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Abstract

Eukaryotic transcription factors activate gene expression with their DNA binding domains 

and activation domains. DNA binding domains bind the genome by recognizing structurally 

related DNA sequences; they are structured, conserved, and predictable from protein sequence. 

Activation domains recruit chromatin modifiers, coactivator complexes, or basal transcriptional 

machinery via structurally diverse protein-protein interactions. Activation domains and DNA 

binding domains have been called independent, modular units, but there are many departures 

from modularity, including interactions between these regions and overlap in function. Compared 

to DNA binding domains, activation domains are poorly understood because they are poorly 

conserved, intrinsically disordered, and difficult to predict from protein sequence. This review, 

organized around commonly asked questions, describes recent progress that the field has made 

in understanding the sequence features that control activation domains and predicting them from 

sequence.
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What are transcriptional activation domains?

Transcriptional activation domains are the regions of transcription factors (TFs) that bind 

to coactivator complexes to activate transcription [1-3]. These regions are also called 

transactivation domains or activator domains, and all three terms have been applied both 

to minimized regions of high activity (10-80 AA) and the entirety of the TF outside the DNA 

binding domain (DBD; 100s of AA). We will use the term activation domain to refer to short 

regions that directly bind to coactivators. Activation domains are defined experimentally, 

most often in sufficiency assays, where candidate protein regions are fused to a heterologous 

DBD and activity is measured with a reporter gene. There are high-throughput sufficiency 
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assays in yeast, fly, and human cells that use pooled oligo synthesis to study short 

TF fragments, ≤80AA [4-9], but some groups have queried longer regions [10,11]. The 

boundaries of nearly all annotated activation domains should be regarded as approximations 

because very little experimental effort has been devoted to defining boundaries precisely.

The primary known function of activation domains is to recruit coactivator complexes. 

These interactions are highly dynamic, with short dwell times that are hard to catch with 

pull-down assays in vivo [12-14]. There are now dozens of beautiful NMR structures of 

these interactions, as reviewed by Dyson and Wright [1]. It remains a goal in the field 

to map interactions between activation domains and coactivators. Genetically defining the 

coactivator dependence of activation domains yields complex results that have been hard 

to interpret [15]. Recent TURBO-ID experiments, which capture dynamic interactions in 
vivo, suggest that most activation domains preferentially bind to only 1-2 coactivators [16]. 

Importantly, different members of a single DBD family (e.g. FOXO) recruited different 

combinations of the TFIID, CBP/p300, NuA4, and BAF complexes [16]. Organizing TFs 

into families by DBD homology has been useful, but going forward we will require 

an orthogonal organization system for grouping TFs with functionally similar activation 

domains.

Are all activation domains acidic?

The first few dozen activation domains were all negatively charged [17,18], inspiring a 

seminal paper by Paul Sigler entitled, “Transcriptional activation. Acid blobs and negative 

noodles” [19]. Sigler leveraged his authority as a respected structural biologist to argue that 

activation domains did not need to fold in order to be functional. This seemingly simple 

idea was heretical at the time. It is now clear that transcription factors are highly enriched 

for intrinsically disordered protein regions (IDRs), which do not fold into a single 3D 

structure, comprise roughly a third of the residues in eukaryotic proteomes and are enriched 

for protein-protein interactions and post-translational modifications [20-22]. Sigler’s paper 

remains highly recommended reading.

Traditionally, activation domains are classified by their most common residue as acidic, 

glutamine-rich, proline-rich, or serine-rich. For this review, we collected lists of activation 

domains from recent surveys [9,16,23-25] (Table S1). After confirming the UniProt ID of 

each domain, we obtained the full-length sequences of all isoforms and used the published 

coordinates of the domain to find the sequence of each region. If the region matched the 

domain, we saved the UniProt ID of the isoform in the column of Table S1 titled “Matching 

Isoforms.” In cases where there were multiple matches, we selected one to record in the 

Uniprot ID column of Table S1, preferring the canonical isoform when it was among the 

matches. For a few members of the DelRosso library, we used the Ensembl ID to confirm 

which isoform to designate as the UniProt ID. Finally, we merged domains with the same 

UniProt ID with overlapping start and end coordinates, yielding the union of overlapping 

annotations. We used the updated start and end coordinates to find the region of the full-

length sequence to use as the new domain sequence.
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The combined list of activation domains revealed that glutamine-rich activation domains are 

rare (19/760, 2.50%) and that the three other classes overlap highly (Figure 1) [2,26,27]. 

Acidic activation domains were the first group described [17,18], remain the largest, and 

contain the strongest members [28]. In these domains, aromatic and leucine residues make 

the largest contributions to activation domain function [29]. Individual acidic residues 

are dispensable and poorly conserved but collectively essential for function [7]. Many 

acidic activation domains are well-described by our acidic exposure model, wherein the 

critical aromatic and leucine residues make contact with shallow hydrophobic grooves on 

coactivators (Figure 2) [4,30]. However, in the unbound state, the aromatic and leucine 

residues interact with each other and drive collapse into an inactive state. The acidic residues 

repel each other and favor solvation, keeping the hydrophobic residues exposed to solvent, 

where they are available to bind coactivators. Intermixing the positions and balancing the 

numbers of acidic and hydrophobic residues is important for full activity [4,5,7,26]. The 

exchange between collapsed and expanded states might be rapid, but the time scale has not 

yet been measured. The acidic exposure model is an instance of the stickers-and-spacers 

model with a very active role for the spaces [31]. This model is supported by work from 

many groups [5-8,27,32,33]. Surface plasmon resonance assays showed that acidic residues 

can also mediate fast, low-affinity electrostatic binding to coactivators and that hydrophobic 

residues mediate slow, high-affinity binding [7,34,35]. The overlap between acidic, serine-

rich, proline-rich and glutamine (Q) rich activation domains have led Bintu et al. to playfully 

describe them all together as greasy acidic noodles sprinkled with salt (S), pepper (P), and 

queso (Q). Evidence that phosphorylation can modulate activation domain activity has led 

to speculation that some S-rich or P-rich activation domains are inducible acidic activation 

domains [36,37].

Within acidic activation domains, there is functional diversity. There are hints that L-

rich activation domains bind to CBP/p300 and aromatic rich activation domains bind to 

Med25 [30,33,38]. Binding specificity arises from the structure of the coactivator binding 

interface imposing geometric constraints on the activation domain. For example, the deep 

hydrophobic canyon of Taz1 imposes more constraint than the shallow hydrophobic canyon 

of Med15 [9,39] A live-imaging study of transcriptional bursting found that 45/78 activation 

domains primarily regulate either transcriptional burst size or burst duration, but less often 

both (9/78) [40]. Activation domains that recruit Mediator or the general transcriptional 

machinery tended to modulate burst size, while activation domains that recruit SWI/SNF, 

histone acetyltransferases, or the super elongation complex tended to regulate burst intensity 

[16,40]

Why are so many active domains acidic?

In principle, the exposure of hydrophobic residues offered by acidic residues in the acidic 

exposure model could be achieved by basic residues, but acidic residues have several 

advantages. Most importantly, because DNA is acidic, it repels acidic activation domains, 

promotes exposure, and prevents non-specific DNA binding [41]. Acidic activation domains 

can have low-affinity, intramolecular, electrostatic interactions with DBD that can increase 

DNA specificity [42-45] and electrostatic interactions with basic coactivators [34,35]. When 

DNA repels activation domains, evolution can tune DNA affinity by acting only on the 
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DBD. A drawback of positively charged residues is that they can have cation-pi interactions 

with aromatic residues, which would increase collapse instead of exposure [46]. The 

electrostatic constraint posed by DNA can explain why many activation domains are acidic.

Acidic activation domain function is deeply conserved across eukaryotes. The Gal4/UAS 

system from yeast works beautifully in flies, mammals, and plants [47]. Acidic activation 

domains from animals, viruses, and plants work well in yeast [11,28,48]. This promiscuous 

species-crossing has fueled speculation that acidic activation domains existed in the ancestor 

of all eukaryotes.

Why are activation domains disordered?

Virtually all activation domains are intrinsically disordered, but many undergo coupled 

binding and folding, often into short alpha helices [1]. The first explanation for intrinsic 

disorder is that it allows activation domains to fold differently with each interaction 

partner [1,49]. In p53, varying the helical propensity trades off affinity for two partners, 

drastically modulating protein function [50]. Known activation domains are enriched for 

low-confidence secondary structural predictions in AlphaFold models [16]. So far, there are 

few clear examples where the activation domain remains disordered while bound to the 

coactivator, but we suspect this type of interaction is underreported due to ascertainment 

bias [51]. The second explanation comes from the acidic exposure model, where disorder 

reduces the entropic cost of keeping W,F,Y,L residues exposed to solvent because they 

need to be exposed for only a fraction of the time to allow coactivator binding. The 

third explanation is that intrinsically disordered sequences can use long–range, low–affinity 

electrostatic interactions to achieve diffusion-limited binding [52-56].

A controversial idea is the detergent model, which argues that activation domains loosen the 

interactions between nucleosomes and DNA to help create nucleosome-free regions for TF 

binding [8,57]. This idea contrasts with the standard model where activation domains recruit 

chromatin remodeling enzymes, including ISWI, SWI/SNF, CHD, and INO80, which use 

ATP-hydrolysis to slide or evict nucleosomes [58]. We do not endorse this model.

What is the molecular grammar in activation domains?

Molecular grammar describes how the arrangement or order of amino acids contributes to 

function. There is a spectrum ranging from an extreme of “no grammar,” where only the 

composition matters, to an extreme of “strict grammar,” where the exact order of residues 

is essential for function. The dominant model for activation domains is that they are short 

linear motifs (SLiMs) of hydrophobic residues surrounded by a permissive context [59]. 

For example, the ΦxxΦΦ motif, where Φ is a hydrophobic residue, is surrounded by acidic 

residues on many activation domains, often forming an amphipathic alpha helix that presents 

a continuous hydrophobic surface to the coactivator [1,60]. There are two problems with 

motif-centered models. First, individual motifs are conserved within a family of orthologs, 

but each motif is rarely present in many families, making each one too specific to be a 

useful predictor of activation domains [4,37,60]. Second, our mutagenesis has revealed that 

multiple motifs are necessary for full activity [4,30]. The reliance on motifs has served as 

Udupa et al. Page 4

Curr Opin Struct Biol. Author manuscript; available in PMC 2024 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a robust set of training wheels for the field, but as our understanding of activation domain 

function matures, the fixation on motifs is holding us back because motifs imply a strict 

molecular grammar. We believe that it is time to focus on clusters of hydrophobic residues 

embedded in a permissive context, emphasizing a much more flexible grammar.

There is strong evidence against strict grammar: random peptides with activation domain 

activity do not have enriched motifs [6], shuffling activation domain sequence can increase 

activity in a third of examples [4,7], and searching for clusters of W,F,Y,L residues in acidic 

regions is a good predictor of activation domains [26,30]. Interesting work on Abf1 in yeast 

completely blurs the line between motifs and context [61]. There is also strong evidence 

against no grammar: shuffling sequence often has profound effects on activity, especially in 

helices [4,7,30], and interchanging aromatic residues can disrupt activity [30]. We are left 

with weak grammar, which we still do not fully understand and is at times disconcerting. 

Shuffling sequences can disrupt activity, or it can have little effect; breaking helices can 

disrupt activity or have little effect; interchanging similar residues (D>E or F>W) can 

disrupt activity or have little effect [7,29,30,39]. We refer the reader to Kotha and Staller 

2023 for an extended discussion of the role of motifs and grammar in activation domains 

[26].

Can we predict activation domains from protein sequence?

Recently, high-throughput assays for measuring activation domain activity have powered 

convolutional neural network (CNN) models for predicting activation domains from protein 

sequence. The first computational model for activation domains, the 9aaTAD model, used 

regular expressions to find matches to a highly degenerate motif and context pattern [62]. 

However, in two high-throughput screens in yeast, this pattern was not enriched in activation 

domains and was not a useful predictor [6,7]. Rational mutagenesis of one activation domain 

and lasso regression models on random peptides revealed key amino acids [4,5,8]. The 

first CNN activation domain predictor was developed with a dataset of 3.6 million 30-AA 

random peptides tested in yeast [6]. The second CNN was developed with a dataset of 

53-AA peptides from 180 Saccharomyces cerevisiae transcription factors (n = 7460 tiles) 

[7]. In our experience [63] and the work of others [11,26,27,63], both of these models do 

a good job predicting the general location of activation domains on human and plant TFs. 

We have found they do an excellent job of prioritizing a few regions of a TF that are 

likely to be activation domains. Both models struggle to find activation domain boundaries 

accurately, but these boundaries are poorly defined. To our surprise, scanning for clusters of 

W,F,L residues in acidic regions performs nearly as well as CNN models for human TFs, 

implying both that prediction is simpler than anticipated and that the grammar is highly 

degenerate [26]. Second-generation CNN models with more sophisticated architectures are 

already more accurate [64]. As more data becomes available, we anticipate the activation 

domain predictors will improve.

What is the link between activation domains and phase separation?

It is now clear that transcription occurs in dynamic clusters [65]. These clusters are non-

stoichiometric assemblies with dozens of copies of each TF and coactivator complexes that 
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together recruit dozens of Pol II molecules, some of which successfully transcribe mRNAs 

[66-71]. It remains deeply contested whether these clusters of active transcription are phase-

separated biomolecular condensates [72,73]. There is evidence that the same protein-protein 

interactions that enable activation domain function in vivo enable phase separation in vitro 
[72]. Modulation of phase separation in vitro can identify interaction binding partners or 

drugs [74]. There are examples from plants where a TF becomes inactive as it enters the 

condensate for long-term storage [75,76]. Careful studies in a synthetic system showed that 

phase separation can be completely separated from activation domain strength [77].

We speculate that the reason there has been so much confusion between transcriptional 

activation and phase separation is that both processes rely on multivalency. Multivalency is 

essential in many phase-separated systems and dynamic protein-protein interactions (See 

companion review by Berlow and colleagues). TFs and activation domains engage in 

multivalent binding with coactivators. Activation domains show multivalency on two length 

scales. First, many TFs have multiple activation domains that can bind the same coactivator: 

there are five patches of Gcn4 that each contact many (but not all) of the four activation 

domain-binding domains of Med15 [13]. For p53, the active form is a tetramer [78], and 

it can form four contacts with CBP/p300 [49]. Second, within activation domains, adding 

aromatic or leucine residues near key hydrophobic motifs boosts activity by lengthening the 

interaction surface [4,60,79].

Concluding remarks

Over the past 6 years, new methods have clarified the sequence determinants that control 

acidic activation domain function. We anticipate the next few years will expand these 

approaches to activation domains from other classes and investigate post-translational 

modifications. The major open questions are to define functional classes of activation 

domains, map interactions with coactivators, and build improved predictors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Among annotated activation domains, the traditional classes are highly overlapping. Acidic 

activation domains have a net charge < −3, P-rich have >15% proline, and S-rich have >15% 

serine.
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Figure 2: 
In our acidic exposure model, disordered activation domains rapidly transition between 

collapsed and expanded states. The collapsed state is inactive. The expanded state is 

competent to bind coactivators because the W,F,Y,L residues are exposed to solvent. The 

W,F,Y,L residues make critical contacts with hydrophobic surfaces on the coactivator. Many 

activation domains experience coupled folding and binding, but folding is not essential. 

Electrostatic interactions between the activation domain and coactivator can contribute to 

binding or steering, but these interactions are of low affinity and not always necessary.
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