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Superbalance of Holographic Entropy Inequalities
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Department of Physics, University of California, Davis, CA 95616 USA

E-mail: tmhe@ucdavis.edu, veronika@physics.ucdavis.edu,

mukund@physics.ucdavis.edu

Abstract: The domain of allowed von Neumann entropies of a holographic field theory

carves out a polyhedral cone – the holographic entropy cone – in entropy space. Such poly-

hedral cones are characterized by their extreme rays. For an arbitrary number of parties,

it is known that the so-called perfect tensors are extreme rays. In this work, we constrain

the form of the remaining extreme rays by showing that they correspond to geometries with

vanishing mutual information between any two parties, ensuring the absence of Bell pair type

entanglement between them. This is tantamount to proving that besides subadditivity, all

non-redundant holographic entropy inequalities are superbalanced, i.e. not only do UV diver-

gences cancel in the inequality itself (assuming smooth entangling surfaces), but also in the

purification thereof.
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1 Introduction

Entropy inequalities in quantum information theory are linear constraints on the von Neu-

mann (entanglement) entropies of the various subsystems that give a useful characterization

of the full system. For instance, given a factorizable Hilbert space H1 ⊗ H2, the entropy of

the combined system is constrained by those of the individual subsystems H1 and H2 via the

subadditivity (SA) inequality

S1 + S2 ≥ S12 , (1.1)

where Si is the entanglement entropy associated to Hi, and Sij is that associated to Hi ⊗Hj .

Equivalently, (1.1) can be expressed as the non-negativity of the mutual information

I12 ≡ S1 + S2 − S12 , (1.2)

which characterizes the total amount of correlation between H1 and H2. Understanding the

general structure of such entropy inequalities provides intuition about the nature of admis-

sible quantum states and thus remains of broad interest both in quantum mechanics and in

continuum quantum field theories (QFTs).

Progress in this direction has however proven difficult, since for general quantum systems

it remains unclear, even for those involving a small number of parties, what the complete set
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of the entropy inequalities are, or even whether there are finitely many. Moreover, in QFTs

the computation of entanglement entropy is notoriously difficult. In recent years, progress has

been made by considering a subclass of QFTs that are holographic conformal field theories

(CFTs), which are dual to a gravitational theory in an asymptotically AdS spacetime. For this

class of theories, the computation of entanglement entropy is geometric; it is given by the area

of an extremal (HRT) surface in the bulk geometry [1, 2]. The geometric framework allows one

to analyze entropic constraints and obtain a class of holographic entropy inequalities (HEIs).

Such inequalities are not universally true for an arbitrary quantum state, but they do hold for

any ‘geometric state’ in a holographic CFT (i.e. one with a geometric bulk dual). This means

that such relations can in turn be utilized to characterize geometric states. The simplest HEI

is the monogamy of mutual information (MMI) and is given by [3]

S12 + S13 + S23 ≥ S1 + S2 + S3 + S123 . (1.3)

The combination of subsystem entropies appearing here is the same as that in topological

entanglement entropy [4], and is tantamount to the non-positivity of the tripartite information

I123 (explicitly defined in (2.3)).

A systematic study of HEIs for an arbitrary number of parties was initiated by [5], and

continued via a different approach in [6, 7]. Specifically, consider a set of disjoint spatial

regions in the boundary CFT, labeled by A1, . . . ,AN. Given any holographic CFT state, the

entanglement entropies involving the various collections of spatial regions can be collectively

associated to a vector in entropy space, where the components are simply the entropies of all

the composite subsystems.1 For instance, in the case N = 3, the entropy vector is

~S = (S1, S2, S3, S12, S13, S23, S123) , (1.4)

where Si ≡ SAi
, Sij = SAi∪Aj

, and so forth. In general, given N parties, the entropy space has

D = 2N− 1 dimensions, and constraints such as SA or MMI carve out allowable half-spaces of

the entropy space in which the entropy vectors can reside. The authors of [5] argued that the

physically allowed region forms a convex cone in the entropy space, dubbed the holographic

entropy cone (HEC). This was accomplished by restricting attention to the static context
1 The actual values are infinite (they suffer from the area-law divergence) whenever the system of interest

is bounded by an entangling surface on the boundary (as opposed to covering an entire spatial slice of the

CFT). Therefore, when necessary we introduce a UV cutoff, which renders the regulated entropies (as well

as their ratios) cutoff-dependent. This issue was circumvented in [6, 7] by working with ‘proto-entropies’

(corresponding to the HRT surfaces themselves rather than their areas) and analyzing their formal relations,

and we leave the recasting of our results in terms of proto-entropies to future work.
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and using the minimal surface (RT) prescription of [1] to recast the problem using graph

theoretic language, so the problem of determining the HEC is in fact equivalent to finding

HEIs. In the more general framework of [7], the intersection of all half-spaces determined

by the primitive2 HEIs involving N parties was for clarity dubbed the holographic entropy

polyhedron to emphasize that this construct is defined by the linear HEIs using proto-entropies

as opposed to the allowed rays in the entropy space. Nevertheless, it is believed (and known

in the static case for N ≤ 5) that the polyhedron indeed coincides with the HEC.3 Currently,

the HEC (at least for static configurations) is fully known up to N = 5 [5, 10], with ongoing

attempts to determine the entropy cone for larger N.

In this work, we take a step towards the characterization of the static HEC for arbitrary

N. We argue that apart from SA, all non-redundant HEIs, or HEIs that are each not a sum

of two other HEIs, must obey a property known as superbalance [7]. Roughly speaking, this

notion requires that the UV divergences in the entanglement entropies of disjoint subsystems

with smooth entangling surfaces cancel out not only in the combination of entropies entering

the inequality, but also when we consider purifications of the inequality. The idea behind the

purification, further explained in §3.1, is to replace one of the subsystems with the purifier,

i.e. the complement of the union of all the N parties. Although purification is a symmetry

of the full system, it is not manifest when we represent HEIs in terms of the subsystem

entanglement entropies. For this reason it is more practical to work in a representation of the

entropy space basis consisting of perfect tensors (PTs), the so-called K-basis introduced in

[11], which has many additional useful properties. We will therefore adopt this representation

as a technical aid in the proof. Along the way, we will also utilize the I-basis presented in

[7, 11] as a convenient intermediate step. The main result, that all genuinely multipartite

HEIs (i.e. excluding SA) are superbalanced, vastly simplifies the explicit search for further

HEIs and validates the generality of the “sieve” method of [7].

The outline of the paper is as follows. We give a quick overview of the entropy space and

bases thereof in §2. In §3 we review the notions of balance and superbalance and present the

main technical argument. We conclude with a short discussion in §4.

2 Primitive HEIs, defined in [6], are ones that capture an independent type of correlation, which automat-

ically eliminates the redundant HEIs such as strong subadditivity.
3 In certain restricted settings it has been shown that the static (or RT) HEC and the more general HRT

cone coincide as well; see [8, 9]. However, a general proof has thus far proven elusive.
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2 Three representations of entropy space

The entropy space is a vector space, and can be represented by a variety of bases that

span the space. We quickly review three particularly useful bases explored in [11], dubbed the

S, I, and K bases. These bases each have their advantages and disadvantages (we refer the

reader to [11] for further details); in what follows, we will make particular use of the K-basis

representation.

Consider the entropy space associated to N parties labeled A1, . . . ,AN, and let I ⊆ [N] ≡
{1, . . . ,N} be the index denoting the nonempty subsets of the N parties. Following the ter-

minology introduced in [6], we will refer to the subsystems involving a single party (|I| = 1)

as monochromatic, and to general composite subsystems involving possibly multiple parties

(|I| ≥ 1) as polychromatic.

When characterizing an entropy vector, it is natural to use the orthonormal basis
{
ê I
}

such that

~S =
∑
I⊆[N]

SI ê
I , where SI ∈ R . (2.1)

This means ê I is simply the vector given by 1 in the component associated to the polychromatic

subsystem I and 0 elsewhere, and it is the most common basis used when studying entropy

space. This was dubbed the S-basis in [11].

A second (and in many ways more convenient) basis used when studying entropy cones

is the I-basis. For any I ⊆ [N], multipartite information involving the monochromatic parties

in I is defined as [7]

II =
∑
K⊆I

(−1)1+|K|
SK . (2.2)

For instance, the expressions for n-partite information for n = 1, 2, 3 are

Ii = Si

Iij = Si + Sj − Sij

Iijk = Si + Sj + Sk − Sij − Sik − Sjk + Sijk .

(2.3)

Thus, 1-partite information is just the entanglement entropy, 2-partite information the mutual

information, 3-partite information the tripartite information, and so on. In the I-basis
{
f̂ I},

we choose the orthonormal basis vectors f̂ I such that

~S =
∑
I⊆[N]

II f̂
I , where II ∈ R . (2.4)
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Finally, we introduce the K-basis, which was first explored in [11] and will be used ex-

tensively in our proofs. The K-basis is comprised of the orthonormal entropy vectors
{
ĝΓ}

corresponding to perfect tensors (PTs). A PT2s is a pure state involving 2s parties, with

s ∈ Z+, such that the reduced density matrix associated to any s parties is maximally mixed.

We can capture its entropy structure using graphs such as those depicted in Fig. 1. The Bell

pair (BP) ĝ{ij}, for instance, is simply a PT2 and is represented by a single link joining two

vertices corresponding to the monochromatic systems i and j.

A1

A2

A3

A4

A1

A2

A3

A4

Figure 1: These discrete graphs capture the entanglement structure of a PT2 (the BP ĝ
{13}) on the left, and a PT4

(ĝ{1234}) on the right. The boundary vertices denote the individual parties, and each edge represents a single unit

of entanglement. The holographic entanglement entropy associated to a set of boundary vertices is the minimum

cut associated to those vertices.

Because these PTs are pure states, in order to use the entanglement entropy associated to

PTs as basis vectors, we need to include the purification of our original state, which we denote

AN+1 =
⋃N

i=1Ai. The K-basis is then given by the entropy vectors corresponding to all the

even-party PTs involving [N + 1] parties.4 As an example, for any N ≥ 3, the two graphs in

Fig. 1 are basis vectors in the K-basis, and can be written in the S-basis as

BP (PT2) ĝ{13} : (S1, S2, S3, S12, S13, S23, S123) = (1, 0, 1, 1, 0, 1, 0)

PT4 ĝ{1234} : (S1, S2, S3, S12, S13, S23, S123) = (1, 1, 1, 2, 2, 2, 1) .
(2.6)

We will use the index Γ to specify a given K-basis vector; in particular, Γ ⊆ [N + 1] with |Γ|
even. For example, the expressions appearing in (2.6) correspond to Γ = {13} and Γ = {1234},
respectively. For future reference, we will designate the monochromatic parties in [N] with

lower case Latin indices i, j, . . ., and polychromatic parties in [N] with script Latin indices

I,K, . . .. If we wish to include the purifier, we will underline the index, e.g. i ∈ [N + 1].

4 As a sanity check, we observe that there are exactly D = 2
N− 1 such PTs, which follows from the identity

dN/2e∑
s=1

(
N+ 1

2s

)
= 2

N − 1 . (2.5)
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Writing the entropy vector for an N-party system in terms of the K-basis, we have5

~S =
∑

Γ⊆[N+1]

K
(N)
Γ ĝΓ , where K(N)

Γ ∈ R . (2.7)

The K-basis is particularly convenient since as was proved in [11], the even-party PTs ĝΓ are

extreme rays of the HEC, meaning that they cannot be expressed as a positive combination

of any other vectors within the cone. This has a useful consequence for the form of HEIs

rendered in the K-basis.

Consider an information quantity, written in any of our three bases of interest:

Q =
∑
I⊆[N]

µI SI =
∑
I⊆[N]

νI II =
∑

Γ⊆[N+1]

λΓ K
(N)
Γ , (2.8)

so Q is equivalently specified by rational coefficients µI in the S-basis, νI in the I-basis, or

λΓ in the K-basis. An HEI simply identifies a sign-definite information quantity, expressed as

Q ≥ 0. Since ĝΓ are extreme rays of the HEC and hence lie within the cone, it was shown in

[11] that λΓ ≥ 0 in all the HEIs. To exemplify this, we have included in Table 1 (taken from

[11]) a list of the N = 5 non-redundant entropy inequalities (or rather a single representative

from each permutation and purification symmetry orbit) in the three bases.

A closer examination of Table 1 reveals that except for SA, all the other non-redundant

HEIs do not involve K
(5)
ij for all i, j ∈ [N + 1]. Therefore, one may suspect that for any N,

all non-redundant N-party HEIs other than SA will not involve K(N)
ij . We will prove that this

is indeed true, and as we shall see, this is tantamount to the statement that non-redundant

HEIs other than SA obey a property known as superbalance.

3 Multipartite holographic entropy inequalities are superbalanced

Having described the various bases characterizing the entropy space, we turn to the main

point of the discussion – demonstrating that all non-redundant HEIs except SA are superbal-

anced. We first formally introduce the notion of superbalance from §3.1, which was originally

expressed in terms of the I-basis. In §3.2, we reformulate the notion of superbalance in terms

of the K-basis instead (equivalently, finding the basis transform between the I-basis and K-

basis), since it will be a helpful intermediate step in proving the main result. Armed with

these results, we state and prove our main theorem in §3.3. A few additional details regarding

the map between I and K bases can be found in AppendixA.
5 Since the structural form of the HEIs in the K-basis depends on N, we included the superscript (N) in

the coefficients of ĝΓ explicitly to avoid confusion, following the notation of [11].

– 6 –



Relation Basis Holographic Entropy Inequality

SA(1,1) S S1 + S2 − S12

I I12

K K
(5)
12

MMI(1,1,1) S −S1 − S2 − S3 + S12 + S13 + S23 − S123

I −I123

K K
(5)
1234 + K

(5)
1235 + K

(5)
1236

MMI(1,2,2) S −S1 − S23 − S45 + S123 + S145 + S2345 − S12345

I −I124 − I125 − I134 − I135 + I1234 + I1235 + I1245 + I1345 − I12345

K K
(5)
1246 + K

(5)
1256 + K

(5)
1346 + K

(5)
1356 + K

(5)
123456

Q
(5)
1 S −S12 − S23 − S34 − S45 − S15 + S123 + S234 + S345 + S145 + S125 − S12345

I −I124 − I134 − I135 − I235 − I245 + I1234 + I1235 + I1245 + I1345 + I2345 − I12345

K K
(5)
1246 + K

(5)
1346 + K

(5)
1356 + K

(5)
2356 + K

(5)
2456 + 2K

(5)
123456

Q
(5)
2 S

−S12 − S13 − S14 − S23 − S25 − S45 + 2S123 + S124 + S125 + S134 + S145 + S235 + S245

−S1234 − S1235 − S1245

I −I124 − I125 − I135 − I234 + I1234 + I1235 + I1245

K K
(5)
1246 + K

(5)
1256 + K

(5)
1345 + K

(5)
1356 + K

(5)
2345 + K

(5)
2346 + 3K

(5)
123456

Q
(5)
3 S

−S12 − S13 − S14 − S25 − S35 − S45 + S123 + S124 + S125 + S134 + S135 + S145 + S235

+S245 + S345 − S234 − S1235 − S1245 − S1345

I −I125 − I135 − I145 − I234 + I1235 + I1245 + I1345

K K
(5)
1234 + K

(5)
1256 + K

(5)
1356 + K

(5)
1456 + K

(5)
2345 + K

(5)
2346 + 3K

(5)
123456

Q
(5)
4 S

−S2 − S3 − S4 − S5 − S12 − S13 + S23 + S45 + S123 + S124 + S125 + S134 + S135 − S145

−S1234 − S1235

I −I123 − I145 − I234 − I235 + I1234 + I1235

K K
(5)
1236 + K

(5)
1245 + K

(5)
1345 + K

(5)
1456 + 2K

(5)
2345 + K

(5)
2346 + K

(5)
2356 + 2K

(5)
123456

Q
(5)
5 S

−2S12 − 2S13 − S14 − S15 − S23 − 2S24 − 2S35 − S45 + 3S123 + 3S124 + S125 + S134

+3S135 + S145 + S234 + S235 + S245 + S345 − 2S1234 − 2S1235 − S1245 − S1345

I −I123 − 2I125 − 2I134 − I145 − I234 − I235 + 2I1234 + 2I1235 + I1245 + I1345

K K
(5)
1236 + K

(5)
1245 + 2K

(5)
1256 + K

(5)
1345 + 2K

(5)
1346 + K

(5)
1456 + 2K

(5)
2345 + K

(5)
2346 + K

(5)
2356 + 6K

(5)
123456

Table 1: The non-redundant HEIs for N = 5 in the S, I, and K bases. The first three rows are the standard SA and

MMI (with the subscript corresponding to the cardinality of the arguments as in [11]), and the last five rows are

inequalities discovered in [5], and labeled simply as Q
(5)
i since their deeper meaning is as yet obscure. Note that

the coefficients of K(5)
Γ in all the HEIs are nonnegative, exemplifying a more general result of [11].

3.1 Balance and superbalance

We begin by reviewing the notion of an HEI being balanced and superbalanced [7]. Con-

sider an entropy inequality in S-basis of the form Q ≥ 0, with Q given by the first expression

in (2.8). For every i ∈ [N], define the function

θi(I) =

1 i ∈ I

0 i /∈ I .
(3.1)
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Then an HEI is balanced if the occurrence of each party individually cancels, i.e. if it satisfies∑
I⊆[N]

µI θi(I) = 0 ∀ i ∈ [N] . (3.2)

For example, as the reader can easily verify, all the HEIs listed in Table 1 are balanced.

However, even if a given HEI is balanced, its purification need not necessarily be balanced.

For instance, if we use purification on SA(1,1) from the first row of Table 1 to eliminate party

1, the resulting inequality is the Araki-Lieb (AL) inequality

S23456 + S2 − S3456 ≥ 0 , (3.3)

which is manifestly not balanced. Since the HEC is symmetric under all permutations of the

subsystem labels, including the purifier, it is more useful to consider the class of HEIs that

are not only themselves balanced, but whose purifications are likewise also balanced. Such

inequalities are defined to be superbalanced [7]. Superbalanced HEIs have structurally useful

properties, which are further explained in [7]. In particular, the methods used to generate

new HEIs are best tailored to this case.

In [7] the notion of balance and superbalance was generalized to the notion of R-balance,

where R is a positive integer.6 In particular, an information quantity Q is R-balanced if its

expansion in the I-basis does not contain terms of rank R or lower. In the I-basis (middle

expression of (2.8)), superbalanced HEIs would then contain II with |I| ≥ 3, as is manifested

in Table 1.

Hitherto, it has been an open question as to whether superbalance is a true property of

all non-redundant HEIs other than SA (which implicitly includes AL in its symmetry orbit).

Table 1 manifests the result for N = 5, and it is easy to verify that it continues to hold for all

the HEIs discovered so far. In §3.3, we shall prove the result in full generality. Before doing

so, it is first useful to phrase the notion of superbalance directly in the K-basis, which we now

turn to in §3.2.

3.2 Multipartite information of PTs

Since the K-basis is particularly convenient for discussing HEIs as evidenced above, it will

be useful to re-express the notion of R-balance in terms of the K-basis. Of course, one could

determine the explicit conversion between the I and K bases by evaluating the multipartite

information of the PTs, as is explicitly carried out in AppendixA. However, here it suffices to
6 The property of being balanced would correspond to R = 1 and that of being superbalanced to R = 2.
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obtain a simple criterion for a given matrix element to vanish. Because the K-basis invokes

the purifier, we will for aesthetic convenience label it by i = 0 (as opposed to N + 1) in the

rest of this subsection, and similarly let [N+ 1] ≡ {0, 1, . . . ,N} (as opposed to {1, . . . ,N+ 1}).

Lemma 1. The multipartite information II of a PT ĝΓ vanishes whenever I evokes any

subsystem which is not contained in Γ, i.e.

II|ĝΓ = 0 if I * Γ . (3.4)

Note that since I never contains the purifier 0, we can equivalently write the condition in (3.4)

as I * Γ \ 0, where Γ \ 0 indicates we exclude the purifier from Γ when present.

Proof. Suppose I * Γ. This means there must be at least one party, call it i, that is contained

in I but not in Γ. Let us (with a slight abuse of notation) denote the rest of I by J ≡ I \ i
and write I = iJ, where the union is implied as usual. Since i /∈ Γ, the entropy vector for ĝΓ

has the property that SiK|ĝΓ = SK|ĝΓ for any K ⊆ [N + 1] and Si|ĝΓ = 0. Splitting (2.2) into

terms not containing i and terms containing i, we have

II|ĝΓ =

∑
K⊆J

(−1)1+|K|
SK +

∑
K⊆J

(−1)2+|K|
SiK + Si

∣∣∣∣∣∣
ĝ

Γ

=
∑
K⊆J

(−1)1+|K|
(
SK|ĝΓ − SiK|ĝΓ

)
︸ ︷︷ ︸

=0

+ Si|ĝΓ︸ ︷︷ ︸
=0

= 0 ,

(3.5)

thereby proving the statement.

This observation has the immediate consequence that when we express the multipartite

information II as a linear combination of KΓ so that

II =
∑

Γ⊆[N+1]

αI
Γ
KΓ , (3.6)

the coefficients αI
Γ vanish whenever the cardinality of I is greater than that of Γ \ 0, i.e.

α Γ
I = 0 whenever |Γ \ 0| < |I| . (3.7)

This follows from evaluating both sides of (3.6) on a PT ĝΓ
′
and using KΓ|

ĝ
Γ
′ = δΓΓ

′ to express

the coefficients directly as

αI
Γ = II|ĝΓ . (3.8)

If |Γ \ 0| < |I|, Γ \ 0 cannot contain the entire subsystem I, so by Lemma 1, αI
Γ must vanish.
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We will now use (3.7) to convert the criterion of R-balance from its I-basis definition to its

K-basis definition. Recall that an information quantity Q is R-balanced iff its representation

in the I-basis only involves terms II with |I| ≥ R+ 1. Thus, when we convert to it the K-basis

using (3.6), we have

Q =
∑

I⊆[N],|I|>R

νI II =
∑

Γ⊆[N+1]

 ∑
I⊆[N],|I|>R

νI α
Γ
I

 K
(N)
Γ

=
∑

Γ⊆[N+1],|Γ\0|≥|I|

 ∑
I⊆[N],|I|>R

νI α
Γ
I

 K
(N)
Γ ,

(3.9)

where in the last step we used (3.7). This means if Q is R-balanced, it will only involve K
(N)
Γ

with |Γ \ 0| ≥ R + 1.

Conversely, suppose Q takes the form

Q =
∑

Γ⊆[N+1],|Γ\0|>R

λΓ K
(N)
Γ (3.10)

for some arbitrary coefficients λΓ. Comparing this with the last expression in (2.8), this is

tantamount to requiring

λΓ = 0 whenever

|Γ| ≤ R if 0 * Γ

|Γ| ≤ R + 1 if 0 ⊂ Γ .
(3.11)

To show that Q is in fact guaranteed to be R-balanced, we need to re-express each K
(N)
Γ in

(3.10) in the I-basis, formally written as

K
(N)
Γ =

∑
I⊆[N]

βΓ
I
II , (3.12)

and argue that when we substitute this into (3.10), the final expression does not involve II

for |I| ≤ R. Note that the matrix β involved in (3.12) is simply the inverse of the matrix α

from (3.6).

To relate the two matrices, it is more convenient to use an ‘inclusion-ordering’ rather than

the lexicographic ordering of (1.4). For the I-basis, we order the I indices according to

{1, 2, 12, 3, 13, 23, 123, 4, 14, 24, 124, 34, 134, 234, 1234, . . .} . (3.13)

In particular, we can construct the list iteratively: to arrange the indices of an (N + 1)-party

entropy vector (excluding the purifier), we start by writing the indices {I} of the N-party
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entropy vector and append i = N+1 followed by {Ii}. The inclusion-ordering for Γ follows the

same logic, but since |Γ| is restricted to be even, the expression looks slightly more complicated.

Nevertheless, we can use (3.13) with the simple rule that we leave I as is if |I| is even, but

prepend the purifier 0 to I if |I| is odd. Specifically, the Γ ordering would then be

{01, 02, 12, 03, 13, 23, 0123, 04, 14, 24, 0124, 34, 0134, 0234, 1234, . . .} . (3.14)

Writing the conversion matrices with the rows and columns ordered according to (3.13) and

(3.14), it is easy to verify that the α matrix is upper-triangular due to (3.7), so the corre-

sponding β = α−1 matrix must be likewise upper-triangular. Indeed, we have the slightly

stronger condition

βΓ
I = 0 whenever Γ \ 0 * I , (3.15)

which requires some entries above the diagonal to vanish as well, analogous to the case for

α, i.e. condition (3.4). Condition (3.15) follows from the additional requirement that the

system is permutation symmetric, so under permutations (i.e. simple relabeling of the rows

and columns) the α and β matrices have to remain upper triangular.

Using (3.15), we see that if |I| < |Γ\0|, then Γ\0 * I, which means βΓ
I = 0. Substituting

(3.12) into (3.10), we then obtain

Q =
∑

Γ⊆[N+1],|Γ\0|>R

λΓ K
(N)
Γ =

∑
I⊆[N],|I|≥|Γ\0|

 ∑
Γ⊆[N+1],|Γ\0|>R

λΓ βΓ
I

 II . (3.16)

This shows that Q only involves II with |I| ≥ R + 1 and is therefore R-balanced. Hence, the

definition of R-balance in the K-basis is given as follows:

Definition 1. An N-party information quantity Q is R-balanced iff in its K-basis representa-

tion (last expression in (2.8)) it does not contain terms K(N)
Γ with |Γ \ 0| ≤ R.

Note that the purifier 0 appears explicitly in this definition because although the K-basis

is purification-symmetric itself, the definition of R-balance, formulated in the I-basis, is not

purification symmetric and therefore underlies the motivation for desiring superbalance rather

than just balance.

Specializing now to superbalance, R = 2, we obtain the following corollary, which we will

use in the following subsection to prove that all multipartite (i.e. other than SA) HEIs are

superbalanced.

Corollary 1. An N-party information quantity Q (or the corresponding HEI, Q ≥ 0) is

superbalanced iff its K-basis representation does not contain K
(N)
ij for any i, j ∈ [N + 1].
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3.3 Proving superbalance

Before proving the main result of this paper, let us warm up making a simple observation

that will be useful later. The K-basis representation of SA is7

K
(N)
ij ≥ 0 . (3.17)

This follows from the I-basis representation of SA (1.1), namely Iij ≥ 0, and the observation

that in the expansion (3.6) for I = ij,

αij
Γ = Iij

∣∣
ĝ

Γ =

2, Γ = {ij}

0, Γ 6= {ij} ,
(3.18)

which implies that Iij = 2K
(N)
ij . The full orbit under purifications corresponds to enlarging

i→ i and j → j, which gives (3.17).

The claim that non-redundant HEIs except SA are superbalanced is a direct consequence

of the following theorem, which is interesting in its own right, as it constrains the possible

form extreme rays may have in the N-party entropy cone. Begin by considering an N-party

system, and denote the HEC by CN. Let ĝΓ label the K-basis vectors (the PTs), and let v̂(N)

be any other (i.e. non-PT) extreme ray of CN. Note that PT extreme rays that are not BPs

have vanishing mutual information between the monochromatic subsystems, and hence cannot

involve BPs.

Theorem 1. The non-Bell pair (BP) extreme rays do not involve BPs. In particular, any

non-BP extreme ray v̂(N) of CN written in the K-basis

v̂(N) =
∑

Γ⊆[N+1]

ω
(N)
Γ ĝΓ where ω

(N)
Γ ∈ R , (3.19)

must satisfy

ω
(N)
Γ = 0 ∀ |Γ| = 2 . (3.20)

Proof. First, observe that since all the PTs are basis vectors in entropy space, if v̂(N) = ĝΓ
′

for some PT Γ′, then the linear independence of the basis implies

ω
(N)
Γ =

1 Γ = Γ′

0 Γ 6= Γ′ .
(3.21)

7 We now revert back to the notation in [11], where the purifier is labeled by N+ 1 instead of 0, so i and j

in (3.17) run from 1 to N+ 1.

– 12 –



This in particular means that none of the higher-party PTs involve BPs, so we will henceforth

assume v̂(N) is not a PT.

We now proceed via induction. The claim is trivially true for N = 3, as the extreme rays

of C3 consist of six BPs and a single PT4, so the only non-BP v̂(3) does not involve a BP. Our

induction hypothesis is thus that the claim is true for CN with some fixed N ≥ 3. To show

that the claim continues to hold for CN+1, we employ a proof by contradiction.

Suppose there exists some non-PT extreme ray v̂(N+1) of CN+1 such that

v̂(N+1) =
∑

Γ⊆[N+1]

ω
(N+1)
Γ ĝΓ , (3.22)

and ω(N+1)
ij 6= 0 for some i, j ∈ [N + 1]. We may without loss of generality relabel the parties

to get ω(N+1)
12 6= 0, so that

v̂(N+1) = ω
(N+1)
12 ĝ{12} +

∑
Γ⊆[N+1],Γ 6={12}

ω
(N+1)
Γ ĝΓ , where ω

(N+1)
12 6= 0 . (3.23)

Evaluating I12 of v̂(N+1) using (3.18), we obtain

I12|v̂(N+1) = 2ω
(N+1)
12 . (3.24)

Since v̂(N+1) is in CN+1, it must obey SA, which means that ω(N+1)
12 > 0.

Any entropy vector in CN+1 can be associated to some static asymptotically AdS geom-

etry by the arguments of [5], which can in turn be represented by a discrete graph. The

graph for a static geometry at a constant time slice is constructed by partitioning the spatial

slice using minimal (RT) surfaces and associating a vertex to each resulting codimension-0

region. Regions adjoining the boundary yield the boundary vertices associated to the parties

(including the purifier), while the remaining regions are represented by internal vertices. The

links between the vertices correspond to pieces of the RT surfaces, and are endowed with

a weight given by the corresponding surface area.8 Below, in Fig. 2 we have schematically

drawn the graph representing v̂(N+1), with the edges given by weights ni.
9 The region G

in the graph is simply some unspecified set of legs and vertices, and the weights of the legs

emanating from Ai are denoted by ni, which we can take to be Si via the entropy-preserving

graph transformations of [5].
8 It was shown in [5, 12] that such graphs must obey MMI. This is a necessary assumption, since in the

general quantum entropy cone, not all inequalities besides SA are superbalanced. One notable example is

strong subadditivity, whose purification (known as weak monotinicity) is not balanced.
9 Fig. 6 of [5] describes several graph transformations that preserve all the discrete entropies, and we may

require such transformations to obtain the graph in Fig. 2.
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G

A1

v̂(N+1) = A2

A3 A4......
AN

AN+1n1

n2

n3 n4

nN

nN+1

Figure 2: The graph representation of the entropy vector v̂(N+1).

We now coarse-grain parties {N,N+1} → {N} by simply joining legs connected to vertices

N and N + 1. We can view the coarse-graining as a linear map L acting on v̂(N+1), and the

result is10

G

A1

Lv̂(N+1) = A2

A3 A4......

AN

n1

n2

n3 n4

nN

nN+1

nN

nN+1

Figure 3: We coarse-grain v̂
(N+1) to obtain an entropy vector in CN from one in CN+1.

This is now a graph representation of an entropy vector in CN. Explicitly, we have for some

coefficients ω(N)
Γ

Lv̂(N+1) = ω
(N)
12 ĝ{12} +

∑
Γ⊆[N],Γ6={12}

ω
(N)
Γ ĝΓ , (3.25)

where the sum is now over all even-party PTs of the CN cone, rather than the CN+1 cone.

From the graphs, it is obvious that I12|v̂(N+1) = I12|Lv̂(N+1) since S1, S2, and S12 are the same

before and after coarse-graining. Thus,

ω
(N)
12 =

1

2
I12|Lv̂(N+1) =

1

2
I12|v̂N+1 = ω

(N+1)
12 > 0 . (3.26)

However, since Lv̂(N+1) ∈ CN, by the induction hypothesis this means that none of the non-BP

extreme rays in CN involve ĝ{12}, and so the ĝ{12} term on the right-hand-side of (3.25) can

be isolated as the {12} Bell pair and correspondingly be rendered in the graph as simply an

edge connecting A1 to A2 (as was shown in Fig. 1). Because none of the edges outside G join

A1 to A2, ĝ
{12} must lie within G. Thus, G must be realizable as some graph G′ plus an edge

joining A1 and A2 with weight ω(N+1)
12 , i.e.

10 We can alternatively think of this as just relabeling AN+1 to be AN, so the new graph still corresponds

to a holographic entropy vector.
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G

...
=

n1

n2

n3 n4

nN

nN+1

G′
...

n1

n2

n3 n4

nN

nN+1

ω
(N+1)
12

Figure 4: Explicitly showing the BP in G.

Substituting this into our graph representation of v̂(N+1), we get

G′

A1

v̂(N+1) = A2

A3 A4......
AN

AN+1

n1

n2

n3 n4

nN

nN+1

ω
(N+1)
12

Figure 5: The graph of v̂(N+1) with edge representing the BP ĝ
{12} explicitly shown.

As ω(N+1)
12 > 0, this means we can also consider the entropy vector ~w given by the graph11

G′

A1

~w = A2

A3 A4......
AN

AN+1

n1

n2

n3 n4

nN

nN+1

1
2ω

(N+1)
12

Figure 6: The graph of ~w.

Because ĝ{12} is simply the graph connecting vertices A1 and A2 with weight 1, it follows that

~w +
1

2
ω

(N+1)
12 ĝ12 = v̂(N+1) . (3.27)

11 We are implicitly assuming here that ~w lies within the entropy cone since it has a graphical representation.

This can be a subtle issue – see [13] for a discussion.

– 15 –



Since ω(N+1)
12 > 0 and both ĝ12 and ~w are in CN+1, this implies v̂(N+1) is a positive sum of two

distinct vectors in the cone, contradicting the fact that it is an extreme ray. This completes

the proof by induction.

Having established Theorem 1, the superbalanced nature of the HEIs is a straightforward

corollary.

Corollary 2. All non-redundant HEIs that are not SA are superbalanced.

Proof. Consider the N-party entropy space. By Corollary 1, it suffices to prove that all of the

non-redundant HEIs except SA do not involve K(N)
ij for any i, j ∈ [N + 1] when written in the

K-basis. We will again proceed by contradiction.

Suppose that some non-redundant HEI involves K(N)
ij . We can always relabel the parties

so that the inequality involves K(N)
12 , i.e.∑

Γ 6={12}

λΓ K
(N)
Γ + λ12 K

(N)
12 ≥ 0, where λ12 6= 0 . (3.28)

This inequality holds for all ~S ∈ CN. However, because it is non-redundant, there exists some
~S ∈ CN with coefficients K(N)

Γ , which when expressed in the K-basis satisfies (3.28), but∑
Γ 6={12}

λΓ K
(N)
Γ < 0 . (3.29)

From (3.28) and (3.29), it follows that

~v1 ≡
∑

Γ6={12}

K
(N)
Γ ĝΓ /∈ CN

~v2 ≡
∑

Γ6={12}

K
(N)
Γ ĝΓ + K

(N)
12 ĝ

12 ∈ CN .
(3.30)

Because ~v2 ∈ C
N, it must be a positive sum of extreme rays. However, by Theorem 1, none of

the non-BP extreme rays involve ĝ12, so this means ~v1 must also be a positive sum of extreme

rays and hence lie CN. This is a contradiction, completing the proof.

4 Discussion

We have proved that excluding SA, all non-redundant HEIs are superbalanced. We

demonstrated this by first proving that when we write each of the extreme rays of the HEC

as a linear combination of the PTs, none of the non-BP extreme rays involve any BPs (see
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Theorem 1). Crucial to the proof of Theorem 1 is the fact that we can coarse-grain parties

N and N + 1 without altering the internal structure of G. This is specific only to holographic

entropy vectors expressible via a graph representation. In this sense, there is a notion of

bulk locality regarding entanglement entropy, where we can change the RT surfaces near the

boundary without affecting the RT surfaces elsewhere. It would be interesting to explore

whether or not this “bulk locality” can be used to further understand the nature of the HEIs

and thereby further constrain the HEC.

We would like to conclude by commenting that it is possible to reverse the arguments in

the previous section to show the following.

Remark 1. All non-redundant HEIs except for SA are superbalanced iff the non-BP extreme

rays of the HEC CN, when expressed in the K-basis, do not involve any BPs.

Proof. The reverse direction is proven by Corollary 2, so it suffices to prove the forward

direction. Suppose that all non-redundant HEIs excepting SA are superbalanced, and that

(relabeling the parties if necessary) there exists an extreme ray ~v of CN such that

~v = ω12 ĝ
{12} +

∑
Γ6={12}

ωΓ ĝ
Γ , where ωΓ ∈ R and ω12 6= 0 . (4.1)

Note that I12|~v = ω12, so ω12 ≥ 0 by SA. Furthermore, as ~v is an extreme ray, it cannot be

written as a sum of two other vectors in the HEI CN. In particular, ω12 ĝ
12 ∈ CN, so

~w ≡
∑

Γ 6={12}

ωΓ ĝ
Γ /∈ CN . (4.2)

On the other hand, since ~w = ~v − ω12 ĝ
12, ~w obeys any HEI not involving K

(N)
12 since ~v obeys

it. By (3.17) and Corollary 1, the only HEI involving K
(N)
12 is the SA K

(N)
12 ≥ 0, and obviously

~w obeys this SA as well. Thus, ~w obeys all the non-redundant HEIs and hence must lie in

CN, a contradiction.

This demonstrates that the superbalanced nature of the non-redundant multipartite HEIs

is equivalent to the fact that the only extreme rays of the HEC with non-vanishing monochro-

matic mutual information are the BPs. It is not a-priori obvious why this had to be the case,

and leaves open the question of whether extreme rays of the HEC have other simple properties

as well. For instance, a quick examination of Table 1 shows that none of the other HEIs for

N = 5 are 3-balanced, and it is natural to wonder this is a general feature among all HEIs,

or whether there are certain classes of HEIs that are R-balanced for some R ≥ 3. Moreover,

our arguments using graph models were valid in the static context where the RT prescription
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applies, whereas the work of [6, 7] suggests a deeper and more general structure, dubbed the

holographic entropy arrangement and consists of primitive information quantities (the sign-

definite subset of which forms the holographic entropy polyhedron). Since all known primitive

quantities excepting SA are superbalanced (even the non-sign-definite ones), it would be use-

ful to prove this result directly in the proto-entropy language. We will leave this, as well as a

deeper understanding of why HEIs are superbalanced, for future investigations.
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A Conversion between I and K bases

In §3.2 we presented an argument relating the entropy vectors in the I and K bases. We

now give a more concrete translation between the two bases. This provides an alternative

(but essentially equivalent) proof of Corollary 1, which states that an HEI is superbalanced

iff it does not contain K
(N)
ij in the K-basis.

Consider (3.6), which we reproduce here for convenience:

II =
∑

Γ⊆[N+1]

αI
Γ
KΓ . (A.1)

We want to determine explicitly the entries of the matrix α. Recalling (3.8), which states that

αI
Γ = II|ĝΓ , and letting |I ∩ Γ| = m, we obtain via combinatorics

II|ĝΓ =
∑
I
′⊆I

(−1)|I
′|+1

S
I
′
∣∣
ĝ

Γ =

|I|∑
k=1

k∑
r=1

(−1)k+1 min(r, |Γ| − r)
(
m

r

)(
|I| −m
k − r

)

=

|I|∑
r=1

(−1)r min(r, |Γ| − r)
(
m

r

) |I|−r∑
k=0

(−1)k+1

(
|I| −m
k

)
.

(A.2)
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In particular, note that for |I| > m, we have

II|ĝΓ =

|I|∑
r=1

(−1)r min(r, |Γ| − r)
(
m

r

) |I|−m∑
k=0

(−1)k+1

(
|I| −m
k

)
= 0 , (A.3)

where we used the fact the second sum vanishes when |I| −m > 0, whereas for |I| = m, we

have

II|ĝΓ =

|I|∑
r=1

(−1)r+1 min(r, |Γ| − r)
(
|I|
r

)
. (A.4)

To summarize, it follows

αI
Γ = II|ĝΓ =

0 |I| > m∑|I|
r=1(−1)r+1 min(r, |Γ| − r)

(|I|
r

)
|I| = m .

(A.5)

This is precisely equivalent to (3.7), and can be used to prove the forward direction of Corol-

lary 1.

We can also translate an HEI in K-basis to I-basis. In particular, given∑
Γ⊆[N+1]

λΓ K
(N)
Γ =

∑
I⊆[N]

σIII ≥ 0 , (A.6)

we can determine σI in terms of λΓ using the following procedure. Consider now the entropy

vector ĝ{i(N+1)}, where i ∈ [N]. Using (A.5), we observe that for any I ⊆ [N],

II|ĝ{i(N+1)} =

0 I 6= i

1 I = i .
(A.7)

Thus, evaluating both sides of (A.6) on ĝ{i(N+1)}, we obtain for all i ∈ [N],

σi = λi(N+1) . (A.8)

Next, consider the entropy vector ĝ{ij}, where i, j ∈ [N]. Again using (A.5), we observe

that for any I ⊆ [N] and i, j ∈ [N],

II|ĝ{ij} =


1 I = i or j

2 I = {i, j}

0 otherwise.

(A.9)
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Evaluating both sides of (A.6) on this ĝ{ij}, we obtain

σi + σj + 2σij = λij . (A.10)

By (A.8), this implies σij = 1
2

(
λij − λi(N+1) − λj(N+1)

)
for all i, j ∈ [N]. Indeed, note that if

λij = 0 for all i, j ∈ [N + 1], this immediately implies σi = σij = 0 for all i, j ∈ [N], i.e. the

HEI is superbalanced. This proves the reverse direction of Corollary 1.

We can continue the above procedure to write the σI’s in terms of λΓ’s by considering

the entropy vectors ĝ{i1···i2k−1(N+1)} and ĝ{i1···i2k} for all k ≤ n, where i1, . . . , i2k ∈ [N]. By

repeatedly evaluating (A.6) on these PTs and using (A.5), we are able to write linear equations

relating σI and λΓ, in the same spirit as (A.8) and (A.10).
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