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Aging, even in the absence of clear pathology of dementia, is associated with cognitive
decline. Neuroimaging, especially diffusion-weighted imaging, has been highly valuable
in understanding some of these changes in live humans, non-invasively. Traditional
tensor techniques have revealed that the integrity of the fornix and other white matter
tracts significantly deteriorates with age, and that this deterioration is highly correlated
with worsening cognitive performance. However, traditional tensor techniques are still
not specific enough to indict explicit microstructural features that may be responsible
for age-related cognitive decline and cannot be used to effectively study gray matter
properties. Here, we sought to determine whether recent advances in diffusion-
weighted imaging, including Neurite Orientation Dispersion and Density Imaging (NODDI)
and Constrained Spherical Deconvolution, would provide more sensitive measures of
age-related changes in the microstructure of the medial temporal lobe. We evaluated
these measures in a group of young (ages 20–38 years old) and older (ages 59–84 years
old) adults and assessed their relationships with performance on tests of cognition. We
found that the fiber density (FD) of the fornix and the neurite density index (NDI) of the
fornix, hippocampal subfields (DG/CA3, CA1, and subiculum), and parahippocampal
cortex, varied as a function of age in a cross-sectional cohort. Moreover, in the
fornix, DG/CA3, and CA1, these changes correlated with memory performance on
the Rey Auditory Verbal Learning Test (RAVLT), even after regressing out the effect of
age, suggesting that they were capturing neurobiological properties directly related to
performance in this task. These measures provide more details regarding age-related
neurobiological properties. For example, a change in fiber density could mean a
reduction in axonal packing density or myelination, and the increase in NDI observed
might be explained by changes in dendritic complexity or even sprouting. These
results provide a far more comprehensive view than previously determined on the
possible system-wide processes that may be occurring because of healthy aging and
demonstrate that advanced diffusion-weighted imaging is evolving into a powerful tool
to study more than just white matter properties.
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INTRODUCTION

Decades of research have shown that, even outside of overt
pathology or dementia, aging is associated with cognitive decline,
such as decreases in processing speed, poorer divided attention,
and episodic memory impairments (Johnson, 1997; Schacter
et al., 1997; Glisky, 2007; Eckert, 2011). While there are a host of
changes in the brain that have been tied to age-related cognitive
decline, structural and functional alterations in the hippocampus
and other regions of the medial temporal lobe likely mediate
much of these alterations ofmemory (Morrison and Baxter, 2012;
Stark and Stark, 2017b). Human imaging studies have shown
that the hippocampal volume decreases after the age of 70 at a
rate of approximately 1.5% a year (Jack et al., 1998; Raz et al.,
2005). This reduction could be due to synaptic size reduction
(Petralia et al., 2014), microglia decrease (Sharaf et al., 2013),
demyelination (Peters, 2002; Kövari et al., 2004) and/or other
changes in connectivity (Fjell et al., 2016). More subtle changes
are also observed in individual neurons, such as shrinkage in
soma size (Ahmad and Spear, 1993) and a reduction or regression
in dendritic branching (Scheibel et al., 1975). Aging also results
in axonal degeneration of the fornix and other white matter
pathways, due to loss of myelinated fibers and alterations in the
myelin sheath (Peters et al., 2010; Salvadores et al., 2017). Studies
of these underlying neurobiological changes associated with age
have largely been performed in animal models as direct studies
in humans are often infeasible. However, new neuroimaging
techniques may prove to be valuable tools for investigating these
age-related alterations in vivo in the human brain.

Diffusion tensor imaging (DTI) has enabled us to probe white
matter changes using measures like fractional anisotropy (FA)
and mean diffusivity (MD), providing some form of in vivo
measure of microstructure and integrity (Table 1). In the fornix,
FA is reduced and MD is increased as a consequence of aging,
reflecting a reduction in white matter integrity (Gunning-Dixon
et al., 2009; Kochunov et al., 2012; Madden et al., 2012; Bennett
andMadden, 2014; Bennett and Stark, 2015). These measures are
also correlated with cognitive performance in both humans and
rodents (Takahashi et al., 2000; Charlton et al., 2007; Kantarci,
2014). Though DTI has been extremely useful for studying
microarchitectural properties in white matter and its influence
on behavior, it is inherently a nonspecific technique. A change in
FA could be caused by changes in myelination, axon diameter,
membrane permeability, or axon packing density (Sampaio-
Baptista and Johansen-Berg, 2017). DTI is also incapable of
capturing complex microstructural details within a given voxel,
which is particularly important in regions of crossing, kissing,
and fanning fibers (Zhang et al., 2012; Jeurissen et al., 2013).

Recent advances in diffusion imaging like multiple tensor
models to Q-Ball and Q-space imaging (King et al., 1994;
Tuch, 2004; Tournier et al., 2004) have attempted to address
problems of complex fiber architecture, but these methods are
still not fiber specific or easily assignable to segmented white
matter pathways.Moreover, as we will show, voxel-based analysis
of these metrics may yield false-positive differences between
groups as multiple pathways can pass through a voxel, further
confounding how we interpret ‘‘pathway-specific’’ metrics. To

address this issue, fixel-based analysis (Raffelt et al., 2017) is
one of the first techniques that enable tract-specific statistical
analysis. Here, a ‘‘fixel’’ refers to a particular fiber population
inside a voxel (Raffelt et al., 2015). Using constrained spherical
deconvolution, this method can estimate the total intra-axonal
volume of white matter axons in any direction, enabling the
detection of tract-specific degeneration. This technique can
estimatemicrostructural changes (fiber density), macrostructural
changes (fiber cross-section), and the differences arising from a
combination of both classes of degeneration (see Table 1; Raffelt
et al., 2017). These metrics have proven to be more sensitive
to microarchitectural alterations and more useful in revealing
minute but clinically relevant disease-associated differences, as
compared to traditional tensor-based analysis (Mito et al., 2018).
However, very few studies have explored such changes associated
with healthy aging and none (to our knowledge) have looked at
age-related fixel-based decline in the fornix and its impact on
cognitive performance.

In addition to problems with specificity, DTI is also not suited
for studying gray matter architecture, as the complexity in cell
layers cannot be detected by simple tensor approaches. Neurite
Orientation Dispersion and Density Imaging (NODDI; Zhang
et al., 2012) addresses this problem using multi-compartment
diffusion modeling, in which restricted diffusion is modeled
as a set of sticks, hindered diffusion as the dispersion of the
sticks, and unrestricted diffusion as an isotropic sphere. These
metrics are not only completely agnostic to tissue type (all
voxels are modeled by the same set of equations), but also
provide a more comprehensive analysis of the microstructural
subtleties and underlying mechanisms associated with disease
or development-induced changes. NODDI has been extensively
used to study both pathological and normal brain development
(Adluru et al., 2014; Kunz et al., 2014; Eaton-Rosen et al.,
2015; Jelescu et al., 2015; Wen et al., 2015; Grussu et al., 2017),
and many recent studies have explored how healthy aging can
influence these metrics, shedding some light on their potential
biological implications. For example, the orientation dispersion
index (ODI) has been shown to decrease globally in human gray
matter with age, suggesting a reduction in dendrite complexity
or arborization (Nazeri et al., 2015). There have also been reports
of increased neurite density index (NDI) and ODI in localized
white matter regions, primarily in the frontal lobe (Billiet et al.,
2015; Chang et al., 2015).

Given these advantages in NODDI, this study aims to focus
on aging-induced changes in neurite density, dispersion, and
fiber population metrics in the medial temporal lobe and
their relationship with cognitive performance. Venkatesh et al.
(submitted) have recently shown that neurite density, dispersion
and free water volume concentration all increase with age
in the human hippocampus, and have shown that NODDI
metrics are better at predicting age than traditional diffusion
tensor measures. However, there have been no reports exploring
age-related changes in NODDImetrics in hippocampal subfields,
or how they relate to changes in memory performance. Here, we
sought to determine the effect of age on both fiber metrics, as well
as NODDI properties, in the medial temporal lobe. We further
assessed the relationship between changes in these metrics and
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TABLE 1 | Summary of metrics used in this study.

Metric Abbreviation Description Range

Fractional
anisotropy

FA A measure of axonal organization or integrity based on the coherence of
orientations of the bundles. Mainly used to study white matter, and
generally decreases with age. Reductions in FA can mean
neurodegeneration, a myelin sheath depletion or just general atrophy of
fiber bundles (Song et al., 2003; Budde et al., 2007).

0 (most isotropic) −1 (least isotropic)

Mean diffusivity MD Another measure of white matter bundle integrity calculated as the
average amount of water diffusion inside the voxel. MD in most regions
increases with age, also suggesting demyelination or axonal
degradation (Abe et al., 2002; Grieve et al., 2007; Hsu et al., 2008).

Continuous (directly proportional to the
amount of diffusion).

Fiber Density FD Calculated as the integral of a given fixel’s FOD. Directly proportional to
the intra axonal volume of the fiber population aligned with the given
fixel (Raffelt et al., 2012).

0 (Least dense) −1 (Most dense)

Fiber cross
section

FC Captures individual differences in the diameters of distinct fiber bundles.
Computed as the amount of distortion necessary to warp a given FOD
to the same FOD in template space (Raffelt et al., 2017).

0 (least diameter) −1 (most diameter)

Fiber density and
cross section

FDC A joint metric of FD and FC calculated as their product. Captures both
microstructural properties as well as more large-scale changes within
bundles.

0–1

Neurite density
index

NDI Calculated as the proportion of the voxel expressing unhindered
diffusion along a given set of sticks, and also restricted diffusion
perpendicular to the same set of sticks. Might be able to pick up on the
number of neurites or the complexity of their dendrites (Billiet et al.,
2015).

0 (most extracellular) −1 (most
intracellular)

Orientation
dispersion index

ODI The measure of tortuosity coupling an intracellular and extracellular
space. Gives the variability of neurite orientations, and might be able to
pick up on the dispersion of axons and neurons within a voxel (Billiet
et al., 2015).

0 (Least dispersed) −1 (Most dispersed)

Fractional
isotropy

FISO The measure of the amount of isotropic free volume within a voxel- and
is usually proportional to the amount of cerebrospinal fluid in a voxel.
Might also pick up on other free water entities like dead cells (Billiet
et al., 2015).

0 (Least CSF) −1 (Most CSF)

cognitive performance in young and older adults. Finally, we
used structural equation modeling to assess the extent to which
these structural changes drive age-related cognitive decline.

MATERIALS AND METHODS

Participants
Forty-eight adults were recruited from theOrange County area in
California. Three subjects were excluded for data segmentation
issues, three subjects were excluded for registration issues, and
four were excluded for neuropsychological scores more than
two standard deviations below the mean for their age group.
The final study adults consisted of 15 young (20–38 years,
28.4 ± 4.6 years, eight females) and 23 older (59–84 years,
69.9 ± 5.3 years, 14 females) adults. All participants provided
informed consent before participation in this study, approved by
the University of California, Irvine Institutional Review Board,
and were compensated for their time.

Neuropsychological Battery
All participants completed a battery of neuropsychological
tests to evaluate their cognitive abilities. Tests included the
Mini-mental State Examination (MMSE) to screen for cognitive
impairment (Folstein et al., 1975), Rey Auditory Verbal Learning
Test (RAVLT) to evaluate memory recall and recognition (Rey,
1941), Geriatric Depression Scale (GDS) and Beck Depression

Index (BDI) to characterize their depression profiles (Beck,
1972; Yesavage et al., 1982; no participant was found to have a
profile in the moderate-to-severe range), Trails A and B, Stroop,
and Letter Number Sequencing to assess executive functioning
(Stroop, 1935; Wechsler, 1997a; Reitan and Wolfson, 1985), and
Digit Span to characterize working memory (Wechsler, 1997b;
see Table 2). The Mini-Mental State Exam (MMSE) total score
is the sum of all test questions (maximum score of 30). The
RAVLT has three components: five presentations of the same
15-word lists with immediate recall, a second immediate recall
test following an interference list of 15 novel words, and a final
recall after a 15-min delay. Here, the RAVLT Delay reflects the
final recall score (maximum score of 15). The Rey-Osterrieth
Complex Figure score has two components: Rey-O Figure reflects
the number of correct components drawn from memory after a
15-min delay when the figure is no longer present (maximum
score of 38). We report the total time in seconds to complete
Trails A and B. The Stroop Color-Word reflects the number
of words read aloud correctly in 1 min when the color of ink
does not match the word (e.g., the word ‘‘red’’ in green ink).
The Letter Number Sequencing score reflects the number of
correct sequences of letters and numbers recalled immediately
after hearing them (e.g., the correct response to ‘‘A-6-H-3’’ would
be ‘‘A-H-3–6’’; maximum score of 21). Similarly, the total Digit
Span score reflects the number of correct digits recalled, both
forward and backward versions (maximum score of 30).
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TABLE 2 | Demographics and neuropsychological test scores.

Demographics Young Older T-stat p-value

N 15 23
Mean age 28.40 ± 4.73 69.87 ± 5.43
Education 17.00 ± 2.17 17.30 ± 1.77
MMSE 29.40 ± 0.74 29.48 ± 0.67 −0.33 0.37
RAVLT total 61.13 ± 5.05 55.00 ± 8.06 2.88 0.003
RAVLT immediate 13.80 ± 1.42 12.21 ± 2.50 2.48 0.009
RAVLT delay 13.86 ± 1.18 12.00 ± 2.71 2.9 0.003
Trails A 16.27 ± 5.86 24.52 ± 7.79 −3.72 0.0004
Trails B 45.40 ± 13.43 66.39 ± 21.06 −3.75 0.0003
Stroop Color-Word 54.27 ± 6.75 48.21 ± 5.45 2.1 0.02
Digit Span 21.47 ± 4.27 18.65 ± 3.64 2.91 0.004
Rey-O Figure 35.4 ± 1.12 34.6 ± 2.79 1.22 0.11
Rey-O Delayed 25.00 ± 5.96 16.85 ± 6.37 4.01 0.0002

Demographics and neuropsychological test scores. Entries in bold indicate properties
that have significant group differences (p < 0.05).

MR Image Acquisition
The participants were scanned using a Philips Achieva
3.0 Tesla MRI system, using a 32-channel SENSE receive-only
head coil. Fitted padding was used to minimize head
movements. A T1-weighted magnetization-prepared rapid
gradient echo (MP-RAGE) scan was acquired (TR = 11 ms,
TE = 4.6 ms, flip angle = −18◦, 200 sagittal slices and
0.75 mm isotropic resolution) for structural analysis and
registration. High-resolution structural MRI images of the
MTL were acquired using a T2-weighted sequence to aid in
MTL segmentation (TE = 80 ms, flip angle = 90◦, slices = 54,
slice thickness = 3 mm, matrix size = 384 × 384, voxel
size = 0.469 × 0.469 × 2 mm, and an in-plane field of
view = 108 × 180 mm). Both structural images were aligned
as oblique coronals perpendicular to the long axis of the
hippocampus and positioned to ensure MTL coverage. Three
diffusion-weighted scans (TR = 2,174–2,734 ms, TE = 94 ms,
80 axial slices and 1.69 mm isotropic resolution) were
acquired for four gradient values: b = 500, 1,000, 2,000, and
2,500 s/mm2. Gradients were applied in 10 directions for each
scan (120 directions in total) along with 12 images with no
diffusion weighting (b = 0).

Diffusion Data Preprocessing
All preprocessing steps employed MRtrix31 commands or
used MRtrix3 scripts that linked external software packages.
Physiological noise arising from the thermal motion of water
molecules in the brain was first removed (Veraart et al., 2016),
followed by removal of Gibbs ringing artifacts (Kellner et al.,
2016), eddy current correction (Andersson and Sotiropoulos,
2016) and bias field correction (Tustison et al., 2014). The image
intensity was then normalized across subjects in the log-domain
(Raffelt et al., 2012; Figure 1).

Structural Data Preprocessing
The T1w images were corrected for intensity inhomogeneities
using Advanced Normalization Tools (ANTs) N4 bias
correction. Each individual’s structural image was then
nonlinearly registered to their respective preprocessed b0 image

1http://www.mrtrix.org

so that the structural and diffusion images were in the same space
for the rest of the analyses. Registration was manually checked
to ensure accuracy. To segment the MTL, we used a multi-atlas
model created by our lab using ASHS (Yushkevich et al., 2010)
and 19 independent hand-segmented brains (both theMP-RAGE
and high-resolution T2 images). These segmentations included
both segmentations of the parahippocampal gyrus into perirhinal
(PRC), parahippocampal (PHC), and entorhinal (ERC) cortices
described previously (Insausti et al., 1998; Stark and Okado,
2003). Similarly, we segmented the hippocampus into three
subregions: a combined dentate gyrus and CA3 (combined due
to resolution constraints; DG/CA3), CA1, and subiculum, based
on our previous work (Stark and Stark, 2017a). For each of these,
we created multi-atlas models in ASHS and then used these to
segment each individual’s high-resolution T2 scan.

Fiber Orientation Distribution Analysis
With MRtrix3
Following preprocessing, we generated response functions for
white matter, gray matter, and CSF for each participant. The
response function for each tissue type was then averaged across
subjects. The fiber orientation distributions (FODs) were then
calculated for each tissue type from the group averaged response
functions using Multi-Shell Multi-Tissue Constrained Spherical
Deconvolution (MSMT-CSD; Dhollander et al., 2016). We
created a study-specific template using an iterative registration
and averaging approach (Raffelt et al., 2011) using the white
matter FODs from 20 arbitrary subjects (10 old and 10 young).
All the subjects’ FODs were registered to this template using a
FOD-guided non-linear registration (Raffelt et al., 2011). The
remaining analysis in MRtrix3 was performed in this study-
specific template space, unless mentioned otherwise.

To segment the white matter tracts in a common space, we
generated a tractogram from the template using whole-brain
probabilistic tractography (20 million streamlines, termination
cutoff = 0.6). To account for reconstruction biases, we filtered
the tractogram to 2 million streamlines using the Spherical-
deconvolution Informed Filtering of Tractograms algorithm
(Smith et al., 2013).

The FOD images were then segmented into ‘‘fixels’’
(individual voxels sectioned into individual fibers) for further
analysis. We calculated the fiber density (FD), and the fiber
bundle cross-section (FC) for each subject across all white
matter fixels (Raffelt et al., 2017). The FD of a given fixel
is proportional to the intra-axonal volume of axons aligned
in a given direction and is calculated as the integral of the
FOD along that direction, using the Apparent Fiber Density
framework (Raffelt et al., 2012). The FC metric is meant to
capture macrostructural changes and is sensitive to axonal
loss and pathway atrophy (Grazioplene et al., 2018; Pannek
et al., 2018). It is calculated as the amount of distortion
perpendicular to a given fixel’s orientation that is required
to warp the individual’s FOD to the template FOD (Raffelt
et al., 2017). We used the natural logarithm of this metric
for statistical analysis to ensure that the data were normally
distributed and centered around zero. For comparison purposes,
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FIGURE 1 | Summary of the analysis pipeline.

we also computed traditional fractional anisotropy (FA) and
mean diffusivity (MD) metrics.

The fixel metrics were compared across age groups at each
white matter fixel using a General Linear Model. We performed
connectivity-based smoothing and statistical inference using
connectivity-based fixel enhancement (CFE). Family-wise error-
corrected p-values were then assigned to each fixel using
non-parametric permutation testing of the CFE enhanced
t-statistics (Nichols and Holmes, 2002).

NODDI Analysis With the Microstructure
Diffusion Toolbox (MDT)
Microstructure metrics were calculated using the Neurite
Orientation Dispersion and Density Imaging (NODDI) model
(Zhang et al., 2012) with the Microstructure Diffusion Toolbox
(MDT; Harms et al., 2017). NODDI characterizes diffusion
within each brain voxel as a combination of intracellular,
extracellular and CSF based components. The intracellular
compartment seeks to capture neurite membranes and myelin
sheaths and is modeled as a set of sticks with restricted
diffusion perpendicular to the orientation of the axonal
bundles and unhindered diffusion along them. The extracellular
compartment is thought to capture primarily the space around
the neurites, composed of glial cells and somas. The diffusion in
this space is modeled as hindered Gaussian anisotropic diffusion.
Finally, the CSF compartment is modeled as isotropic diffusion.

The NDI gives the fraction of tissue volume restricted within
neurites. It scales from 0 to 1, with 0 being most extracellular-like
diffusion and 1 being most intracellular-like (Billiet et al., 2015).
The ODI is a measure of tortuosity and is calculated as the
dispersion coefficient of the neurites. An ODI closer to 0 is
indicative of well-aligned neurites, while that closer to one
indicates higher levels of dispersion. The fractional isotropy
(FISO) is the percentage of the volume in each voxel that is best
modeled by free-water diffusion. The 4D DWI data was passed
in as input and parametric maps of NDI, ODI, and FISO were
generated for each subject and then transformed into MNI space
using ANTs.

Voxel-Based Spatial Statistics
All white matter metric calculations were performed in the
study-specific template space. First, a global white matter mask
was created from the Harvard-Oxford structural atlas (Johnson,
1997; Schacter et al., 1997; Glisky, 2007; Eckert, 2011). This
mask was nonlinearly transformed to each subject’s structural
image in template space, to make a subject-specific global white
matter mask. All subject-specific masks were then averaged and
thresholded at 90% (such that a voxel is accepted into the
mask only if the voxel is part of the subject-specific masks for
90% of the subjects). The diffusion metrics were then averaged
within this mask to generate global white matter metrics for
each subject. The same process was repeated after generating
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a fornix mask from the JHU White Matter Atlas (Mori, 2007;
Wakana et al., 2007; Hua et al., 2008). Note that all
statistical analyses in white matter were first performed in the
CFE framework. The voxel-based analysis was employed for
comparison purposes only.

A global gray matter mask was generated using the Harvard-
Oxford structural atlas and metrics were averaged across this
mask to calculate global gray matter metrics. The medial
temporal lobe was segmented into the CA1, DG/CA3, subiculum,
entorhinal cortex, perirhinal cortex, and parahippocampal cortex
using an in-house protocol (Kirwan and Stark, 2004; Huffman
and Stark, 2014). Diffusion metrics were then averaged across
each of these regions of interest in both hemispheres for each
subject to make subject-specific bilateral masks. The global gray
matter mask was created in the same way as the global white
matter mask.

All statistical analyses were performed in Python 3 [using
StatsModels (Seabold and Perktold, 2010) or SciPy (Jones et al.,
2001)] or GraphPad Prism 8.3.0. (Home—GraphPad, 2019).
Statistical p-values were corrected for multiple comparisons
(six regions of interest for each metric) in all gray matter
associated analysis by calculating the false discovery rate
(Benjamini et al., 2006). Group differences were computed using
student’s two-tailed t-tests in GraphPad Prism 8.3.0. Structural
equation analysis was performed using PyProcessMacro (Model
4; PROCESS macro for SPSS and SAS, 2019).

RESULTS

Fornix Integrity and Microstructure Are
Modulated by Age
First, we assessed the effect of age on fornix integrity using
the traditional single-tensor diffusion measures of FA and MD.
Consistent with prior reports (Bennett et al., 2010; Kantarci et al.,
2013), MD in the fornix was reliably higher in the older adults
(t = 3.118; p = 0.0036), while FA showed a significant reduction
(t = 5.100; p < 0.0001). Moreover, both MD and FA were
linearly correlated with age in the older adults alone (R2 = 0.5370,
p < 0.0001; R2 = 0.3597, p = 0.0025 respectively; Figures 2A,B).
We then asked whether similar age-related deterioration in the
fornix could be detected with the more sophisticated measures of
tract architecture. With CFE statistics, we found that the FD of
the fornix was significantly lower in the older adults (t = 5.959;
p < 0.0001) and that FD decreased linearly with age in the older
adults alone (R2 = 0.3638, p = 0.0023; Figure 2C). There was
no evidence for a relationship between the fiber cross-section of
the fornix (p = 0.9450) or the raw NDI (p = 0.3520) and age.
Results also revealed that the amount of free water in the fornix
voxels was significantly higher in the older subjects (t = 2.773;
ρ = 0.0087; Figure 2D). Together, these findings are consistent
with the hypothesis that hippocampal connectivity is altered in
typical aging and further, that the differences are best attributed
to small-scale changes in tract integrity.

To determine whether the differences observed were selective
to the fornix and not merely a consequence of age-related
global white matter decline, the fornix diffusion metrics were

linearly modeled against their respective global white matter
diffusion metrics. The residuals of this model were quantified
as the ‘‘globally regressed’’ metric. Post global-regression, the FD
decline with age remained robust (t-test: t = 3.4720; ρ = 0.0014;
aged-only linear regression: R2 = 0.6120, ρ < 0.0001; Figure 2E).
Interestingly, the globally regressedNDI showed a decrease in the
older adults, while this had not been observed with the raw NDI
(t = 2.277; ρ = 0.0288; Figure 2F), suggesting an age-associated
change in the fornix that was not a result of a global decrease.
Notably, after removing global effects of age on FISO, there
was no remaining effect of age, suggesting that the change
observed in the raw fornix FISO was merely a consequence of
a global increase in white matter free water concentration. No
reliable sex differences were found in any of the fornix metrics
after correcting for multiple comparisons. All significant effects
were observed in both hemispheres (results reported above were
acquired from bilateral masks of a given region of interest).

Fornix Integrity and Microstructure
Correlate With RAVLT Performance
We then evaluated whether these individual differences in
fornix architecture were correlated with hippocampal-based
memory performance. We chose the RAVLT, a word-list
learning paradigm, as a standard neuropsychological measure
that has proven to be sensitive to age-related changes in memory
performance and neural measures (Yassa et al., 2010; Bennett
et al., 2015). The raw fornix FISO was negatively linearly
correlated with delayed recall RAVLT performance (R2 = 0.319,
p = 0.0002; Figure 3A), while the raw FD showed a positive
linear relationship with RAVLT performance (R2 = 0.2261,
p = 0.0026; Figure 3B). There was no reliable relationship
between the raw NDI and the RAVLT score after correcting for
multiple comparisons.

After global regression, the FD remained positively correlated
with RAVLT delay (R2 = 0.1576, ρ = 0.0136; Figure 3C).
Interestingly, and in conjunction with observations from the
previous section, the globally regressed NDI showed a negative
linear relationship with RAVLT performance (R2 = 0.2830,
ρ = 0.0006; Figure 3D), suggesting that the age-related
decrease in FD and increase in NDI might be contributing to
age-associated cognitive decline. The relationship between FISO
and RAVLT delay disappeared after global regression, in line
with the hypothesis that the observed FISO changes were not
unique to the fornix.

Gray Matter Microstructure of the Medial
Temporal Lobe Deteriorates With Age
An advantage of the NODDI analytic framework is that each
voxel is treated as a combination of several different components
that lead to the observed diffusion and no distinction is drawn
a priori as to whether a voxel is gray matter, white matter,
or CSF (all voxels are treated as potential mixtures thereof).
This approach allows us to perform meaningful analyses of the
microstructure of gray matter. In examining whether age induces
any structural changes within segments of the medial temporal
lobe, we observed that the raw NDI of the DG/CA3 was higher
in the aged adults (t = 2.863, ρ = 0.0069; Figure 4A). We
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FIGURE 2 | The diffusion metrics of the fornix are influenced by age. Dots indicate individuals with their age both grouped in bars and plotted along the x-axis.
(A,B) Traditional diffusion tensor metrics of the fornix are linearly correlated with age in the older adults and show group differences. (C) The raw fornix fiber density
(FD) decreased with age. (D) The raw fornix fractional isotropy (FISO) increased in the aged adults. (E) The fornix FD maintains its relationship with age even after
regressing out global white matter changes. (F) The globally regressed fornix neurite density index (NDI) increased with age. Error bars show the standard error of the
mean. Asterisks indicate p ≤ 0.05, p ≤ 0.01, p ≤ 0.001, and p ≤ 0.0001, respectively.

also observed higher FISO in the perirhinal cortex (t = 3.452,
ρ = 0.0014), parahippocampal cortex (t = 2.913, ρ = 0.0061),
DG/CA3 (t = 4.667, ρ < 0.0001), CA1 (t = 2.897, ρ = 0.0064) and
the subiculum (t = 5.817, ρ < 0.0001) in older adults. However,
we did not observe reliable age-related changes in the diffusion
metrics of the entorhinal cortex.

Post-global-regression, there was no age-associated increase
in the FISO of the MTL segments, suggesting that the increases
observed in the raw metric were simply a consequence of
global atrophy due to aging. The globally regressed NDI of the
parahippocampal cortex and all hippocampal subfields displayed
an age-related increase (PHC: t = 5.931, ρ < 0.0001; DG/CA3:
t = 3.6770, ρ = 0.0008; CA1: t = 2.4890, ρ = 0.0176; Subiculum:
t = 3.8080, ρ = 0.0005; Figures 4B–E). Thus, the NDI change
in each of these regions was greater than the global gray matter
average NDI in older adults, while it was reduced in the younger
adults, suggesting that the NDI increases in the MTL are beyond
those associated with age in the whole brain.

No reliable sex differences were found for any of the MTL
metrics, after correcting for multiple comparisons. Also, all
significant effects were observed in both hemispheres.

NDI of the DG/CA3 and the CA1 Are
Correlated With RAVLT Performance
We next assessed whether the diffusion metrics within the
gray matter of the medial temporal lobe were associated with
memory ability, particularly performance in the RAVLT. The

raw FISO for each medial temporal lobe region, except for
the entorhinal cortex, was negatively linearly correlated with
RAVLT delay. However, this association disappeared after we
regressed out global gray matter metrics, suggesting that the
relationship between FISO and RAVLT performance is informed
by general global gray matter atrophy driving cognitive decline.
Consistent with these results, greater FISO values are thought to
be indicative of more necrotic cells and CSF presence in gray
matter voxels (Metzler-Baddeley et al., 2012; Ofori et al., 2015).

The raw NDI of both the DG/CA3 (R2 = 0.2192, ρ = 0.003;
Figure 5A) and the CA1 (R2 = 0.1246, ρ < 0.0297; Figure 5B)
showed a negative correlation with RAVLT performance
(however, the effect with CA1 NDI was not reliable after
correcting for multiple comparisons). After global regression, the
NDI of the DG/CA3 and the CA1 remained negatively correlated
with RAVLT performance, even after correcting for multiple
comparisons (Figures 5C,D).

NDI of the DG/CA3, CA1, and the Fornix
Remain Correlated With RAVLT Delay, Even
After Regressing Age Out
To assess whether these structural correlations with cognitive
performance might reflect more than simple age-related decline,
we regressed age out of the RAVLT scores in addition to
regressing it out of our diffusion metrics. The age-regressed
RAVLT scores can be thought of as a ‘‘de-aged’’ RAVLT
score (capturing something akin to age-invariant individual
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FIGURE 3 | Fornix diffusion metrics were correlated with performance in the rey auditory verbal learning test (RAVLT). (A,B) The raw fornix FISO and FD are
positively associated with RAVLT performance. (C,D) After global regression, the fornix FD and NDI were negatively correlated with RAVLT performance.

differences), as the effects of standard aging are computationally
removed from the score. This regressed RAVLT score remained
negatively correlated with the globally regressed NDI of the
fornix (R2 = 0.1624, p = 0.0121), DG/CA3 (R2 = 0.1172,
p = 0.0354), and the CA1 (R2 = 0.1481, p = 0.017). We then
regressed age out of the NDI as well and observed that the
negative linear correlation survived (Figure 6). The persistence of
this relationship between NDI and the RAVLT delay, even after
removing the effects of age, suggests that this metric is sensitive to
microstructural properties in these regions that directly influence
performance in the RAVLT.

The above correlations suggest a clear relationship amongst
age, the integrity of the hippocampus (and its connectivity via
the fornix), and memory performance. To model the most
parsimonious account of these interrelationships, we performed
a mediation analysis. An increase in the hippocampus NDI,
more specifically, the DG/CA3 NDI, mediated the negative
relationship between age and RAVLT delay. Removing the effect
of the DG/CA3 NDI change resulted in age having no residual
effect on the RAVLT delay. Similarly, a decrease in the FD of
the fornix significantly mediated the relationship between age
and RAVLT delay. In both cases, we observed that the effect of
age on cognitive decline disappeared upon removing the effect
of the mediators. No other diffusion metric studied showed
this effect (Figure 7). It must be noted that this result must be

interpreted cautiously as this is not a longitudinal study and we
lack middle-aged participants that would allow for a continuous
distribution of ages. However, despite these limitations, this
observation bolsters the theory that NDI and FD in DG/CA3 and
the fornix respectively may be heavily influencing verbal recall.

Fiber Cross-Sectional Differences
in the Fornix Are Found With
Voxel-Based Statistics but Disappear
With Fixel-Wise Analyses
It is important to note the differences observed between fixel-
based analysis and voxel-based analysis techniques when looking
at white matter fiber tracts. A single voxel might have multiple
fiber tracts passing through it, causing interference and noise
in the measure. Moreover, crossing, fanning and kissing fibers
further alleviate this issue as the ‘‘density’’ of a tract may
be corrupted by another tract in the voxel that seems to
overlap it. This makes most voxel-based analysis techniques
undesirably non-specific. A fixel-wise analysis solves this
problem by performing statistics on specific fiber populations
within the voxel, ensuring that the effect observed is in
the pathway that is being studied. This issue is further
demonstrated in our observation that connectivity-based fixel-
enhancement statistics showed no significant age effects on the
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FIGURE 4 | The NDI of the medial temporal lobe is greater in aged adults. (A) The raw NDI of the DG/CA3 is increased in aged adults. (B–E) After regressing out
global gray matter changes, the NDI of the parahippocampal cortices (PHC) and hippocampal subfields are increased in the aged adults. Error bars show the
standard error of the mean. Asterisks indicate p ≤ 0.05, p ≤ 0.01, p ≤ 0.001, and p ≤ 0.0001, respectively.

FIGURE 5 | The NDI of the hippocampus has a negative relationship with RAVLT performance. (A,B) The raw NDI of the DG/CA3 and CA1 decreased with an
increase in RAVLT delay. (C,D) This relationship remained after regressing out global gray matter NDI.
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FIGURE 6 | The relationship between RAVLT and NDI is retained even after regressing out the effect of age on both sides, in the fornix, DG/CA3, and CA1. (A–C)
The globally regressed NDI had a negative relationship with the RAVLT score, after regressing out the effect of age on the RAVLT performance. (D–F) This relationship
is sustained even after regressing out the effect of age on the globally regressed NDI.

FIGURE 7 | Age-related RAVLT decline can be mediated by an NDI increase in the DG/CA3.

fiber cross-section of the fornix, while a voxel-based statistical
analysis of the same metric showed a significant difference
between age groups (ρ = 0.001). Care must be taken when
reporting voxel-based white matter results for this reason.
Interestingly, the observed robustness of the fornix fiber cross-
section with age suggests that large scale structural changes
may not be the focus of age-related architectural changes in
the fornix.

DISCUSSION

In this study, we examined the age-related effects of diffusion
metrics of the medial temporal lobe and their relationship
with memory performance. We first replicated previous
studies showing that the fractional anisotropy of the fornix
declines with age, while mean diffusivity increases. We then

demonstrated age-related changes in fornix architecture with
more comprehensive diffusion metrics, observing a decrease
in FD, and an increase in the NDI. Notably, these changes
were correlated with poorer RAVLT performance, suggesting
that age-related microstructural deterioration of the fornix may
play a role in age-related cognitive decline. We also observed
similar trends in the gray matter of the medial temporal
lobe: showing that the NDI of hippocampal subfields and
the parahippocampal cortex increased with age and had a
negative correlation with RAVLT performance for DG/CA3 and
CA1. Interestingly, we observed that the NDI of the fornix,
DG/CA3, and CA1 maintained its relationship with RAVLT
performance, even after regressing age out from both the
structural metric and the cognitive score, suggesting that this
metric is inherently sensitive to a neurobiological property within
the hippocampus that corresponds to cognitive performance
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independent of age. We also demonstrated that traditional
methods of analyzing diffusion metrics are not only insufficient
for identifying such microarchitectural differences but may also
provide unreliable results. Finally, through structural equation
modeling, we showed that the DG/CA3 NDI increase and
fornix FD decrease mediated age-related decline in RAVLT
performance (Table 3).

Though previous studies have shown that the integrity of the
fornix declines with age, none to our knowledge, have explored
this change with more nuanced diffusion metrics to arrive
at a more neurobiologically detailed explanation. A decrease
in FA could mean a myriad of structural alterations: from
demyelination and decrease in axon diameter to a decrease
in axon packing density (Sampaio-Baptista and Johansen-Berg,
2017). The fornix has been shown to undergo age-related
axonal degeneration in both rats (Naranjo and Greene, 1977)
and monkeys (Peters et al., 2010), and our findings on fiber
density reductions bolster the idea that an analogous change
may be occurring in humans. This, along with our observation
that FC remains unchanged, suggests that age-related fornix
deterioration may more likely to be caused by microstructural
alterations, like changes in axon packing density or loss
of myelinated fibers (Peters et al., 2010), more so than
macrostructural alterations like an overall reduction in the
diameter of the fiber bundle. While this explanation is in no
way conclusive, it helps shed more light on the underlying
mechanisms behind age-related structural decline. Moreover,
the linear relationship we observe between fornix fiber density
and age in the older adults alone suggests the existence of
a ‘‘tipping point’’ in age- after which fornix deterioration
begins to occur consistently and linearly. Unfortunately, the lack
of middle-aged adults or longitudinal data prevents us from
accurately establishing the age of this tipping point based on
these data.

Moreover, NODDI analysis of the diffusion signal enables us
to directly compare changes in different tissue types, which is
valuable when studying more systemic changes in the medial
temporal lobe. As NODDI does not directly discriminate
between gray and white matter, we can agnostically measure
structural changes and their relationship with cognition. Amajor
caveat of this technique, however, is that there exists very little
information onwhat thesemetrics may cytoarchitecturally mean.
NODDI is a recent technique and its metrics have not been
adequately histologically validated, especially in human tissue.
The nomenclature of these metrics can also be quite misleading.
An increase in the NDI does not necessarily correspond to an

TABLE 3 | Summary of results.

Region Relationship with age Relationship with RAVLT

Fornix FD, GR FD, FISO, GR NDI FD, GR FD, FISO, GR NDI
DG/CA3 NDI, FISO, GR NDI NDI, FISO, GR NDI
CA1 FISO, GR NDI FISO, GR NDI
PHC FISO, GR NDI FISO
PRC FISO FISO
ERC - -
Subiculum FISO, GR NDI FISO

Red: positive relationship. Blue: negative relationship. GR: globally regressed.

actual increase in the number of neurites in a voxel. It must be
kept in mind that diffusion-weighted imaging currently does not
have the resolution to measure differences at such a microscopic
level. That said, NODDI has proven to be extremely valuable in
parsing out information from highly complex voxels, and studies
that have correlated its metrics with neurobiological properties
have been promising (Sepehrband et al., 2015; Sato et al., 2017;
Schilling et al., 2018).

With NODDI, we found an increase in FISO with age in
the fornix, parahippocampal cortex, perirhinal cortex, and all
hippocampal subfields, suggesting that these regions are either
getting corrupted by an influx of cerebrospinal fluid or other
factors that result in an increase in free water concentration (such
as an increase in the number of necrotic cells). Increases in FISO
could also be caused by neuropathological factors like edema
(Pasternak et al., 2009), inflammation (Wang et al., 2011), and
atrophy (Metzler-Baddeley et al., 2011). These factors may also
clarify the negative relationship we observed between FISO and
RAVLT performance. Interestingly, the effect of age on FISO and
the influence of FISO on RAVLT performance disappeared when
we regressed out the global change in FISO, suggesting that the
increase we had previously observed was merely a consequence
of overall brain atrophy with age. More importantly, this global
regression introduced an effect of age on the NDI in the
fornix, parahippocampal cortex, and all hippocampal subfields,
indicating that the NDI in these regions may have a more focused
increase than the generalized global metric during aging. This
selective increase in NDI may indicate a decrease in dendritic
complexity, perhaps caused by atrophy of the surrounding
cortical layers (Colgan et al., 2016). This speculation is further
invigorated by the retention of the relationship between NDI
and RAVLT performance in the fornix, DG/CA3 and CA1, even
after regressing out the effect of age in both the structural metric
and the cognitive score. A similar dynamic is observed between
the fiber density of the fornix and RAVLT performance as well-
suggesting that both NODDI and MRtrix may be capable of
capturing specialized distortions like reductions in myelination
or dendritic complexity. This possibility is especially exciting
as its clinical applications are endless: the diagnosis of many
neurodegenerative disorders could be aided by the context of the
NODDI metrics (Sampaio-Baptista and Johansen-Berg, 2017),
with the added advantage that NODDI is relatively easy to
implement and process. Another speculation that could rise
from the relationship between NDI and RAVLT in the DG/CA3,
CA1 and fornix, despite the regression of age, is that this
metric is capturing a neurobiological property (like dendritic
arborization) that is inherently correlated with verbal recall-
suggesting that exploring these metrics might enable us to get at
the neurobiological basis of specific cognitive functions.

These findings also raise the speculation that changes in the
NDI due to age might be partially driving age-related cognitive
decline, at least in the context of delayed verbal recall. This theory
is further bolstered with results from our mediation analysis,
where we showed that the effect of age on RAVLT performance
is no longer reliable once we regress out NDI and FD changes
of the DG/CA3 and fornix. Though further evidence is required,
these results may indicate that neurite density related structural

Frontiers in Aging Neuroscience | www.frontiersin.org 11 April 2020 | Volume 12 | Article 94

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Radhakrishnan et al. Subfield Alterations in Aging

changes in the fornix and the hippocampus may be responsible
for instigating age-related memory decline.

Our results also challenge the validity of current voxel-based
analysis methods used in diffusion-weighted imaging, especially
in white matter regions. We show that the fiber cross-section
of the fornix does not significantly change with age when we
performed CFE statistics, but the same measure was sensitive
when we computed simple voxel averages about the region
of interest. This discrepancy might be explained by the fact
that MRI voxels are relatively large and contain multiple fiber
pathways running through them, a nuance that simple voxel-
based analysis methods do not fully appreciate. For example, the
fornix also has other white matter pathways running across it
(ex: the cingulum), which may also be changing with age. Fixel-
based analysis works around this issue by separating the multiple
fiber populations in a single voxel using constrained spherical
deconvolution, enabling us to examine individual pathways
with more accuracy. More interesting patterns may be found
if we map the distributions of metrics across all voxels in the
region instead of simply averaging metrics across a region of
interest. More specific, non-linear analyses of the voxel-wise
distribution of a metric within a given ROI can provide a
more comprehensive assessment of how these metrics change.
Thus, our results have shown that diffusion-weighted imaging
may have more power if we move beyond simple voxel-based
averaging analysis methods.

MRtrix and NODDI put together may be able to give
us the most detailed view of the microstructure of the live
human brain possible with the current technological state of
diffusion-weighted imaging. No other study to our knowledge
has examined healthy aging-related microstructural changes in
the medial temporal lobe and its relationship with cognitive
performance at this level of detail before. It is worth noting
that our sample size is relatively small and longitudinal data is
required to fully determine the progression of these changes.
Lack of reverse phase-encoded acquisitions also makes our signal

more susceptible to EPI distortions. Moreover, NODDI assumes
that intrinsic diffusivity is uniform throughout the brain, but
this measure might be susceptible to age-related changes. While
these NODDI metrics may be more sensitive to gray and
white matter integrity, more research is necessary to understand
the underlying neurobiological of each of them. Therefore,
future studies tying together diffusion-weighted imaging with the
underlying histology will hence be immensely valuable.
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