dis-
carded from the models.

Moreover, during the memory test, the model predictions may be capturing what has been conjectured 
regarding the change in the neuronal representations as a result of forming associations between  items9,23 . How 
the model coactivation for the characters during the memory test reflected the relationship between the charac-
ters, and their associations, in the movie itself may be reminiscent of associative coding schemes. Although our 
knockout analysis to examine whether this effect was specific to the medial temporal lobe regions or not did not 
lead to convincing results, examining the role of MTL vs. non-MTL neurons in the representation of associations 
warrants future investigations with large-scale data.

While in the current study, we did not directly compare the activity of the artificial neurons in our CV model 
with the recorded biological neurons, we acknowledge that this is an interesting endeavor and active area of 
research. In the past decade, numerous studies have reported the presence of artificial neuron responses that 
mimic neural activity in various parts of the visual  system24–26. Indeed, one of the latest advances in this domain 
was the discovery of multimodal neurons in the CLIP  model27,28, which can be regarded as artificial counter-
parts of concept neurons within the human  MTL3. Nonetheless, it is possible that the representation of artificial 
neurons will diverge from those of real neurons given that on the one hand artificial networks, regardless of 
their level of complexity, are only exposed to limited sets of sensory information (e.g., visual and auditory but 
not tactile) but on the other hand they can be trained on much larger amounts of data.

Taken together, our proposed platform offers an approach to interrogate the neural signatures involved 
during a temporally continuous experience that is aimed at mimicking real-life episodes and going beyond the 
stimulus–response experiments. Furthermore, it allows inquiries beyond the possibility of character decoding 
and shed light on potential mechanistic insights into memory processes.

Materials and methods
Participants. Nine epilepsy patients (6 Females, 20–50  years old; Supplementary Table  1) who were 
implanted with intracranial depth electrodes for epilepsy treatment (seizure monitoring) participated in our 
study during their hospital stay. Prior to the surgery, an informed consent was obtained in accordance with the 
Institutional Review Board (IRB) at UCLA and the study was approved by the UCLA IRB.

Behavioral tasks. Nine participants watched an episode of the TV series 24 (season 6, episode 1) and were 
tested for recognition memory following the movie viewing.

The memory recognition task consisted of participants being presented with short clips. Half of the clips, 
chosen randomly, were from the episode they had just watched (target clips), and the other half were chosen 
from the second episode of season 6 (lure clips). Because the episodes occur in two subsequent hours of the 
day, the characters look similar between the two episodes, and hence the clips from the second episode seemed 
appropriate as lure clips (for further justification, see 7). After the end of each clip, participants were asked to 
make a choice of whether they had seen the clip before or not. Thus, the memory phases consisted of interleaved 
“clip viewing” and “response time” sections and the number of presented clips varied from participant to par-
ticipant (range: 100–300 clips). It is worth noting that none of the participants had previously watched the TV 
series prior to the experiment.

Data acquisition. Electrophysiological data were recorded from the microelectrodes located on the depth 
electrodes (placement was determined by clinical criteria). Wideband Local Field Potential was recorded using a 
128-channel Neuroport recording system (Blackrock Microsystems, Utah, USA) sampled at 30 kHz.

Neural data preprocessing. Previously used methods were used for spike detection and  sorting3,8–10. A 
bandpass filter in the range 300–3000 Hz was applied to the broadband data to detect spikes. Spikes were first 
automatically sorted into clusters using the Wave_clus toolbox and the clusters were further manually inspected 
for: (1) spike waveforms; (2) refractory spikes; and (3) the interspike interval for each cluster. The units with a 
mean rate below 0.05 Hz were discarded for further analysis.

Additionally, we constructed a spike train by temporarily binning the spikes into 100 ms bins. We further 
visually inspected the data, a matrix of the size NxT, where N was the number of units and T was the number 
of time bins. Time bins with synchronous activity across multiple regions were deemed as artifacts and were 
excluded from further analysis.

After data preprocessing and visual inspection, the cleaned spikes in selected regions were binned into 20 ms 
bins. Then the spike counts were interpolated linearly into 15 Hz signals.

Electrode localization. Electrode localization was done by co-registration of a high-resolution post-oper-
ative CT image to a pre-operative whole brain and high-resolution MRI for each participant using previous 
 methods10,29 (Supplementary Table 2).

Semi-supervised character identification:. We developed a semi-supervised framework for identify-
ing the characters in the movie at the frame level. The original movie was sampled at 30 frames per second and 
to make the framework computationally efficient, we downsampled the frames by a factor of 4, i.e. every fourth 
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frame was retained. After downsampling, the number of frames in the 42 min movie was reduced to 18,900. The 
semi-supervised framework consists of three main stages, which we described below:

1) Stage 1

a) We utilized a common practice in filming, where a particular visual setting is used to describe a part 
of the underlying plot. This visual setting is characterized by a distribution of colors and other features 
in the frames which are distinct from those of the preceding and succeeding settings, allowing one to 
automatically split the video into segments, which we called cuts. We used  PySceneDetect30 to gener-
ate such cuts. Each such cut, represented by a sequence of frames (clip of the video), will be our unit 
of analysis. The primary advantage in extracting such cuts is that during each cut, a group of mostly 
unchanged characters play their roles, thus, allowing us to create real-time identities of these characters 
via local tracking and similarity metrics, as described next.

b) We processed each cut separately and created real-time identities of distinct characters as follows. (i) 
We first used a pre-trained YOLO-v311  to detect humans and drawed the bounding boxes of them in 
each frame. If the bounding boxes were too small or the aspect ratio was highly skewed, we filtered them 
out (thresholds are specified in the code accompanying the manuscript). (ii) Then we used  SORT31 to 
group all bounding boxes belonging to the same character in one group, solely based on the principle 
of spatio-temporal continuity: each character will follow a unique trajectory across consecutive frames; 
no discriminating image features are used. The framework uses two algorithms, (a) A Kalman filter-
ing tracking to follow the bounding boxes across frames; however, when characters cross each other 
(in the 2D frame space) or when a new character appear, the trajectories cannot be disambiguated by 
tracking alone; (b) A Hungarian matching algorithm to resolve such ambiguities by assigning the cor-
rect labels. For example, if the 2D projections (as captured by frames) of two 3D trajectories intersect 
and then separate into two, the Hungarian matching algorithm can label one outgoing trajectory as the 
continuation of the correct incoming trajectory by matching the bounding box dimensions before and 
after the intersection. For each such distinct trajectory, we collected and cropped (from the original 
frame images) all the bounding boxes belonging to it. These image patches will be referred to as crop 
clusters. Thus each cut will generate multiple crop clusters, corresponding to the number of significant 
characters in that cut. There are two kinds of errors that might be generated in this stage: 1. Multiple 
crop clusters within the same cut might correspond to the same character. 2. Several characters might 
show within one crop cluster. We manually checked the result in this stage, and the mistakes were found 
to be negligible. At the end of this stage, we got 1705 crop clusters and each crop cluster is pure in the 
sense that the image patches belong to a single ground-truth character.

2) Stage 2

a) We merged the crop clusters belonging to the same character across all the cuts purely based on facial 
features. This grouping of the crop clusters was done iteratively, using k-means clustering and KNN. 
The feature vector of crop cluster  Ci was extracted in the following manner: (i) Each image in cluster  Ci 
was fed into a pre-trained  FaceNet32  to extract a 128-dimensional feature vector from the last layer of 
the network. Note that if no face is detected in a given image patch, we do not use this image’s patch in 
this stage. Moreover, if any crop cluster loses 80% of its image patches due to lack of facial features, we 
removed this crop cluster. The attribution of such image patches dropped in this phase to characters 
is made at Stage 3 using the trained ResNet. (ii) Averaging the feature vectors of all of the remaining 
image patches in this crop cluster  Ci produced the final feature vector F(Ci).

b) The second step consisted of first clustering crop centers using k-means, yielding k super-clusters. Each 
such k-means super-cluster was evaluated using a distortion metric. A good super-cluster with low 
distortion was retained defining a character; note that multiple super-clusters at this stage can represent 
the same character. For example, if feature vectors F(Ci)’s of crop clusters  C1,  C2 …Cj comprise a good 
super-cluster (i.e. with distortion metric below a threshold) after k-means, then image crops belonging 
to all these crop clusters were merged together into a single group (which we referred to as a supernode) 
representing the visual snapshots of one unique character in the video. The bad super-clusters after 
k-means were disintegrated into their constituent crop clusters: each such crop cluster that belonged to 
the bad super-clusters will be evaluated to see if they can be merged with a good super-cluster and hence 
it will be referred as a candidate crop cluster (CCC). Since the clustering results depend on the choice 
of k (the number of clusterings) in the k-means algorithm, we picked a relatively large k to balance the 
purity and completeness of supernodes (good super-clusters). This choice of a large value of k ensured 
that bad super-clusters always existed, allowing the supernodes to be pure.

c) Next, realizing that the bad super-cluster may have crop clusters that would otherwise be a good match 
for the supernodes, k-nearest neighbors algorithm (KNN) was used to determine such crop clusters and 
assign them to match supernodes. This increases the sizes of the supernodes, improving coverage while 
retaining purity. We defined image distance between two image patches as the euclidean distance of 
their feature vectors extracted from FaceNet. Additionally, we define cluster distance from crop cluster 
A to crop cluster B as the median of the collection of K nearest image distances from each member in 
A to those in B. Then we define the distance from a candidate crop cluster (CCC) to a supernode as the 
minimal distance from the candidate to any crop cluster in the supernode. Then the assignment of the 
candidate crop cluster (CCC) to a particular supernode is determined by the smallest distance among 
all supernodes. If the distance to the winning supernode is below a threshold, then this candidate crop 
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cluster is assigned the same label as the winning supernode. To summarize, crop clusters with the same 
pure character were first grouped into supernodes by k-means and then image level feature comparisons 
were used so that the supernodes still remain pure while absorbing candidate crop clusters.

d) At the end of this KNN operation, we had supernodes (with absorbed candidate crop clusters) and 
isolated crop clusters that were not merged into any of the supernodes. We defined this one pass of 
k-means clustering and KNN reassignment as one iteration. After each iteration, we computed the 
increase in the size of each supernode. If the increase in the size of any supernode is above a threshold, 
implying there is potential to still absorb more crop clusters, then we move to the next iteration where 
each supernode is treated as a single crop cluster. Otherwise, we moved to the third step in this stage. 
In our experiment, we achieved satisfactory results after two iterations. After the first k-means, we had 
21 supernodes and over 600 bad candidate crop clusters. Then around 100–200 bad candidate crop 
clusters were merged into supernodes in each iteration. After two iterations we generated 32 supernodes 
with consistent character appearance within each supernode and leftover 300 isolated candidate crop 
clusters.

e) The clustering obtained after the end of the above processing might not still be perfect because the same 
character can be in different clusters. We fine-tuned the clusters to further increase the completeness of 
clustering in the following manner: (i) Constructed a fully connected weighted undirected graph with 
the clusters as the nodes and the euclidean distance between the cluster centroids as the edge weights 
(ii) Pruned the network using frame distribution and edge weights (iii) Extracted the connected com-
ponents of the network as the fine-tuned clusters. Finally, we obtained 305 fine-tuned clusters having 
one character in each of them and used human supervision to aggregate and select 9 major characters.

3)  Stage 3
  We obtained 305 fine-tuned clusters having one character in each of them and used human supervision to 

aggregate and select 9 major characters which comprised 200 clusters. We manually inspected each cluster 
and assigned them character labels (e.g., clusters of the same character), see Supplementary Fig. 5.

4)  Stage 4
  Until now, we were able to recognize characters in most generated crop clusters from original cuts in 

stage 1. However, only frames with high quality facial features are labeled in this processing. We intend to 
improve coverage using data augmentation from spatial-time correlation. To be more specific, based on the 
time and space continuity in the cuts, the label is augmented by assigning the same label to the back view or 
blurred images as the clear and frontal view faces in the same cut. At the same time, after stage 2, we dropped 
the whole cuts with only back view or blurred characters, which are not further processed in the grouping 
and human-labeling. To recall those character occurrences in the original video, we trained  ResNet33  using 
augmented labels for those human selected nine characters. We expected the trained ResNet to successfully 
classify the images according to its generalization ability. The trained ResNet was used to detect characters in 
all the crops from stage 1. As a result, the number of recalls of each character increased around 20% compared 
to that from stage 3.

The above-mentioned procedures were initially implemented on the first episode and the reported numbers 
are associated with episode 1. Subsequently, we applied the same method on the second episode to detect the 
characters in each frame since during the memory test the lure clips were taken from episode 2. Other techniques 
have been proposed to capture visual elements within movies using computer  vision34.

Comparison of our semi-supervised method against human labeling:. To validate the perfor-
mance of our pipeline, we compared our results against manual character labeling of the movie that was done 
in an independent  study7. The independent study divided the whole movie into 1001 cuts (segments between 
two sharp transitions) and marked which characters were present during each cut (even when present only for 
a subsample of the cut). Since the manual labeling was done on these cuts, as opposed to individual frames, 
we upsampled our character detection results to accommodate the cut base. We introduced a filter to further 
denoise our predictions. In one cut defined by the independent study, we viewed any character as appearing in 
that cut if the said character was identified for at least 12 frames in the cut. If the cut was longer than 1.3 s, for a 
character to be present in that cut, the detection of that character had to be more than 40% of the frames. Oth-
erwise, the character had to be detected in at least 12 frames.

We then computed the confusion matrix for our model predictions against the human annotations of the 
four dominant characters, and the results are reported in Fig. 1d.

Deep Neural Network (NN) implementation for neural data processing. NN implementations 
were done using Python and the PyTorch framework. This procedure consisted of multiple sections that are 
detailed below:

1. Training data sample generation (inputs): The training dataset of the NN model was generated by sampling the 
neural signal (firing rate sampled at 30 Hz) around the timestamp of each frame. Since the total number of 
frames used in character identification is 18,900, we created 18,900 corresponding windowed neural signals 
as training data with character occurrence descriptors as labels. Concretely, for each frame, we retrieved 
neural data one second before and after as one training data point. Therefore one training data is a 2d matrix 
with shape 60 * number of neurons (in each participant). It is worth noting, however, that this duration 
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interval of two seconds around each frame was determined by minimizing the length while meeting good 
decoding performance.

2. Training data sample generation (outputs): The corresponding label for each training data sample was con-
structed by three categories: Yes, No, and Do-Not-Know (DNK) for each character. Unlike traditional binary 
classification tasks, we introduced a third category for each character to handle the ambiguity of the visual 
signal. Yes was defined as when the character was present in a given frame, and No was defined as when the 
character was not shown in a given frame with certainty. DNK is a mechanism to particularize the training 
set. If an individual character is located in the predefined ambiguous time intervals (for example, when two 
characters are having a dialogue in a sequence of frames but some intermediate frames include only one 
character at a time), we allocate a DNK label to the temporarily absent character for those frames. How-
ever, this data sample could still be used by other characters in the decoding task. The percentages of Yes 
and No labels were around 10% and 88% of the total data samples, respectively (exact values are reported 
in Supplementary Table 4), showing that characters’ appearances are not evenly distributed. Moreover, we 
took measures to accommodate the skewed nature of our training data when quantifying the performance 
of our models (see 7. Further quantifications of the model performance). The percentage of DNK labels were 
around 2% of the total training samples, which indicates that the dropping of these data samples would not 
affect the total information provided to the model. The class DNK is discarded in all of the visualizations 
and performance analyses.

3. LSTM: A suitable type of network for our purposes was the Long Short Term Memory (LSTM)12 , which has 
been already employed in neural signal  processing35 due to its ability to extract patterns from sequential 
data. The architecture of the LSTM network is shown in (Fig. 2a, Supplementary Table 5). The raw windowed 
neural signal was fed into the LSTM directly. We conducted several preliminary evaluations to optimize the 
best network architecture by varying the number of hidden layers and their size (i.e., the number of LSTM 
units for each layer). The best network was found to have two hidden layers with 128 LSTM units each. The 
last layer of the hidden state of the LSTM was fed into two sequential Fully-Connected layers with LeakyReLU 
activation and Batch Normalization in between. The output of the last Fully-Connected layer was reshaped 
into a 4 × 3 matrix, where each row contains the scores of a given character for each of the three labels. A 
softmax function was applied to the scores to represent the probability distribution of Yes, No, and DNK 
labels.

4. CNN: We additionally used a convolutional neural network (CNN) and the architecture of the CNN network 
is shown in (Supplementary Fig. 3a, Supplementary Table 8). We made the assumption that the informa-
tion regarding each character’s appearance was encoded within a fixed time duration of the neural signal. 
Therefore, the windowed neural signal was treated as an image and fed into the CNN directly. The neural 
signal went through several convolution layers with LeakyReLU activations and Batch Normalization in 
between. The output of the last convolutional layer went through a Maxpooling layer and was subsequently 
flattened to a one-dimensional vector. Finally, the vector was fed into two sequential Fully-Connected layers 
with LeakyRelu activation and Batch Normalization in between. Similar to the LSTM network, the output 
of the last Fully-Connected layer was reshaped into a 4 × 3 matrix with rows and columns corresponding 
to the four characters and the three labels (Yes, No, and DNK) respectively. The scores were converted into 
probabilities after applying a softmax function. Here, too, the network architecture (e.g., number of layers 
and size) was optimized.

5. Training, validation, and testing of the NN models: The constructed dataset was randomly shuffled and split 
into training, validation, and testing sets. We used a 5-fold cross-validation method. The general procedure 
consisted of the following steps: (a) We first split the randomly shuffled data into five groups (20% of the 
overall data in each group). (b) For one fold of the cross validation, one group was picked as the test set, 
and from the remaining 80% of the data, we selected 87.5% as the training data (70% of the overall data) 
and 12.5% as the validation data (10% of the overall data). (c) In each fold, the model was trained for up 
to 100 epochs (one epoch corresponds to one full iteration on the training data), and after each epoch, the 
model performance was evaluated on the validation set to infer its potential performance in the test set. 
This procedure is common practice to avoid over-fitting. (d) Since each character’s label distribution was 
highly biased towards No, in order to ensure better predictions for each character, we selected the model 
with the best validation F1-score averaged within each character (note that accuracy is not a representative 
performance measure for imbalance datasets). (e) For the selected model, the average performance on the 
test set in each fold was reported and summarized in Fig. 2, Supplementary Figs. 2 and 3. It must be borne 
in mind that because each participant had a unique set of electrode locations, the models were trained and 
tested for each participant independently.

6. Further details of the model: The goal of training these networks in a supervised way was to predict the prob-
ability of a given character for each of the three labels (Yes, No, and DNK). Network weights were recursively 
updated using the Adam optimizer with backpropagation of the output’s computed loss. We initialized the 
weights with a random Gaussian distribution (mean = 0, standard deviation = 0.1) for the convolution layers, 
and a uniform distribution for Fully-Connected layers to better assist the gradient descent algorithm.

7. Further quantifications of the model performance: We used commonly used measures to quantify the perfor-
mance of our models. It is worth noting that for measures (b–e), the reported results were averaged across 
the five folds (for each character, on the test set). After computing the number of true positives (TP), true 
negatives (TN), false positives (FP), and false negatives (FN), we also reported:

a. Normalized confusion matrix: TP and FN values were normalized by the total number of Yes labels ,and 
TN and FP values were normalized by the total number of No labels.

b. Accuracy: (TP + TN)/(TP + TN + FP + FN) in Fig. 2, Supplementary Fig. 3, Supplementary Table 7.
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c. Recall: TP/(TP + FN) in Supplementary Table 7.
d. Precision: TP/(TP + FP) in Supplementary Table 7.
e. F1-score: 2/(1/recall + 1/precision) in Fig. 2, Supplementary Fig. 3, Supplementary Table 7, as well as in 

the text when identifying important brain regions in the decoding process. As mentioned previously, for 
unbalanced datasets, such as outs, F1-score is a more realistic measure of the performance (as opposed 
to accuracy).

f. KLD loss: We computed the character-wise Kullback–Leibler divergence (KLD) loss to compare the 
difference between model predictions and ground truth. The mean of the four (character) losses was 
back-propagated to tweak the model’s weight. The loss associated with a DNK label was set to zero. 
Therefore, the back-propagated loss was only calculated on the average loss between Yes and NO entries 
in KLD loss for each character. Even though the label distribution was not even, no class weight was 
applied to the loss to balance the data. Furthermore, we also trained models with weighted loss over 
categories but got a similar performance. The fact that without designing handcrafted category weights 
and with unbalanced data, our models worked may also indicate that the vanilla KLD loss—together 
with complexity compatible architecture—was sufficient for mining essential patterns from a large 
enough dataset. The loss calculation is shown below: KLD loss

(

y′, y
)

=
∑

c ∈C y′(c) log
(

y′(c) / y(c)
)

  
where y′ are the model prediction, y are the ground truth, and c is the character label space.

8. Comparisons of the NN model performances against other ML methods: To further gauge our models’ per-
formance, we compared our LSTM and CNN models against other ML models including a Naive Bayesian 
(NB) Model, Logistic Regression (LR) and linear Support Vector Machine (SVM), as quantified by accuracy, 
and F1-scores. For the NB model, we learned each character’s category distribution from training data, then 
made predictions over test data points following this distribution. For the other two linear classifiers, LR 
and SVM, we adopted the classic multi-output strategy, i.e. fitting one classifier per target to achieve the 
character decoding for each data point. We followed the same train/test splits as the DL models and reported 
the performance metric on the test set (Supplementary Table 6).

One observation was that CNN and LSTM both achieved high performance with small variations in perfor-
mance, which suggested that they all captured the essential information for decoding character footprints but 
may vary in the way of constructing the knowledge and making inferences. Additionally, we can conclude that 
without a structured and meaningful model for detecting and decoding, the F1-score would be far lower even 
with guesses following statistics.

Determining the important brain regions in character decoding:. To quantify the contributions of 
different regions to the decoding process, we performed multiple analyses:

1. Region Knockout: To evaluate a given brain region’s importance, we introduced a metric called knockout 
analysis. The method is analogous to occlusion sensitivity analysis, a tool commonly used for inspecting NN 
image  classifiers13. Here, we perturbed the area of the input corresponding to each region (i.e., spiking activity 
of all of the neurons recorded from that region) by replacing it with zeros. Then, we re-evaluated the model 
performance on the perturbed data in the whole training dataset. The general procedure of this knockout 
analysis was performed by iterating over all regions (knocking out one region at a time) and computing 
accuracy, loss and F1-score1 for each character (within each participant). These performance metrics were 
averaged over models trained on each of the five folds. Furthermore, for the loss analysis, we subtracted the 
baseline loss (loss from the original model with intact inputs) from the loss obtained from the knockout 
perturbation for each region. Thus, a positive change in the loss indicates a lower decoding performance 
after a region has been knocked out. Lastly, to account for the different number of neurons recorded from 
each region, the change in the loss was normalized by the number of neurons (Fig. 3a, b and Supplementary 
Fig. 4). As previously mentioned, all of these analyses were done in a within-participant design manner.

2. Electrode knockout: To address whether the encoding correlations among the neurons within each region 
was contributing to the decoding performance, we explored the importance of each electrode following the 
same procedure described above (Fig. 3c and Supplementary Fig. 4) in the region knockout section and 
computed the same metrics (accuracy, F1-score, and loss). Concretely, we added up the change in the KLD 
loss following knocking out all the electrodes from a given region (one at a time, subtracting the baseline loss, 
but not normalizing by the number of neurons). Next, we subtracted this sum from the region knockout loss 
(after subtracting the baseline loss, but not normalizing by the number of neurons). A positive value would 
indicate that the information in a region, as a whole, is greater than simply the sum of the information from 
its constituents. The rationale behind a lack of normalization by the number of neurons in this particular 
step was that the number of neurons were the same on the two sides of the subtraction operation.

3. Re-trained models: To further verify the difference between important and non-important regions in the 
decoding process, within each participant, we employed an alternative approach. Here, we trained two sepa-
rate models: (1) The first model was trained (and tested) using the neural activity from the regions that were 
deemed important from the region knockout analysis. (2) The second model was trained (and tested) using 
the neural activity from the remaining regions. The split was done such that the two models had comparable 
numbers of neurons as their inputs. Here, we computed the F1-scores for each model and compared the 
two across all characters and participants. The results, demonstrating that the model trained on important 
regions performed significantly better than the other model, are reported in the main text.
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Analyses concerning the memory test. As described in the Behavioral task section of the Methods, the 
memory test consisted of clip viewing and response time phases. For each participant, the neural data during 
the entire memory test was fed into the participant-specific model (that was trained and tested during movie 
viewing), and the model activation (probability of each character) was obtained as a function of time. Further-
more, we defined that a character is activated by the model in a given phase (i.e., clip viewing or response time) 
if model predictions went above 0.5 in that phase. The analyses presented in Fig. 4 and Supplementary Fig. 5 
required several steps:

1. Identifying the characters during each clip: Here, character identification was done based on the clips such 
that, within each clip, we used the result of our semi-supervised character identification method, and defined 
a character as present if the number of their occurrences (positive detections) was above a threshold. We 
quantified the performance of the NN model predictions in decoding the characters during the clips while 
we allowed this threshold (percentage of time when the character was present in the clip) to vary. Similarly, 
we allowed the threshold for the size of the character in the frame (maximum = half of the frame) to vary 
and quantified the NN model performance respectively (Fig. 4b).

2. Generalized Linear Models (GLM): To examine what factors significantly contributed to the NN model activa-
tions during the memory test, we used a GLM method. Here, the character activations (averaged across the 
five folds and summed over a two-second period following the clip onset) were modeled as a function of (1) 
the presence or absence of the character in the clip; (2) whether the participant marked that clip as seen or 
not during response time; and (3) whether the clip belonged to the target category (same episode) or the lure 
category (another episode the participants had not seen). A similar analysis was done during a two-second 
period following the end of the clip as well as a two-second period prior to the participants’ responding time. 
The estimated coefficients and the corresponding p-values for each of these factors are reported in the main 
text.

3. Character associations during the movie: We defined a character occurrence association based on the scenes 
during the movie for which the timing information was provided by an independent  study7. The occurrence 
association between two characters was defined as the sum of durations of scenes where both characters were 
present divided by the sum of durations of scenes where the conditioned character is present. To be more 
specific, the association between character  ci and  cj can be denoted as follows: 

  p(ci|cj) =
Frame of the shots where ci & cj both are present

Frame of shots where cj is present

  we will refer to this occurrence association (conditional occurrence probability), character associations.
4. The conditional probability of model activation for characters: We constructed the conditional activation prob-

abilities of each pair of characters  (Pmodel activation(ci|cj)) over a given phase (clip viewing or response time) as 
the number of trials for which character i and character j are both activated divided by the number of trials 
where character j (the conditioned character) is activated by the model. Recall that, here, the activation is 
defined as the model predictions going above a threshold (0.5). Thus, a higher conditional probability indi-
cates that the model predicts character i more frequently when character j is predicted. We generated two 
sets of 16 conditional activation probabilities between the four prominent characters for the clip viewing 
phase and the response time phase. These conditional activation probabilities were compared between clip 
viewing and response time phases using a signrank test, which revealed higher values during the response 
time (Fig. 4).

5. The relationship between conditional activation probabilities and character associations during clip viewing: 
Within each participant, we computed the (Spearman) correlation between the conditional probabilities of 
the model activation for the characters (computed during clip viewing; see item 4 above) and the character 
associations (computed over the movie duration; see item 3 above) after removing the diagonal elements 
from these matrices. The results are reported in Fig. 4 and the main text.

Data availability
Custom code used and datasets analyzed for the current study are available from the corresponding author upon 
reasonable request.
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