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Chapter 1

PROJECT DESCRIPTION

1.1 Introduction

As traffic conditions continue to worsen at an alarming rate in many of the urban areas

around the world, traffic and transportation engineers are becoming increasingly aware of the

relatively limited impact of conventional and mostly local approaches to tackle the problem.

Potential solutions could be based on 1) augmenting the network capacity by constructing more

roadways, 2) implementing travel demand management, which would manage traffic growth by

developing policies to reduce the number of vehicles on the roadways during peak travel times,

and 3) increasing the efficiency of the existing transportation system by incorporating operational

improvements. The first solution is often economically infeasible, and the second solution has

often proved difficult to implement. The focus of this research project is the third alternative,

namely the modelling of operational improvements that incorporate rapidly developing

communication and computing technologies into the vehicle-highway infrastructure. This

application of advanced technologies to the vehicle-highway system is formally termed as

Intelligent Vehicle Highway Systems (IVHS) in the United States. There four categories under

IVHS are : Advanced Traveler Information Systems (ATIS), Advanced Traffic Management

Systems (ATMS), Commercial Vehicle Operation (CVO) and Advanced Vehicle Control Systems

(AVCS). Thus, two critical issues arise; the first one focuses on the evaluation of the

performance of traffic systems in ATIWATMS context, and the second upon the drivers response

to the provided information.

The performance of traffic networks under ATIWATMS is the result of complex

interactions between and within several elements. User decisions, made in real-time as well as

from day-to-day, determine the time-dependent distribution of flows on the various components

of the network. Nonlinear interactions in the traffic stream on the network links, and at the

nodes, determine the associated trip times, delays, and quality of traffic service experienced by

the tripmakers. The dynamic interaction among user decisions, traffic conditions, controller

actions, and information governs the overall performance of the system.

Some functional requirements of a suitable model for the evaluation of ATIWATMS are:
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1.

2.

3.

4.

Ability to model the route choice behavior of drivers with and without access to ATIS

information.

Responsiveness to dynamic O-D information available to the controller as reported by

the ATIS and other sources.

Ability to track the route and location of the drivers who receive the route advice from

the control center.

Ability to predict time-dependent impedance (travel time) based on the assignment results,

and provide feedback to the control center that may be used in the assignment of vehicles.

In-vehicle information supply strategies differ in terms of their characteristics along

several important dimensions, such as the nature of the information displayed, being descriptive

or prescriptive. Four principal generic types of information strategies classified by Mahmassani

and Jayakrishnan (1991) are :

1.

2.

3.

4.

Descriptive, stored information: ” static map” that displays only stored information on

time-dependent trip times on the various links.

Descriptive, real-time information: display of network (or portions thereof) with

indications of prevailing congestion on the various links.

Descriptive, real-time information with individual optimization: the link-level information

is processed either on board or centrally to compute the current shortest path from present

position to desired destination of given driver.

Controlled guidance : the instructions given to users reflect a central controller’s system

level objectives, subject to certain constraints to prevent unreasonable penalties to any

individual tripmakers.

It is probable that user response will be governed by different behavioral mechanisms and

heuristics under each type of information supply strategy. Unfortunately, the literature on the

early research on travel behavior under IVHS information has not yet provided an adequate basis

for modelling user response and evaluating the above strategies.

Existing methodologies for network assignment and traffic systems analysis do not
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adequately capture the complex interactions described earlier. Traffic simulation models typically

require known time-varying input flows on links and known movements from one link to another.

Virtually none of the models used in practice consider the behavioral processes that determine

the formation of these flows on the paths in the network. On the other hand, available network

equilibrium assignment models are aimed at static steady-state conditions, and as such are used

primarily meant for transportation planning applications rather than traffic operations analysis.

This was the primary motivation behind this research project to develop a new simulation

framework for analyzing traffic networks with ATIS and/or ATMS. This research report describes

the development of DYNASMART (Dynamic Network Assignment-Simulation Model for

Advanced Road Telematics), which grew out of an early prototype program developed at the

University of Texas at Austin.

1.2 Literature Review

Extensive development of traffic simulation models over the past twenty years has

produced several effective programs (TRANSYT, NETS&i, INTRAS,  TEXAS and PASSER, to

name a few; see TRB special report 194) to study conventional traffic networks. However, the

technological advances and concepts underlying ATIS/ATMS in urban networks were not

envisioned when these models were developed. For this reason, those simulation models are not

directly applicable towards networks with ATIS or ATMS. The two primary deficiencies of the

existing simulation models are 1) the lack of modelling of path-based traffic dynamics and 2) the

lack of explicit representation of user decisions such as route-choice under information.

During the mid and late 80’s, research efforts in Europe to develop analysis tools

specifically for this purpose led to further development of assignment based models such as

CONTRAM (Leonard et al, 1989) and SATURN (Van Vuren and Watling, 1991). While both

these models have been used with reasonable results for the above purpose, they are limited in

their ability to capture the dynamic performance of traffic networks under real-time information.

It is not clear whether the time-dependent user equilibrium that these models attempt to find is

a meaningful or realistic construct to evaluate real-time information systems, especially under

non-recurrent congestion. These models have a limited behavioral basis, and little or no ability

to incorporate realistic behavioral rules for the response of the drivers to information/guidance.
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Further limitations arise from the inadequacy of link cost functions in capturing the dynamics of

traffic flow in networks. For instance, the cost functions are usually required to be convex and

monotonically increasing, which implies a low cost at small flows; however, it is well known that

links in heavily congested networks generally exhibit very high trip time costs at stop-and-go

speeds and small flows.

Similar limitations apply to the recent body of work presenting mathematical formulations

for the time-dependent user optimum assignment problems (Ran, Boyce and Leblanc, 1993). No

efficient algorithms for general networks are presently available for these types of problems and

the proposed algorithms appear to be inapplicable to networks of realistic sizes, especially for

a reasonable number of time periods.

There have been recent efforts to develop simulation models for studying networks under

information. Among the better-known examples is INTEGRATION developed at the Queens

University (Van Aerde and Yagar, 1988a&b). This model has been under development at the

same time as DYNASMART and appears to share some of its features, especially in terms of the

general approach to traffic flow simulation. It is difficult to ascertain the exact features of the

INTEGRATION model as these have not been fully described in the literature due to the

proprietary nature of this commercial program. DYNASMART was developed as a flexible

research tool at the University of Texas and we discuss its features below.

There is increasing interest in the assignment of time-dependent network flows, as

reflected in the published literature. However, most studies have assumed the time-varying

demand pattern to be given, and have solved for the link flows, as a function of time, given the

OD trips rates (as a function of time), and the physical and operational characteristics of the

transportation network. Early contributions in this area include the work of Yager (1976) on

numerical techniques for the dynamic traffic assignment problem; a proposal to extend this

approach to include some sensitivity to route guidance strategies has been presented by Van

Aerde and Yager ( 1988a and 1988b), though the behavioral aspects of user response to

information appear to be limited. A special case of the traffic assignment problem has been

addresses by Sheffi, Mahmassani and Powell ( 1981) in the context of estimating network

clearing times during emergency evacuations. A mathematical programming formulation and

solution procedure was presented by Merchant and Nemhauser (1978) for system-optimal
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assignment of a discretized time-varying demand pattern for multiple origins to a single

destination. The formulation was recently expanded by Carey (1987). A pure network

formulation of the problem of determining the system optimal joint scheduling and routing of

trips in an urban corridor with a single destination was recently given by Chang, Mahmassani,

and Engquist (1988).

A dynamic simulation and assignment framework was developed by Mahmassani, Chang,

and Herman to investigate the day-to-day dynamics of traffic in a single-destination commuting

corridor ( Mahmassani and Chang, 1986; Chang et al., 1985). It consists of (1) a special-purpose

macroparticle traffic simulator ( MPSM), which simulates vehicular movement on freeways and

arterials given time-dependent input functions, and (2) a user decision component, which

determines the time dependent departure functions resulting from individual departure functions

resulting from individual departure time and route choice decisions of commuters in response to

experienced congestion in the system and available exogenous information. A more general

framework was proposed by Mahmassani and Jayakrishnan (1991) for investigating the effect of

different parameters on the performance of a congested urban traffic system under real-time

information. The model that Jayakrishnan developed during his doctoral study (1992) underwent

modifications under the project described herein, and is now named DYNASMART ( DYnamic

Network Assignment Simulation Model for Advanced Road Telematics). As part of this project

several traffic control strategies, such as pretimed and actuated signal control, are combined into

DYNASMART in order to capture the real traffic system. In this report, the structure,

capabilities and principal modelling features of DYNASMART, as well as numerical results from

simulation experiments are examined.

1.3 Overview of the Report

The next chapter discusses the simulation approach of DYNASMART and explains the

traffic control features incorporated in it during the research on MOU-39. Chapter 3 discusses

the simulations performed with a trial network with ATMS controls. Chapter 4 concentrates on

the ATIS simulations on the Anaheim network. Results from the simulations of traffic

management for special-events traffic from the Anaheim stadium are presented in Chapter 5. This

is followed by a brief chapter with conclusions.
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Chapter 2

MODELLING FRAMEWORK

DYNASMART (Dynamic Network Assignment-Simulation Model for Advanced Road

Telematics) uses an assignment-simulation modelling framework designed to assign time-varying

traffic demands and model the corresponding traffic patterns and evaluate overall network

performance of an Advanced Traveler Information System (ATIS) and/or an Advanced Traffic

Management System (ATMS). In its present form, DYNASMART is primarily a descriptive

analysis tool for the evaluation of information supply strategies, traffic control measures and

route assignment rules at the network level. However, it is evolving towards a model that may

be executed on-line in quasi real-time to support the functions of the system controller in the

ATIS/ATMS. DYNASMART moves vehicles individually according to macroscopic traffic

relations and microscopic driver behavior rules.

2.1 DYNASMART Model Structure

Several approaches have been applied to evaluate traffic systems under ATIS/ATMS,

including analytical methods, assignment-based models and simulation-based models. Because

of the complexity of the problem and the issues involved, a model for evaluating system

performance for ATIS/ATMS with adequate realism needs to combine the concepts and features

of simulation and assignment methodologies. In light of the limitations of existing traffic

simulation models, as well as those of network assignment models, for ATIS/ATMS applications,

four possible development strategies are identified:

1.

2.

3.

4.

Interface existing traffic simulation models and network assignment models.

Add network path processing and route choice capabilities to an existing traffic

simulation package.

Add dynamic traffic flow simulation capability to an existing network assignment

package.

Configure a simulation-assignment model structure to best fit the functional requirements

of the ATIS/ATMS context.
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DYNASMART is based on the fourth strategy. Its overall structure is shown in Figure

2.1. The approach adopted in DYNASMART integrates traffic flow models, path processing

methodologies, behavioral rules and information supply strategies into a single simulation-

assignment framework. The input data include time-dependent OD matrices and network data.

All components of DYNASMART are examined in the following section.

Simulat ion Component

T I me Dependent
O -D  F low Ll nk Pass

1
Densities,

Trave l  T ime
o n  L i n k s

Process i ng

Figure 2.1. DYNASMART Model: Conceptual Structure
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Initialization
Read Network DATA

T=O
-If start of new
demand interval,

READ demand data
CALL KSHORT +

or
ROUTETM -

CALL PARTCO +
T=T+AT
,T over simulation

limit ?
-Statistics
output

PATH-PROCESSOR

capacities or restore

.i.. . . . . . . ...
::::::;::$$ of the vehicle
$$$$  _ Compare  with the.i....  . . .._  L. . . . . . . . . ..i..
;$g$:;-~::::. available Current

~~
.: .,.,.,: ,..._

K-shortest paths  and
..,.... . ..i. select the route
$j$# - Return the number of.. ..i.........:,:.:.:.:.:.:$>$;E;..i. . ..L..._ the link to move to:.:.:.:.:.:.:.. . . . . . . . . . . . .

DRIVER DECISION MODELLING

TRAFFIC SIMULATION

Fig. 2.2 Program Flow and Communication between the Conceptual Modules.
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The various conceptual modules of DYNASMART are depicted in Figure 2.2. The

simulation is deterministic, and follows constant time increments. Vehicles are generated

according to specified dynamic Origin-Destination zonal demands, and moved in the network.

After every simulation time step, the path database is updated, based on the traffic conditions.

The information supply system is assumed to use this database for information/guidance to

drivers reaching route decision points (i.e., network nodes) during the simulation time step. Based

on the modelling of driver response to this information and the nodal flow constraints, the

modelling of vehicle movements into various network links are. modelled, which in turn

determines the ensuing traffic flow conditions in the network and the simulation proceeds.

Incidents are to modelled with link capacity reductions, with their locations, time periods and

capacity reduction factors externally specified. The details of the various components are

discussed in the following sections.

The information center (ATIS computer) is assumed to provide route information using

current information only. This means that future conditions are not predicted while the routes are

displayed to the driver. The framework does not include a traffic prediction algorithm (such as

used by, say, ALI-SCOUT in Germany, See Von Tomkewitsch, 1987). Once reliable prediction

algorithms become available, such capabilities may be added to the framework.

2.2 Simulation Component

The traffic simulation approach in DYNASMART is an extension of the macroparticle

simulation model (MPSM) [Chang et al. 19851, initially developed as a special-purpose code for

experimental studies of commuter behavior dynamics in congested traffic corridors.

Macroscopic simulation models use traffic stream relations to describe traffic interactions

(see Drew, 1968; Gerlough and Huber, 1971; May 1990). In general, this approach is based on

a continuum representation of traffic, described in terms of the continuity equation:

2+ak
ax at = gw (1)
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q = Flow ( vehicles/ hour ),

k = Concentration ( vehicles/mile ), and

g = Net generation at source / sink.

The above equation is usually coupled with a speed-concentration relation. In addition,

macroscopic simulation models typically use the identity q = k v (where v is the average speed).

The continuity equation, expressed in finite difference form, can be solved numerically using

discrete time steps. However, for links of finite lengths, moving vehicles according to the q =

k v identity may lead to physically unrealistic speeds, as discussed in Chang et al. (1985). For

this reason, the original MPSM model moved vehicles in discrete bunches or macroparticles, at

the prevailing local speeds determined from the speed-density relations. The macroparticle

concept is adapted from plasma physics (Leboeuf, 1979) which exhibits similar properties in this

regard. In its current implementation, DYNASMART uses macroparticles of one vehicle, which

means that it tracks the movement and locations of individual vehicles. However, it does not

keep track of the microscopic details of individual traffic maneuvers. Furthermore, it models the

individual route choice decisions of users at nodes microscopically. The traffic simulation

consists of two primary steps: the link pass and the node pass, as described next.

2.2.1 The Link Pass

The link pass is a process for moving vehicles on the network links during every

simulation time step, a scanning time interval in the simulation (5 to 10 seconds is results in

reasonable computational efficiency). Note that the network’s links can be subdivided into

smaller sections or segments for trafftc simulation purposes. The vehicle concentration prevailing

on a section over a simulation time step is calculated using the finite difference form of the

continuity equation (equation l), given the concentration as well as the inflows and outflows over

the previous time-step. Using the concentration at the end of the previous time step, the

corresponding section speeds for are calculated according to a speed-density relationship:

V; = ( V, - V, ) ( 1 - K; / K, )” + V,
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where,

V;, K; = Mean speed and concentration in section i during the t* time step,

v,, vcl = Mean free speed and the minimum speed, respectively,

K, = Jam concentration (say, 140 vehicles per lane mile), and

a = Parameter used to capture the sensitivity of speed to the

concentration.

The minimum speed used is effectively the average speed at the worst stop-and-go traffic,

and can be assumed to be between 5 and 10 miles per hour. The above speed-density

relationship is effectively a non-linear version of the well-known Greenshield’s model.

The vehicles occupy specific positions within the link, the positions being updated during

every time step. All the vehicles in a link move at the same speed during a given time step,

which is the speed calculated from the above equation (2). No individual maneuvers of the

vehicles such as lane-changing or car-following is modelled. The number of lanes on a link is

reflected in the number of cars that can occupy the link at jam density.

The link pass is called twice during each time step. First to move all the vehicles in each

link, and then to move the vehicles that reach the link end on the new link that it moves to. The

second pass is done after the node control is simulated and after the drivers’ link-choice behavior

is simulated. During the second pass on each link, the vehicles are moved in from each upstream

link from which the movement is permitted (according to the current node control). The vehicle

with the earliest arrival time at the node moves in first. If a link reaches its jam density, no more

vehicles can move in from the upstream link, and those cars will be left in a link-end queue.

Those cars which move in to each link is moved in the link according to the link speed, for a

period equal to the remaining fractional time step after it reached the previous link’s end.

2.2.2 The Node Pass

The node pass performs the link-to-link or section-to-section transfer of vehicles. For

interrupted link flow, the node pass appropriately allocates the right of way according to the

control strategy at this intersection. It determines the number of vehicles that are traversing each

intersection in the network at each simulation time step as well as the number of vehicles

entering and exiting the network. The output of the node pass includes the number of vehicles
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that remain in queue and the number added to and subtracted from each link section for each

simulation time step. Currently, pretimed control, actuated signal control, coordinated control

can be modelled by DYNASMART. Further details are provided in section 2.5.

2.3 Driver Behavior Component

There are three main behavioral processes that have to be considered: (1) the initial path

selection of the drivers, (2) the enroute path selection behavior of the drivers who receive real-

time information, and (3) the enroute path-selection behavior (based on observed traffic

conditions) of the drivers who receive no information. There is ample research literature on the

first aspect, though they do not usually address the real-time information availability. The

literature on the other two behavioral processes is very primitive at present. DYNASMART at

present models the first two cases above, which are discussed in the next two subsections.

Modelling of the third aspect under assumed behavioral models is under development now.

2.3.1 Initial Path selection

It is assumed that for different alternative designs of an information supply system, the

basic information ultimately available to the drivers will include termed initial routes. Drivers

who are equipped to receive information may change their as early as at the first node during

their trips, and the drivers who receive no information assumed to stay on the initial path. Thus

the initial path assignment significantly affects drivers without information. Our experience

shows that the initial path selection has to be carefully modelled with multiple paths between

each O-D pair, without which congestion would develop on the paths that are used by the drivers

without real-time information. While there is no universally accepted method of assigning initial

routes, some have suggested user equilibrium or stochastic user equilibrium assignment for these

initial routes. In the current version of DYNASMART, two options are available for the initial

path assignment. The initial routes can be selected randomly from the K-shortest paths calculated

at the end of warm-up period (or can be the shortest path itself). The other option is to specify

these externally. These external paths can be dynamic equilibrium paths generated using

software. However, the external paths need not be provided for all nodes and towards all

destination; program will automatically revert to the first option for nodes without external paths.
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In the times at which the paths become valid can also be specified in the external data, which

that dynamic equilibrium (or optimum) paths can be specified. As an example, we CONTRAM

to generate paths for some of the simulations reported here. CONTRAM is multiple time slice

user-equilibrium assignment package developed by the Transport and Research Laboratory

(TRRL), of the United Kingdom’s Department of Transport (Leonard et 1989). In practice, such

assignments may be available in the future from historical based on actual measurements.

2.3.2 Enroute Path Selection Under Information

It is assumed that for different alternative designs of an information supply system, the

basic information ultimately available to the drivers will include travel times on alternate routes

(or at least on the ‘best’ path determined by the controller or navigator). However, it is assumed

that it will be impractical to require the drivers to follow the route suggested to them. Thus the

behavioral rules governing travelers’ route-choice decisions need to be incorporated, with the

flexibility to also model the special case in which drivers are required to follow the guidance

suggested.

Experimental evidence presented by Mahmassani and Stephan (1988) suggests that

commuter route choice behavior exhibits a boundedly-rational character. This means that drivers

look for gains only outside a threshold, within which the results are satisfying and sufficing for

them. This can be translated to the following route switching model:

S,(k) = { 1, if 77’Cj(k)  - TTBj(k)  > m a x  { qj*7’iTj(k), zj 1
0, otherwise

where, for driver j,

$ (k) = 1, indicates a route switch at node k;

= 0, indicates no switch at node k,

nCj(k> = Trip time from node k to the destination on the current path,

TTBj(k) = Trip time for the best path

rlj = Relative indifference threshold, and

zj = Absolute minimum travel time improvement needed for a switch.

(3)
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This model assumes that the drivers look for certain minimum travel time benefits

compared to their current routes’s travel time, before making a route-switch, and that this

minimum value is a fraction of the current travel route’s travel time. This fraction (qj) is

assumed to be distributed across the drivers modelled. The average value, fij, for this

indifference threshold is externally specified to DYNASMART. A triangular distribution between 0.75 *q
i

and 1.25 *fi. is currently assumed, but this can be easily replaced with other distributions. The
J

absolute minimum threshold ( rj) is introduced here to ensure that there is no unrealistic switching

for very minimum time savings when the drivers are closer to the destination. The sensitivity

of simulation results to this model and the parameter values are extensively examined and

reported in this report.

Admittedly, this model is very simplified. However, in light of the current lack of

knowledge in this important area, the choices were limited. This model, we believe, does

incorporate an intuitively acceptable behavioral mechanism. As the state-of-the-art is very

primitive, we decided that the best option was to select the most simple model that can still

capture the basic behavioral mechanisms that have to be considered. It is easy to alter

DYNASMART to model other forms of route choice at a node; for example, a probabilistic

discrete choice such as a calibrated logit or probit model. The behavioral modelling routine

needs to return a single variable, which is the next link that the driver selects, and hence the user

can easily insert a different behavioral model that uses the network-related and driver-related

variables from the COMMON storage. (note: models of this form have been developed from

laboratory driving simulations as part of the Anaheim ATMS research test bed project funded by

CALTRANS at the University of California at Irvine, and a version of DYNASMART

incorporating these models is currently under development).

2.4 Path Processinq

The path processing component of DYNASMART determines the route-level attributes

(e.g. travel time), for use in the user behavior component, given the link-level attributes obtained
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from the simulator. As explained in detail in section 2.3, there are two important ways in which

this path information is used: for the initial path assignment of drivers (if equilibrium paths are

not externally specified), and for modelling the driver route selection at the nodes. In its present

version, only the current trip times are available to drivers; no attempt is made at basing route

decisions on predicted traffic conditions. This means that the shortest path algorithm in

DYNASMART does not use possible future link travel times while finding a path travel time.

It is possible that an ATIS center may have a traffic prediction algorithm that uses historic link

travel time profiles along with current conditions before displaying the best paths to the drivers.

This would require time-dependent path algorithms that operate on link travel time profiles. Such

an algorithm has been recently developed and could be incorporated in the future within

DYNASMART.

It is important for a flexible simulation framework to be able to model different

behavioral mechanisms such as those based on selecting from multiple paths, as well as different

information supply schemes such as those based on displaying multiple paths. for this purpose,

a K-shortest path algorithm (i.e., one that finds the second best path, the third best path etc., up

to the K best paths) is interfaced with the simulation model to calculate K different paths for

every origin-destination pair. However, in order to improve the model’s computational

performance, the K-shortest paths are not re-calculated every simulation time step, but at pre-

specified intervals. In the interim, the travel times on the set of K current paths are updated

using the prevailing link travel times at each simulation time step. This approach was adopted

because finding the shortest paths is much more computationally intensive than updating the trip

times on stored paths. We assume that most of the paths in a particular set of K paths do not

drop out of the K-shortest path set during the interim steps, even though their trip times change.

For instance, if the simulation time step is 0.1 minute, the path trip times are updated every 0.1

minute, but new sets of K-shortest paths need not be found more frequently than every 1 or 2

minutes. The method used to find the k-shortest paths is explained in section 2.4.1, and

techniques for updating the trip times on existing path trees is explained in section 2.4.2.

2.4.1 Finding the k-shortest paths

It has been our experience that the path-processing component takes up at least 2/3rds of
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the computation time for networks of any reasonable size, and for this reason, this component

has been very carefully developed and refined in DYNASMART. The k-shortest path algorithm

has been implemented using a direct modification of the well-known label-setting algorithm (see

Minieka, 1978, for instance) by associating a k-vector label with each node. During each iteration

of the algorithm, one label among the label vectors of all the nodes is finalized. The cost labels

are stored in a binary heap for efficiency. Heap data structures are also well-known (see Fox,

1978; Tarjan, 1983). A binary heap keeps certain relationships between the values stored at

various locations in an array such as,

v,&, vzp+l 2 VP, p=1,2 ,...

where,

5 = Value in the array at location p

Thus the fast location contains the minimum value, and location 2p and 2p+l are said to store

the ‘children’ of location p. During every iteration of the label-setting algorithm, the minimum

is removed from the array, and the heap is rearranged. The rearrangement is performed by

moving the smaller value among location 2 and 3 to location 1, then by moving the smaller value

among its children to this free location, and so on. We can see that we do not compare all the

locations in the array and the algorithm performs with computational efficiency OfO(~k~og$Tk)

as opposed to o(k*JJ*). The k-shortest path building is repeated with each destination node as

the root.

It may be noted that label-conecting algorithms (see Minieka, 1978) have been found to

perform better than label-setting algorithms for some traffic networks (Van Vliet, 1978),  even

though their worst case performance is theoretically worse. For this reason, further studies are

being conducted with such algorithms, and early results with such an algorithm using a deque

(double ended queue) data structure are promising, and modifications may be made in

DYNASMART in the future using this.

The current implementation of the shortest path algorithm is not vectorizable, but

multiprocessor versions have been developed for building trees rooted at different destinations

using different processors. Other algorithms such as the matrix-based Floyd’s algorithm, while



17

they are vectorizable, are not applicable to our problem, as they do not find k-shortest paths

which are loopless  (we have occasionally found multiple paths in the k-path set which differ only

by one-block loops). With the label-setting algorithm, we have implemented a loop-check

procedure before closing every node (simply backtracking up the tree to a specified number of

nodes), but such a procedure is not possible with matrix-based algorithms.

2.4.2 Updating the k-shortest paths

The trip times on the network links vary during the simulation and hence the current trip

times over the paths have to be found by aggregating the link trip times after each simulation

time step (or as specified by the user). Updating the trip times over the paths found earlier using

the k-shortest path algorithm can be achieved an order of magnitude faster than finding the paths

themselves. As significant stretches are common to numerous paths (which is especially true in

the case of k-shortest paths in urban networks), it is important that aggregation of link trip times

are not repeated over such stretches. To accomplish this, an efficient path trip time updating

technique is used in DYNASMART. Note that the shortest paths from one root node to all other

nodes form a tree, the second shortest paths form trees rooted at nodes on the shortest path tree,

the third shortest paths form trees are rooted on earlier trees, and so on. So the path trip times

are aggregated on successive shortest path trees. For N nodes, there are KN paths towards a

given destination and there are several links on each path. However the a shortest path tree rooted

at a given destination is made up of only N-l links. Our path updating technique make use of

this fact to update the path costs efficiently by making use of the tree connectivity information

and avoiding multiple trip time aggregation on common stretches of the paths. As only the

successor nodes are stored (i.e., while at a given node, we do not know from which nodes the

shortest paths come to it), we require a two-pass procedure that performs two calculations per

each arc in the tree. This results in O(N) operations for the shortest path tree rooted at a

destination, and fewer operations for the other k-shortest path trees. This updating can be carried

out even more efficiently by pre-ordering the tree-traversal, at an additional storage cost. For

vector machines such as the CRAY supercomputer, the above technique of path update is not

very efficient, as the process is sequential and cannot be vectorized easily. Vectorizable

procedures using list storage instead of predecessor-tree storage have been tried, but have not
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been found better than the pre-ordered tree-traversal procedure.

2.4.3 Path Storage

The shortest paths are stored using successor storage. Thus, to trace a given node to a

given destination, the successor nodes need to be traced in order. This means that the storage

required is (# of nodes)*@ of destinations)*(K). For example, for a network of major arterials

and freeways similar to that of Anaheim, if the 3 best paths from each of 400 nodes is stored

towards 40 destinations, we need 400*40*3  = 48,000 locations. Comparing this with the separate

path-list storage (for, say, a maximum number of nodes in a path equalling 35 for the above

network), which requires 400*40*35*30 = 1,680,OOO locations, we can easily see the storage

efficiency. The key point is that we avoid double-storage of nodes which are part of multiple

paths. This is possible because each path is part of a tree rooted at the destination, which means

that each node has a unique path connecting it to a given destination in each of the k trees rooted

at that destination.

The current path of each driver, however, is stored as separate lists. This is because, the

current paths of all drivers going to a given destination, at a given time do not form a tree. To

explain this, consider the case of a driver who selected a path at time t = 20 min. This path needs

to be stored to be available at, say, time t = 35 when the driver is at a node considering another

switch. However, the shortest path trees for the network would have been updated many times

by then, and the driver’s path may not be in the set any more. Thus, no successor storage is

possible for these paths. Thus, these paths do need to be stored as separate lists. For 50,000

drivers in the example network above, if we assume a maximum node-list length of 35, we need

50000*35 = 1,750,OOO locations. It is not possible to cut down this storage requirement, and this

does indeed become the critical storage component of DYNASMART. We have developed data

structures that reallocate the storage space of drivers who have left the network to new drivers,

thus preventing this storage requirement from increasing based on the simulation time. This is

not yet incorporated in the version of DYNASMART reported here.

External paths are also stored as node-lists for each node towards each destination. Again

for the above example, this results in 400*40*35 = 560,000 locations. All three kinds of path

storage discussed here are implemented with INTEGER*2 declaration. This is possible as the
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node numbers in practical networks fall below 32,767.

2.5 Traffic Control Component

DYNASMART provides the ability to explicitly model different traffic signal control

strategies, which includes pretimed control and actuated control. The major component in

DYNASMART which deals with the intersection control is node pass as mentioned before, which

is examined here in detail. The node pass is designed to simulate the input and output flows of

vehicles on each approach at intersections operating under a number of control strategies. It

calculates the number of vehicles that traverse each intersection in the network during each

simulation time step as well as the number of vehicles entering and exiting the network. Signal

control can be separated into pretimed signal control, pretimed coordinated control, multidial

pretimed signal control, and actuated signal control. All such signal controls are modelled

explicitly in DYNASMART. Outflow and inflow concepts of vehicle flows in the node pass are

discussed next, followed by a discussion of the signal control simulation.

2.5.1 Outflow Constraints

The outflow constraints limit the maximum number of vehicles that are allowed to leave

the approach per lane at an intersection. These constraints are described in the following

equation which states that the total number of vehicles that enter an intersection (from a given

approach) depends on the number of vehicles waiting in the queue at the end of the current

simulation interval, AT, and the capacity of this approach. The definition of capacity based on

the 1985 HCM is the maximum number of vehicles that can be allowed under prevailing traffic

signal operation.

VI,=Min{ VQi;VSi} (4

where,

V& = Max number of vehicles that can enter the intersection during AT,

VQi = Number of vehicles in queue on link i at the end of AT,

VSi = Maximum number of vehicles that can enter the intersection during AT,
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= Gi * Si
= Remaining effective green time during AT,

= Saturation flow rate, and

= Simulation interval (say, 5 to 10 seconds).

2.5.2 Inflow Constraints

The inflow constraints determine the maximum number of vehicles that are allowed to

enter a link. These constraints bound the total number of vehicles from all approaches that can

be accepted by the receiving link, they include the maximum number of vehicles from all

upstream links wishing to enter link j, the constraint due to the available physical space on the

outbound link and the section capacity constraint of link j.

VOj = Min { c VI,; VEj; Cj* AT 1
ks Cl

(5)

where,

VOj

U

vlkj

Y

‘i

= Number of vehicles that can enter link j,

= Set of inbound links into link j (i.e. in the backward star of j),

= Number of vehicles that wish to move from k to j,

= Available space of link j, and

= Approach capacity of link j.

2.5.3 Pretimed Signal and Pretimed Coordinated Control

Input data include phase number, offset, green time, red time and amber time for every

phase. For pretimed signal control, green times are set for every phase according to this data.

Since DYNASMART is not intended as an optimizer of signal system control, the model user

will be able to input offsets obtained exogenously from other models to coordinate arterials or

the network as a whole. Conversion programs need to be developed for direct use of data

prepared from other models such as TRANSYT, but we believe that this will not be a difficult
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task because DYNASMART does not use any signalization conceit that is different than what

is found in common practice (Cycles, splits, phasing etc). Alternatively, optimization modules

could be developed for ATMS applications.

2.5.4 Actuated Signal Control

For microscopic simulation, signal data and detector data will need to be prepared for

actuated signal control. Such calculations are too time-consuming for DYNASMART. Instead

of detecting individual vehicles, macroscopic modeling is adopted to capture the essential features

of actuated signal control : “max out” and “gap out”. “Max out” occurs when the green time for

a given phase reaches a preset maximum green time. “Gap out” occurs when a preset time

elapses with no detector actuations (generally specified to avoid excessively long delays at

conflicting approaches) for the phase in progress, resulting in discontinuation of the green for

that phase. The input data set in DYNASMART includes maximum green time, minimum green

time, default cycle length and the other signal data, such as phase number. The equation used

in calculating green time in an actuated signal control is given below. The concept is to allocate

green time depending on incoming volume. If the required green time is larger than the

maximum green time or smaller than the minimum green time, the maximum or minimum green

time is assigned, respectively.

Gi = (Cvi / C CV, ) * ( C - lost time ) (s)

where,

CVi = Critical Volume for phase i, and

C = Default cycle length, subject to Min Green I Gi I Max Green

Therefore, “max out” and “gap out” can be captured. If the critical volume for phase i

is less than the maximum number of allowable vehicles, the green time will be reduced

accordingly. These calculations are performed at the end of the current cycle. Cycle length will

change every cycle. This modeling approach is expected to be fairly accurate in allocating green

time as congestion increases in the network.
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2.5.5 Entrance Ramp Control

Ramp closure, ramp metering, and traffic-responsive metering are modelled in

DYNASMART.

1. Closure: For ramp closure, drivers need to select other routes from that node to their

destination from the path information set. This is also related to driver behavior and requires an

observational basis to develop appropriate path selection rules.

2. Ramp Metering: In ramp metering, a fixed ramp rate or a dynamic ramp rate determines

the maximum number of vehicles that can enter the ramp during a specified time period.

3. Traffic-Responsive Metering: Two different ramp controls are commonly practiced by

traffic engineers and are described in the Traffic Control Systems Handbook: occupancy control

and demand control. We simulate an occupancy-based real-time metering method called

ALINEA, which is defined by the following flow relationship.

Rate(T + 1) = Rate(T) + Consl*(Cons2  - OCC)

where,

Cons1 = 0.32 (or, as externally specified),

Cons2 = 0.20 (or, as externally specified), and

o c c = Upstream Detector occupancy.

5 veh/min-lane < Rate(t) < 25-35 veh/min-lane

2.5.6 Left-Turn Movement

Left-turn movements are a critical factor causing delay

0

in urban networks. However, it

is very difficult to model the left-turn movement in a macroscopic simulation model, In this

section, the left-turn issue is discussed and the modelling process used in DYNASMART is

introduced.
For the left-turn movement without a turning phase, the analytical approach is to calculate
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the blocked time by opposing vehicles flow at the onset of green and then use gap acceptance

models to calculate the actual number of vehicles which can pass the intersection during the

residual green interval. See Figure 2.3 for a graphical representation of the left-turn scenario.

The left-turn capacity is determined by several factors: opposing volume, number of lanes

of the opposing approach and green time for the phase. The blocked time from the onset of

green that cannot be used by left-turning vehicles is calculated as follows:

Blocked Time:

Tb = (Q/N)(Ll +L2 + R) / (S - Q/N) @I

where,

Tb = Blocked time, time blocked by opposing traffic and/or clear time for queue,

Q = Total opposing flow (veh/hr),

N = Number of opposing lanes,

Ll = Lost time for opposing traffic,

L2 = Lost time for start-up,

1 1 1

Q

QL

__------w-v- __-__-------

Figure 2.3. Left Turn Movement
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R = Red time, and

S = Saturation flow of opposing traffic.

Usable Time for Left-Turn:

T, = G + (T, - Ll) - L2 - T,

where,

T” = Usable time of cycle for left-turn (set),

G = Green time, and

K = Amber time.

Maximum Number of Possible Left-Turn Vehicles:

N=(TJh)+l

where,

h = Minimum turning headway (approximately 2.5 seconds).

A gap acceptance model can be used to calculate the left turn capacity as follows:

QL = (;)a,

QLT = 1 Qe -(Q’3m)*Tc_ e -(QBjW*h

(9)

(19

(11)

(Ir)

where,

QL = Left-turn capacity,

QLT = Left-turn saturation flow rate, veh/hr,

T, = Critical gap (seconds), and
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h = Turning headway (approximately 2.5 seconds).

The modeling process for the left-turn is complex and not easy to combine with any

macroscopic simulation. Therefore, a heuristic modeling process is used to capture effects of

left-turns in DYNASMART. See Lee et al (1977) for more details on this. The process is

summarized as follows:

1.

2.

3.

4.

5.

Create a conceptual bay for left-turn vehicles.

Calculate maximum flow rate for left-turns;

This rate can be calculated under different situations;

a) Protected left-turn phase: saturation flow rate.

b) Permissive phase: from gap acceptance models or established tables.

Calculate an average number of left-turn vehicles and also reduce the saturations flow rate

for straight and right-turn approaches.

Follow outflow-inflow constraints to transfer vehicles from link to link.

Calculate the left turn delay for the K-shortest path calculation.

2.6 Communication Interface between Simulation and Path Processing;

In DYNASMART, the path processing component utilizes the travel time information

generated from the simulation. As explained before, the route trip times are found based on

current travel conditions and delay equations. The travel time information for links is separated

into two parts: travel time for vehicle movement and queuing time. Traffic on each link segment

are modelled as consisting of two parts (as shown in Figure 2.4) : those in the upstream, moving

part, and those in the downstream, queuing part.
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MOV 1 ng Vehicles
V e h i c l e s  [ i n  Queue

Figure 2.4. Conceptual Segments on a Link

2.6.1 Average Travel Time for Moving Vehicles

Average travel time on link segments for each time step is calculated directly from the

traffic stream model used in the simulation. The density and speed is obtained for every

simulation interval, then travel time is calculated based on the link length and associated speed.

2.6.2 Average Queue Delay

a. Queue Delay = ( V, / S ) + ( # of cycles for discharging Vn) * ( l- h )*C

where,

% = Number of vehicles in queue,

S = Saturation flow rate (vehicles/second) ,

h = Effective green time (seconds),

C = Cycle length (seconds),

a = Index to reflect the relation of signals and simulation

( T : start of green, a = 1 ).

C(VJ3) / h* Cl - a = # of cycles for discharging Vq ( 2 0 );

= 0.5 if no queue exists, and

b. Delay Equations: A modified Webster delay equation is used in DYNASMART when an

intersection approach has no queue. To estimate the left-turn delays, we use the delay concepts

as explained in section 2.5.6.

2.7 Incident Modelling
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Incidents are modelled in DYNASMART to reflect accidents or lane closures. These are

described as follows:

1.

2.

3.

Incidents are specified as reductions of link capacity for a specified time period on any

desired link or set of links.

All Calculations are based on predefined data sets. An interactive input feature will be

included in the future version of DYNASMART (currently under development in PATH

research project MOU-84).

Complex incidents of varying levels of capacity reduction over time can be modelled as

a series of consecutive incidents.

2.8 Program Capabilities

DYNASMART has so far been implemented on two different computer platforms: the

CRAY YMP supercomputer and the SUN SPARC workstation, both with 64 MBytes primary

storage. As the code is written in standard portable FORTRAN 77, it is expected that other

platforms such as the IBM PC will be able to run DYNASMART, considering that RAM storage

is becoming constantly cheaper. Simulation of up to 75000 vehicles in networks of up to 2000

links with 10 paths from each node to each destination centroid can be achieved on the above

platforms faster than real-time. The capability to simulate larger problems directly depends on

the available RAM storage. The program capabilities include:

1)

2)

3)

4)

5)

Macroscopic modelling of traffic flow dynamics such as congestion formation and shock

wave propagation. Tracking of locations of individual drivers.

Modelling of different traffic control strategies (freeways, surface streets, signalized

intersections, ramp entry/exit etc)

Modelling of prescriptive/compulsory guidance as well as non-prescriptive guidance with

trip time information on alternative routes.

Modelling of various aspects of the controller such as infrequent updates of the network

route information database.

Modelling of individual drivers’ response to information in the case of prescriptive
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6)

7)

8)

9)

guidance and their selection from a set of paths rather than a single shortest path. Random

assignment of driver behavioral characteristics. Flexibility to incorporate alternative

behavioral rules.

Modelling of specified capacity-reducing incidents at any time, anywhere in the network.

Modelling of traffic with only a fraction of the vehicles equipped to receive information.

Capability to carry out simulations based on externally specified dynamic equilibrium

paths for drivers not equipped to receive information (Under refinement in PATH research

project MOU-84).

Several levels of output statistics for the system, for individual drivers as well as for

groups of drivers (equipped drivers, unequipped drivers, drivers on certain O-D pairs etc).

Statistics include average trip times, distances, average speeds etc. The number of route

switches made, as well as the average fractional distances at which the successive

switches are made are calculated. A few other statistics for insights on the path dynamics

are also available. (Some of these capabilities are being refined in the PATH research

project, MOU-84)

DYNASMART provides the ability to explicitly model an array of control elements, listed in

Table 2.1. The major element for surface streets is signal control, which includes pretimed

control and actuated control. Ramp metering and variable message signs (VMS) are the major

controls for the freeway system. Modelling of VMS is still under development.
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Table 2.1. Traffic Control Types in DYNASMART

Surface Street Freeway System

No Control In-vehicle Navigator with single

Yield Signs or multiple path displays

Stop Signs Ramp Metering

Signal Control Variable Message Signs (under

(green, red, amber times; development)

cycle time; offsets; phases)

Pretimed

Pretimed Coordinated

Multidial Pretimed

Actuated (full )
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Chapter 3

ATMS SIMULATIONS

A test network was used to study the effect of signal controls under ATMS (Advanced Traffic

Management Systems) in conjunction with ATIS information. Further simulations with the

Anaheim network specifically for studying ATIS strategies are described in chapter 4.

3.1 Description of the Test Network

The test network used to simulate an ATMS applications is composed of several arterials and

one freeway. There are 163 links and 50 nodes in this network as shown in Figure 4, and

intersections are represented by nodes , and streets are represented by link. There are 11 on-

ramps and off-ramps connect the freeway with arterials. The test network is shown in Figure 3.1.

All other detail information is given in Table 3.1.

Table 3.1. The Configuration of the Test Network

Simulation Information
start up time : 5 ininutes
period of interest : 5 - 35 minutes
Max simulation time : 150 minutes

Network :
Overall Data

number of nodes : 50
number of links : 163
destinations : 38 ( 1 to 37 + 44 )
demand zones : 38 ( 1 to 38 )
ramp control : 11 ramps

Link
Jam density = 160 vehicles/mile
arterial road

length : l/2 mils
#oflanes:
velocity : 30 miles&r

freeway
length : l/2 miles
#oflanes:
velocity : 55 mph
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on-ramp and off-ramp
length : l/2 mils
#oflanes: 1
velocity : 30 miles/hr

Signal Data
No-control : 17
Pretimed control : 25

2-phases operation
green time : 25 seconds
amber time : 5 seconds

Actuated Signal Control : 8
2 phases operation
min green time : 10 seconds
max green time : 25 seconds
amber time : 5 seconds

3.2 Experimental Factors and Simulation Cases

The simulation experiments were conducted in two parts. The first part is used to test the

system performance with different demand levels. The second part is to test the sensitivity of

the system’s performance, under the information strategy with respect to two principal factors:

(1) the fraction of users equipped to receive information, and (2) the mean relative indifference

band, which captures the propensity of users to switch in response to information. Some

assumptions in simulation are summarized as follows:

1. All the non-equipped vehicles are assumed to have the information on the current

conditions before their trips ( through radio or T.V.), and they will be assigned to the

current best path. After this assignment, they do not change their routes during the trip.

2. Signal control will not be changed during the simulation. The green time is allocated

according to arrival flow rates and queue lengths from some initial tests.

3.2.1 Different Demand Levels

The original case of loading is set as a peak-period pattern, and the vehicles are generated

from 0 to 35 minutes. The number of vehicles is shown in Table 3.2. The total number of
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Figure 3.1 Configuration of Tested Network
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generated vehicles is about 19,000, which is expected not to cause any congestion in the test

network. Then the demand is multiplied by a factor to test the variation of trip time. All the

parameters are fixed at this stage: the mean relative indifference band is equal to 0.2 and the

minimum threshold is 1.0 minute. For each demand level, six different fractions of vehicles with

information will be tested.

Table 3.2. The Loading Pattern for the Base Case

Time Interval Number of Vehicles Cumulative Vehicles 1
5 1778 1778

10 2397 4175

15 3054 7229

20 3641 10870

25 3651 14521

30 3035 17556

35 1846 19402
I I I I

3.2.2 Fraction of Users with Information

To examine the effect of this fundamental parameter in the large-scale deployment of any in-

vehicle information systems, six levels were considered, spanning the spectrum from luxury

gadget to universal availability : 0.0, 0.1, 0.25, 0.50, 0.75, and 1.00. Information availability

status is assigned randomly and independently to each vehicle as it is generated, according to the

specified fraction.

3.2.3 Mean Relative Indifference Band

The quantity qj in equation (4) explained in chapter 2 governs users’ response to the supplied

information and their propensity to switch. As noted earlier, we treat it as a random variable;

when generated, a user is assigned randomly and independently a value for rlj. For convenience,

qj is assumed to follow a triangular distribution, with mean q and range of q/2. To examine the

robustness of the results, we consider five different levels of 7\ : 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5.
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In the no band case, all drivers receiving in-vehicle information are assumed to have a zero band,

and thus to always switch to an alternate path if it offers an improvement in travel time, no

matter how small its magnitude. The minimum improvement 5 in equation (4) is taken to be

identical across users, and equal to one minute, though not in the zero band case, where no

minimum improvement restriction is imposed. For each level of TI, simulations are conducted

for each of the six fractions of users with information, resulting in 30 different cases. The results

are discussed in the next section.

3.3 Simulation Results

3.3.1 Different Demand Levels

The purpose of these experiments is to observe the variations when the demand is increased.

The original loading tends to cause no congestion, and the loading pattern is similar to a typical

perk-period pattern. The average number of generated vehicles is 554 vehicles per minute, the

average trip time is 6.215 minutes and the average trip distance is 2.282 miles. The loading

pattern is shown in Table 3.2. Then, the demand is multiplied by a factor which ranges from

1.0 to 1.6. For every demand pattern, six cases with different percentages of vehicles with

information are tested. The average trip time, trip distance and the number of switches are

shown in Tables 3.3, 3.4 and 3.5, respectively. The average systemwide trip times are shown

in Figure 3.2. Average travel times for the two segments of the driver population (with and

without information) are shown in Figures 3.3 and 3.4.

As expected, the average trip time increases when the demand is increased. However, the

trip time increases more rapidly for demand multipliers beyond 1.4. The overall average trip

time for multiplier 1.6 is twice that of the base case. For the different demand factors, the cases

with information supply always show lower trip time compared to those with no information

supply. However, there is a slight variation within each demand pattern and different market

penetrations have different effects. There is a tendency for the trip times to reduce for higher

market penetration when the traffic condition is heavier. The random fluctuations are, however,

significant. Our experience with the simulation model so far is that such fluctuations occur when

the modelled network is small, but not for larger networks (See Chapter 4).
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Table 3.3. Average Trip Times for Different Demand Multipliers

35

Info

+
6.103
6.083
6.118
6.148
6.151

I
6:;O
6599
6.818
6.715
6.795

n/a
7.292
7.364
7.452
7.451
7.344

I
8fb;O
8.103
8.080
8.071
8.072

nl
9.5%
9.510
9.24s
9.277
9.479

n/a
11.203
11.257
10.976
10.753
10.906

n/a
12.562
12.560
12.662
12.698
12.702



Demand
factor

1

1.1

1.2

1.3

1.4

15

36

0.10 2.372
0.25 2.387
050 2.373
0.75 2.371
1.00 2.365
000
0:10

2 583
2:368

0.25 2.373
0.50 2.379
0.75 2.368
1.00 2.372

Average
distance

(No info)
2.282
2.289
2.285
2.289
2.297

n/a
2.316
2.277
2.279
2.282
2.301

n/a
2 352
2:2%
2.294
2.303
2.286
n/a

2.438
2.331
2.344
2.342
2.350

n/a
2 45.5
21354
2.367
2.337
2.368

nla
2.561
2.373
2.39s
2.372
2.367

nla
2583
2.365
2.376
2.392
2.374

n/a

Average
distance

(Info)

2.256
2.270
2.271
2.281
2.277

I
229

2.271
2.293
2.287
2.294

nl
2.2;6
2.303
2.309
2.315
2.038

n/a
2.265
2.289
2.303
2.324
2.325

I
2;:s
2.338
2.327
2.331
2.347

I
2::7
2.361
2.375
2.372
2.365

I
2:;3
2.365
2.366
2.366
2.372

Table 3.4. Average Trip Distance for Different Demand Multipliers
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1749817498 126126

1874 70
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1976 91 1 4.45
4%5 207 1 4.02
10019 501 5 4.81
1~5058 723 9 4.64
20176 976 3 4.63

2191 161 2 6.92
5295 317 12 5.85
10767 691 18 6.18
16193 955 43 5.81
21831 1063 19 4.72
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5751 437 21
11293 946 31
17140 1361 so
22980 1626 90

1 swdch, 2 switches,  etc.
3 I %

0.49
052
0.90
0.80
0.71

3.60
259
3.11
2.97
3.13

7.84
7.38
7.%
7.61

2 6.%

2341 250 10
5744 763 48
11774 1332 87
17797 1847 119
23139 2355 176

10.00
1 12.39
1 10.76
1 9.95
1 9.86

2352 343 20 13.37
6051 933 63 1 14.15
12234 1779 126 1 13.48
18200 2726 279 8 14.20
24821 3132 257 4 12.03

Table 3.5. Route Switching Statistics for Different Demand Multipliers
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The statistics of switching routes under different conditions are shown in Table 3.5 and Figure

3.5. The percentage of switching (i.e., the percentage of drivers receiving information who

change routes at least once) of vehicles with information increases with increasing demand.

However, the highest switching percentage does not usually occur when all the vehicles receive

the information. The highest percentage of switching occurs when about 25% to 50% of vehicles

receive information. As seen in Table 3.5, there are only a few drivers who make more than two

route switches during their trips (however, the average number of nodes in a trip is only about

5, as the network is small). From our experience, we find that such switching behavior is highly

dependent on the way in which the initial routes are assigned.

3.3.2 Different Information Scenarios

These simulations have a traffic loading pattern that corresponds to a demand multiplier

of 1.6, as described in the last section. About 887 vehicles are generated per minute, and the

loading is still a peak-period pattern. The highest loading is about 1165 vehicles per minute as

shown in Table 3.6 and Figures 3.6 and 3.7.

Table 3.6. The Loading Pattern for Tested Cases

I Time Interval Number of Vehicles 1 Cumulative Vehicles 1

5 2845 2845

10 3835 6680

I 15 I 4886 I 11566 I

I 20 I 5826 I 17392 I

25 5842 23234

30 4856 28090

I 35 I 2954 I 31043 I

Average route switch indifference fractions from 0.0 to 0.5 are tested for different

percentages of vehicles with information. Figure 3.8 depicts the variation of the systemwide trip
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time with the fraction of the driver population with access to information, under each of the six

assumed indifference levels. Note that the trip time is expressed as a percent of the total trip

time under the base case with no information supply (i.e. no switching); thus values in excess

of 100% correspond to a worsening of systemwide performance compared to the do-nothing case.

This did happen when the indifference fraction is 0.5 which represents to the drivers being most

reluctant to switch routes. This can be explained as follows: the vehicles switched to certain

routes in the early stage of their trips thanks to the initial path assignment not being on

equilibrium paths. However, these routes became congested later, but the drivers did not switch

to better streets due to their reluctance to switch routes. A route switch indifference fraction of

0.1 seems to yield more significant improvement. The maximum improvement is about 7.5%

for this case, but the trip time increase when all the vehicles are allowed to access the

information. The 0.0 and 0.1 switching cases show similar trends in trip times; they reduce

rapidly till the percentage of vehicle with information goes over 25%, but increase again when

the percentage increases to 100. The 0.2 switching case is more stable; the trip time drops

rapidly before a 25% market penetration of information, and improves slightly for higher

fractions of drivers with information. The 0.2,0.3 and 0.4 switching cases show similar patterns.

The average trip time for vehicles with information and without information are shown in Figure

3.9 and 3.10. The fluctuations are rather drastic, but could be due to the random number seed

used. In such cases, our experience has showed that repeating the simulations with different

random number seeds gives better results. In general, however, the trip time benefits for vehicles

with information reduces when the percentage increases. Again, providing information to all the

vehicles with information does not result in significantly change the average trip time benefits,

but does not decrease the average benefits to the drivers receiving information (a phenomenon

that we have noticed in the simulations of more congested networks).

The above results are discussed only to illustrate how DYNASMART can be used to

study the effect of various ATIS strategies (considered broadly in terms of generic information

supply here), with specific ATMS controls in place. The network studied is small, but had

various ATMS features such as pretimed and actuated signals, and ramp signals. The results are

only illustrative, and it should be understood that the effect of ATIS and ATMS are certainly

context-specific. Tools such as DYNASMART proves useful for the same reason.
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Chapter 4
ATIS SIMULATIONS (ANAHEIM NETWORK)

4.1 Introduction

The data requirement for this project consists of a coded network and associated dynamic trip

tables with which to perform the DYNASMART traffic simulations and the CONTRAM

equilibrium assignment. The roadway network and trip table used as data in this project were

developed for a sub-area of the City of Anaheim in Orange County, California.

Although the study at this stage is theoretical in nature, the city of Anaheim was selected

because that city is participating in an ATMS testbed research project funded by CALTRANS.

Thus it is assumed that actual IVHS projects will become operational in the medium-term future,

raising the eventual possibility of real-world validation of the analytic tool developed in this

project. However, it is beyond the scope and the requirements of the project documented by this

report to produce a highly detailed network and an accurate trip table for this region. The coded

network is a similar but abstracted model of the actual Anaheim roadway system. Some complex

interchanges of the actual roadway system are simplified in the coded network for the purposes

of clarity and convenience. As the physical roadway system is currently under a state of intense

reconstruction, extensive updating of the coded network in the near-term future would become

necessary in any event.

The trip table is created using the COMEST O-D matrix estimation program that accompanies

the CONTRAM assignment program. This essentially works with specified approximate seed

trip tables and develops a dynamic O-D trip table that matches the specified link counts. We used

link counts that we observed on certain arterial streets as well as the 1989 data on the freeway

flows. The emphasis during this research is to produce a realistic dynamic trip table which would

produce, during DYNASMART simulations, reasonable levels of congestion for the

demonstration of the modeling capabilities of the DYNASMART program.

This chapter documents the data preparation as well as the simulation experiments of ATIS

based on generic information. Section 4.2 provides a brief overview of the study area on which

the network is based. Section 4.3 discusses the network coding process. Section 4.4 discusses

the production of the dynamic trip tables. The simulation of a base-case scenario with no ATIS
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is described in section 4.4. ATIS simulation results follow in section 4.5.

4.2 Studv Area

This section consists of two subsections. Section 4.2.1 provides a brief general description

of the study area. Section 4.2.2 provides a brief description of the transportation system of the

study area.

4.2.1 General Description

The study area chosen for this project is the City of Anaheim in northern Grange County,

California. Portions of seven additional Grange County cities are partially included in the study

area, including Fullerton, Placentia,  Grange, Santa Ana, Garden Grove, Stanton, and Buena Park.

The study area extends 9.3 miles east-to-west and 6.5 miles north-to-south, for a total land

coverage of approximately sixty square miles.

As the large number of municipalities suggest, the study area is a highly developed

urban/suburban region in which neighboring cities blend seamlessly into one another. This

pattern of land use, combined with a high standard of living and the virtual absence of rapid mass

transit systems, has resulted in the use of single-occupancy automobiles for virtually all personal

transportation. This essentially complete dependance on the automobile has greatly taxed the

already-extensive regional roadway system (Haboian and Mortazavi, 1990).

In addition to the daily recurring background traffic, Anaheim also contains three generators

of special-event traffic; (1) the Anaheim Stadium sports facility, (2) the Anaheim Convention

Center, and (3) the Disneyland theme park. All three of these facilities contribute an additional

burden on the roadway system as large numbers of drivers, many of whom are unfamiliar with

the local roads and with the patterns of recurring congestion, enter the system at a few closely-

spaced points during short time spans. Therefore, the potential achievable benefits of applying

IVHS to the alleviation of special-event generated congestion is of unique interest.

For the purposes of this research, the special-event traffic generated by Anaheim Stadium is

chosen as the specific case for which the potential ability of In-vehicle Navigation Systems

(IVNS) to alleviate special-event generated traffic congestion is analyzed. The stadium was

chosen from among the three possible generators because it produces traffic with the sharpest
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peak and a well-understood distribution over a period starting a few minutes before the end of

the special event, and continuing through a few minutes after it (ITE, 1976).

4.2.2 Regional Transportation System

The transportation system in the study area consists of a well-developed arterial grid system

integrated with an extensive freeway system. The freeway system is composed of both federal

and state routes. The study area itself is bounded on the north by Orangethorpe Avenue, on the

east by State Route 55 (the Costa Mesa Freeway), on the south by State Route 22 (the Garden

Grove Freeway) and on the east by State Route 39 (Beach Boulevard). The area is bisected

diagonally from the northwest comer to the southeast comer by Interstate 5 (the Santa Ana

Freeway) and the area also includes State Route 91 (the Riverside Freeway) and State Route 57

(the Orange Freeway). Thus, a total of five freeways are contained within the study area.

In addition to Orangethorpe Avenue, the network contains seven major east-west arterials.

In addition to Beach Boulevard, the network contains eight major north-south arterials. Two of

the seventeen arterials included in the study area network are county-designated “super streets”,

or high-flow arterials (Beach Boulevard and Katella Avenue).

Anaheim Stadium is located in the southeast quadrant of the study area, within one mile of

both I-5 and SR-57. Large scale special-event traffic egresses from three stadium parking lots

following a variety of special-events including California Angels baseball games and Los Angeles

Rams football games.

4.3 Network Coding

The coded network consists of 440 nodes, 931 links and 41 zones. Of these 41 zones, 15 are

internal surface zones, 19 are external surface zones, 7 are external freeway zones, and 3 are the

stadium parking lots which generate the special-event traffic.

Internal surface zones represent surface area within the study area. External surface zones

represent points where vehicles enter and exit the study area on arterials and external freeway

zones represent points where vehicles enter and exit the study area on freeways. The vehicles

with origins in internal surface zones are generated on all the arterial links which are included

n that zone. The vehicles with origins in external surface and freeway zones are generated on
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the external connector links designated for each external zone.

The abstracted, coded network is illustrated in Figure 4.1; this figure also displays the

centroids which are affiliated with each zone. The forty-one centroids are numbered from 2 to

44 (there are no centroids numbered 1, 14, or 18), and each centroid corresponds to a

DYNASMART zone which are numbered from 902 to 944 (e.g., Centroid 5 corresponds to

DYNASMART Zone 905).

The 3 stadium zones (centroids 42,43, and 44 indicated on Figure 4.1) are not destinations

for any traffic, as we are modelling the traffic exiting from the stadium after the special event;

thus, there are only 38 destinations in the network.

4.4 Establishment of Base-Case Scenario

This section discusses the establishment of a base-case scenario against which alternative

scenarios can be compared. The base-case scenario assumes there is no implementation of IVNS,

and no special-event traffic.

The simulation results (of significance to this set of experiments) reported by DYNASMART

presently consist of average travel times (for equipped vehicles, for unequipped vehicles, and for

all vehicles), the external path sufficiency statistics, and the link densities during each time step

for a set of pre-designated links.

In the DYNASMART simulation, the statistics are collected for vehicles that entered the

network after 15 minutes (the first 15 minutes is a warm-up period) till 60 minutes, and the

simulation is continued until all these vehicles leave the network. In the base-case simulation, the

last tagged vehicle (i.e., those vehicles for which statistics are collected) reaches its destination

during the eighty-sixth minute of the simulation.

The average travel time for all vehicles of 12.28 minutes is judged reasonable. This figure

represents average trip time within, the study area; i.e., for the external O-D trips that pass

through the network, the travel time is only the time period that they take to travel through this

network. During the period of interest (i.e., between the fifteenth and sixtieth minute of the

simulation) 47,481 vehicles enter the network. This is a base-case scenario which assumes no

IVNS implementation, thus, all of the vehicles are unequipped and search for external equilibrium

paths as discussed in Section 3.6.
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Figure 4.1 Anaheim Area Network
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The external path sufficiency statistics indicate that although 20,133 vehicles (42 percent) did

not receive an external equilibrium path at their time of generation, no vehicle was unable to find

an external path at any time during the simulation. The average distance traveled by one of these

vehicles before being assigned to an external path is 0.083 miles. Therefore, the external paths

are sufficient to assign all of the unequipped vehicles to at least one path.

A realistic simulation of traffic during a peak period would produce moderate levels of

congestion on links in the southeast quadrant of the network, and low congestion on links outside

this area. The southeast quadrant tends to be moderately congested, even during this post PM-

peak time period, due to several factors including the confluence of three major freeways, high-

density commercial and residential land uses, and the presence of the Disneyland theme park.

In this model, the theme park is not treated as a generator of special-event traffic, but as a

generator of heavy background traffic.

Density profiles plot the link density (measured as a fraction of the jam density of 160

vehicles per lane per mile) as a function of simulation time. To demonstrate that the background-

traffic trip table adequately reproduces this pattern of traffic congestion, density profiles have

been provided for four representative links. The profiles are presented on two graphs, with each

graph containing the profiles of one link from the southeast quadrant (designated Link 1) and one

link from outside this area (designated Link 2).

Figure 4.2 presents the density profiles of two freeway links. Link 1 is northbound I-5 (the

Santa Ana Freeway) south of the Ball Street exit; this is one of the most congested links in the

base-case network. Link 2 is eastbound SR-22 (the Garden Grove Freeway) west of Magnolia

Avenue. As expected, the I-5 link is moderately congested, peaking at 80 percent of jam density

at 30 minutes of simulation time, and remaining above 50 percent until after the sixtieth minute.

The density of the SR-22 link, which should not be congested, remains between 10 percent and

20 percent of jam density during the first eighty minutes.

Figure 4.3 presents the density profiles of two arterial links. Link 1 is westbound Ball Road

east of West Street. Link 2 is eastbound Lincoln Avenue west of Magnolia Avenue. As can

be seen on the density profiles, the Ball Road link is highly congested (greater then 90 percent

of jam density) between fifteen and thirty minutes of the simulation period, before clearing; the

density than oscillates between 25 and 70 percent for the remainder of the simulation. The
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Lincoln Avenue link density peaks at 28 percent at thirty minutes, then oscillates between 15 and

20 percent until the sixty-fifth minute, when the density drops below 10 percent.

These density profiles establish the adequacy of this base-case scenario for the purposes of

the research here. The next section discusses the effects of enroute diversion and IVNS

implementation this base-case scenario. Results of ATIS under special-events congestion are

discussed in the next chapter.

Average travel time is generally considered to be the most important measure of overall

traffic system performance, and the reduction of this value is considered to be the greatest benefit

than can occur from installation and deployment of IVNS. Therefore, the value of the average

travel time will be the main focus of analysis.

4.5 Benefits of Svstem Implementation

This section will provide an analysis of the effects of IVNS deployment on traffic system

performance for the case of no special-event (i.e., background traffic only). Although the results

presented at this point in the project are quite preliminary, this will illustrate the analysis and

conclusions which are possible from this modeling process.

Thirty simulations are performed for this analysis. All the simulations utilize the background

traffic trip table; the variable factors between simulations were the market penetration of IVNS,

and the propensity of drivers to switch routes.

Six different levels of market penetration of IVNS are simulated. These six levels are: ten

percent, twenty-five percent, fifty percent, seventy-five percent, ninety percent, and one-hundred

percent of vehicles equipped with IVNS.

For each level of market penetration, five levels of driver propensity to switch are simulated:

mean indifference bandwidth values of 0.0, 0.1, 0.2, 0.3 and 0.5 (indifference bands have a

triangular distribution over the driver population with a range between 0.75 and 1.25 of these

means). The first level, referred to as myopic switching, indicates a maximum propensity to

switch; drivers will switch to any shorter path, regardless of minimal benefits. The fourth level

indicates a maximum aversion to switch; drivers, on average, will only switch to a route which

is no more than one-half the travel time of their current route. It is quite reasonable to assume

that real-world driver behavior will fall between these two extremes of inclination to switch; thus
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they are the chosen boundaries for the simulation parameter of driver behavior.

The results of these simulations are presented on three graphs and one table. Figures 4.4,4.5

and 4.6 present graphs of the value of the average travel time of the equipped vehicles,

unequipped vehicles, and all vehicles, respectively, as a function of IVNS market penetration.

Each graph contains five separate lines, each one connecting the simulation results for the same

indifference bandwidth. By definition, there are no equipped vehicles at zero percent market

penetration, and no unequipped vehicles at one-hundred percent market penetration.

Table 4.1 contains one row for each behavioral scenario. The first column identifies the

mean indifference bandwidth of that scenario. The second column contains the maximum

benefits achievable from IVNS (measured as the percentage reduction in the base travel time for

all vehicles), and the third column contains the optimal level of market penetration. Finally, the

fourth column contains the percentage of the maximum achievable benefits which are already

achieved at a market penetration of fifty percent; this level of market penetration can be

identified as a point of diminishing returns from the graph in Figure 4.6.

The graph in Figure 4.4 indicates that the first vehicles which install IVNS achieve significant

savings (10 percent reduction of travel time in the myopic case), and benefits continue to increase

slightly as market penetration increases to fifty percent. Beyond this point, the benefits to the

equipped vehicles actually decrease for scenarios with high driver propensity to switch (i.e.,

indifference bandwidth 0.2 or less) and the benefits level off in the scenarios with low driver

propensity to switch.

The increase in benefits to equipped vehicles as market penetration increases to fifty percent

is counter-intuitive and can be explained as the result of the background traffic trip table

producing relatively low levels of congestion. In such a case, the alternative routes to which the

equipped drivers switch retain high speeds, while speeds increase on the equilibrium routes as

some of the equipped drivers switch off the routes. Because many of the equipped vehicles do

not switch but remain on the equilibrium routes, average total travel time for the equipped

vehicles will decrease. When market penetration reaches fifty percent, enough equipped

vehicles are switching to the alternative routes that the benefits they receive no longer increase.

In the scenarios where drivers have high propensity to switch, enough drivers will switch to

congest the alternative routes. In the scenarios where drivers have less propensity to switch, not
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enough drivers switch to the alternative routes to congest them; thus the benefits level off instead

of decrease. In more congested networks, it would be expected that the benefits to equipped

vehicles would decrease as the percentage of equipped vehicles increase over the entire range of

market penetration.

Figure 4.4 also indicates that a greater propensity to switch almost uniformly results in greater

benefits to the equipped vehicles. The value of the indifference bandwidth can cause a

significant difference in the benefits which accrue to equipped vehicles; at a market penetration

of fifty percent, the benefits which accrue to equipped vehicle in case of myopic switching (11

percent) are more than twice that which accrue in the case of extreme aversion to switching (5.2

percent).

Figure 4.5 indicates that unequipped vehicle always achieve greater benefits as the market

penetration increases and more equipped vehicles switch off the equilibrium routes on which the

unequipped vehicles travel, thus decreasing congestion on the equilibrium routes. As expected,

the benefits to the unequipped vehicle nearly always remain below those to the equipped vehicles,

with the maximum occurring at market penetrations of ninety percent. Maximum benefits of 7.7

percent reduction in average travel time for unequipped vehicles are achievable in the myopic

case; this decreases to 6.2 percent in the case of extreme aversion to switching.

Table 4.1
Benefits of IVNS for Background Traffic

Indifference Maximum
Bandwidth Benefits

0.3 -1 7.3 percent

0.5 I 5.7 percent

Optimal Market
Penetration

Percent of Maximum
Benefits at Fifty

Percent Market Pen.

90 percent I 93.0 percent

100 percent -I- ~~~89.9 percent

90 percent I 86.7 percent

90 uercent I 82.1 uercent

90 percent I 80.2 percent
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Different levels of driver propensity to switch results in less variation in the benefits which

accrue to the unequipped vehicles than to the equipped vehicles; this can be graphically observed

by the closer spacing of the lines in Figure 4.5 than in Figure 4.4. This result is expected

because the benefits to the unequipped vehicles are an indirect effect of actions taken by the

equipped drivers; thus variations in the behavior of the equipped drivers will have less of an

effect on the unequipped drivers than the equipped drivers.

Figure 4.6 indicates that benefits accrue to all vehicles as market penetration increases.

Again, this graph shows that greater propensity to divert is virtually always better than lower

propensity to divert. This is a different result than some of the earlier research results

(Mahmassani and Jayalaishnan, 1991), which showed that myopic switching may not yield the

best benefits in corridors with limited route switch alternatives. Maximum potential benefits vary

from a high of 9.3 percent in the case of myopic switching, to 8.5 percent in the more realistic

case where drivers require a 20 percent travel time reduction to induce a switch, to a low of 5.7

percent in the case of extreme aversion to switching.

+ I.E. = 0.0 -a- I.B. =  0 . 1  + I.B. = 0.2

ii
-B- I.B.  = 0 . 3  * IA. = 0 . 5

0.85-C
0

7
0.4 0.6 0.8 1

nARKET PENETRATION

Figure 4.4 Average Travel Times for Vehicles with Information
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Figure 4.6 Average Travel Times for All the Vehicles
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Higher benefits may accrue to those vehicles traveling over the most congested sections of

the freeway. One of the outputs from DYNASMART is a list of the one-hundred most congested

O-D pairs in each simulation (congestion being defined as the ratio of travel time to distance

traveled). In two examples (O-D pairs 912-911 and 913-911) the average travel time for all

vehicles traveling between these two zones decreased approximately 20 percent under a market

penetration level of 25 percent.

Under no behavioral or market penetration scenario does the system ever perform worse with

information than without information. System performance does appear to deteriorate slightly

as market penetration increases from ninety percent to one-hundred percent.

This graph also indicates that noticeable benefits (i.e., greater than 2 percent) are achieved

by a market penetration level of 10 percent, and a market penetration level of fifty percent

appears to be a point of diminishing returns (i.e., a point beyond which further benefits are

marginal) in every behavioral scenario. As Table 6.1 illustrates, at this level of market

penetration, at least 80 percent of the maximum benefits have been achieved. For scenarios with

high levels of propensity to switch, ninety percent of the savings have been achieved by this

level. Depending on the cost function of IVNS systems, market penetration levels of fifty

percent may be optimal levels when considering cost-benefit analysis.

In conclusion, this simulation framework has indicated that IVNS can produce significant

benefits to drivers even in the case of the moderate to low congestion resulting from daily

recurring background traffic. Maximum benefits of between 5 and 10 percent reduction in total

travel time appear to be feasible, with a large proportion of these benefits realized by a market

penetration level of fifty percent.



63

Chapter 5

SIMULATION OF SPECIAL EVENTS (ANAHEIM STADIUM)

5.1 Introduction

This chapter discusses the DYNASMART simulations which were performed with the special-

event trip tables. Special-event scenarios of three different magnitudes are analyzed. System

performance statistics are disaggregated by vehicle status as special-event attendee or non-

attendee in addition to status as equipped or unequipped. Analysis will be presented as to the

potential benefits which may accrue to all classes of vehicles as a result of the implementation

of IVNS during special-event congestion.

There are two additional sections to this chapter. Section 5.2 will discuss the implementation

of the special-event scenario simulation. Section 5.3 will analyze the results of the various

simulations.

5.2 Special-Event Simulation

DYNASMART simulations are performed with three special-event trip tables. These trip

tables are produced using the COMEST dynamic trip table estimati& program, based on

observed counts on some network links, as discussed in Section 4.1. Separate tables are

produced to simulate scenarios of five thousand, ten thousand and fifteen thousand vehicles

egressing from the special-event traffic generation zones, over a 35 minute period (simulating the

vehicles leaving the stadium at the end of, say, a baseball game).

Unequipped vehicles which egress from the three designated special-event origins are

assigned to the post warm-up period shortest paths instead of the externally-provided equilibrium

paths. This reflects the assumption that special-event attendees do not attend these events very

often (by definition of special-event), and thus are not familiar with the recurring traffic patterns.

In addition, the equilibrium routes provided for the initial route assignment of unequipped

non-attendee vehicles are not updated, the same equilibrium routes provided in the no-event

scenario are provided in the special-event scenarios. This again reflects the assumption that

special-events are, by definition, scenarios under which drivers usually have little prior
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knowledge of associated traffic patterns. Therefore, drivers with no real-time information will

remain on the equilibrium paths of the no-event scenario.

Benefits which accrue to event-attendees and non-attendees are analyzed separately. This is

to avoid combining the average travel times of attendees, who expect significant congestion and

delays, and other drivers, who do not expect such conditions.

For each special-event scenario, nine simulations are performed. One simulation assumes no

market penetration of IVNS, thus establishing a pre-IVNS deployment level of performance. The

remaining eight simulations assume market penetration levels of ten percent, twenty-five percent,

fifty percent, and seventy-five percent for indifference bandwidth levels of both 0.0 and 0.2.

5.3 Simulation Results

This section discusses the results of the simulations described in the previous section. The

results are presented in two tables (Tables 5.1 and 5.2) and eighteen graphs (Figures 5.1-5.18).

Table 5.1 presents the base travel times of the attendees and non-attendees for each of the three

special-event scenarios. The occurrence of a special-event causes the average travel time of the

background traffic (non-attendees) to rise from the 12.28 minutes of the no-event scenario to

12.74 minutes (an increase of 3.7 percent), 13.18 minutes (7.3 percent) and 13.27 minutes (8.1

percent) in the 5,000, 10,000 and 15,000 vehicle special-event scenarios respectively.

In the 5,000 vehicle special-event scenario, the base travel time of attendees is lower than the

base travel time of non-attendees. This is possibly due to the location of the stadium. As

discussed in Chapter Four, vehicles egressing the special-event are assigned to the destination

zones based on the distribution of the background traffic to the destination zones. However, the

location of the stadium near the center of the network may reduce the average travel time to

many of the destination zones, thus resulting in the lower base travel time.

In the 15,000 vehicle special-event scenario, not all of the tagged vehicles reach their

destination by the end of the simulation of the base case; 2725 tagged vehicles are still in the

network at the end of ninety minutes and thus do not have their individual travel times included

in the average travel times listed in Table 5.1. Only vehicles entering the network between the

fifteenth and sixtieth minutes of simulation are tagged; thus the uncounted tagged vehicles must

all have individual travel times of at least thirty minutes. Since the average travel times recorded
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in the table for this scenario are lower than thirty minutes (17.15 minutes for attendees, 13.27

for non-attendees) this clearly biases the base case statistics towards lower travel times, and

therefore the potential benefits of IVNS may be underestimated in this special-event scenario.

This could be corrected in the future by extending the simulation time for several minutes until

all of the tagged vehicles can reach their destinations.

Table 5.2 presents the maximum estimated benefits to attendee and non-attendee vehicles in

each of the three special-event scenarios. The benefits are for all vehicles (i.e., both equipped

and unequipped vehicles). Since the graphs for total vehicles indicate no points of negative

returns, all of these maximum benefits occur at seventy-five percent market penetration, and it

is reasonable to assume slightly greater benefits may occur at higher market penetrations.

However, the existence of the points of diminishing returns does not become clear from this

table; in fact virtually all of the benefits listed in Table 5.2 are achieved by market penetrations

between 25 and 50 percent.

Each of the three special-event scenarios requires six graphs; average travel time as a

function of IVNS market penetration for equipped, unequipped, and all vehicles, for both event

attendees and non-attendees. These graphs are presented in Figures 5.1 to 5.18.

The horizontal axis of each graph is the market penetration of the IVNS, measured as the

percentage of vehicles with access to information. The vertical axis of the graph is the average

travel time for that class of vehicles, measured as the percentage of the base travel times (i.e.,

the average travel time with no IVNS deployment) which are presented in Table 5.2.

Each graph contains two lines; each line connects the results of the simulations of each

indifference bandwidth. The indifference bandwidth (LB.) associated with each line is identified

in the legend box at the top of each graph.

Figures 5.1 to 5.6 illustrate the results of the 5,000 vehicle special-event; Figures 5.1 to 5.3

illustrate the average travel times for attendees, and Figures 5.4 to 5.6 illustrate the average travel

time for non-attendees. In a similar manner, Figures 5.7 to 5.12 illustrate the results of the

10,000 vehicle special-event, and Figures 5.13 to 5.18 illustrate the results of the 15,000 vehicle

special-event.
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Table 5.1
Base Travel Times

Special-Event  Magnitude
(Vehicles)

VCQ

~,ooO

Vehicle Class

Attendees

Non-Attendees

Base Travel Time
(Minutes)

11.62

12.74

10,000 Attendees I 15.24

10,000 I Non-Attendees I 13.18

15,000

15,000

Attendees 17.15

Non-Attendees 13.27

Table 5.2
Potential Benefits of IVNS

Special-Event
Magnitude
(Vehicles)

5,ooo

5,ooO

10,000

10,000

15,000

15,000

Vehicle
Class

Attendees

Non-Attendees

Attendees

Non-Attendees

Attendees

Non-Attendees

Average Maximum
Indifference Travel  Time
Bandwidth Reduction

0.0 17.0 percent

0.2 14.6 percent

0.0 11.6 percent

0.2 10.4 percent

0.0 33.3 percent

0.2 30.0 percent

0.0 12.9 percent

0.2 11.5 percent

0.0 34.7 percent

0.2 27.1 percent

0.0 12.7 percent

0.2 10.5 percent
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The results presented in the preceding tables and graphs suggest that benefits up to even

thirty-five percent reduction in travel time are achievable for special-event attendees from the

implementation of IVNS. Maximum benefits for non-attendees remain consistent at between ten

and thirteen percent; this is expected considering the relatively large size of the non-attendee

population in comparison to the attendee population.

For special-events with 5,000 vehicles, IVNS deployment can result in travel time savings

for attendees of up to 17 percent in the behavioral scenario of myopic switching, and 14.6

percent in the more realistic behavioral scenario where drivers require 20 percent savings to

switch routes.

For special-events with 10,000 vehicles, the benefits to attendees increase dramatically to 33.3

percent and 30 percent, for the same two behavioral scenarios. This dramatic rise in the

achievable benefits is a result of the high base travel time caused by attendees (none of whom

have information in the base case) congesting a few paths near the stadium while alternative

paths are relatively unused until IVNS is deployed.

The benefits do not significantly increase for special-events with 15,000 vehicles; this is

probably a result of the base travel time being biased to the lower side as explained above.

Although increases in market penetration appear to never have a negative effect on total

average travel time, the graphs indicate the existence of points of diminishing returns. These

points exist because in most of the scenarios, the benefits which accrue to equipped vehicles

increase until market penetrations of twenty-five percent, at which point benefits either level off

or diminish as the alternate routes used by the equipped vehicles become congested. Although

unequipped vehicles always obtain greater benefits as market penetration increases and the

equilibrium routes on which the unequipped vehicles travel become less congested because the

equipped vehicles are switching to alternative routes, the unequipped vehicles also become a

smaller percentage of the vehicle population.

The point of diminishing returns seems to be consistent for both attendees and non-attendees

and for both levels of indifference; thus the level of market penetration at which diminishing

returns begin is sensitive only to special-event magnitude. For special-events with 5,000 vehicles,

the point of diminishing returns is at twenty-five percent market penetration. For special-events
of 10,000 and 15,000 vehicles, the point of diminishing returns is at market penetration of fifty
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percent.

In no case does the provision of information cause total average travel time to be higher than

the base case. Also, the case of myopic switching is virtually uniformly more beneficial than the

case of 20 percent indifference, indicating that progress towards a prescriptive system (as opposed

to a descriptive system) may be desirable.

In conclusion, these simulations appear to indicate that IVNS would be of great benefit to

drivers egressing from a special-event, with benefits to attendees approaching a thirty percent

reduction in travel time for events with attendance greater than ten thousand vehicles. These

benefits appear to be much greater than the 5 to 15 percent benefits reported in the literature for

normal network traffic scenarios and thus underscore the increased usefulness of IVNS for

congestion relief under special-events conditions. However, the benefits which accrue to the non-

attendee vehicles traveling in the vicinity of the stadium appear to be minor.
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Chapter 6

CONCLUSIONS

6.1 Summary of Research Results

Research in this project incorporated more extensive modelling of network node delays into

an earlier-developed simulation framework for ATIS and ATMS in urban traffic networks. The

model is called DYNASMART and its enhancements were accomplished in conjunction with

related research at UC1 and at the University of Texas at Austin (where the original framework

was developed by this proposer). The simulation framework already is capable of being used for

large and realistic city networks of the kind that will eventually be studied by the PATH project.

The simulation system is able to consider different configurations of information supply

(compulsory/non-compulsory guidance, infrequent updating of path trip-times etc.), and is flexible

enough so that different traffic flow and behavioral models of varying complexities can be

incorporated to study various levels of fidelity and complexity.

DYNASMART has so far been implemented on two different computer platforms: the CRAY

YMP supercomputer and the SUN SPARC workstation. Simulation of up to 75000 vehicles in

networks of up to 2000 links with 10 paths from each node to each destination centroid can be

achieved on these platforms faster than real-time. As the code is written in standard portable

FORTRAN 77, it is expected to run on other platforms such as the IBM PC as well, with the size

of the problem determined by the available RAM storage. The program capabilities include:

1) Macroscopic modelling of traffic flow dynamics such as congestion formation and shock

wave propagation. Tracking of locations of individual drivers.

2) Modelling of different traffic control strategies (freeways, surface streets, signalized

intersections, ramp entry/exit etc)

3) Modelling of prescriptive/compulsory guidance as well as non-prescriptive guidance with trip
time information on alternative routes.

4) Modelling of various aspects of the controller such as infrequent updates of the network route

information database.
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5) Modelling of individual drivers’ response to information in the case of descriptive guidance

based on a set of paths rather than a single shortest path. Random assignment of driver

behavioral characteristics. Flexibility to incorporate alternative behavioral rules.

6) Modelling of capacity-reducing incidents at any time, anywhere in the network.

7) Modelling of cases with only a fraction of the vehicles equipped for information.

8) Capability to carry out simulations based on externally specified dynamic equilibrium paths

for drivers not equipped to receive information.

9) Several levels of output statistics for the system, for individual drivers as well as for groups

of drivers (equipped drivers, unequipped drivers, drivers on certain O-D pairs etc). Statistics

include average trip times, distances, average speeds and a variety of route switching

statistics.

There are also other enhancements to DYNASMART that are underway now. Modelling of

dynamic route trip times by the TOC controller is being incorporated. Using this program as a

dynamic performance predictor in an optimal assignment framework is also under study (by Dr.

Hani Mahmassani at the University of Texas, with funding from FHWA).

The results from the first year of research on the PATH project @IOU-39) at UC1 on

DYNASMART are very encouraging. The network of the prototype urban area (the Anaheim

IVHS test-bed network) was coded and a dynamic O-D matrix was prepared. The model was

used for simulating the effect of information supply in reducing traffic congestion caused by

special events (from the Anaheim stadium). Some results of this research can be found in

Jayakrishnan et al. (1993), Cohen (1992) and McNally et al. (1993). Some results on using

DYNASMART for the simulation of the combined effect of various network control options and

information supply strategies can be found in Mahmassani et al. (1992). Even though this was

not specifically laid out in the proposal for MOU-39, attempts were made at porting the program

to a workstation environment from the earlier supercomputer mainframe environment. This

produced extremely encouraging results. The experience so far is that workstations are not

substantially slower than supercomputers. The program was benchmarked on various workstations

including HP9000/7  10, Sun SPARC-II and DEC5013.  All the workstations performed simulations

in at most 3 times the computation time of a CRAY YMP-8/64 supercomputer, and at most 1.5
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times the computation time on a Convex C-240 mini-supercomputer. The simulations were

performed on a large urban network (1600 links), and the workstations performed the simulations

faster than real-time. These are significant results, and point to the viability of the framework for

practical application. In fact all the development work on DYNASMART now is on the

workstation environment.

This project has demonstrated the basic feasibility of analyzing the potential benefits of IVNS

deployment through the technique of computer simulation. Realistic simulations have been

performed utilizing a network and demand level based on the Anaheim testbed.  The CONTRAM

equilibrium assignment model has been successfully utilized for the provision of dynamic

equilibrium paths to DYNASMART for the initial route assignment of unequipped vehicles.

The modeling of the specific case of traffic egress from a special-event was performed in this

project to demonstrate the capability of DYNASMART to be modified for the analysis of various

specific scenarios under which deployment of IVHS may be most feasible and beneficial.

Special-event attendees and non-attendees were initially assigned to the network according to

different assumptions, and benefits for each class of vehicle were presented separately.

Results of simulations of the background traffic suggest achievable system-wide benefits of

up to ten percent reduction in average travel time for all vehicles, with benefits for both equipped

and unequipped vehicles increasing as market penetration increases, until market penetration

reaches fifty percent, at which point decreasing returns to scale begin. Possibly greater benefits

may occur under special-event scenarios of large magnitude (i.e., attendance greater then ten-

thousand vehicles); drivers egressing from special-events of large magnitudes can expect travel

time reductions of up to thirty percent.

Under no condition of market penetration, driver behavior, or special-event congestion, does

the provision of information result in system performance worse than the base-case (i.e., no

information) scenario.

The driver-behavior scenario of myopic switching, which assumes a very high propensity to

switch routes, appears to offer the greatest benefits at low levels of market penetrations. This

indicates that system operators may wish to implement a strategy of misrepresenting travel times

in order to induce drivers to switch in cases where drivers demonstrate high aversion to switch;

it also indicates the desirability of prescriptive systems which compel the driver to follow shortest
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paths.

6.2 Directions for Future Research

It is possible that several refinements will be made to this model before it will be considered

a highly accurate predictor of the behavior of traffic flow under information. Progress towards

this goal will continue as part of the Caltrans ATMS research testbed project at UCI. Additional

research is underway on incorporating graphics front-end to make DYNASMART more user-

friendly (PATH project MOU-84, 1992-93). This includes on-screen network editors as well as

run-time network displays.

The driver behavior component of DYNASMART will be modified to consider more complex

paradigms for route choice decision-making. As accurately calibrated models of driver behavior

become available, it may become desirable for DYNASMART to generate socioeconomic

variables from a specified population distribution, which would be associated with each vehicle

(e.g., drivers’ gender, age category, and income level). The consideration of factors other than

travel time may also be added. The results presented by Adler et al. (1992) will be particularly

useful in this aspect of the refinement of DYNASMART.

It is also necessary to incorporate a mechanism for the modeling of the enroute diversion of

unequipped drivers due to the self-observation of congestion.

Furthermore, the traffic simulation components of DYNASMART require calibration and

validation through extensive comparison with real-world traffic data. This will require the

production of very accurate dynamic trip tables, finely detailed microscopic coding of the testbed

network, and extensive gathering of time-varying traffic counts, particularly freeway counts.

Progress has been made concurrently with this project at the University of Texas at Austin in

incorporating the modeling of intersection signalization to DYNASMART (Mahmassani et al.,

1992).

Additional research may include the investigation of long-term changes in driver behavior as

IVNS deployment reduces expected travel time. This would include changes in departure time

and preplanned routes resulting in establishment of a long-term equilibrium.



79

REFERENCES

Arnott, R., de Palma, A. and Lindsey, R. (1991). “Does Providing Information to Drivers Reduce
Traffic Congestion ?,‘I Transportation Research, Vol. 25B, No. 5, 1991.

Chang, G.L., HS. Mahmassani and R. Herman, “A Macroparticle Traffic Simulation Model to
Investigate Peak-Period Commuter Decision Dynamics”, Transoortation  Research Record
1005, pp. 107-120, 1985.

Chang, G. L., Mahmassani, H. S., Engquist, M. L., “System Optimal Trip Scheduling and
Routing in Commuting Networks”, Transportation Research Record 1251, pp.54-65, 1988.

Drew, D.R., Traffic Flow Theorv and Control, McGraw-Hill Book Co., NY, 1968.

Fox, B.L., “Data Structure and Computer Science Techniques in Operations Research”, Operation
Research, Vo1.26, No.5, pp. 686-717, 1978.

Federal Highway Administration, Traffic Network Analysis with NETSIM - A User Guide,
FHWA-IP-80-3, FHWA, Washington D.C., 1980.

Gerlough, D.L. and M.J. Huber, “Traffic Flow Theory”, Transportation Research Board, Special
Report 165, Washington D.C., 1971.

Highwav Capacity Manual, Transportation Research Board, Report 209, Washington D-C.,  1985.

Jayakrishnan, R., “In-vehicle Information Systems for Network Traffic Control: A Simulation
Framework to Study Alternative Guidance Strategies”, Dissertation, University of Texas at
Austin, TX, 1992.

Jayakrishnan, R., Mahmassani, H. S., and Rathi, U., “A User-friendly Simulation Model for
Traffic Networks with ATIS/ATMS”, Proceedings of the 5th International ASCE Conference
on Computer Applications in Civil and Building Engineering, Anaheim, California, 1993.

Leboeuf J.N., T. Tajima and J.M. Dawson, “A Magnetohydrodynarnic Particle Code for Fluid
Simulation of Plasmas”, Journal of Comnarative Phvsics, Vo1.31,3,  pp.379-408, 1979.

Lee, C.E., T.W.Rioux, V.S. Savur and C.R. Copeland, “The TEXAS Model for Intersection
Traffic-Development”, Research Report No. 184-1, Center for Transportation Research,
University of Texas, Austin, TX, 1977.

Leonard, P.R., P. Grower and N.B. Taylor, “CONTRAM: Structure of the Model”, TRRL
Research Report 178, United Kingdom, 1989.



80

Mahmassani, H. S., and Chang, G. L., “Experiments with Departure Time Choice Dynamics of
Urban Commuters”, Transportation Research, Vol. 20B, pp. 297-320., 1986.

Mahmassani, H. S., and R. Herman, “Dynamic User Equilibrium Departure Times and Route
Choice in Idealized Traffic Arterials”, Transnortation Science 18, pp. 362-384, 1984.

Mahmassani, H.S. and R. Jayakrishnan, “System Performance and User Response under Real-
Time Information in a Congested Traffic Corridor”, Transportation Research A, Vol. 25A,
No. 5, pp. 293-307.

Mahmassani, H.S. and D.G. Stephan, “Experimental Investigation of Route and Departure Time
Dynamics of Urban Commuters”, Transportation Research Record 1203, pp. 69-84, 1988.

May, A.D., Traffic Flow Fundamentals, Prentice-Hall, NJ, 1990.

McNally, M., Jayakrishnan,  R., and Cohen, M. I., “Simulation of ATIS Strategies to Mitigate
Special Events Congestion”, Proceedings of the 5th International ASCE Conference on Civil
and Building Engineering, Anaheim, California, 1993.

Merchant, D. K., and Nemhauser, G. L., “A Model and an Algorithm for the Dynamic
Assignment Problem”, Transportation Science, Vol. 12, pp. 183-199.

Minieka, E., Optimization Algorithms for Networks and Grauhs,  Dekker Inc., New York, 1978.

Ran, B., Boyce, D. E. and LeBlanc L. J., “A New Class of Instantaneous Dynamic User-optimal
Traffic Assignment Models”, Operations Research, Vol. 41, No. 1, 1993.

Sheffi, Y., Urban Transportation Networks:Eouilibrium  Analysis with Mathematical Programming
Methods, Prentice-Hall, NJ, 399 pages, 1985.

Sheffi, Y., Mahmassani, H. S., and Powell, W. B., “A Transportation Network Evacuation
Model”, Transportation Research, Vol. 16A, pp. 209-218., 1981.

Tarjan, R. E., Data Structures and Network Algorithms, Monograph, Society for
Industrial and Applied Mathematics, Philadelphia, PA, 1983.

The TRANSYT-7F User’s Manual, Transportation Research Center, University of Florida,
Gainesville, FL, 1987.

The Application of Traffic Simulation Models, Transportation Research Board, Special Report
194, TRB, Washington D.C., 114 pages, 1981.

Van Aerde, M. and Yagar, S., “Dynamic Integrated Freeway/Traffic Signal Networks:



81

Problems and Proposed Solutions,” Transportation Research, Vol. 22A, No. 6, pp. 435-443,
1988a.

Van Aerde, M. and Yagar, S., “Dynamic Integrated Freeway/Traffic Signal Networks: A Routing-
based Modelling Approach,” Transportation Research, Vol. 22A, No. 6, pp. 445-453, 1988b.

Van Vliet, D. “Improved Shortest Path Algorithms for Transport Networks,” Transportation
Research, Vol. 12, pp. 7-20, 1978.

Van Vuren, T. and Watling, D., “Multiple User Class Assignment Model for Route Guidance,”
paper presented at the annual meeting of the Transportation Research Board, Washington
D.C., January 1991.

Von Tomkewitsch, R., “ALI-SCOUT: A Universal Guidance and Information System for Road
Traffic,” 6th IEEE International Conference on Automotive Electronics, London, UK,
October 1987.

Wong, S.Y., “TRAF-NETSIM: How It Works, What It Does”, ITE Journal, April 1990, pp.22-27,
1990.

Yager, S., “Emulation of Dynamic Equilibrium in Traffic Networks”, in Florian, M. (ed), Traffic
Equilibrium Methods, Springer-Verlag, pp. 240-264, 1964.



82

Appendix A. DYNASMART INPUT FILE GUIDE

To aid the user in the use of DYNASMART, this section of the report describes the necessary
input file formats to run the program. There are seven input files required by the program and
they are identified by FORTRAN unit numbers 41,42,43,44,45,47 and 48. Each input file
is described in detail hereafter. The user may wish to implement the units with appropriate file
names if needed (using ‘OPEN’ statements, for instance). This is only for the current version of
Dynasmart. The future versions of the program may include a graphic front-end which will have
capabilities to automatically generate the data from screen inputs (currently under development
in the PATH project MOU-84).

We also provide the names of the variables in the program

Unit = 41: NETWORK DATA

Includes characteristics of the network to be analyzed.

FORMAT(1015)  nzones,nnodes,narcs,n,ndests,kay (one line)
nzones = number of zones
nnodes = number of nodes
narcs = number of arcs
n = number of links (link can have 1 or more arcs)
ndests = number of dests

kaY = number of shortest paths

FORMAT( 1015) ipz(i)
ipz(i) = pseudo-zone number for i-th zone (i =l,nzones)

FORMAT( 1015) idz(i)
idz(i) = destination zone in i-th zone

FORMAT(215) il,i2 (one line per node)
il = node number
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i2 = zone in which node il is located

FORMAT(315,212,F6.3,F5.2,12)  iunod(i), idnod( i3, i4, nlanes(i), vmax(i), sat(i), linkjden(i)
(one line per link)

iunode(i) = upstream node of link i
idnode = downstream node of link i
i3 = link length
i4 = volume source,

O=no volume
l=from zone of iudnode(i)
2=from zone of idnode

nlanes(i) = number of lanes of link i
vmax(i) = free-flow speed of link i
sat(i) = saturation volume (?) of link i

Unit = 42 : ZONAL DEMAND DATA

The zonal trip interchange data of network area (spatial and temporal).

FORMAT(I5) nints (one line)
nints = number of time intervals

FORMAT(lOF6.1) begint(i) (one line)
begint(i) = start time of interval i (i=l,nints)

FORMAT(6FlO. 1) zdem(iz,izz,int)
zdem(iz,izz,int) = trips from zone iz to zone izz for time interval int

Unit = 43 : GLOBAL SIMULATION VARIABLES

Global specifications of the simulation run.
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FORMAT(3F5.2,F5.2,110,12) fracinf, ribfa, bound, mumber, iseed, ipinit
(one line)

fracinfo = fraction of users with information
ribfa = average time-indifference-band for route change as a fraction of remaining trip

time. It has a triangular distribution over this mean value and so is different
for different drivers.

bound = lower limit of indifference band, which is min trip time advantage needed for
a route change.

mumber = initial random number
iseed = random number seed
ipinit = switch to determine whether users without information will pick the best stored

route or randomly pick from the stored k-routes.

FORMAT(IS,F5.2)  ntto, tii (one line)
ntto = total time of simulation, minutes
tii = time interval increment

FORMAT(I4) index-sig (one line)
index-sig = index for signal control

FORMAT(I4)  left-factor (one line)
left-factor = index for left capacity

FORMAT(I4)  left-option (one line)
left-option = option for left turn test

FORMAT(I4) bay-option (one line)
bay-option = option for bay (l=bay, O=no bay)

Unit = 44 : SIGNAL DATA

The signal control data for each intersection of the network.
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FORMAT(I5,12,I2,14) node(i,l), node(i,2), node(i,3), node(i,4)
(one line per node)

node(i,j) = type of traffic control for node i
node(i,l) = number of node i
node(i,2) = control : 1 = no control

2 = yield control
3 = stop control
4 = signal control &e-timed)
5 = signal control (actuated)

node(i3) = phase number
node(i,4) = cycle length

FORMAT(1214)  itmp, nsign(i,l), nsign(i,2), nsign(i,3),..., nsign(i,ll)
(one line per node)

itmp = node number
nsign(i,j) = type of signal control (if any) for node i
nsign(i,l) = phase number
nsign(i,2) = offset (maximum green for actuated)
nsign(i,3) = actual green time (minimum green for actuated)
nsign(i,4)  = amber time
nsign(i,5) = number of approaches having green
nsign(i,6 through 11) = list of upstream nodes of approaches having green

Unit = 45 : RAMP CONTROL DATA

Parameters governing freeway ramp control.

FORMAT(216) dec-num,vms-num (one line)
dec-num = number of ramp detectors
vms_num = number of variable message signs (future development)

FORMAT(716,F7.3,2F6.2)  detector(i,j),  rampSpar (one line per ramp detector)
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detector(i,j) = ramp control data for ramp detector i
detector(i,l) = detector number
detector(i,2) = from node
detector = to node
detector(i,4)  = detector pos 1
detector( i,5) = detector pos 2
detector(i,6) = control ramp from node
detector(i,7)  = control ramp to node

raq-p=(i,j) = ramp parameters for ramp detector i
ranqg=(i, 1) = cons 1, used in rate=ratep+consl (cons2-occ)
ramp_par(i,2) = cons2
ramp_par(i,3) = ramp rate

Unit = 47 : LEFT-TURN MOVEMENT INFORMATION

Factors governing the left-turn movements in the network.

FORMAT(615) ifrom,ito,ileft,ist,iright,iother (one line for each arc)
ifrom = from node
it0 = to node
ileft = left movement volume
ist = straight movement volume
iright = right movement volume
iother = other movement volume (u-turns)

Unit = 48 : LEFT TURN CAPACITY

FORMAT(4X,F3.1) gcratio
gcratio = g/c value
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(if gcratio = 0.3, then igc = 1
if gcratio = 0.4, then igc = 2
if gcratio = 0.5, then igc = 3
if gcratio = 0.6, then igc = 4
if gcratio = 0.7, then igc = 5)

FORMAT(I1,3X,715) itmp, leftcap(igc,itmp,j)
(three lines per each gcratio)

itmp = number of opposing lanes
leftcap(igc,itmp,j) = protected left turn capacity

(if volume < 200, then j = 1
if volume < 300, then j = 2
if volume < 400, then j = 3
if volume c 500, then j = 4
if volume < 600, then j = 5
if volume < 800, then j = 6
if volume < 1000, then j = 7)

NEXT LINE MUST BE EMPTY

FORMAT(4X,F3.1) gcratio
gcratio = g/c value

(5 values of gcratio as in the protected case)

FORMAT(I1,14,14,615) ivolume,itmp, leftcap2(igc,itmp,ivolume,j)
(three lines per each gcratio)

ivolume = left turn volume
itmp = number of opposing lanes
leftcap2(igc,itmp,ivolume,j) = permissive left turn capacity

(j values are the same as with the protected case)




